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Diffusion of concentrated neutral hard-sphere colloidal suspensions
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We evaluate theoretical expressions for the long-time wave-number-dependent self-diffusion and collective
diffusion coefficientD(k, #) andD"(k, ¢), respectively, as a function of volume fractigrand wave vector
k for neutral monodisperse hard-sphere colloidal suspensions over the entire fluid range. The theory is based on
the Smoluchowski equation with mean-field-like hydrodynamic interactions, cage diffusion, and is free of
adjustable parameters. The basic physical mechanisms underlying our formulas are discussed and the results
are compared with recent experimental results by SaegeePuseyPhys. Rev. Lett77, 771(1996].

PACS numbe(s): 82.70.Dd, 83.10.Ff

[. INTRODUCTION which a particle moves from cage to cage. This long-time
contribution is calculated explicitly from the Smoluchowski
In previous papers we presented a molecular theory foequation using the mode-mode coupling approximation
the dynamic(frequency-dependenand the long-time mac- (MMCA) with hydrodynamical interactions incorporated in a
roscopic(Newtonian viscosity[2—4] and for the long-time mean-field-like manner. In order to obtalt(k, ) explic-
macroscopic self-diffusion coefficiefi},5] of concentrated itly one needs the three-particle correlation function. It is
neutral hard-sphere-like colloidal suspensions. This theorghown that several suggestions in the literature lead to very
was based on the idea, first developed for concentrated melifferent results, but that the approximation proposed by
lecular fluids using kinetic theor§6—8], that for high con- Jackson and Feenbel§0] appears to work well.
centration colloidal suspensiongolume fractionsg>0.35), The past years have seen a considerable effort in this field
the dominant physical process is a short-time cage-diffusioff Study dating back to the first theoretical expressions for
. L L . .
process. Here one uses that f6r-0.35 each colloidal par- Ds(k,¢) andD~(k,¢), obtained directly from the Fokker-
ticle finds itself in a cageof about the size of the hard- Planck equatiori11] and later shown to be equal to the re-
sphere diametar) formed by its neighbors, which makes the Sults obtained from the Smoluchowski equat[d2]. How-

escape from the cage difficult. This leads to a slow relaxatior‘?;’er’ trf]wse dresults neglecte? hyldrod?_/(rjlamlc m;[eractlons
of the particle displacements involved in collective denssitya together and are consequently only vaiid at very low core-

fluctuations back to their equilibrium positions. This relax- volume_fractlons. Eurth_ermore, Hess and Kl{am] used an
ation is particularly slow for density fluctuations of wave unphysical approximation for the three-particle correlation

. A . function to compare their expression - (k,¢) with ex-
— k* ~ N i N 4
numberk=k" ~2/c, since the equilibrium static structure perimental results, a point further discussed below. More re-

fact*or_S(k,<_j>) has a very pronounced maximum nelar conyy Szamel and wen[13], Wagner14], and Bauret al.
=k*, implying a great amount of ordering in the suspensiony 5 extended those early results, but again neglect hydrody-
which greatly inhibits the escape of particles from their hamic interactions completely. Szamel andiem used the
cages. This physical picture has been confirmed by ligh§ackson and Feenbeld0] approximation for the three-
scattering experiments on concentrated colloidal suspensiopsyticle correlation function and investigated the glass tran-
as well as neutron scattering experiments of atomic liquidsgition of a colloidal suspensiofL3]. Wagner used a self-
Here we apply the same idea to the long-time wavetonsistent viscoelastic relaxation model and compared his
number-dependent self-diffusion and collective diffusion COtheory with experimental results obtained for strongly corre-
efficients, Dg(k,¢) and D“(k,¢), respectively, where |ated charged suspensiofis4]. He also compared two ap-
Dg(¢)=Dg(k=0,¢), the long-time macroscopic self- proximations for the three-particle correlation function, i.e.,
diffusion coefficien{9]. We show that good agreement with the Hess and Kleifil1] approximation and the Jackson and
experiment can be obtained by using cage diffusion as theeenberd10] approximation, a point also discussed below.
dominant physical process determining both the short-tim@auret al. also used the Jackson and Feenlj&@ approxi-
as well as the long-time diffusive behavior at high concen-mation for the three-particle correlation function, but in-
trations. In particular, the long-time wave-number-dependengluded in first approximation the effect of polydispersity on
collective (self-) diffusion coefficient can be written in good the so-called nonexponentiality factpt5]. Very recently,
approximation as a product of two contributions. First, afurther progress has been made by incorporating far-field hy-
short-time contributio S(k, ¢)[DE( )], directly related to  drodynamic interaction§16] and extending the results to
the initial slope of the equilibrium intermediatself-) scat- polydisperse suspensions and colloidal mixtufég,1§.
tering functionF(k,¢,t)[Fs(k,¢,t)] as a function oft, in ~ However, although clearly a considerable improvement for
which a particle rattles inside the cage, formed around it bystrongly interacting charged suspensions or neutral suspen-
its nearest neighbors. Second, a long-time contribution irsions at a low volume fraction, far-field hydrodynamic inter-
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actions are certainly not suitable for concentrated neutral susdere V,=4d/dr;, B=1/kgT, F(I')=—V;U(I') is the force
pensions. Since the extension to colloidal mixtures is beyondn particlei due to direct interactions with all other particles
the scope of this paper and the results reduce to the results iof the configuration spacé=(ry,...,ry) andD;;(I) is the
Nagele and Bauf16] for one-component suspensions, nodiffusion tensor which incorporates hydrodynamic interac-
further reference to these papers is made. As far as we knowipns.
the only results valid for concentrated neutral suspensions The corresponding definition of the equilibrium interme-
are those obtained by Medina-Noydl&9], who calculated diate self-scattering functioRg(k, ¢,t) is
D5(k,¢) by solving approximately the Langevin equation )
for the velocity of a tracer particle and those obtained by Fs(k,d,t)=(on(—k)e?'sny(k)), (4)
Banchio et al. [20], who presented theoretical results for
D"(k=k*,¢) andDg(¢) as well as for the Newtonian vis- with én,(k) the one-particle density fluctuation mode
cosity, results that are further discussed below.

The organization of this paper is as follows. We start with ony(k)=e kK r—(e Tk, (5)
the theoretical derivation of our results in Sec. II. In Sec. lll
we consider the short-time self-diffusion and collective dif- jere 1, is the tagged particle’s position at tinte=0. We
fusion coefficientD§(4) andDS(k,$), respectively, where note that from partial integration one finds the relation
short times refer to the regiong~t<7p. Here rg=m/{,
~1ns, is the Brownian time in which the initial velocity of (F(DYF(T))=— B(V;f(I)), (6)
a particle of massm relaxes to equilibrium andrp
=0?/4Do~1ms is the Pelet or interaction time, character- for any functionf(I'), a result that is frequently used below.
istic for free particle diffusion over a distance equal to its
own radius. The friction and self-diffusion coefficient of an
isolated Brownian particlef, andDg, respectively, are re-
lated through the Einstein relatiofy=KkgT/Dg, with kg First, we consider theshorttime seltdiffusion andcol-
Boltzmann’s constant anl the temperature. In Sec. IV the lective diffusion coefficients, where short times refer to the
long-time (> 71p) wave-number-dependent self-diffusion region rg~t<<7p. For short times the equilibrium interme-
coefficientD5(k, ¢) is evaluated and its limit fok=0, i.e.,  diate scattering function behaves as
the macroscopic self-diffusion coefficieﬁlg(¢), is com- Lons
pared with experimental results. In Sec. V the long-tirhe ( F(k,¢,t)=S(k,p)e” Pk @)
>7p) wave-number-dependent collective diffusion coeffi-
cient D-(k, ¢) is evaluated for different approximations of While the analogous expression feg(k, ¢,t) is
the three-particle correlation function and compared with the
recent experimental results of Segred Pusey1]. We con- Fs(k,¢,t)=e*k2'3§<¢>t_ )
clude with a discussion of the main results.

A. Short-time self-diffusion and collective diffusion

Here S(k,$)=F(k,¢,t=0) andDZ(#) and DS(k,) are
Il. THEORY the short-time self-diffusion and collective diffusion coeffi-
e Lo . cients, respectively, which can be expressed in terms of
The diffusive behavior in concentrated colloidal suspen- e
sions is connected to the decay of collective density fluctual-( dependent averages over the diffusion teri3p(T’) (e.g.,

i . : Refs. [21,27)), but a simple explicit expression that fully
tions, described by the the wave numkend timet depen- . : i o
dent equilibrium intermediate scattering functibigk, ¢,t), incorporates the complicated many-body hydrodynamic in

defined by teractions for volume fraction$>0.4 is still lacking. There-
fore, we propose alternative explicit expressionsn‘xﬁqb)
1 . and DS(k,¢), based on the analogy between neutral hard-
F(k,¢,t)= N(&n(—k)emb‘n(k)% (1) sphere colloidal suspensions and molecular fluids and com-
pare them with experimental results in Sec. Ill.

where én(k) is a plane wave collective density fluctuation

mode with wave vectok, i.e., B. Long-time collective diffusion
N N Next we consider théong-time collectivediffusion coef-
5n(k)=2 e"k"i—<2 e"""i>, @) Ement D (k,f), defined in terms of the Laplace transform
=1 i=1 F(k,¢,2)= [y dtexp(~z)F(kpt) of F(k,¢,t) for z=0,

leading to(e.g., Refs[21,22)
with r; the position of particle at timet=0. The bracket$)
denote the equilibrium ensemble average with the canonical
distribution function and? is the adjoint Smoluchowski op-
erator describing the time evolution of the systény., Ref.

[21,22) To develop a theory fob(k, ¢) we start from Eqgs(1)
N and (9) and replace, like Brady23], the adjoint Smolu-
0= 2 {Vi+BF(I)}-Dy(I)-V,. 3) chow;ki operato@ with its corresponding mean-field ex-
ij=1 pression

DL<k,¢>=S<k,¢>/f:dthHk,cf),t). ©
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A N the diffusion tensor{16]. Those different approximations
QMF=D§(¢)E {V,+BF(I')}-V;, (100  only result in different expressions for the vertex function

=1 V(k,q). In the mean-field approximation the vertex function,
representing the strength of the coupling between the micro-
scopic longitudinal stress (k) and the bilinear products
on(qg)on(k—q), is given by

i.e., by approximating the diffusion tensbx;(I") in Eq. (3)
by its “mean-field” average(Dij(F))=5”-1D§(¢). Then,
applying standard projection operator techniques to(Ey.
and generalizing the procedures developed by Cichocki and
Hess[12] for low concentrations to high concentrations, we
obtain an expression fdd‘(k, ¢) for all ¢, i.e.,

k?D3(¢)
V(k,q>=WW—k)én(q)m(k—q»-

D3(¢)/S(k, ) o
DY(k, )= ° ' , 11 : .
(k,¢) 1+ M(k, ¢)/[K2DE(#)] (19) Using Eq.(13) for oy(k) and Eq.(6) yields
with M(k,¢)=[5dtM(k,,t). Here M(k,¢) is directly s | KT(GQ) B
proportional to the generalizdddependent longitudinal vis- V(k,@)=Dg(d)k S(k, ) as(k—adl.¢)
cosity[12] andM (k, ¢,1) is the collective longitudinal stress
time-autocorrelation function, —(k—q)S(q ¢)] (18)

[BK*D(¢)]?

S (o\(— ket (k)), (12)

M(k,¢.t)= where

where the microscopic longitudinal stress is given by

1
N T(k,a)= g (on(=k)on(a)on(k—a)) (19

ik-F; k,o)— .
k=-3 | d S| i

2 +kgT Sk. ) ,
is a wave-number-dependent three-particle correlation func-
and O is the mean-field expression for the irreducible tion. One easily shows thaf(k,q)=S(k,¢) (k finite, q

adjoint Smoluchowski operatof)}i- can be obtained from Iilrg?l,(_T(|k,q)=kS|(q,¢) (Ik large, (;?kﬁniﬁ. ?nd ;’(k,q)
the result of Cichocki and He$&2], by using the mean-field . ( d ’¢).( arge, g large, an qi fint e). ror ex-
approximation for the diffusion tensor discussed below Eq.pllCIt cglculau_ons we use dlfferent' approxmgtlpns Intro-
(10). The irreducible Smolochowski operator keepgk) duc_:ed in the literature, which all satisfy these I|m|t|r_19 prop-
orthogonal to all single collective density fluctuation modesert.'es' We then QvaluaM(k,@t) of Eq. (16) for all times
when it evolves in time. Therefore, the decayMfk, ¢,t) using the short-time expressid) Lfor F(|k—q_|,¢>,t) and
will be determined in first approximation by the decaywb F(q,_¢,t): In Sec. V, we compar® (k,#) fqr d'fferem ap-.
coupled collective density fluctuation modes. proximations of the three-particle correlation function with
. o experimental results.

To calculate this coupled decay contributionMigk, ¢,t)

of Eq. (12) we apply the mode coupling theory and introduce

(13

the projection operatoP, on bilinear products of two col- C. Long-time self-diffusion
lective density fluctuations as in Refd 1,22, i.e., Finally, we consider thdong-time seltdiffusion coeffi-
cientDS(k, #). Since the derivation is essentially the same
p,= |5n(k1)(zn(k2)><5n(k1)5n(k2)| . (14 as that for the long-time collective diffusion coefficient pre-
Ki Ky 2N“S(ky,¢)S(ky, ¢) sented above, we only give the final results. The long-time

_ _ . _ wave-number-dependent self-diffusion coeffici@fg(k,@
We restrict the action of exfiy¢t) in Eq. (12) to the space can be obtained from the equilibrium intermediate self-

of products of density fluctuations only, i.e., we write scattering function vide.g., Refs[21,22)
éirr t A ﬁirr e "
e “MF Pze MF P2- (15) Dg(k,(ﬁ):l/ J dtkst(k,d),t). (20)
From Egs.(12), (14), and(15) one finds then foM (k, ¢,1), °
1 V(k,q) 2 Starting then from Eqs(4) and (20), replacingQ by Qe
M(k ¢, t)= 16m2n dq S(q,¢)S(|k—al,®) [cf. Et?. (_10)] and proceeding as before in Eq41) to (17)
we obtain

XF(a,¢,OF(lk—=q[,¢.1). (16)

A similar expression foM (k, ¢,t) has been derived before
by neglecting hydrodynamic interactions altogether, cf. Refs.
[11,14] (based on the Fokker-Planck equajieend Refs.
[13,15 (based on the Smoluchowski equali@nd recently 5
independently from us by using a far-field approximation forwith Mg(k, ¢) = [(dtMg(k, ¢,t), where

D(¢)
1+ Mgk, 0)/[K2DE($)]

D5(k, ¢)= (21
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7 20 ——

1
Mk, ¢.0= g | da

VS(kiq):|2 2 r
S(q,¢)

XF(ql¢1t)FS(|k_Q|Y¢!t)! (22)

15 |

10|
with the self-vertex functiorv/g(k,q) given by '

Vg(k,a)=DZ(¢)(k-a)[S(q,$)—1]. (23

Expressions similar to E§22) have been obtained before by
neglecting hydrodynamic interactions altogethkt,15 and

by using a far-field approximation for the diffusion tensor
[16], resulting in different expressions for the self-vertex
function Vg(k,q).

We evaluateMg(k,¢,t) for all times in terms of the
short-time expressions fdf(q, ¢,t) of Eq. (7) and Fg(k E
—q,,t) of Eq. (8). We remark that the decay M (K, ¢,t) 6
is determined in first approximation by the decay arfe ; 1 |
collective density fluctuation mode andeone-particle den- o P —

sity fluctuation mode. Therefore, the operalyrprojects for kG

self-diffusion on the bilinear product of a collective density

fluctuation and a one-particle density fluctuation magoe FIG. 1. Reduced short-time collective diffusion coefficient

Refs.[11,27). This results in the appearance of the equilib-D*(k,#)k?a/Do as a function oko. The datapoints are experi-

rium intermediate self-scattering functid?rg(|k—q|,¢,t) in mental results for suspensions of neutral polymethylmethacrylate

Eq. (22) [cf. Eq. (16)]. (Pl\_/IM_A) spheres obtained hy1] (@), [42] (O), e_md[so] (A). The
solid line represents E¢24) for the volume fractiongp= 0.443(a),
0.465 (b), and 0.494(c). In (d) the dotted line corresponds to a

lll. SHORT-TIME SELF-DIFFUSION AND COLLECTIVE surface layer of 9 nm¢=0.44) and the dashed line to one of 14
DIFFUSION nm (¢=0.49) [30].

At short timesg~t<7p the dominant physical process _molecular fluids developed from basic kinetic the@6y7],

involves the interaction of the Brownian particles with the '-€-

D’ (k,0)k*0”/D,
m
-
o
o
3

18|

120 - \ ;'.A a* -

fluid and with each other through the fluid, the so-called DS($)d(K)
hydrodynamic interactions. These hydrodynamic interactions S ~ - ST

: e . ; o D>(k,¢)~Dc(k,¢) (29
are complicated many-particle interactions for which explicit S(k, ¢)

evaluations exist only in limiting cases. To date there are . o ]

only exact results foD§(¢) and DS(k, ¢) for two isolated Here S(k,qs_) is the e_qumbrllﬂrln static st_ruct_ure factor a_nd
hard-sphere particles based on series expansion of the hydid(K) =[1—Jo(ko) +2j2(ko)] ™", a combination of spheri-
dynamic functions in powers of the inverse distance betweef@l Bessel functiong (k) of the order, with o the diameter
the centers of the two particl§24,25 (a recent overview is  Of the Brownian particle. _ o
presented by Dhorf22]). These results are valid up to sec- AS Said, Eq.(24) is an adaptation of a very similar for-
ond order in the volume fraction, thus clearly restricting Mula for the cage-diffusion coefficient in concentrated mo-
the applicability to low volume fractions. Approximate Igcular fdes,_where the short-time Ensk_og d|ffu5|op co_effl—
evaluations were made by Beenakker and Md28, by C|ent_D_E(q§)S|s replaced py the shor'g-tlme self-dlffuspn
considering the hydrodynamical motion of one hard-spheréoefficientDg(¢) of a colloidal suspension. Consistent with
particle in a stationary field due to all other particles at restthis analogy betweemg($) and DE(¢), Cohen and de
which restricts the applicability effectively to short times Schepper[28] suggested to use for the short-time self-
s~t<<7p. Using a density cluster expansion technique theydiffusion coefficient in concentrated colloidal suspensions
obtained results for the self-diffusion and collective diffusionthe (phenomenologicalexpression

coefficient up to intermediate volume fractiofs=0.4. More
recently, accurate numerical results were obtained for vol- DS() = & (25
ume fraction up top=0.45, based on multipole expansion S x(d)’

for the hydrodynamic interactions and lubrication theory for

the singular forces near contd&7]. where the Boltzmann free diffusion coefficieDg(¢) is re-

Up to now it seems that no explicit results for the trans-placed by its colloidal equivalence, i.e., by the Stokes-
port properties of concentrated colloidal suspensions, i.e., fdEinstein diffusion coefficienD, of an isolated Brownian
volume fractions¢>0.40, which fully take into account the particle. Herey(¢) =g(r = o, ¢), the equilibrium pair distri-
many-particle hydrodynamic interactions, are available in théution function of two hard-sphere particles of diameteat
literature. Therefore, we propose to use a short-time colleceontact.
tive diffusion coefficienDS(k, ¢), which is physically inter- Equations(24) and (25) are compared with experimental
preted in terms of the characteristic cage-diffusion coeffitesults on neutral colloidal suspensions in Figs. 1 and 2,
cient D¢ (k, ), in analogy with the result for concentrated respectively. Here the Carnahan-Starling approximation
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1.0 — 7 Mg(k, ¢,t) given by Eq.(22). Restricting ourself to first or-
der mode-coupling theory implies that in E&2) the short-
time expression§?) for F(k, ¢,t) and(8) for Fg(k, ¢,t) can

08 &‘k i be used. This restriction has already been discussed in the
- Ry 1 application of the MMCA to the diffusion and the viscosity
S osl Tk . of dense molecular fluids and to the viscosity of concentrated
= \%{7 colloidal suspensions and seems valid for volume fractions
:4@’- @ | in the fluid rangd 4,33].
QV} 04t QL. . x - Then, the explicit result for the long-time wave-number-
\A e dependent self-diffusion coeﬁicieﬁlg(k,@ is given by
o2y .. ] DP¥¢ . DYy
[ D5(k, ) 8mn
0.0 —_— R
0.0 0.2 0.4 06 {k-d[S(q,¢)—1]1}2
q) X dq S( DS k— 2 DS 27
q,¢)[D3(¢)|k—al*+D>(q,4)q"]
FIG. 2. Relative short-time self-diffusion coefficieBE(¢)/D, (26)

as a function of the volume fractio#h. The datapoints are experi-

mental results of polystyrene spheres in water obtaingd8}(0J), which can be calculated, on€E( ¢) Ds(k #), andS(k, ¢)
neutral PMMA spheres in organic solvents obtained8§] (V). 40 known. We remark tha?éneary the gilas,s transition self-
[44] (A), and[41] (©), and of double coated silica spheres in consistent mode-coupling theories are needed and the short-

tetrahydrofufurylalcohol[45] (X). The solid dots are computer _. - .
simulation result§46]. The solid line represents ER5) and the tlm_e expressions7) an_d (8) are no Ionger_ sufficient to de-
scribe the macroscopic transport properties.

dashed line corresponds to the result of Beenakker and Maghr 8 ) . .
From an experimental point of view the long-time wave-

number-dependent self-diffusion coefficient in the limit of
k=0, i.e., the macroscopic self-diffusion coeﬁici®§(¢)

= Dg(k=0,¢), is particularly important. This quantity is di-
rectly related to the long-time mean-square displacement, ac-
cording to

x(¢)=(1—0.5¢)/(1— ¢)® is used and the static structure
factor is calculated in the Percus-Yevick approximation, with
a correction discussed by Henderson and Gruri@kg¢ We
find systematically a lower result fddS(k, ¢)k?>a?/D,, as
compared with the experimental dafef. Fig. 1). This is
consistent with the fact that our value f@S(k,¢) at k
=k* is about 20% smaller than the value obtained by using
the semiempirical result for the hydrodynamic function

W(t)=6Dg($)t, t>7p, (27)

= s and consequently determines the macroscopic self-diffusion
H(k*,¢)=1-1.35=D(k*,¢) g(k*"ﬁ)/DOEZOE' Theun- . efficient of a tagged particle as observed in dynamic light
derestimation of the value fdD>(k,¢) at k=k™ is most  gcattering experiments. Using Eq@4) and (25) for the

probably a result of the neglect of the polydispersity on theg ot time collective and self-diffusion coefficients, respec-

value of the maximum of th&(k, #), since polydispersity (el performing the angular integration and changing to
lowers the first peak of th§(k, ¢). The discrepancy can also e dimensionless variable=qo-, we obtain from Eq(26)

be related to small inaccuracies in the determination of they,, explicit result for the long-time macroscopic self-
effective hard-sphere diameteras is illustrated in Fig. ).

s 2 2 . diffusion coefficient,
Here D>(k,¢)k“0“/Dy is calculated for two values o,

corresponding to a surface layer of 9 nm and 14 [130). D3(¢) 1 * [S(x,¢)—1]2
The uncertainty in the determination of the volume fraction oL =1+ 36 f dxx2—+d, (28
also causes difficulty in interpreting quantitatively the vari- s(é) T$ Jo S(x, ) +d(x)

ous experimental resuli81,32. . :
In F?g. 2. the result of Beenakker and MaZ26], who a result previously published by Cohen and de Schepper
obtainedD§(¢) for volume fractions up tap=0.45, is also [34.35.

presented. Considering the small deviations between their In _F|g. 3, the resuli28) for DS(.¢) IS compz_;lred W'th.
result and that of Eq(25) and our primary interest in high experimental data on neutral colloidal suspensions obtained

volume fractionsé>0.40, Eq.(25) seems to be able to de- PY several author36-3§. For D(¢) the suggestio29) is
scribe the experimental data over the entire fluid range, i.eYS€d and foS(k, ¢) the same approximation is used as dis-
for volume fractions 82 ¢<0.55. We note that our approxi- cussed in Sec. lll, which compares well with experimental

mation becomes increasingly better for high volume fracresults forS(k, ¢). Also given in Fig. 3 is the result obtained
tions ¢>0.40. by Medina-Noyold19], who solved approximately the gen-
eralized Langevin equation for the velocity of a tracer par-
ticle.
IV. LONG-TIME SELF-DIFFUSION

In Sec. Il we derived an expressifcf. Eq. (21)] for the V. LONG-TIME COLLECTIVE DIFFUSION
|Ong-time Wave-number-dependent self-diffusion coefficient In Sec. Il we derived an expression for the the |Ong-time
Dg(k,qﬁ) in terms of |\~/|S(k,¢)=f5°dtMs(k,¢,t), with wave-number-dependent collective diffusion coefficient
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1.0 — T suspensions and later by Wagnh#&#], Baur et al. [15], and
Nagele and Bauf16] in studies of charge-stabilized colloi-
dal suspensions.

08 . T (i) The last approximation discussed here is the Kirk-

\ 1 wood superposition approximation and reads after a Fourier
QO 06 ° \ i transformation, using Parcival’s theorem and the convolution
= ° o N\ property of the Fourier transform
2
w1
Q° 04r \\v . T(k,9)=nS(q,$)H(k, ¢) +nS(|k—ql,)H(q, ¢)
- . \o\ . n2
ool Sl ] +nSk,¢)H([k—q,¢)+ 5
oob— o 0 T TPy XJ dxH([k—x[,#)H(|a—x|, #)H(x,¢) + 1,
0.0 0.2 ) 0.4 0.6

(32
FIG. 3. Relative long-time macroscopic self-diffusion coeffi- . .

cientDY(¢)/D,, as a function of volume fractio. The datapoints Where we have introducetd(k, ¢), the Fourier transform of
are experimental results of neutral PMMA spheres in organic solh(r,¢)=g(r,¢)—1,ie,
vents by van Megeet al. [36] (O) and by Segret al. [37] (@), 1
and of neutral silica spheres in cyclohexane obtained by Kops-
Werkhoven et al. [38] (V). The solid line corresponds to the H(k’¢):ﬁ[s(k’¢)_1]' (33
present theorycf. Eq. (28)] and the dashed line to that of Medina-
Noyola [19], who solved approximately the generalized Langevin

: ¢ . We note that these three approximations do not exhaust
equation for the velocity of a tracer particle.

the number of approximations found in the literature. How-
ever, they are the only closed resultskirspace suitable for
D'(k,¢) [cf. Eq. (11)]. Restricting ourselves again to first the calculations that we have performed.

order mode-coupling theory, i.e., using the short-time ex- The corresponding expressions for the vertex function
pression(7) for F(q,¢.t) andF(lk—a],¢,t), we obtain the  v/(k,q) in the Hess and Klein, the Jackson and Feenberg, and

explicit result forD"(k, ¢), the Kirkwood approximation are
DY B)ISkd) _ 1 VHE(k,a)=nDZ(¢)k-{(k—a)H([k—al,¢) +qH(a,¢)},
DY(k,¢) 167m°nk’DI() (34)
Xf g [V(k,9)1%/S(q,¢)S([k—ql,¢) 29 VIF(k,a)=nDE(p)k-{(k—a)H(|k—q],$) +qH(q, ¢)}
9D%(a.4)q7+ D(k—a[$)[k—ql*

+n’DY($)k°H(a, H([k—dl,¢), (39
The essential difference of EqR9) with Eq. (26), for the
long-time self-diffusion coefficient, is the appearance of the""nd
unknown three-particle correlation function(k,q), in Eq. K s
(18) for V(k,q). To evaluate Eq(29) we use three approxi- V' (K:@)=nDg(#)k-{(k—a)H(|k—al,4)+aH(q,$)}
mations forT(k,q) obtained from the literature. n?DS( )k

(i) The first approximation was suggested by Hess and S

H(a, #)H(lk—al.4)

Klein [11] and reads S(k, )
n?D(p)k? 1
TH(k, ) =S(k, )[S(|k—a|, ) +S(a,¢) ~1]. (30) +Wﬁf dxH([k—x],¢)
Hess and Kleirj11] and more recently Wagn¢t4] applied XH(|g—x|,p)H(X, ), (36)

this approximation to studies of the long-time collective dif-
fusion coefficient of strongly interacting charged colloidal respectively. One can show straightforwardly that all three
suspensions. approximations folV(k,q) converge in the limit for largé
(i) The second approximation, the so-called convolutionto Eq. (23) for Vg(k,q). Thus, lim_. . DYk, ¢)
approximation, was introduced by Jackson and Feenberg Dg(k,¢), as expected physically.
[10] ina Study of elementary excitations in ||qU|d helium and We have evaluated numerica”y E(Qg) for the three ap-
reads proximations as a function of the wave numikefor a par-
ticular volume fractiong=0.465. Here, we have used Egs.
TF(k,q)=S(k,$)S(|k—a|,$#)S(q, ¢). (31 (24) and(25) for DS(k,¢) andD(¢), respectively, and Eq.
(33) for H(k, ¢), while S(k, ¢) is calculated as described in
This approximation was first used by Szamel andven  Sec. lll. The results are given in Fig. 4 and compared to the
[13] in an investigation of the glass transition of colloidal recent experimental results of Segmed Pusey1]. It is clear
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FIG. 4. Inverse relative long-time wave-number-dependent col-
lective diffusion coefficienD,/D"(k, ) as a function ofko for
various approximations of the three-particle correlation function at
$=0.465. The solid circles are experimental results of neutral
PMMA spheres in an organic solvefit]. The solid line corre-
sponds to the present theory in the convolution approximdtién
Egs. (29) and (35)], the dashed line to that in the Hess and Klein
approximatior{cf. Egs.(29) and(34)], and the open circles to that
in the Kirkwood approximatioficf. Egs.(29) and(36)]. The dotted
line corresponds to the present theor {k,q) is approximated by
Eq. (37).

D/DSMk.9) 3 Do/D"(k,0)

that the Kirkwood approximation is unable to describe
D(k, ¢) for ko<5. This is due to th&(k, ¢) in the second
term on the right-hand sidérhs) of Eq. (36). For hard
spheres and high volume fractior&Kk, ¢) becomes close to
zero for a considerable rangelofalues up tdko~4, result-
ing in a very high value o¥(k,q). This blowing up at small
:?nIZa&rlki):gr(]tk Ig)t?; 125(53;]” dngililanvtjrpefr]??g:){;{:gzir\évgtli(c:)m ISIective diffusion coefficienD,/D"(k,¢) as a function ofko for
. Ve L ’ ’ . . three different volume fraction$=0.443(a), 0.465(b), and 0.494
Is not symmetrlc_ln the mutual excha_nge of part'des and I?c). The solid circles are experimental results of neutral PMMA
therefore unphySIQaI. Furth_ermore, it is approximately a fac'spheres in an organic solvdrif]. The solid line represents the the-
tor 3 too large at intermediate valuesiof ~_ oretical result in the convolution approximatifef. Egs.(29) and
With respect to symmetry a more physical approximation(zs)j. The dashed line corresponds to the inverse relative long-time

for the three—pgrticle correlation function on the productyaye-number-dependent self-diffusion coefficibgt/ D5(k, 4) [cf.
level of the static structure factor would be Eq. (26)].

FIG. 5. Inverse relative long-time wave-number-dependent col-

T(k,q)=5(q,¢)[S(k,¢) 1]+ S(|k—q,$)[S(q,¢) — 1] able. Also given in Fig. 5 is the result for the long-time
+S(k, ) [S(|k—q|,b)—1]+1. 3 wave-number-dependent self-diffusion coefficigof. Eq.

Stk d)[S(k=gl.¢)~1] 37 (26)], around whichD'(k, ¢) oscillates and to which it con-

verges for largek. The intercept ng(k,qb) with they axis

clear that this is equivalent to neglecting the integral on thegives the macroscopic self-diffusion coefficient as presented

rhs of Eq.(32). The result of this approximation is also pre- In Fig. 3.
sented in Fig. 4. The deviations between this result and the
result obtained by using the full Kirkwood approximation are
remarkably small and are consequently due to the neglect of
the integral on the rhs of E¢32). We remark that the result In this paper we have shown that good agreement with
based on Eq(37) also does not work foko<5, consistent experimental results for both the self-diffusion and the col-
with the fact that it is, just like the Kirkwood approximation, lective diffusion can be obtained by using the cage-diffusion
not linear inS(k, ¢). process as the primary physical process and incorporating
We found that the best results are obtained by using théaydrodynamic interaction in a mean-field-like manner. We
convolution approximation(31) of the triple correlation have shown that recent experimental results, obtained by
function. In Fig. 5, these results are given for three of theSegre and Pusey[1], for the long-time wave-number-
volume fractions for which experimental results were avail-dependent collective diffusion coefficient can be well under-

Comparing this to the Kirkwood approximatiai32) it is

VI. DISCUSSION
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stood on the basis of the theory presented here, and end wit 40 ——————F—————— T
a number of remarks. [

(i) The same theory as discussed here has been used b ‘& |
fore to understand fork=0 the dynamic (frequency- ;Y: 30
dependent and long-time macroscopi@Newtoniar) shear “Q s
viscosity 7(¢,w) and py( ), respectivelyf2]. Here () )
is given by a time integral like Eq22) for the longitudinal ~ [
viscosity in whichk=0 and wherer (k) in Eq. (13) is re- ,_i 20 _
placed by the orthogonal component of the microscopic €

stress[2]. The theoreticaly(¢$,w) and ny(¢$) are in good §/ .

agreement with a large range of experimental da&d]. Q 10

Thus it appears that not only the macroscogie Q) quan- QC’ [

tities n(¢,w) and ny(¢), but also the long-time wave- I

number-dependent diffusion coefficient®(k,¢) and 0

Dg(k,¢) of concentrated neutral colloidal suspensions can 0 5 10 15 20
be described from one single viewpoint based on a cage- ko

diffl_J_sion Process ir_‘ the suspensifd. . FIG. 6. Inverse relative wave-number-dependent long- and
(i) The conclusion that for neutral hard-sphere colloidalgport-time collective diffusion coefficientD,/D'(k,¢) and

suspensions the best results Bt (k,¢) are obtained by p/DS(k,¢), respectively, as a function ddor for ¢=0.465. The
using the convolution approximatidB81) of the triple corre-  datapoints are experimental results @g/D"(k,$) (®) and for
lation function is consistent with the earlier conclusion of p,/DS(k, ) (O) of neutral PMMA spheres in an organic solvent
Nagele and Bauf16]. It is interesting to note that we find the [1]. The upper solid line corresponds to the present theory for
same results for concentrated neutral suspensions as they dig/D"(k,¢) in the convolution approximatiofcf. Egs.(29) and
for dilute but strongly interacting charge-stabilized suspen<35)], the lower solid line to that fob/DS(k, ¢) [cf. Eq.(24)], the
sions. upper dashed line corresponds to that m@/Dg(k,cf)) [cf. Eq.
(iii ) During the preparation of this paper Banchébal.  (26)] and finally the lower dashed line to that fBr,/DE(¢) [cf.
[20] published results fob“(k=k*,¢), D5(¢) and (),  Ed-(25]
based on a self-consistent mode-mode coupling theory. ) ) o
However, in their derivation they completely neglect hydro-Order to incorporate the near-field hydrodynamic interac-
dynamic interactions, which might well be the reason for thetions, which domlr_late the mter_actlon at short times in neutral
need of two empirical scaling procedures to obtain satisfact@rd-sphere colloidal suspensions. .
tory agreement with experiment. First, they scaled the con- (Iv) The shape of the theoretical result fog/D (k,¢) as
centration dependence with the volume fraction at the glasd function ofk is very similar to that oDo/D>(k, ¢) for all
transition ¢, i.e., they used an effective volume fraction ¢ a result aILready noted by Sergad Pusey1]. As shown
dei= B(40.525) 1o evaluate their results. Here, they used d" 9. 6, D (k,¢) as asfuncnon ofk oscillates 2round
value ¢,=0.62, obtained by fitting their expression for Ds(k,#), very mu_cthkeD (k,éﬁ) oscillates aroun® ().
DX(¢) to Brownian dynamics simulations at high densities. Therefore, th?_ rati® (ks, #)/D™(k, $) is mainly determined
Second, they scaled their mode-coupling expressions in sudl the ratioDg(k,¢)/Dg(#) as a function ok and ¢. For
a way that they effectively obtain the correct limiting behav- ¢=0.465 andko neark* o~2 this ratio is approximately
ior for the short-time transport coefficients when the modeindependent ok and equal to 3.6, close to the value of 4.5

coupling contribution to the long-time transport coefficientsfound by Segreand Pusey1].
is neglected, i.e., D5y(k*,¢)~H(K*, pei)D-(K*, derr), We note that this scaling result only holds forvalues

. ) .
Dé,eﬁ( ¢)”D§(¢eﬁ)D§(¢eﬁ)/Do and el D) neark™, i.e., near the first peak of the static structure factor,

~7.(ber) (Do) 7. However, although this second scal- silr_lce forS monodisperse  suspensions  the ratio
ing gives the correct hydrodynamic behavior at short timesP (K, #)/D~(k,¢) tends to one for the botk—0 as well as

it does not correct for the fact that hydrodynamic interactiond®’ K—. Fork—0 this is due to the fact that the plane
also modify the mode-mode coupling contribution to theWave collective density fluctuatiofn(k) of Eq.(2) becAomes
transport coefficients. This is most likely the reason whyan exact eigenfunction of the Smoluchowski operdlofor
they obtain the wrong glass transition, even though they usk—0, with a single eigenvalu@L(k=O,¢>)=D§(k:O,¢).
a self-consistent calculation. It appears thaD'“(k,#)/DS(k,¢) quickly drops from 1 at
Instead of these scaling rules, we have used a mean-fieki=0 to a value characterized ty5(k, ¢)/D3(¢) whenko
approximation for the diffusion tensor. We emphasize that>4,
this is not a simple scaling with the short-time diffusion co-  (v) Figure 5 clearly shows that the theory predicts for
efficients like Bachicet al.[20]. Rather, it consistently modi- ko <5 a larger value ob“(k, ¢) than was found experimen-
fies both the short-time behavior as well as the modetally, for all volume fractions. Furthermore, it shows that for
coupling contribution as is evident by the appearance ofmall values oko, the experimental values f@"(k, ¢) are
DE(¢) in the denominators of Eqél1) and(21) and in the  considerably smaller than those rS(k, $), in contradic-
final results forM(k,¢,t) and Mg(k,,t) [cf. Egs. (16), tion with the above mentioned exact result for monodisperse
(18), (22), and (23)]. Further investigation should focus on suspensions, i.e.p*(k=0,¢)/DS(k=0,¢)=1. This sug-
finding a better approximation for the diffusion tensor in gests that the deviation is caused by the polydispersity of the
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H—F——— T approximation predicts the observed reductiorcreasg of

I 1 DY(k,¢)/Do[Do/D (k,#)], at small values oko, that was

] found experimentally, but it seems to overestimate the effect.
This may well be due to the crude approximation of E3p)

and consequently the very approximate nature of (B8§).
However, the qualitative agreement supports the hypothesis
that the deviation between theory and experiment at small
values ofko is caused by the polydispersity of the colloidal
particles confirming the same conclusion reached before for
charged suspensiof$5,16.

(vi) We have computed the time-correlation functions
M(k,¢,t) of Eq. (16) and Mg(k,,t) of Eq. (22) for all
times using theshorttime expressions folF(k,¢,t) and
F«(k,¢,t) given by Eqgs.(7) and (8), respectively. This in-

ML
D/D" (k)

0 1 L 1 I L 1 1 1 L 1 1 L . . . .
0 5 10 15 consistency can be remedied by using a self-consistent

ko theory, where the behavior d¥(k,¢,t) and Fg(k,¢,t) is

) . consistently modified in concordance with the computation
FIG. 7. Inverse relative long-time wave-number-dependent colys the long-time ~ diffusion CoefficientsD"(k $) and

lective diffusion coefficienD,/D™“(k,#) in the convolution ap-

proximation[cf. Eq.(39)] as a function oko for ¢=0.465 and for dercooled fluids and the glass transitig89] and more re-

different polydispersities=2 (dotted ling, 4 (dashed ling and 6 . . o
(dash-dotted linecompared to the experimental results ofasuspen-Cently in_calculations for concentrated charged-stabilized

sion of PMMA spheres ittis-decalin(®), with a polydispersity of colloidal suspension§l6]. Furthermore, we note that our

s~5 [1]. The solid line corresponds to a monodisperse suspensioﬁXpreSSior(ZA') is st_rictly valid only fo'_' wave numbers ner_:lr
[cf. Fig. 5b)]. k=k* (although Fig. 1 shows that it compares well with

experiment for a considerable rangekofalues, where the
PMMA particles. In fact, in order to study the effect of a relaxation is particularly slow: For wave numbers farther
small polydispersity on the long-time wave-number-2away from the peak of the static structure factor the decay of
dependent collective diffusion coefficient we have calculatedh€ intermediate scattering function becomes nonexponential
D(k,¢) for a suspension of hard-sphere particles with a2t |ntermed|aFe and long tim¢40] and the use of t_he short-
narrow size distribution with a standard deviatigrel ~ time expressior(7) for F(k,4,t), with D(k,¢) given by

around a mean diametés), by replacing the intermediate Ed- (24) is once again no longer sufficient.
scattering functiorF (k, ¢,t) in Eq. (9) with In addition, the Carnahan-Starling approximation used for

x(®) in Eq. (25 may not be adequate for the large volume
FM(k,¢,t)=(1—x)F(k,¢,t) +xFg(k,¢,t).  (38)  fractions ¢ used in Segreand Pusey’s experiments which
approach the freezing transition. It seems that at these very
HereF (k, ¢,t)[Fs(k, ¢,t)] is the intermediatgself-] scatter-  high volume fractions the theory is not fully able to describe
ing function of the monodisperse suspension aqel the rapid decrease ob'(k,¢) at wave number neak
—(0%)?/(0®)~9s®. Strictly, this approximation is only —k*. This was also observed in a study of the Newtonian
valid for suspensions of particles with equal diameter andjiscosity of concentrated neutral colloidal suspensiptis
interaction potential, but with different scattering amplitude,where a quantitative agreement could be obtained after the
but the same decoupling is likely to hold for a small degreeradial distribution function at contagt( ) =g(r = o, ) was
of size polydispersity as we[R1]. replaced by an expression with a pole near the glass transi-
FOIlOWing then essentia"y the same procedure in RefStion_ This 0ne-po|e approximation, Suggested by Bm’
[15,16] for charged colloids, the following result is obtained seems be more appropriate at the highest volume fraction
for the measured long-time wave-number-dependent colleGgnd would increase the theoretical maxima rieak* in the
tive diffusion CoeffiCientDM’L(k,¢) of a neutral hard- direction of the experimenta| data.
sphere-like colloidal suspension with a small size polydisper- However, in view of the many approximations made in
sity the theory and the possible systematic errors in the experi-
DMLk, )= DL (K, ¢) mental results, it is not easy to ascertain the origin of the
’ ’ deviations between theory and experiment. Nevertheless, the
SM(k, ¢) or:/ergll agrehemen: afr]:d similarity in beha(;/ior”sugglests that
X T T , the basic physical effects in concentrated colloidal suspen-
(1=x)S(k, ) +xD(k, $)/Ds(k, b) sions are present in the theory presented here.
(39

Dg(k,gb), respectively. This is done in calculations for un-

where SM(k, ¢) =FM(k,¢,t=0), the measured equilibrium
static structure factor. Figure 7 shows the result of 3§)
for ¢=0.465, for different polydispersities=0.02, 0.04, R.V. gratefully acknowledges financial support from the
and 0.06, compared with the experimental result obtained biletherlands Foundation for Fundamental Research of Matter
Segreand Puse) 1] on a suspension of PMMA spheres in (Stichting FOM, and E.G.D.C. from the DOE under Grant
cis-decalin, with a polydispersity of 0.05. The decoupling No. DE-FG02-88-ER13847.
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