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Dynamics of a one-dimensional inelastic particle system
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The dynamical behavior of a one-dimensional inelastic particle system is investigated. By the means of map
and spatial-temporal pattern we find the chaotic motion and the periodic motion in this simple system. We
characterize several kinds of transitions and introduce the idea of a small collision chain to explain the
universal relatiom= N? between the number of collisions in a cydand the number of the particlésof the
system for period-1 behavior.

PACS numbegps): 45.70.Mg, 05.20.Dd, 81.05.Rm

Granular materials appear broadly in nat(send dunes, Here r, is the restitution coefficient defined by;—uv;
powders, etg. and are of great technological importance = —ry(v,—v,). Energy is pumped in from the left wall. The
(handling and transporting of, e.g., seeds and pharmaceufeftmost particle will return with a velocity, when it hits
cals. In general, they consist of macroscopic grains whichthe left wall (hot wall). In this paper, we take this velocity to
do not interact with each other except that they collide in-be a constant,=1. The other wall is a reflecting wall, that
elastically. The behaviors of granular materials are greatlys, the collisions between the rightmost particle and reflecting
influenced by energy injection. Without energy injection, wall only change the sign of the velocity of the rightmost
granular materials will cool down gradually and the motionparticle. For convenience, we order the particles,1,.2, N
of grains will eventually stop. For example, in vertically pe- according to their spatial order. For example, the leftmost
riodically vibrating granular materials, the system may mani-particle is particle 1. In contrast to the previous works on 1D
fest fluidlike or solidlike behaviors depending on the vibrat-inelastic gas, we let, be a function oflv,—v,4| [10],
ing amplitude and driving frequency. In the past few years,
the investigation of one-dimensionélD) inelastic gas has r (Jvo—vq|>vy)
attracted much attention in the hope that the origin of phe- 0= 1-(1-r)(Jvp—villve)¥? (Juo—v4|<vy).
nomena that appear in models for two or three dimensions
can be illuminated by results in a much simpler 1D case. Experimentg11] have shown some velocity-dependent be-

In Ref.[1], Du, Li, and Kadanoff stated that the hydrody- haviors. The increase iny for low |v,—v;| avoids inelastic
namic description failed in the case of 1D inelastic gas. Sinceollapse[12,13 and constant at higher|v,—v4| is more
then, several papers discussing this kind of system have beeomputationally efficient.
published 2—7]. However, all of these papers were only con-  To investigate the dynamic behaviors at microscope scale,
cerned with the macroscopic aspect, such as hydrodynamige first define the event to be the collision between particle
properties and spatial and temporal average properties, ett.and the hot wall, then we define the cycle as the process
Little attention was paid to the dynamic properties at a mi-which begins with oneeventand ends at the next one. We
croscopic scale. However, the dynamic behavior of the sysmeasure two quantities: one is the number of the collisions
tem is very important in understanding the behavior of theamong all particles which happen in one cyaigthe other is
granular materials not only at a microscopic scale but also ahe duration time of one cycl&. In the beginning, the par-

a macroscopic scale. For example, it is the basis for us ttcles are uniformly distributed between two walls and only
understand the pattern formation of the granular materialparticle 1 has nonzero velocity. In Fig. 1, we show the results
[8,9]. aboutn and T whenr is varied. Herel =210, N=20, vq

In this paper, we investigate the dynamic behavior of 1D=1 and we keep these parameters unchanged throughout the
inelastic gas. The model is introduced in Rf]. The sys- paper. We record the results after the system reaches its
tem consists of many inelastic particles in which the particlesteady stateT has been shown in Fig(d) where it follows
interact via inelastic collisions which conserve momentumthe exponential formT = (L/vg){1+exd2N(1—r)]}, when
but dissipate kinetic energy. Let us consider a horizontal colr,>0.55. We may taken as a dynamical variabla(k) (k
umn of N sizeless identical inelastic particles confined bymeans thekth cycle and consider the mam(k+1)
two walls of infinite mass between whom the distancé.is = f(n(k)). Then to characterize the dynamic behavior of the
When two particles collide, the velocities after the collision system, we just need consider the solution of rhépee Fig.
vy andv, are expressed in terms of the velocities before thel(b)]. We find that the dynamic behavior of the system is
collisionv, andv, as dependent omr. For example, we find an irregular motion

(including two-band irregular motionfor n(k) when r

1-ry 1+rg >0.935, a period-2 solutioqfn(k+2)=n(k)] when r
v 2 2 v €(0.89,0.935) and a period-1 solution for a large range
( ): ( 1)_ whenr €(0.62,0.87). To learn the nature of the irregular
1+rg 1-rg | \V2 motion occuring forr >0.935, we use a method designed for

2 2 experimental data to calculate the Lyapunov exponent and
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find that the maximum Lyapunov exponent is positive whenseveral conclusiond1) The bifurcation is hysteretic. For a
the system is in irregular motion. Actually, the bifurcation large range of, there will be a coexistence of multistate, i.e.,
diagram of Fig. 1b) is quite robust. When we changk v, the coexistence of chaos, period-2, and period-1 solutions.
vs, and L, we still observe a similar picture. The conse- Depending on different parameter regions, the attraction re-
guences of different sets of parameters are to vary the locaions of different dynamic behaviors are differe(®) The
tion of the transition(or bifurcation point and perhaps to period-2 solution exists only in a small region fand it
make period-2 solution disappear in some cases. All of thavill be replaced by chaotic motion beyond this region. When
results show that there exist quite rich dynamical behavior®.55<r<0.62, the dynamic behavior is different from that
in this weakly nonlinear system. for r € (0.62,0.87) thougim(k) continues to have a period-1

The chaotic nature of the system near elastic situation ( solution. The transition at~0.62 is dramatic and cannot be
~1) is important. It provides the evidence on the molecularexplained by bifurcation of the map directly. We will discuss
chaos in this simple system and certain possibility of thet below.
statistical description of macroscopic behavior of the system. We know that there will be a cluster consisting df- 1

It is necessary to discuss the bifurcations between differparticles near reflecting wall whanis near 1/1]. How does
ent dynamic behaviors. Due to the fact tingk) is integral  the cluster change whervaries? To characterize the cluster,
and discontinuous, it is not convenient to use it to discussve may discuss its size and location. In numerical simula-
bifurcation. We replace it as our dynamical variable withtion, the maximum and minimum of(N)—x(2) are the
v(2), which is the velocity of particle 2 when particle 1 good candidates for characterizing the size of the cluster and
collides with the hot wall. The bifurcation diagrams are the distance of particl&l away from the reflecting wall may
shown in Fig. 2. In Fig. &), we decreasefrom 0.95to 0.86 account for the position of the cluster. In Fig. 3, we show our
and let the initial condition for eaahbe the ending results of results. Whem>0.62, we find(1) The size of the cluster and
the previous, and we observe chaos, period-2 solution, two-its fluctuations increase as decreases. The observation
band chaos and period-1 solution in turn. In Figh)2we  agrees with the thermodynamic argument. Both the kinetic
reverse the process to increasitom 0.86 to 0.95. The ini- energy of the cluster transfered from hot wall via particle 1
tial condition is the same as fom). We find period-1, and the dissipation of energy in the cluster increase with the
period-2 and chaotic motion, and the locations of differentdecrease of. The former fact results in the increase of the
bifurcations are changed. In Fig(c2, we adopt the same granular temperature in the cluster. Considering the fact that
initial condition scheme and vary the parameatén a small  the injection velocity of the leftmost particle is constant and
region from 0.89 to 0.95, and now two band chaos, period-2ts velocity leaving the cluster is very small, we know that
solution and chaos appear in turn. Finally, we choose randorthe pressure exerted on cluster from the hot wall via particle
initial condition for eachr in Fig. 2(d). In this plot, we find 1 is nearly a constant. As a result of the thermodynamic
that bifurcations are not clear. From these plots, we can dravaws, we know the size of the cluster will increase with the
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reflecting wall. In agreement with the discussion above, the
cluster changes its size a little and has a small volume. In this
plot, if we use real time, the trajectory of particle 1 will be a
straight line. Furthermore, we decreasé¢o 0.92 with the
results shown in Fig. @). We find that the cluster has en-
larged its size greatly, and the fluctuation of its size is obvi-
ous. The figure shows a clear period-2 solution. At péint
particle 1 hits the expanding cluster and makes it shrink. But
the impact is not strong enough to clamp IdH-1 particles
together. When particle 1 hits the loose cluster agaB #te
impact of particle 1 eventually makes the outer particles
N move to the reflecting wall and form a dense cluster includ-
ing N—1 particles. Then the cluster expands again after lots
00 . . e N of collisions among it. The similar process is repeated to
05 08 07 08 08 1.0 form a period-2 structure. Figurge where we letr =0.78
shows a clear period-1 structure. Comparing with Figdp) 4
FIG. 3. The maximum sizédashed ling the minimum size the strong impact of particle 1 on the cluster and the slow
(solid line) and the location of the clustgline with solid circles energy injection make the cluster have enough time to reach
versus restitution coefficiemt its minimum of the size. The expansion of the cluster is
observed also after that until the next impact of the particle
decrease of. Then decrease af will also induce a large 1. It is worth mentioning that the cluster does not change its
fluctuation of the temperature of the cluster. Similarly, welocation in these plots. However when we let 0.6, the
know that the fluctuation of the size of the cluster will in- scenario is different. The location of the cluster varies with
crease with the decreaserof2) ParticleN remains almost at the evolution of the system and it moves back and forth
the reflecting wall for a range of it means that the cluster between the hot and reflecting wall.
sticks to the reflecting wall regardless of the size of the clus- Now we come back to Fig. (&) again. The period-one
ter and its fluctuations. But whendecreases below about solution obeysi=N2, whenr>0.62. Actually, we can con-
0.62, we find that the particldl may move away from the struct a simple collision sequence to fulfill the relation. To
reflecting wall, so that the cluster moves back and forth beperform the construction, we |aV represent the collision
tween two walls. This transition is very different from the between the particle 1 and the hot wal(i=1,2,... N
bifurcations at large. It reflects the transition between the —1) represent the collision between ttth particle and the
different macroscopic behaviors of the system. In this senseé+ 1th particle andN represent the one between the right-
it looks rather similar to a phase transition in statistical phys-most particle and the reflecting wall. Whah=5, the simple
icS. collision sequence is shown in Figi&. In this simple chain,
We can get information about the dynamic behavior ofafter the collision 1 af, 2 atB, 3 atC, and 4 atD, respec-
the system from the spatial-temporal pattern of the systentively, particles 1, 2, 3 and 4 will not take part in the colli-
We plot the pattern by recording the positions of all particlessions in the cycle any more. These particles in effect leave
at different time. For convenience, we use the number othe cluster after the corresponding collision. We may dis-
collisions as timet. In Fig. 4, we show the results under the semble the chain into several small chains. For exanjple,
same parameter sets as those in Fig. 1. In Fig), 4 1,2,3,4,5,4,3,2,1{2,3,4,5,4,3,2{3,4,5, 4,3, and
=0.99. We find that particle 1 moves fast between two wallg4, 5, 4. Each small chain includes parts moving toward the
and the otheN—1 particles form a cluster located at the reflecting wall and moving toward the hot wall. In fact, these
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in the simple case, we may find that there are extra collision

W @ w ®) , 1 . L .
2, T, 1 in the (1—r)" order chain and extra collisions 1 and 2 in
T — 11\2 - 4 =5 the (1—r)? order one. It is the balance between the intersec-
| ot A i - tion of different order small chains and the extra collisions in
2y _, \ ‘N the small chains that maintains the relatiosn N2, WhenN
=5 a4 is large, the number of possible arrangement of the small
g o3 " B2 \4 chains is very large. This may be proven from the measure of
84—y s collisions performed by different particles in one cycle.
c 34 c 3 47 However, outside of the period-1 region, the complete small
o~ g chain cannot exist since the collisioM interrupts the colli-
b 4 o 47 sion sequence. This interruption destroys the relation

=N2,

In summary, we have investigated the dynamic behaviors
in one-dimensional inelastic particle system at microscope
) o scale. The map and the spatial-temporal pattern are intro-

FIG. 5. (8) The simple collision sequence whéfi=5. () A qyced to characterize and classify the dynamic behaviors.
possible collision sequence observed in the numerical simulation.\y/e have also introduced the small collision chain to explain
he relationn=N? in the period-1 solution region. In fact,
he investigation of the dynamic behavior perhaps provides
Some insight into the pattern formation in granular system.
During these years, some models have been introduced to
explain the pattern forming of the vibrating vertically granu-
lar system[14,15. However, we know that the pattern for-
(1—r) order and ends at 2, and so on. » _ mation may appear in many kinds of systems, i.e., fluid,

_ Unfortunately, we only observe the simple collision chain chemical systems, and biological systems. It is well known
in certain range of at smallN. In general case, the simple 5t the phenomena observed may be the same for different
collision chain will be blurred by the intersection of the gygtems though the underlying mechanisms are different. So
small chains. Here, the intersection of the smaII. 9ham§Ne cannot say lots about models even if they can generate
means that two small chains have a common collision ag5terns similar to those in the real systems until we have an
their junction. However, no matter how these small chaing,gight into the dynamic behaviors of the granular materials

arrange themselves, they are complete in any cycle in thg; microscope scale. The paper takes a first step to under-
sense that they have the same order and the same endigg g the dynamic behaviors at microscope scale.
collision as those in the simple chain. The example Nor

=5 is shown in Fig. B). Here the X-r order and the (1 The author is very grateful to Professor Leo Kadanoff for
—r)? order small chains appear before the{)° order one  fruitful discussions and for his critical reading of the manu-
ends. Another difference of these small chains from those iscript. This work was supported in part by NSF Grant No.
simple chain is that they may have more collisions that thos®MR 9728858 and in part by the MRSEC Program of the
in the simple chain if they intersect with other small chains.National Science Foundation under Award No. NSF DMR
In Fig. 5b), compared with the corresponding small chains9808595.

small chains may be classified according to the velocities 05‘
the small chains which are characterized by the order of
—r, and the small chain with higher order ends with larger
For example, the small chaifw,1,2,3,4,5,4,3,2/1is (1
—r)° order which ends at collision %2,3,4,5,4,3,Ris of
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