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Error propagation in the hypercycle
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We study analytically the steady-state regime of a networkh arror-prone self-replicating templates
forming an asymmetric hypercycle and its error tail. We show that the existence of a master template with a
higher noncatalyzed self-replicative productivaythan the error tail ensures the stability of chains in which
m<n-—1 templates coexist with the master species. The stability of these chains against the error tail is
guaranteed for catalytic coupling strengtison the order ofa. We find that the hypercycle becomes more
stable than the chains only K is on the order ofa?. Furthermore, we show that the minimal replication
accuracy per template needed to maintain the hypercycle, the so-called error threshold, vanistiésfas
largeK andn=<4.

PACS numbdis): 87.10+€, 87.23.Kg

I. INTRODUCTION In order to circumvent the aforementioned limitations of
the quasispecies model, Eigen and Schuster proposed the hy-
Self-replication at the molecular level is the crucial “in- percycle[7], that is, a catalytic feedback network whereby
vention” for the origin and maintenance of life. One of the each template helps in the replication of the next one, in a
central questions in any theory of molecular evolution conregulatory cycle closing on itself. This model has gained
cerns the evolution of a collection of competigy other-  plausibility when the ability of polynucleotides to help
wise interacting species of replicatorgentities that are ca- propagate each other was established experimentally through
pable of self-replication One of the most far-reaching the study of the catalytic activity of the RNAibozymes
conclusions from studies of replicator dynamics is the exis{8,9]. Interestingly, although the error threshold phenomenon
tence of a limitation of the length of a genome due the finitehas traditionally been considered the main motivation for the
replication accuracy per nucleotide This observation has proposal of the hypercyclsee Ref[10], for instancg most
led to a deadlock in the theories of the origin of life based orof the seminal works in this field have dealt with the coex-
the evolution of competing self-replicating polynucleotides. istence issue only, as they assume perfect replication accu-
According to Eigen’s quasispecies moddl,2], which  racy for the hypercycle elemeriig,11]. In this case an arbi-
may serve as a paradigm here, polynucleotides have to refrary number of templates permanently coexist in a
licate with high accuracy in order to reach a certain length, alynamical equilibrium state; ifi>4, however, the template
requirement that is impossible to fulfill without the aid of concentrations vary with timg7], periodically decreasing to
specialized catalysts. However, to build those catalysts gery small values. In practice, large hypercycles are therefore
blueprint is necessary that amounts to a large gen@hee  susceptible to extinction via fluctuations, see, e.g., Refl,
nucleotide sequenge which itself cannot be maintained hence the information gain due to the coexistence of differ-
without the catalysts. In particular, for polynucleotides of ent templates in the hypercycle may not be very impressive
fixed lengthL, the quasispecies model predicts the existencafter all. Furthermore, we will argue in this paper that coex-
of a minimal replication accuracy per genoe= qt, be- istence in the absence of a stable equilibrium can also be
low which the genetic information is irreversibly lost. This achieved by a simpler arrangement, namely, the free chains,
information crisis has been termed error threshold transitionin which the cyclic order of the catalysts is interrupted.
Above Q.. the population is composed of a master copy to- The effect of error-prone replicatidmutation in the hy-
gether with a cloud of structurally similar mutarjtpiasispe-  percyclic organization was investigated by introducing a mu-
cies [1,2]. Equally important is the finding that, except in a tation field as a perturbation of the error-free kinetic equa-
trivially degenerate case, two or more quasispecies canndibns[13]. This approach, however, is not very appropriate to
coexist[ 3], thus precluding the coexistence of templdias,  study the error threshold phenomenon, since the results ob-
polynucleotides sufficiently different from each other to tained cannot be easily compared with those of the quasispe-
code for any useful set of catalysts. Although it has beercies model. In this sense, a more suitable approach is to
claimed that the information crisis is not really a fundamen-assume the existence of a special class of templates with no
tal issue, since the error threshold transition appears only inatalytic activity, the so-called error tail, that appear as a
some pathological, discontinuous replication landscépks consequence of the replication errors of the hypercycle ele-
the coexistence problem seems to be more pervasive, as itnsents[14—16. However, the particular catalytic network in-
associated with the form of the growth functions in thevestigated extensively within that framework was not the
chemical kinetics equation$,6]. hypercycle, except for a short discussion in R&¥], but the
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fully connected network in which each element helps the
replication of all other elements of the netwofk5,16].
(Clearly, in the case ofi=2 elements, these two networks
become identicall14].) Such a network is more robust than
the hypercycle since the mal-functioning or extinction of one
of its elements does not compromise the whole network. -
Nevertheless, in addition to its aesthetic appeal, the cyclic e
coupling of the hypercycle seems to be more real{€ic
For the sake of completeness we must mention an alter-
native resolution for the information crisis in prebiotic evo-
lution which has received some attention recenthg],
namely, the stochastic corrector moddl9]. This model
builds on ideas of the classical group selection theory for the
evolution of altruisn{20], since it considers replicative tem-
plates competing inside replicative compartments, whose se- I, | I
lective values depend on their template composition. How-

ever, .the chemical kine_tic_s equations governing the FiG 1. The system composed of a hypercycle of size3 and
dynamics of the templates inside the compartments display ig error taill,. The thin arrows represent the noncatalyzed self-
nonphysical(noninteger exponentsdependence of growth repjication reactions and the thick arrows represent the self-
on template concentrations. It seems to us that this basigplication catalytically assisted by the neighbor template
assumption of the stochastic corrector model must be re-

laxed, or at least justified, before it can be considered aprocesses for the growth of templatethe probability of
important alternative to the more traditional approach baseduccess is given by the parame@e[0,1], so that an erro-
on the hypercycle and its variants. We note that nonexponerieous copy, which will then belong to the error tail, is pro-
tial growth may arise from ligation-based multistep replica-duced with probability + Q. Hence the concentrations
tion mechanisms, see, e.g., Ref8,21] for a discussion of x,(i=1,... n) of the hypercycle elements and the concen-

competition in such a setting. _ tration x, of the error tail evolve in time according to the
The goal of this paper is to investigate analytically thekinetic equations

steady states of a deterministic system comprised of two

parts, namely, a hypercycle made up rofself-replicating ;(izxi(AiQ+ Kixi_1Q—®), i=1,...n (1)
templated 1,15, ... |, and its error tail .. These parts are
coupled such that any erroneous copy of the hypercycle elend
ments will belong to the error tail. The focus of the present
analysis is on the location in the parameters space of the
model (i.e., replication accuracy per template, noncatalyzed
and catalyzed productivity values, and hypercycle )size

the regions of stability of the diverse possibilities of coexist-wherexy,=x,, and
ence between the templates composing the hypercycle. In
particular, we give emphasis to the characterization of the
critical parameters at which the hypercycle becomes unstable
against the error tail.

The remainder of the paper is organized as follows. Inis a dilution flux that keeps the total concentration constant,
Sec. Il we present the chemical kinetics equations that govie =" | x;+x,=0. As usual, the dot denotes a time deriva-
ern the time evolution of the system and motivate the spegye, Henceforth we will assumiL5,16
cific choice of the parameters used throughout the paper. The
fixed points of the kinetic equations are obtained analytically n
in Sec. IIl and their stability discussed in Sec. IV. The phase- > XitXe=1, (4)
diagrams showing the regions of stability of the diverse co- =1

existence states are presented and analyzed in Sec. V. i that thex,'s are actually relative concentrations and hence
nally, some concluding remarks are presented in Sec. VI. gimensjonless quantities. As a result, the productivity values
A; and kinetic constant&; have dimension of inverse of
Il. MODEL time. Clearly, this formulation is equivalent to considering
polynucleotides of length —< whose replication accuracy
We consider a system composed of a hypercycle made uper nucleotideg goes to 1 such that the replication accuracy
of nelementd 4, ... |, and its error tail ., as illustrated in  per genome is finite, i.eq-—Q. In this limit, the back
Fig. 1. In contrast to the so-called elementary hypercy€le  mutations from the error-tail elements to the templates that
we assume that the templates are capable of self-replicatiatompose the hypercycle, as well as the mutations between
with productivity valuesA;(i=1, ... n) andA,. Moreover, those templates, can be safely neglected. Hence, mutations
as usual, the growth promotion of templadfeas a result of can only increase the concentration of the elements in the
the catalysis from template _, is measured by the kinetic error tail. The advantage of working in this limit is that the
constant¥; . The key ingredient in the model is that in both error threshold transition can be precisely located by deter-

'xe:xe<Ae—c1>>+<1—Q>i§1xi<Ai+Kixifl>. )

n

@=Zl X (A +KiXi_1) +AcXe ©)
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mining the value ofQ at which the concentration of a rel- templaten or 1. In the first case we ge&b=Q from 5<n=0
evant template vanishes. For finite as well as for finite and aQ+KQx,=Q from x,=0, yielding x,=(1—a)/K

populr?monl sges,dthe ((:jhatrsctenzatlfofr) _ct)f th's tranI_S|t|otn 'S<0, which rules out this possibility. The equilibria of inter-
more Involved and needs the use ot inite-size scaing techsst for our study thus are either the interior equilibrium in

n|ques[_22,23]. . . ... which all templates survive, or a fixed point that corresponds
In this work we consider the single-sharp-peak repllcat|0n[0 a chain of survivors beginning with

fn(_jsc;;ie{tlzgh n whlcr|1| v(\j/e asctnbet the Ip;rtoduc(tjl\gty_\flue Accordingly, we define am-coexistence state as the
1=a 0 the so-calied master emplale and Ai=Ae = component template vectar=(X;,X,, . . . X,) in which

t: 1thto then—t;l OX}er e][emtints o{(thefhyperlc?y.ctzle as \Q{:II 3Sthe firstm components are strictly positive and the rest are
0 the error-tail. Also, for the sake of simplicity we s equal to zero. Clearly, given the template vectahe con-

=K fortall I: 'I;Ee rr;)onvau?n f?rr] tthltf\ particular ChOI(]f(ihmchcentration of the error tai, is determined by the constraint
parameters 1S the observation that the emergence ot the 4). In the following we analytically solve the kinetic equa-

percycle requires both spatial and temporal coexistence q . = .

the templates forming the network, and this can be achieveions in the steady-state regime=0 for alli.

by a quasispecies distribution, which guarantees the coexist- 1 N€ Simplest fixed point is the zero-coexistence state (
ence of the master template and its close mutants, despite the?) Which corresponds to the solutiap= - - - =x,=0 and
purely competitive character of the quasispecies mpzil ~ Xe™ 1, existing for thg complete range of parameter values.
Once coexistence is established, the appearance of catalytic In the case of chains, i.e.,<Om<n, the steady-state so-
couplings between the templates is not a very unlikely evenfutions of Eqs.(1) and (2) are straightforward. In fact, since
Of course, as soon as those cooperative couplings becomg=0 by definition, we getb =aQ from x; =0 which then
sufficiently strong to balance the competition imposed by theyields

constant concentration constraint, the mutants will — driven

by the relentless pressure of the mutations — depart from the Xy =Yo= e =X g= a-1 (12)
master template, so that no trace will remain of the original 1 m-iToK
quasispecies distribution. ) _ . .
Next we insert this result into Eq3) and obtain
lll. FIXED POINTS Qa-1 a—1
L . Xm= —(m—1)—. (13
Let us distinguish between surviving templaies 0 and a-1 K

extinct templates;=0. A survivor I; is said isolated if

X;_1=Xj+1=0. Hence However, sincex; e (0,1)Vi, this solution is physically

meaningful in the regiolk>a—1 andQ>Q,,, where

X=x(Q-®), j>1 5 11
4 _ _ 2
and Qn a+ Ka(m 1)(a—1)-. (14
) We note that the one-coexistence stajeasispeciesis ob-
Xe=Xe(1=®)+(1-Q)| Xy (a—1)+1+K E XiXj—1]|- tained by settingn=1 in Eq.(13) and its region of existence
ARRS is simply Q>1/a, since the other condition, namel,>a
(6) —1, is derived by considering the other templates in the

In the steady-state regime, EG) yields ®=Q which, for ~ chain. In fact, this very simple result quantifies nicely the
Q<1, is incompatible with Eq(6), since the term within Notion that the cooperative couplings must reach a certain

brackets in this equation is positive. Therefore, all isolatedNinimum strength so as to balance the competition between

survivors with the exception of the master template are untémplates. _ _ _
stable against the error tail. Next consider the following The analysis of the hypercycle, i.en=n, is a slightly

chain of surviving templates: more involved. Fr0m$<2=(_) we getc_D—QzKQxl which,
. inserted in the equationg;=---=x,=0, yields x;=X,

Xi=X(Q—P), (1) =...=x,_, and

Xi 1= X+ 1(Q+KQx—®) ® a-1
i+1 i+1 i J Xn=X1_T- (15)
Xi+2=Xi+2(QTKQX 1~ ®), ©) Finally, substituting these results in E8) we find thatx, is
(10) given by the roots of the quadratic equation
_ nKx—(KQ+a—1)x;+1—Q=0. (16)
X=X (Q+KQxy—1—P) (11)

For K<(a—1)?%4n, this equation has real roots for &l
which does not contair,. Again, in the steady-state regime =0, otherwise it has real roots f@=Q;, whereQy, is the
the first equation yield® =Q, implying KQx, =0, i.e., X; unique positive root of the equation
=0, and hence there is no fixed point corresponding to such - 5
a chain. Any chain of survivors therefore must start with K Qp+2K(a—1+2n)Qu+(a—1)"=4nK=0. (17)
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In particular, for largeK we find Q,~2+/n/K. Furthermore, and we have used the constraid) to eliminatex.. The

it can be easily seen from Eq4.5) and(16) thatx, vanishes stability of a fixed point is ensured provided that the real
at Q=Q, with Q,, given in Eq.(14). To understand the role parts of all eigenvalues of thex n Jacobian7 are negative.
of Q;, andQ,, (we note tha,=Q},) in delimiting the region  In our case the elements of the Jacobian are given by

of existence of ther-coexistence state we must look at the

beha:vior oftﬁe two rfal roots of E(L6). Let us denote them 3,=6, Fi+xi‘7_':i ij=1,...n. 21)

by x; andx; with x; =x; , which, according to Eq(15), IX;

correspond tox; and x, , respectively. Of course, these
roots become identical = Q, and so the two solutions for
X, will vanish simultaneously only at the value K=K, at
which Q;, equalsQ,,. Explicitly, we obtain

The evaluation of the eigenvalues is simple only for the zero-
coexistence state, since in this case the Jacobian is diagonal
with elements);;=aQ—1 andJ;=Q—1, i>1. Therefore

this steady state becomes unstable@or 1/a, which coin-
cides with the lowest replication accuracy required for the
existence of the one-coexistence state. However, for a gen-
) ) ) . eral m-coexistence state we have to resort to a numerical
by inserting Eq.(14) into Eq. (17). Although both roots;  evaluation of the Jacobian eigenvalues.

andx; are in the simplex (0,1), this is not the case fgr Fortunately, in the case of chains<@n<n there is an

and x, . In particular, forK<K;, both concentrations are alternative way to look at the stability of the fixed points, as
negative within the rang®,<Q<Q,. However, whilex, hinted by the stability analysis of the zero-coexistence state,
becomes positive fo > Q, (it vanishes a,), x, remains  which becomes unstable due to the emergence of the one-
always negative. Sindé,>(a— 1)?/4n the same conclusion coexistence state. In fact, it can be easily seen that any per-
holds in the rang& <(a—1)?%/4n as well, provided we de- turbation of them-coexistence fixed point which makes the
fine Q,=0 in this region. The situation is reversed figr ~ concentrationx,,; nonzero will be amplified ifAn,,1Q
>K},: both concentrations are positive within the raf@ge ~ +KQx,—® is positive. Form>0 we use®=aQ and
=Q<Q,, but now it isx, that vanishes ap, and becomes Am+1=1 together with the value ofy, given in Eq.(13) to
negative forQ>Q, while x* remains always positive. De- ©0btain the following(necessarycondition for the stability of
spite the small region in the parameters space where the robté M-coexistence state,

X; Yields concentrations inside the simplex, the linear stabil- Q<Q m=0 22)

ity analysis discussed in the sequel indicates that this solu- mid '

tion is always unstable, so we only need to consider the rogjjith Q. given in Eq.(14). Hence the maximum value &
x; . Thus the range of existence of the hypercycle fixedallowed for the stability of then-coexistence state coincides
pointm=n is Q=Q,, if K=K, andQ=Q,, if K>K,. with the minimumQ required for the existence of then(

In models without error-tail, i.e., pure replicator equa- + 1)-coexistence state. Interestingly, although o0 we
tions, a much stronger statement on coexistence is possiblgave® =1, A;=a, andx,=0, condition(22) holds true in
The “time average theorem[25] states that if there is a this case, too.
trajectory along which a certain subset of templalesur- At this point two caveats are in order. First, the entire
vives, then there is a fixed point with exactly thecoordi-  argument leading to the stability conditié22) is flawed if
nates nonzero. While we have not been able to prove thghe (m+ 1)-coexistence state happens to be unstable. There-
“time average theorem” in full generality for Eq$l) and  fore, we must guarantee via the numerical evaluation of the
(2), it is easily verified for free chains. Hence, if there is no Jacobian eigenvalues that theoexistence state is stable be-
m-coexistence equilibrium, then there is no trajectory at allfore using that condition to study the stability of chains with
along which the templates throughl , survive. m<I. In particular, we have carried out the numerical analy-

Hitherto we have determined the ranges of the parameteys for the hypercycle solution=n and found the following
Q where them-coexistence states are physically meaningful,genera| results:
in the sense that; e (0,1)Vi. The next step is to find the (i) Forn=<4, it is always stable(ii) for n=5, it is stable

K,=(a—1)[n(a+1)—1] (18)

regions where these states are locally stable. in a very small range o aboveQs; and(iii) for n=6, it is
always unstable.
IV. STABILITY ANALYSIS Second, the derivation of the Stability COﬂditiQﬁZ) is

based on the analysis of a single eigenvalue of the Jacobian
In order to perform a standard linear stability analysis ofand hence yields a necessary but in general not a sufficient
the fixed points obtained in the previous section, it is convecondition for the stability of the fixed points. Nevertheless,
nient to rewrite the kinetic equatiori$) and(2) as follows:  we have verified by means of numerical evaluation ofnall
eigenvalues that, provided then(-1)-coexistence state is
Xi=xFi(x), i=1,...n, (190  stable, the eigenvalue associated to fluctuations leading to an
increase of the chain length is indeed the first one to become
where positive.
V. DISCUSSION

Fi0)=AQ+KQX_1—Ag— 2 %;(A — AgtKx;
(O=AQTKQX-1—A ; XA~ Aet KXj-1) Combining the existence and the stability results derived

(20 in the previous sections we can draw the phase-diagrams in
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FIG. 2. Phase diagram in the spad¢,Q) for n=4 anda FIG. 3. Same as Fig. 2 but for=5. There are no stable fixed

=10 showing the regions of stability of the diverse coexistencepoints above the dashed curve. The solid curvesfesen bottom to
states. The numbers between parentheses indicate the numberigh) Q,, Q,, Qs, Q,, andQs.

coexisting templates. Regions of bistability appeardorK,,. The
thin lines are(from bottom to top Q;, Q,, Qs, andQ,. The thick

e i5 O same length. Another important quantity is the valueKof
ine is Qy,.

denoted byK,, at whichQy, equals 14, the minimal repli-

cation accuracy of the quasispecies. It is given by
the plane K,Q) for fixed a andn. In particular, fom=4 the

m-coexistence state is stable within the interval Kc.=a(a—1)[2n—1+{n(n—1)]. (25
Qn<0Q<Qmi1, mM<n (23 Beyond this value the error threshold of the hypercygjés

smaller than that of the quasispecies. Moreover, as men-
with Qp, given in Eq.(14), provided thakK>a—1. Interest-  tioned before, for largeX, it vanishes as 1/K. A rather
ingly, for fixed Q, Eq. (23) shows that the incremedK in  frustrating aspect oK, andK is that both are of ordea?,
the catalytic coupling needed to incorporate a new templatéhdicating then that the productivity of catalytically assisted
into the chain is self-replication is much larger than that of noncatalyzed self-
replication. While this is obviously true for biochemical ca-
_(a— 1) o talysis, it is difficult to argue for the existence of such effi-
- aQ-1’ (24 cient catalysts in prebiotic conditions. On the other hand, we
can take a different, more optimistic viewpoint and argue
regardless the number of elements in the chain. The KKase that modern biochemical catalygenzymes are so efficient
<a—1, for which no chains witm>1 are allowed, does because their precursors had to satisfy the stringent condi-
not require any special consideration. In fact, we find that theions imposed by surpassiry, .
only stable states are the zero-coexister@eZ(Ll/a) and the In Fig. 3 we present the phase diagram for5. The
one-coexistence (A<Q=1) states. However, sinc®, main difference from the previous figure is that the five-
=<1 only forK=a—1, this result is consistent with ER3).  coexistence state is stable only within the thin region be-
The n-coexistence staté.e., the hypercycle solutioris  tween Qs and the dashed curve, obtained through the nu-
stable for Q>Q, if K=Ky and for Q>Qy, otherwise, merical evaluation of the Jacobian eigenvalues. As these
whereK}, and Q,, are given by Eqgs(18) and (17), respec- curves intersect at sone<Ky,, the five-membered hyper-
tively. We define the error threshold of the hypercycle as theycle is not very interesting, since it has the same character-
value of the replication accurad that delimits the region istics of a chain of lengttm=5. To confirm this result we
of stability of then-coexistence state. The phase diagram fothave carried out the numerical integration of the kinetic
a=10 andn=4 shown in Fig. 2 illustrates the major role equations using the ninetieth-order Runge-Kutta method.
played byK,, in the hypercyclic organization: only fak The results are shown in Fig. 4, which illustrates the time
> Ky, the hypercycle becomes more stable than a chain of thevolution of the concentrations;(i=1, ... ,5) inside and
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FIG. 5. Time evolution of the five concentrations of the tem-
plates composing a free chain of sime=5. The parameters and
initial state are the same as for Fighst

FIG. 4. Time evolution of the five concentrations of the tem-
plates composing a hypercycle of size-5 for a=10, Q=1, and
(a) K=37 (inside the region of stabilijyand(b) K =40 (outside the
region of stability. The initial state i;(0)=0.2vi. For the sake of completeness, we present some results on
. . . . the elementary hypercyclé&(=0,=1, ... n) coupled to an
.OUtS'de th_e region of S.t"?‘b'“ty' AIthough the behavior palterMy o tajl (Ac.=1) via the imperfect catalytically assisted
in the region of instability seems periodic, we have hot ex'self-replication. Inserting these parameters into @) and
plored completely the space of parameters to discard the ©Xetting F,=0Vi yields x;=- - - =x, with x, given by the
istence of chaotic behavior. Hence we use the term Compleférger rolot of the quadrétic equat?on !

dynamics to label this region in Fig. 3. We note that the

phase diagram shown in this figure describes also the regions Knxé—(n+KQ)x;+1=0, (27)
of stability of hypercycles and chains of sire=5, since
m-coexistence states witin>5 are always unstable. since we have verified that the smaller root is always un-

An interesting limiting case which deserves special attenstable. As in the symmetric case discussed aboven$o4
tion is the symmetric hypercycleaE1). According to the the stability condition coincides with the condition for real
argument put forward in the beginning of Sec. Ill, the only x;, namely,
fixed points in this case are the zero-coexistence state and the
hypercycle, i.e., chains are not allowed. Moreover, @8&) n n
yieldsx;=x,= - - - =X,, wherex is given by Eq(16) with a Q=2 \/;_ K- (28)
replaced by 1. The analysis of the roots of that quadratic
equation together with the numerical evaluation of the eigenThus the term in the right hand side of this inequality yields
values of the Jacobian shows that the symmetric hypercyclghe error threshold of the elementary hypercycle.
is stable for Before concluding this section, we must note that the

chains of sizem considered hitherto are bonded in a hyper-
4n cycle of sizen>m. We could studyfree chains of sizen as
K>—2(1—Q), (26)  well by simply settingk,= 0 in the kinetic equation€l) and
Q (2). Not surprisingly, the results are essentially the same as
for bonded chains, witlQ,, playing a similar fundamental
provided than=<4. The region of stability observed in Fig. 3 role in delimiting the regions of stability of the shorter chains
for the five-coexistence state does not appear in the symmetm<n). Although a full discussion of the stability of the
ric casea=1, so it must be a consequence of the asymmetrgomplete chainrfi=n) is beyond the scope of this paper, we
in the productivity values of the noncatalyzed self-replicationpoint out that free chains witin>4 are always unstable.
reaction. We note that, differently from the asymmetric caseMoreover, as illustrated in Fig. 5, the oscillatory behavior
(a>1), the zero-coexistence state is always stable. pattern of the template concentrations, which ensues a dy-
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namic coexistence among all templates in the chain, is siminext step in this complex evolutionary process. In fact, ac-
lar to that observed in the hypercydleompare with Fig. #  cording to Eq.(24) the strengths of the catalytic couplings
In this sense, the free chains seem as good as the hypercyeleeded to form a chain are of ordgrwhile the hypercycle

to attain that kind of coexistence. However, we must emphaenly acquires its desirable stability characteristics for
size that, for sufficiently larg (i.e., K>K}), the fixed strengths of ordea?, see Eq(18). Although we realize that
points describing the coexistencero&4 templates in a hy- an evolutionary step leading from chains to hypercycles is
percycle are much more robust against replication errors thastill a major one, it is certainly much more plausible than a

their counterparts in the free chains. direct transition from quasispecies to hypercycle. In any
event, we think that the emergence of the hypercycle can be
VI. CONCLUSION explained as a series of plausible smooth transitions, without

_ need to postulating the hypercycle as an unique event in
Our study of the steady states of an asymmetric hyperprepiotic evolution. In this vein, this work represents a mod-

cycle composed oh error-prone self-replicating templates est first step to tackle this fundamental problem within a firm
indicates that, fon<4, the error threshold of the hypercycle pgsis.

(Qp) becomes smaller than that of the quasispeci@s (
=1/a) for catalytic couplinggK) of order ofa?, wherea is
the productivity value of the master template. In particular,
Qy, vanishes likeyn/K for largeK. Perhaps, even more im-  P.R.A.C. thanks P. Schuster and P.F. Stadler for their kind
portant is our finding that the asymmetry in the noncatalyzedospitality at the Institut fu Theorestische Chemie in Vi-
self-replication reaction g>1) entails the existence of enna, where part of his work was done, and Professor P.E.
chains of sizen<5. We note that these chains are unstablePhillipson for illuminating discussions. The work of J.F.F.
in the symmetric hypercycle as well as in the fully connectedwas supported in part by Conselho Nacional de Desenvolvi-
network[15,16. mento Cienfico e Tecnolgico (CNPg. The work of P.F.S.
Adding to the scenario for the emergence of the hyperwas supported in part by the Austrian Fonds zurdeoung
cycle described in Sec. Il, which starts with an isolated quader Wissenschaftlichen Forschung, Project No. 13093-GEN.
sispecies, our results indicate that the chains may well be thie. R.A.C. is supported by FAPESP.
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