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Dynamics of a one-dimensional inelastic particle system
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~Received 3 August 1999!

The dynamical behavior of a one-dimensional inelastic particle system is investigated. By the means of map
and spatial-temporal pattern we find the chaotic motion and the periodic motion in this simple system. We
characterize several kinds of transitions and introduce the idea of a small collision chain to explain the
universal relationn5N2 between the number of collisions in a cyclen and the number of the particlesN of the
system for period-1 behavior.

PACS number~s!: 45.70.Mg, 05.20.Dd, 81.05.Rm
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Granular materials appear broadly in nature~sand dunes,
powders, etc.! and are of great technological importan
~handling and transporting of, e.g., seeds and pharmac
cals!. In general, they consist of macroscopic grains wh
do not interact with each other except that they collide
elastically. The behaviors of granular materials are gre
influenced by energy injection. Without energy injectio
granular materials will cool down gradually and the moti
of grains will eventually stop. For example, in vertically p
riodically vibrating granular materials, the system may ma
fest fluidlike or solidlike behaviors depending on the vibr
ing amplitude and driving frequency. In the past few yea
the investigation of one-dimensional~1D! inelastic gas has
attracted much attention in the hope that the origin of p
nomena that appear in models for two or three dimensi
can be illuminated by results in a much simpler 1D case

In Ref. @1#, Du, Li, and Kadanoff stated that the hydrod
namic description failed in the case of 1D inelastic gas. Si
then, several papers discussing this kind of system have
published@2–7#. However, all of these papers were only co
cerned with the macroscopic aspect, such as hydrodyna
properties and spatial and temporal average properties,
Little attention was paid to the dynamic properties at a m
croscopic scale. However, the dynamic behavior of the s
tem is very important in understanding the behavior of
granular materials not only at a microscopic scale but als
a macroscopic scale. For example, it is the basis for u
understand the pattern formation of the granular mater
@8,9#.

In this paper, we investigate the dynamic behavior of
inelastic gas. The model is introduced in Ref.@1#. The sys-
tem consists of many inelastic particles in which the partic
interact via inelastic collisions which conserve moment
but dissipate kinetic energy. Let us consider a horizontal c
umn of N sizeless identical inelastic particles confined
two walls of infinite mass between whom the distance isL.
When two particles collide, the velocities after the collisi
v18 andv28 are expressed in terms of the velocities before
collision v1 andv2 as
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Here r 0 is the restitution coefficient defined byv282v18
52r 0(v22v1). Energy is pumped in from the left wall. Th
leftmost particle will return with a velocityv0 when it hits
the left wall ~hot wall!. In this paper, we take this velocity t
be a constantv051. The other wall is a reflecting wall, tha
is, the collisions between the rightmost particle and reflect
wall only change the sign of the velocity of the rightmo
particle. For convenience, we order the particles 1, 2, . . . , N
according to their spatial order. For example, the leftm
particle is particle 1. In contrast to the previous works on
inelastic gas, we letr 0 be a function ofuv22v1u @10#,

r 05 H r ~ uv22v1u.vs!

12~12r !~ uv22v1u/vs!
1/2 ~ uv22v1u<vs!.

Experiments@11# have shown some velocity-dependent b
haviors. The increase inr 0 for low uv22v1u avoids inelastic
collapse@12,13# and constantr 0 at higheruv22v1u is more
computationally efficient.

To investigate the dynamic behaviors at microscope sc
we first define the event to be the collision between part
1 and the hot wall, then we define the cycle as the proc
which begins with oneeventand ends at the next one. W
measure two quantities: one is the number of the collisi
among all particles which happen in one cycle,n, the other is
the duration time of one cycleT. In the beginning, the par
ticles are uniformly distributed between two walls and on
particle 1 has nonzero velocity. In Fig. 1, we show the resu
aboutn and T when r is varied. Here,L5210, N520, vs
51 and we keep these parameters unchanged throughou
paper. We record the results after the system reache
steady state.T has been shown in Fig. 1~a! where it follows
the exponential formT5(L/v0)$11exp@2N(12r)#%, when
r 0.0.55. We may taken as a dynamical variablen(k) ~k
means thekth cycle! and consider the mapn(k11)
5 f „n(k)…. Then to characterize the dynamic behavior of t
system, we just need consider the solution of mapf @see Fig.
1~b!#. We find that the dynamic behavior of the system
dependent onr. For example, we find an irregular motio
~including two-band irregular motion! for n(k) when r
.0.935, a period-2 solution@n(k12)5n(k)# when r
P(0.89,0.935) and a period-1 solution for a large ran
when r P(0.62,0.87). To learn the nature of the irregul
motion occuring forr .0.935, we use a method designed f
experimental data to calculate the Lyapunov exponent
2920 ©2000 The American Physical Society
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FIG. 1. ~a! The period of a cycleT versus the
restitution coefficientr. ~b! The bifurcation dia-
gram ofn(k).
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find that the maximum Lyapunov exponent is positive wh
the system is in irregular motion. Actually, the bifurcatio
diagram of Fig. 1~b! is quite robust. When we changeN, v0 ,
vs , and L, we still observe a similar picture. The cons
quences of different sets of parameters are to vary the l
tion of the transition~or bifurcation! point and perhaps to
make period-2 solution disappear in some cases. All of
results show that there exist quite rich dynamical behav
in this weakly nonlinear system.

The chaotic nature of the system near elastic situationr
'1) is important. It provides the evidence on the molecu
chaos in this simple system and certain possibility of
statistical description of macroscopic behavior of the syst

It is necessary to discuss the bifurcations between dif
ent dynamic behaviors. Due to the fact thatn(k) is integral
and discontinuous, it is not convenient to use it to disc
bifurcation. We replace it as our dynamical variable w
v(2), which is the velocity of particle 2 when particle
collides with the hot wall. The bifurcation diagrams a
shown in Fig. 2. In Fig. 2~a!, we decreaser from 0.95 to 0.86
and let the initial condition for eachr be the ending results o
the previousr, and we observe chaos, period-2 solution, tw
band chaos and period-1 solution in turn. In Fig. 2~b!, we
reverse the process to increaser from 0.86 to 0.95. The ini-
tial condition is the same as for~a!. We find period-1,
period-2 and chaotic motion, and the locations of differe
bifurcations are changed. In Fig. 2~c!, we adopt the same
initial condition scheme and vary the parameterr in a small
region from 0.89 to 0.95, and now two band chaos, perio
solution and chaos appear in turn. Finally, we choose rand
initial condition for eachr in Fig. 2~d!. In this plot, we find
that bifurcations are not clear. From these plots, we can d
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several conclusions:~1! The bifurcation is hysteretic. For a
large range ofr, there will be a coexistence of multistate, i.e
the coexistence of chaos, period-2, and period-1 solutio
Depending on different parameter regions, the attraction
gions of different dynamic behaviors are different.~2! The
period-2 solution exists only in a small region ofr, and it
will be replaced by chaotic motion beyond this region. Wh
0.55,r ,0.62, the dynamic behavior is different from th
for r P(0.62,0.87) thoughn(k) continues to have a period-
solution. The transition atr'0.62 is dramatic and cannot b
explained by bifurcation of the map directly. We will discu
it below.

We know that there will be a cluster consisting ofN21
particles near reflecting wall whenr is near 1@1#. How does
the cluster change whenr varies? To characterize the cluste
we may discuss its size and location. In numerical simu
tion, the maximum and minimum ofx(N)2x(2) are the
good candidates for characterizing the size of the cluster
the distance of particleN away from the reflecting wall may
account for the position of the cluster. In Fig. 3, we show o
results. Whenr .0.62, we find~1! The size of the cluster and
its fluctuations increase asr decreases. The observatio
agrees with the thermodynamic argument. Both the kine
energy of the cluster transfered from hot wall via particle
and the dissipation of energy in the cluster increase with
decrease ofr. The former fact results in the increase of th
granular temperature in the cluster. Considering the fact
the injection velocity of the leftmost particle is constant a
its velocity leaving the cluster is very small, we know th
the pressure exerted on cluster from the hot wall via part
1 is nearly a constant. As a result of the thermodynam
laws, we know the size of the cluster will increase with t
m
l

FIG. 2. The bifurcation dia-
gram of v(2), thevelocity of the
particle 2 when particle 1 collides
with the hot wall, versus restitu-
tion coefficientr. ~a! Decreasingr
and the ending state of the syste
for everyr is adopted as the initia
condition of nextr. ~b! Increasing
r from 0.86 to 0.95. The initial
condition is the same as~a!. ~c!
Increasingr from 0.9 to 0.95, the
initial condition is the same as~a!.
~d! Random initial condition.
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2922 PRE 61JUNZHONG YANG
decrease ofr. Then decrease ofr will also induce a large
fluctuation of the temperature of the cluster. Similarly, w
know that the fluctuation of the size of the cluster will i
crease with the decrease ofr. ~2! ParticleN remains almost a
the reflecting wall for a range ofr, it means that the cluste
sticks to the reflecting wall regardless of the size of the cl
ter and its fluctuations. But whenr decreases below abou
0.62, we find that the particleN may move away from the
reflecting wall, so that the cluster moves back and forth
tween two walls. This transition is very different from th
bifurcations at larger. It reflects the transition between th
different macroscopic behaviors of the system. In this se
it looks rather similar to a phase transition in statistical ph
ics.

We can get information about the dynamic behavior
the system from the spatial-temporal pattern of the syst
We plot the pattern by recording the positions of all partic
at different time. For convenience, we use the number
collisions as time,t. In Fig. 4, we show the results under th
same parameter sets as those in Fig. 1. In Fig. 4~a!, r
50.99. We find that particle 1 moves fast between two wa
and the otherN21 particles form a cluster located at th

FIG. 3. The maximum size~dashed line!, the minimum size
~solid line! and the location of the cluster~line with solid circles!
versus restitution coefficientr.
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reflecting wall. In agreement with the discussion above,
cluster changes its size a little and has a small volume. In
plot, if we use real time, the trajectory of particle 1 will be
straight line. Furthermore, we decreaser to 0.92 with the
results shown in Fig. 4~b!. We find that the cluster has en
larged its size greatly, and the fluctuation of its size is ob
ous. The figure shows a clear period-2 solution. At pointA,
particle 1 hits the expanding cluster and makes it shrink.
the impact is not strong enough to clamp allN21 particles
together. When particle 1 hits the loose cluster again atB, the
impact of particle 1 eventually makes the outer partic
move to the reflecting wall and form a dense cluster inclu
ing N21 particles. Then the cluster expands again after
of collisions among it. The similar process is repeated
form a period-2 structure. Figure 4~c! where we letr 50.78
shows a clear period-1 structure. Comparing with Fig. 4~b!,
the strong impact of particle 1 on the cluster and the sl
energy injection make the cluster have enough time to re
its minimum of the size. The expansion of the cluster
observed also after that until the next impact of the parti
1. It is worth mentioning that the cluster does not change
location in these plots. However when we letr 50.6, the
scenario is different. The location of the cluster varies w
the evolution of the system and it moves back and fo
between the hot and reflecting wall.

Now we come back to Fig. 1~a! again. The period-one
solution obeysn5N2, whenr .0.62. Actually, we can con-
struct a simple collision sequence to fulfill the relation. T
perform the construction, we letW represent the collision
between the particle 1 and the hot walli ( i 51,2, . . . ,N
21) represent the collision between thei th particle and the
i 11th particle andN represent the one between the righ
most particle and the reflecting wall. WhenN55, the simple
collision sequence is shown in Fig. 5~a!. In this simple chain,
after the collision 1 atA, 2 atB, 3 atC, and 4 atD, respec-
tively, particles 1, 2, 3 and 4 will not take part in the coll
sions in the cycle any more. These particles in effect le
the cluster after the corresponding collision. We may d
semble the chain into several small chains. For example,$W,
1, 2, 3, 4, 5, 4, 3, 2, 1%, $2, 3, 4, 5, 4, 3, 2%, $3, 4, 5, 4, 3%, and
$4, 5, 4%. Each small chain includes parts moving toward t
reflecting wall and moving toward the hot wall. In fact, the
e
FIG. 4. The spatial-temporal pattern of th
system at different restitution coefficientr. ~a! r
50.99, ~b! r 50.92, ~c! r 50.8, ~d! r 50.60.
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small chains may be classified according to the velocities
the small chains which are characterized by the order o
2r , and the small chain with higher order ends with largei.
For example, the small chain$W,1,2,3,4,5,4,3,2,1% is (1
2r )0 order which ends at collision 1,$2,3,4,5,4,3,2% is of
(12r ) order and ends at 2, and so on.

Unfortunately, we only observe the simple collision cha
in certain range ofr at smallN. In general case, the simpl
collision chain will be blurred by the intersection of th
small chains. Here, the intersection of the small cha
means that two small chains have a common collision
their junction. However, no matter how these small cha
arrange themselves, they are complete in any cycle in
sense that they have the same order and the same e
collision as those in the simple chain. The example forN
55 is shown in Fig. 5~b!. Here the 12r order and the (1
2r )2 order small chains appear before the (12r )0 order one
ends. Another difference of these small chains from thos
simple chain is that they may have more collisions that th
in the simple chain if they intersect with other small chain
In Fig. 5~b!, compared with the corresponding small cha

FIG. 5. ~a! The simple collision sequence whenN55. ~b! A
possible collision sequence observed in the numerical simulati
od
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in the simple case, we may find that there are extra collis
1 in the (12r )1 order chain and extra collisions 1 and 2
the (12r )2 order one. It is the balance between the inters
tion of different order small chains and the extra collisions
the small chains that maintains the relationn5N2. WhenN
is large, the number of possible arrangement of the sm
chains is very large. This may be proven from the measur
collisions performed by different particles in one cycl
However, outside of the period-1 region, the complete sm
chain cannot exist since the collisionW interrupts the colli-
sion sequence. This interruption destroys the relationn
5N2.

In summary, we have investigated the dynamic behav
in one-dimensional inelastic particle system at microsco
scale. The map and the spatial-temporal pattern are in
duced to characterize and classify the dynamic behavi
We have also introduced the small collision chain to expl
the relationn5N2 in the period-1 solution region. In fact
the investigation of the dynamic behavior perhaps provi
some insight into the pattern formation in granular syste
During these years, some models have been introduce
explain the pattern forming of the vibrating vertically gran
lar system@14,15#. However, we know that the pattern fo
mation may appear in many kinds of systems, i.e., flu
chemical systems, and biological systems. It is well kno
that the phenomena observed may be the same for diffe
systems though the underlying mechanisms are different
we cannot say lots about models even if they can gene
patterns similar to those in the real systems until we have
insight into the dynamic behaviors of the granular materi
at microscope scale. The paper takes a first step to un
stand the dynamic behaviors at microscope scale.
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