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Error propagation in the hypercycle
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We study analytically the steady-state regime of a network ofn error-prone self-replicating templates
forming an asymmetric hypercycle and its error tail. We show that the existence of a master template with a
higher noncatalyzed self-replicative productivitya than the error tail ensures the stability of chains in which
m,n21 templates coexist with the master species. The stability of these chains against the error tail is
guaranteed for catalytic coupling strengthsK on the order ofa. We find that the hypercycle becomes more
stable than the chains only ifK is on the order ofa2. Furthermore, we show that the minimal replication
accuracy per template needed to maintain the hypercycle, the so-called error threshold, vanishes asAn/K for
largeK andn<4.

PACS number~s!: 87.10.1e, 87.23.Kg
-
e
n

-
g
is
it

o
s.

re
,

of
s

d
o
nc

is
io
to

a
nn

e
n
y

i
he

of
e hy-
by
n a
ed
p
ugh

on
the

x-
ccu-

a

fore

er-
ive
x-
be

ins,

u-
a-
to
ob-

spe-
s to
h no

a
ele-
-
he
I. INTRODUCTION

Self-replication at the molecular level is the crucial ‘‘in
vention’’ for the origin and maintenance of life. One of th
central questions in any theory of molecular evolution co
cerns the evolution of a collection of competing~or other-
wise interacting! species of replicators~entities that are ca
pable of self-replication!. One of the most far-reachin
conclusions from studies of replicator dynamics is the ex
tence of a limitation of the length of a genome due the fin
replication accuracy per nucleotideq. This observation has
led to a deadlock in the theories of the origin of life based
the evolution of competing self-replicating polynucleotide

According to Eigen’s quasispecies model@1,2#, which
may serve as a paradigm here, polynucleotides have to
licate with high accuracy in order to reach a certain length
requirement that is impossible to fulfill without the aid
specialized catalysts. However, to build those catalyst
blueprint is necessary that amounts to a large genome~the
nucleotide sequence!, which itself cannot be maintaine
without the catalysts. In particular, for polynucleotides
fixed lengthL, the quasispecies model predicts the existe
of a minimal replication accuracy per genomeQc5qc

L , be-
low which the genetic information is irreversibly lost. Th
information crisis has been termed error threshold transit
Above Qc the population is composed of a master copy
gether with a cloud of structurally similar mutants~quasispe-
cies! @1,2#. Equally important is the finding that, except in
trivially degenerate case, two or more quasispecies ca
coexist@3#, thus precluding the coexistence of templates~i.e.,
polynucleotides! sufficiently different from each other to
code for any useful set of catalysts. Although it has be
claimed that the information crisis is not really a fundame
tal issue, since the error threshold transition appears onl
some pathological, discontinuous replication landscapes@4#,
the coexistence problem seems to be more pervasive, as
associated with the form of the growth functions in t
chemical kinetics equations@5,6#.
PRE 611063-651X/2000/61~3!/2996~7!/$15.00
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In order to circumvent the aforementioned limitations
the quasispecies model, Eigen and Schuster proposed th
percycle@7#, that is, a catalytic feedback network where
each template helps in the replication of the next one, i
regulatory cycle closing on itself. This model has gain
plausibility when the ability of polynucleotides to hel
propagate each other was established experimentally thro
the study of the catalytic activity of the RNA~ribozymes!
@8,9#. Interestingly, although the error threshold phenomen
has traditionally been considered the main motivation for
proposal of the hypercycle~see Ref.@10#, for instance!, most
of the seminal works in this field have dealt with the coe
istence issue only, as they assume perfect replication a
racy for the hypercycle elements@7,11#. In this case an arbi-
trary number of templates permanently coexist in
dynamical equilibrium state; ifn.4, however, the template
concentrations vary with time@7#, periodically decreasing to
very small values. In practice, large hypercycles are there
susceptible to extinction via fluctuations, see, e.g., Ref.@12#,
hence the information gain due to the coexistence of diff
ent templates in the hypercycle may not be very impress
after all. Furthermore, we will argue in this paper that coe
istence in the absence of a stable equilibrium can also
achieved by a simpler arrangement, namely, the free cha
in which the cyclic order of the catalysts is interrupted.

The effect of error-prone replication~mutation! in the hy-
percyclic organization was investigated by introducing a m
tation field as a perturbation of the error-free kinetic equ
tions@13#. This approach, however, is not very appropriate
study the error threshold phenomenon, since the results
tained cannot be easily compared with those of the quasi
cies model. In this sense, a more suitable approach i
assume the existence of a special class of templates wit
catalytic activity, the so-called error tail, that appear as
consequence of the replication errors of the hypercycle
ments@14–16#. However, the particular catalytic network in
vestigated extensively within that framework was not t
hypercycle, except for a short discussion in Ref.@17#, but the
2996 ©2000 The American Physical Society
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PRE 61 2997ERROR PROPAGATION IN THE HYPERCYCLE
fully connected network in which each element helps
replication of all other elements of the network@15,16#.
~Clearly, in the case ofn52 elements, these two network
become identical@14#.! Such a network is more robust tha
the hypercycle since the mal-functioning or extinction of o
of its elements does not compromise the whole netwo
Nevertheless, in addition to its aesthetic appeal, the cy
coupling of the hypercycle seems to be more realistic@9#.

For the sake of completeness we must mention an a
native resolution for the information crisis in prebiotic ev
lution which has received some attention recently@18#,
namely, the stochastic corrector model@19#. This model
builds on ideas of the classical group selection theory for
evolution of altruism@20#, since it considers replicative tem
plates competing inside replicative compartments, whose
lective values depend on their template composition. Ho
ever, the chemical kinetics equations governing
dynamics of the templates inside the compartments displ
nonphysical~noninteger exponents! dependence of growth
on template concentrations. It seems to us that this b
assumption of the stochastic corrector model must be
laxed, or at least justified, before it can be considered
important alternative to the more traditional approach ba
on the hypercycle and its variants. We note that nonexpon
tial growth may arise from ligation-based multistep replic
tion mechanisms, see, e.g., Refs.@6,21# for a discussion of
competition in such a setting.

The goal of this paper is to investigate analytically t
steady states of a deterministic system comprised of
parts, namely, a hypercycle made up ofn self-replicating
templatesI 1 ,I 2 , . . . ,I n and its error tailI e . These parts are
coupled such that any erroneous copy of the hypercycle
ments will belong to the error tail. The focus of the prese
analysis is on the location in the parameters space of
model ~i.e., replication accuracy per template, noncatalyz
and catalyzed productivity values, and hypercycle size! of
the regions of stability of the diverse possibilities of coexi
ence between the templates composing the hypercycle
particular, we give emphasis to the characterization of
critical parameters at which the hypercycle becomes unst
against the error tail.

The remainder of the paper is organized as follows.
Sec. II we present the chemical kinetics equations that g
ern the time evolution of the system and motivate the s
cific choice of the parameters used throughout the paper.
fixed points of the kinetic equations are obtained analytica
in Sec. III and their stability discussed in Sec. IV. The pha
diagrams showing the regions of stability of the diverse
existence states are presented and analyzed in Sec. V
nally, some concluding remarks are presented in Sec. V

II. MODEL

We consider a system composed of a hypercycle mad
of n elementsI 1 , . . . ,I n and its error tailI e , as illustrated in
Fig. 1. In contrast to the so-called elementary hypercycle@7#,
we assume that the templates are capable of self-replica
with productivity valuesAi( i 51, . . . ,n) andAe . Moreover,
as usual, the growth promotion of templateI i as a result of
the catalysis from templateI i 21 is measured by the kineti
constantsKi . The key ingredient in the model is that in bo
e
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processes for the growth of templateI i the probability of
success is given by the parameterQP@0,1#, so that an erro-
neous copy, which will then belong to the error tail, is pr
duced with probability 12Q. Hence the concentration
xi( i 51, . . . ,n) of the hypercycle elements and the conce
tration xe of the error tail evolve in time according to th
kinetic equations

ẋi5xi~AiQ1Kixi 21Q2F!, i 51, . . . ,n ~1!

and

ẋe5xe~Ae2F!1~12Q!(
i 51

n

xi~Ai1Kixi 21!, ~2!

wherex0[xn and

F5(
i 51

n

xi~Ai1Kixi 21!1Aexe ~3!

is a dilution flux that keeps the total concentration consta
i.e., ( i 51

n ẋi1 ẋe50. As usual, the dot denotes a time deriv
tive. Henceforth we will assume@15,16#

(
i 51

n

xi1xe51, ~4!

so that thexi ’s are actually relative concentrations and hen
dimensionless quantities. As a result, the productivity val
Ai and kinetic constantsKi have dimension of inverse o
time. Clearly, this formulation is equivalent to considerin
polynucleotides of lengthL→` whose replication accurac
per nucleotideq goes to 1 such that the replication accura
per genome is finite, i.e.,qL→Q. In this limit, the back
mutations from the error-tail elements to the templates t
compose the hypercycle, as well as the mutations betw
those templates, can be safely neglected. Hence, muta
can only increase the concentration of the elements in
error tail. The advantage of working in this limit is that th
error threshold transition can be precisely located by de

FIG. 1. The system composed of a hypercycle of sizen53 and
its error tail I e . The thin arrows represent the noncatalyzed se
replication reactions and the thick arrows represent the s
replication catalytically assisted by the neighbor template
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mining the value ofQ at which the concentration of a re
evant template vanishes. For finiteL, as well as for finite
population sizes, the characterization of this transition
more involved and needs the use of finite-size scaling te
niques@22,23#.

In this work we consider the single-sharp-peak replicat
landscape@1,2#, in which we ascribe the productivity valu
A15a.1 to the so-called master templateI 1 and Ai5Ae
51 to then21 other elements of the hypercycle as well
to the error-tail. Also, for the sake of simplicity we setKi
5K for all i. The motivation for this particular choice o
parameters is the observation that the emergence of the
percycle requires both spatial and temporal coexistenc
the templates forming the network, and this can be achie
by a quasispecies distribution, which guarantees the coe
ence of the master template and its close mutants, despit
purely competitive character of the quasispecies model@24#.
Once coexistence is established, the appearance of cata
couplings between the templates is not a very unlikely ev
Of course, as soon as those cooperative couplings bec
sufficiently strong to balance the competition imposed by
constant concentration constraint, the mutants will — driv
by the relentless pressure of the mutations — depart from
master template, so that no trace will remain of the origi
quasispecies distribution.

III. FIXED POINTS

Let us distinguish between surviving templatesxi.0 and
extinct templatesxi50. A survivor I j is said isolated if
xj 215xj 1150. Hence,

ẋ j5xj~Q2F!, j .1 ~5!

and

ẋe5xe~12F!1~12Q!Fx1~a21!111K (
iÞ j , j 11

xixi 21G .
~6!

In the steady-state regime, Eq.~5! yields F5Q which, for
Q,1, is incompatible with Eq.~6!, since the term within
brackets in this equation is positive. Therefore, all isola
survivors with the exception of the master template are
stable against the error tail. Next consider the followi
chain of surviving templates:

ẋi5xi~Q2F!, ~7!

ẋi 115xi 11~Q1KQxi2F!, ~8!

ẋi 125xi 12~Q1KQxi 112F!, ~9!

A ~10!

ẋk5xk~Q1KQxk212F! ~11!

which does not containx1. Again, in the steady-state regim
the first equation yieldsF5Q, implying KQxi50, i.e., xi
50, and hence there is no fixed point corresponding to s
a chain. Any chain of survivors therefore must start w
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templaten or 1. In the first case we getF5Q from ẋn50
and aQ1KQxn5Q from ẋ150, yielding xn5(12a)/K
,0, which rules out this possibility. The equilibria of inte
est for our study thus are either the interior equilibrium
which all templates survive, or a fixed point that correspon
to a chain of survivors beginning withI 1.

Accordingly, we define am-coexistence state as th
n-component template vectorx5(x1 ,x2 , . . . ,xn) in which
the first m components are strictly positive and the rest a
equal to zero. Clearly, given the template vectorx the con-
centration of the error tailxe is determined by the constrain
~4!. In the following we analytically solve the kinetic equa
tions in the steady-state regimeẋi50 for all i.

The simplest fixed point is the zero-coexistence statem
50) which corresponds to the solutionx15•••5xn50 and
xe51, existing for the complete range of parameter valu

In the case of chains, i.e., 0,m,n, the steady-state so
lutions of Eqs.~1! and ~2! are straightforward. In fact, sinc
xn50 by definition, we getF5aQ from ẋ150 which then
yields

x15x25•••5xm215
a21

K
. ~12!

Next we insert this result into Eq.~3! and obtain

xm5
Qa21

a21
2~m21!

a21

K
. ~13!

However, sincexiP(0,1); i , this solution is physically
meaningful in the regionK.a21 andQ.Qm , where

Qm5
1

a
1

1

Ka
~m21!~a21!2. ~14!

We note that the one-coexistence state~quasispecies! is ob-
tained by settingm51 in Eq.~13! and its region of existence
is simply Q.1/a, since the other condition, namely,K.a
21, is derived by considering the other templates in
chain. In fact, this very simple result quantifies nicely t
notion that the cooperative couplings must reach a cer
minimum strength so as to balance the competition betw
templates.

The analysis of the hypercycle, i.e.,m5n, is a slightly
more involved. Fromẋ250 we getF2Q5KQx1 which,
inserted in the equationsẋ35•••5 ẋn50, yields x15x2
5•••5xn21 and

xn5x12
a21

K
. ~15!

Finally, substituting these results in Eq.~3! we find thatx1 is
given by the roots of the quadratic equation

nKx1
22~KQ1a21!x1112Q50. ~16!

For K,(a21)2/4n, this equation has real roots for allQ
>0, otherwise it has real roots forQ>Qh whereQh is the
unique positive root of the equation

K2Qh
212K~a2112n!Qh1~a21!224nK50. ~17!
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PRE 61 2999ERROR PROPAGATION IN THE HYPERCYCLE
In particular, for largeK we find Qh'2An/K. Furthermore,
it can be easily seen from Eqs.~15! and~16! thatxn vanishes
at Q5Qn with Qn given in Eq.~14!. To understand the role
of Qh andQn ~we note thatQn>Qh) in delimiting the region
of existence of then-coexistence state we must look at t
behavior of the two real roots of Eq.~16!. Let us denote them
by x1

1 and x1
2 with x1

1>x1
2 , which, according to Eq.~15!,

correspond toxn
1 and xn

2 , respectively. Of course, thes
roots become identical atQ5Qh and so the two solutions fo
xn will vanish simultaneously only at the value ofK5Kh at
which Qh equalsQn . Explicitly, we obtain

Kh5~a21!@n~a11!21# ~18!

by inserting Eq.~14! into Eq. ~17!. Although both rootsx1
1

andx1
2 are in the simplex (0,1), this is not the case forxn

1

and xn
2 . In particular, forK,Kh both concentrations ar

negative within the rangeQh<Q,Qn . However, whilexn
1

becomes positive forQ.Qn ~it vanishes atQn), xn
2 remains

always negative. SinceKh.(a21)2/4n the same conclusion
holds in the rangeK,(a21)2/4n as well, provided we de-
fine Qh50 in this region. The situation is reversed forK
.Kh : both concentrations are positive within the rangeQh

<Q,Qn , but now it isxn
2 that vanishes atQn and becomes

negative forQ.Qn while xn
1 remains always positive. De

spite the small region in the parameters space where the
x1

2 yields concentrations inside the simplex, the linear sta
ity analysis discussed in the sequel indicates that this s
tion is always unstable, so we only need to consider the
x1

1 . Thus the range of existence of the hypercycle fix
point m5n is Q>Qn if K<Kh andQ>Qh if K.Kh .

In models without error-tail, i.e., pure replicator equ
tions, a much stronger statement on coexistence is poss
The ‘‘time average theorem’’@25# states that if there is a
trajectory along which a certain subset of templatesJ sur-
vives, then there is a fixed point with exactly theJ coordi-
nates nonzero. While we have not been able to prove
‘‘time average theorem’’ in full generality for Eqs.~1! and
~2!, it is easily verified for free chains. Hence, if there is
m-coexistence equilibrium, then there is no trajectory at
along which the templatesI 1 throughI m survive.

Hitherto we have determined the ranges of the param
Q where them-coexistence states are physically meaning
in the sense thatxiP(0,1); i . The next step is to find the
regions where these states are locally stable.

IV. STABILITY ANALYSIS

In order to perform a standard linear stability analysis
the fixed points obtained in the previous section, it is con
nient to rewrite the kinetic equations~1! and ~2! as follows:

ẋi5xiFi~x!, i 51, . . . ,n, ~19!

where

Fi~x!5AiQ1KQxi 212Ae2(
j

xj~Aj2Ae1Kxj 21!

~20!
ot
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and we have used the constraint~4! to eliminatexe . The
stability of a fixed point is ensured provided that the re
parts of all eigenvalues of then3n JacobianJ are negative.
In our case the elements of the Jacobian are given by

Ji j 5d i j Fi1xi

]Fi

]xj
i , j 51, . . . ,n. ~21!

The evaluation of the eigenvalues is simple only for the ze
coexistence state, since in this case the Jacobian is diag
with elementsJ115aQ21 andJii 5Q21, i .1. Therefore
this steady state becomes unstable forQ.1/a, which coin-
cides with the lowest replication accuracy required for t
existence of the one-coexistence state. However, for a g
eral m-coexistence state we have to resort to a numer
evaluation of the Jacobian eigenvalues.

Fortunately, in the case of chains 0,m,n there is an
alternative way to look at the stability of the fixed points,
hinted by the stability analysis of the zero-coexistence st
which becomes unstable due to the emergence of the
coexistence state. In fact, it can be easily seen that any
turbation of them-coexistence fixed point which makes th
concentrationxm11 nonzero will be amplified ifAm11Q
1KQxm2F is positive. Form.0 we useF5aQ and
Am1151 together with the value ofxm given in Eq.~13! to
obtain the following~necessary! condition for the stability of
the m-coexistence state,

Q,Qm11 , m.0, ~22!

with Qm given in Eq.~14!. Hence the maximum value ofQ
allowed for the stability of them-coexistence state coincide
with the minimumQ required for the existence of the (m
11)-coexistence state. Interestingly, although form50 we
haveF51, A15a, andx050, condition~22! holds true in
this case, too.

At this point two caveats are in order. First, the ent
argument leading to the stability condition~22! is flawed if
the (m11)-coexistence state happens to be unstable. Th
fore, we must guarantee via the numerical evaluation of
Jacobian eigenvalues that thel-coexistence state is stable b
fore using that condition to study the stability of chains w
m, l . In particular, we have carried out the numerical ana
sis for the hypercycle solutionl 5n and found the following
general results:

~i! For n<4, it is always stable;~ii ! for n55, it is stable
in a very small range ofQ aboveQ5; and~iii ! for n>6, it is
always unstable.

Second, the derivation of the stability condition~22! is
based on the analysis of a single eigenvalue of the Jaco
and hence yields a necessary but in general not a suffic
condition for the stability of the fixed points. Nevertheles
we have verified by means of numerical evaluation of aln
eigenvalues that, provided the (m11)-coexistence state i
stable, the eigenvalue associated to fluctuations leading t
increase of the chain length is indeed the first one to beco
positive.

V. DISCUSSION

Combining the existence and the stability results deriv
in the previous sections we can draw the phase-diagram
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the plane (K,Q) for fixed a andn. In particular, forn<4 the
m-coexistence state is stable within the interval

Qm,Q,Qm11 , m,n ~23!

with Qm given in Eq.~14!, provided thatK.a21. Interest-
ingly, for fixed Q, Eq. ~23! shows that the incrementdK in
the catalytic coupling needed to incorporate a new temp
into the chain is

dK5
~a21!2

aQ21
, ~24!

regardless the number of elements in the chain. The casK
,a21, for which no chains withm.1 are allowed, does
not require any special consideration. In fact, we find that
only stable states are the zero-coexistence (Q,1/a) and the
one-coexistence (1/a<Q<1) states. However, sinceQ2
<1 only for K>a21, this result is consistent with Eq.~23!.

The n-coexistence state~i.e., the hypercycle solution! is
stable for Q.Qn if K<Kh and for Q.Qh , otherwise,
whereKh and Qh are given by Eqs.~18! and ~17!, respec-
tively. We define the error threshold of the hypercycle as
value of the replication accuracyQ that delimits the region
of stability of then-coexistence state. The phase diagram
a510 andn54 shown in Fig. 2 illustrates the major rol
played byKh in the hypercyclic organization: only forK
.Kh the hypercycle becomes more stable than a chain of

FIG. 2. Phase diagram in the space (K,Q) for n54 and a
510 showing the regions of stability of the diverse coexisten
states. The numbers between parentheses indicate the numb
coexisting templates. Regions of bistability appear forK.Kh . The
thin lines are~from bottom to top! Q1 , Q2 , Q3, andQ4. The thick
line is Qh .
te

e

e

r

e

same length. Another important quantity is the value ofK,
denoted byKc , at whichQh equals 1/a, the minimal repli-
cation accuracy of the quasispecies. It is given by

Kc5a~a21!@2n211An~n21!#. ~25!

Beyond this value the error threshold of the hypercycleQh is
smaller than that of the quasispecies. Moreover, as m
tioned before, for largeK, it vanishes as 1/AK. A rather
frustrating aspect ofKh andKc is that both are of ordera2,
indicating then that the productivity of catalytically assist
self-replication is much larger than that of noncatalyzed s
replication. While this is obviously true for biochemical c
talysis, it is difficult to argue for the existence of such ef
cient catalysts in prebiotic conditions. On the other hand,
can take a different, more optimistic viewpoint and arg
that modern biochemical catalysts~enzymes! are so efficient
because their precursors had to satisfy the stringent co
tions imposed by surpassingKh .

In Fig. 3 we present the phase diagram forn55. The
main difference from the previous figure is that the fiv
coexistence state is stable only within the thin region
tween Q5 and the dashed curve, obtained through the
merical evaluation of the Jacobian eigenvalues. As th
curves intersect at someK<Kh , the five-membered hyper
cycle is not very interesting, since it has the same charac
istics of a chain of lengthm55. To confirm this result we
have carried out the numerical integration of the kine
equations using the ninetieth-order Runge-Kutta meth
The results are shown in Fig. 4, which illustrates the tim
evolution of the concentrationsxi( i 51, . . . ,5) inside and

e
r of

FIG. 3. Same as Fig. 2 but forn55. There are no stable fixed
points above the dashed curve. The solid curves are~from bottom to
top! Q1 , Q2 , Q3 , Q4, andQ5.
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PRE 61 3001ERROR PROPAGATION IN THE HYPERCYCLE
outside the region of stability. Although the behavior patte
in the region of instability seems periodic, we have not e
plored completely the space of parameters to discard the
istence of chaotic behavior. Hence we use the term com
dynamics to label this region in Fig. 3. We note that t
phase diagram shown in this figure describes also the reg
of stability of hypercycles and chains of sizen>5, since
m-coexistence states withm.5 are always unstable.

An interesting limiting case which deserves special att
tion is the symmetric hypercycle (a51). According to the
argument put forward in the beginning of Sec. III, the on
fixed points in this case are the zero-coexistence state an
hypercycle, i.e., chains are not allowed. Moreover, Eq.~15!
yieldsx15x25•••5xn wherex1 is given by Eq.~16! with a
replaced by 1. The analysis of the roots of that quadr
equation together with the numerical evaluation of the eig
values of the Jacobian shows that the symmetric hyperc
is stable for

K.
4n

Q2
~12Q!, ~26!

provided thatn<4. The region of stability observed in Fig.
for the five-coexistence state does not appear in the sym
ric casea51, so it must be a consequence of the asymme
in the productivity values of the noncatalyzed self-replicat
reaction. We note that, differently from the asymmetric ca
(a.1), the zero-coexistence state is always stable.

FIG. 4. Time evolution of the five concentrations of the te
plates composing a hypercycle of sizen55 for a510, Q51, and
~a! K537 ~inside the region of stability! and~b! K540 ~outside the
region of stability!. The initial state isxi(0)50.2; i .
n
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For the sake of completeness, we present some resul
the elementary hypercycle (Ai50,i 51, . . . ,n) coupled to an
error tail (Ae51) via the imperfect catalytically assiste
self-replication. Inserting these parameters into Eq.~20! and
setting Fi50; i yields x15•••5xn with x1 given by the
larger root of the quadratic equation

Knx1
22~n1KQ!x11150, ~27!

since we have verified that the smaller root is always
stable. As in the symmetric case discussed above, forn<4
the stability condition coincides with the condition for re
x1, namely,

Q>2An

K
2

n

K
. ~28!

Thus the term in the right hand side of this inequality yiel
the error threshold of the elementary hypercycle.

Before concluding this section, we must note that t
chains of sizem considered hitherto are bonded in a hype
cycle of sizen.m. We could studyfree chains of sizen as
well by simply settingx050 in the kinetic equations~1! and
~2!. Not surprisingly, the results are essentially the same
for bonded chains, withQm playing a similar fundamenta
role in delimiting the regions of stability of the shorter chai
(m,n). Although a full discussion of the stability of th
complete chain (m5n) is beyond the scope of this paper, w
point out that free chains withn.4 are always unstable
Moreover, as illustrated in Fig. 5, the oscillatory behav
pattern of the template concentrations, which ensues a

FIG. 5. Time evolution of the five concentrations of the tem
plates composing a free chain of sizen55. The parameters and
initial state are the same as for Fig. 4~b!.
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namic coexistence among all templates in the chain, is s
lar to that observed in the hypercycle~compare with Fig. 4!.
In this sense, the free chains seem as good as the hyper
to attain that kind of coexistence. However, we must emp
size that, for sufficiently largeK ~i.e., K.Kh), the fixed
points describing the coexistence ofn<4 templates in a hy-
percycle are much more robust against replication errors
their counterparts in the free chains.

VI. CONCLUSION

Our study of the steady states of an asymmetric hyp
cycle composed ofn error-prone self-replicating template
indicates that, forn<4, the error threshold of the hypercyc
(Qh) becomes smaller than that of the quasispeciesQ1
51/a) for catalytic couplings~K! of order ofa2, wherea is
the productivity value of the master template. In particul
Qh vanishes likeAn/K for largeK. Perhaps, even more im
portant is our finding that the asymmetry in the noncataly
self-replication reaction (a.1) entails the existence o
chains of sizen<5. We note that these chains are unsta
in the symmetric hypercycle as well as in the fully connec
network @15,16#.

Adding to the scenario for the emergence of the hyp
cycle described in Sec. II, which starts with an isolated q
sispecies, our results indicate that the chains may well be
er

er

M

.

i-

cle
-

an

r-

,

d

e
d

r-
-

he

next step in this complex evolutionary process. In fact,
cording to Eq.~24! the strengths of the catalytic coupling
needed to form a chain are of ordera, while the hypercycle
only acquires its desirable stability characteristics
strengths of ordera2, see Eq.~18!. Although we realize that
an evolutionary step leading from chains to hypercycles
still a major one, it is certainly much more plausible than
direct transition from quasispecies to hypercycle. In a
event, we think that the emergence of the hypercycle can
explained as a series of plausible smooth transitions, with
need to postulating the hypercycle as an unique even
prebiotic evolution. In this vein, this work represents a mo
est first step to tackle this fundamental problem within a fi
basis.
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