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Heat flow through an insulating nanocrystal
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We calculate the low temperature, quantum mechanical rate of heat flow through a nanocrystal due to
phonon transport by solving a many-body Schro¨dinger equation for oscillators in Fermi resonance. By analogy
to Raman scattering through molecules, we find that normal processes due to anharmonicity of the nanocrystal
give rise, over an intermediate range of lengths, to a largely length-independent thermal conductivity that
resembles Fourier’s law, but is in fact of a different origin. For longer crystals conductivity rises with length,
as predicted for a harmonic solid. For shorter nanocrystals thermal conductivity also rises with length, followed
by a turnover regime in which thermal conductivity is size specific.

PACS number~s!: 63.22.1m, 44.10.1i, 61.46.1w, 85.30.Vw
co

l
d
th

b
on

e
g
o
n

a
o
nd
de
on

te
ly
vo
de
ce
ac
h
th

m
,
ce
el
o-

th

i
w
ro

a

lizes
hus
ab-
es,
nd

on-
nce
ns
re.

pro-
show
m.
me
f re-
e-
igh-
cy
eat
me

tum

mal
trict

D
uch

ture
I. INTRODUCTION

Recent progress in the direct measurement of heat
duction by phonons through suspended nanostructures@1#,
which may permit calorimetry at the level of individua
phonons~‘‘yoctocalorimetry’’! @2#, has generated renewe
interest and activity in the quantum mechanical theory of
thermal conductivity of electrical insulators@3–5#. Theory
has focused on calculation of the thermal conductance
drawing on analogies to electrical transmission through c
fined geometries pioneered by Landauer@6#. Both adiabatic
and nonadiabatic regimes have been addressed, wher
latter treats reflection of phonons related to the specific
ometry of the bridge-reservoir interface. Theoretical work
the quantum mechanical thermal conductance through a
row bridge has hereto treated the modes of the bridge
harmonic. As a result, the thermal conductivity diverges
the length of the bridge increases. In this article, we sh
that anharmonicity modifies heat flow in a nanocrystal a
over a range of lengths, leads to a nearly length-indepen
low temperature thermal conductivity that is apparently c
sistent with the Fourier heat law.

The system through which heat is conducted is depic
in Fig. 1. A nanocrystal bridging two reservoirs at slight
different temperatures transmits heat between the reser
as phonons enter or leave. As in the nonadiabatic mo
considered earlier@3,4#, phonons are reflected at the interfa
of the reservoir and nanocrystal. The nanocrystal thus
effectively as a ‘‘quantum dot’’ or cluster through whic
phonons pass. We can expect the thermal conductivity of
nanocrystal to depend sensitively on its size, as do ther
dynamic@7# and electrical transport@8# properties of clusters
and indeed we observe regimes of strong size dependen
the calculations we present below. As in earlier mod
@3–5#, we take the reservoirs to be effectively tw
dimensional objects and assume, as in earlier work@3–5#, an
effectively one-dimensional nanocrystal, consistent with
experimental device described in Ref.@1#. Since our focus is
on phonon-phonon scattering due to anharmonicity and
effect on thermal conductivity through the nanocrystal,
assume a perfect nanocrystal, with no diffuse scattering f
PRE 611063-651X/2000/61~3!/2902~7!/$15.00
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asperities along its edges or impurities within it.
The role of anharmonicity in thermal conductivity of

macroscopic object was clarified by Peierls long ago@9#.
Phonon scattering through umklapp processes therma
the phonons locally along the macroscopic conductor, t
providing a mechanism for resistance that is otherwise
sent in the harmonic approximation. At low temperatur
however, umklapp collisions become exponentially rare, a
scattering from imperfections on the surface or in the c
ductor become the predominant means of thermal resista
@10#. In the model we consider, depicted in Fig. 1, phono
conduct heat through a finite-size object at low temperatu
Phonon scattering occurs through the so-called normal
cesses rather than umklapp processes, but these, as we
below, can still affect thermal conduction in a finite syste
At the interface of the nanocrystal and reservoir so
phonons are reflected, and, as seen below, the degree o
flection or transmission, i.e., the tunneling probability, d
pends on the mode frequencies of the nanocrystal; if a h
frequency phonon scatters normally into two low frequen
phonons via cubic anharmonic coupling, the rate of h
transmitted to the lower temperature reservoir is not the sa
as had no scattering occurred.

We address the nature of heat transfer through a quan
mechanical nanocrystal by solving a many-body Schro¨dinger
equation for many oscillators, each representing a nor
mode of the nanocrystal, in Fermi resonance. We res

FIG. 1. Schematic illustration of a nanocrystal bridging two 2
thermal reservoirs. The length of the nanocrystal is assumed m
greater than its width. The reservoir on the right is at a tempera
higher byDT.
2902 ©2000 The American Physical Society
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PRE 61 2903HEAT FLOW THROUGH AN INSULATING NANOCRYSTAL
ourselves to low temperatures, of order 1 K. At low tempe
ture normal processes are the predominant means
phonon-phonon scattering in a perfect crystal. This both s
plifies our quantum mechanical calculations and allows u
examine if normal processes, which in macroscopic crys
have at most a very small effect on thermal conduction o
ing to momentum conservation@11,12#, might have a greate
influence on heat flow through finite systems. Detailed
perimental study of these effects at low temperatures is n
beginning to become possible@1,2#. Classical heat transfe
through finite systems at low temperatures@13–20#, includ-
ing investigation of the specific role of anharmonicity o
thermal conduction, has already received a great deal o
tention, but corresponding quantum mechanical studies
heat flow in mesoscopic systems have not been exten
The classical studies aimed at elucidating the necessary
sufficient conditions for heat transfer to follow Fourier’s law
In fact such studies have shown anomalous transport
nected to boundary effects. We shall comment briefly
some of these studies at the end of this article.

We make use of a correspondence between quantum
chanical heat flow through a nanocrystal and the calcula
of Raman scattering of photons by a molecule. In a Ram
process@21,22#, a molecule absorbs and then emits photo
while thermal conduction arises from phonons absorbed
emitted by the nanocrystal. The rate of scattering throug
molecule depends sensitively on the rate of energy redi
bution within the molecule on the time scale of the Ram
process, which results from anharmonic coupling among m
lecular vibrations. Likewise, anharmonicity may redistribu
phononic energy absorbed by the nanocrystal among
modes. The rate of energy redistribution arising from phon
scattering within the nanocrystal ultimately affects the th
mal conductivity, just as the rate of vibrational energy red
tribution affects the Raman scattering of a molecule. W
therefore compute the rate of energy redistribution in
nanocrystal due to anharmonicity as part of calculating
thermal conductivity. We find that, due to both normal sc
tering and the nanocrystal-reservoir interactions, there
range of nanocrystal lengths over which compliance w
Fourier’s law is apparent.

II. THERMAL CONDUCTIVITY OF NANOCRYSTAL

We define the system of a nanocrystal coupled to re
voirs illustrated in Fig. 1 by the HamiltonianH5H01H1.
The zero-order Hamiltonian is taken to be harmonic,

H05(
r

\v rar
†ar1(

l
\v lal

†al1(
q

\vqaq
†aq , ~1!

wherev is a mode frequency anda the number operator o
modesr, l and q, which label modes of the right and le
reservoirs, and the nanocrystal, respectively. The interac
Hamiltonian is

H15HRQ1HLQ1HNC , ~2!

where these terms describe the interaction between the
reservoir and nanocrystal, the left reservoir and nanocry
and the anharmonic couplings within the nanocrystal, resp
tively. We define
-
or
-
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HRQ5(
r ,q

trqar
†aq1H.c., ~3a!

HLQ5(
l ,q

t lqal
†aq1H.c., ~3b!

HNC5 (
q,q8,q9

uq,q8,q9~aq
†1aq!~aq8

†
1aq8!~aq9

†
1aq9!.

~3c!

We assume the contribution of higher order anharmonic c
pling terms to the rate of energy redistribution within th
nanocrystal is relatively small at low temperature, as is
case for large molecules@23#.

We first evaluate the rate of energy transfer from t
higher temperature to the lower temperature reserv
through the nanocrystal, which we write as

H15E dv rr~v r !\v rG r . ~4!

The energy transfer rate through the nanocrystal in the o
direction is H2, expressed by replacingr by l. From the
energy transfer rate through the nanocrystal we obtain
thermal conductivity as

k5L~H12H2!/DT, ~5!

whereDT is the difference in the temperatures of the res
voirs, andL is the length of the nanocrystal. We calculate t
rate of heat transfer using the golden rule since we ass
that, due to constrictions or physical separation at
reservoir-nanocrystal interface, states of the reservoir
nanocrystal are weakly coupled. The rate of decay from
right reservoir to the left one is then

G r5(
l

2p

\2
uVlr u2r~v l !, ~6!

whereVlr , defined below, are matrix elements coupling t
two reservoirs via the nanocrystal. In the following we a
sume for simplicity that the properties of the left and rig
reservoirs other than the temperature are identical, so tha
mode densities,r(v), of both reservoirs at the same mod
frequency are the same. We use the Debye approximation
the mode density of the two-dimensional reservoirs,

r~v!5bv, ~7!

where b depends on the volume of and speed of sou
through the reservoirs.

We calculate the coupling matrix elements in Eq.~6! by
analogy to the theory of Raman scattering. For the sys
defined above

uVlr u25\22U(
q

(
nq

~ n̄l11!1/2~nq11!n̄r
1/2t lqtqr

v2vq1 igq
U2

. ~8!

In Eq. ~8!, nl , nr and nq are the occupation numbers o
modes,l, r, andq, respectively, belonging respectively to th
left and right reservoirs, and the nanocrystal;n̄ denotes most
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probable value, calculated with the Planck distribution. T
coefficientst rq and t lq account for the linear coupling be
tween the atoms at the ends of the reservoirs and nanocry
If the mass-weighted normal coordinates contain contri
tions from each internal coordinate of the system@24#, t rq
andt lq scale as the square root of the product of the frequ
cies of the coupled modes,

t lq5aN21/2\~v lvq!1/2, ~9!

where N is the number of atoms along the length of t
nanocrystal. We assume the dimensionless coefficienta has
been calculated for a particular system.

The imaginary partgq in Eq. ~8! corresponds to the deca
rate from states containingnq phonons in modeq. There are
two contributions to this decay. There is decay due to c
pling of the nanocrystal modes to the reservoirsgq

(h) and
there is decaygq

(anh), due to phonon scattering in the nan
crystal caused by the anharmonic terms ofH1. We assume
for simplicity that the line widths of the nanocrystal leve
are sufficiently narrow so thatgq1gq8!vq2vq8 ,qÞq8,
which can always be realized by makinga sufficiently small.
In the absence of anharmonicity, we note that if this con
tion holds for oneN it holds for any other, sincegq

(h) varies
as N21 ~see below!. We discuss the limit of overlapping
resonances at the end of Sec. III. We are then left with in
grating Eq.~4! to calculate the energy transfer rate from t
higher temperature reservoir to the lower temperature re
voir through the nanocrystal.

Let us consider first the harmonic case, i.e.,H15HRQ
1HLQ . Upon integration of Eq.~4! and thermally averaging
nq , we find

Hh
15

p

\3

a2b

N (
q

n̄r~vq!@ n̄q~vq!11#~\vq!4, ~10!

whereh denotes harmonic. In the limitDT→0, the thermal
conductivity is kh5LdH1/dT. Writing xq5\vq /kBT and
L5aN, wherea is the interatomic spacing,

kh5
pa2ba

\3 kB
4T3(

q

xq
5exq~exq11!

~exq21!3 , ~11!

wherekB is the Boltzmann constant. The mode frequenc
of the nanocrystal at low temperature can be assumed to
asvq5Ac2kq

21vm
2 , wherec is the speed of sound,kq is the

wave vector of modeq, andm labels a waveguide mode o
the narrow nanocrystal. At sufficiently low temperature
only the lowest waveguide mode,m50, contributes signifi-
cantly to the thermal conductivity of a narrow structu
@3–5# like the nanocrystal in Fig. 1; sincev050,vq5ckq .
The dispersion could also be nonlinear~see below!. By ap-
proximating the sum as an integral,(x→*dxrx(x), where
rx(xq)'NT/pQD in the Debye approximation andQD is
the Debye temperature, we have

kh'
5!a2ba

\3QD
NkB

4T4. ~12!

The numerical constant 5! is obtained by taki
*dx@x5ex(ex11)/(ex21)3#'*dx x5e2x with limits from 0
e

tal.
-

n-

-

i-

-

r-

s
ry

,

to `, which is justified at low temperature. We thus find th
the thermal conductivity in the harmonic limit varies askh
;NT4, in agreement with the temperature scaling for t
low temperature, nonadiabatic thermal conductance der
by Angelescu, Cross, and Roukes@3#. As expected the ther
mal conductivity diverges in the harmonic limit.

We now include in the imaginary part,gq , of Eq. ~8! the
contribution due to energy redistribution within the nan
crystal, so thatgq5gq

(h)1gq
(anh), where the latter term ac

counts for anharmonicity in the nanocrystal. In this ca
upon integration of Eq.~4!,

H15
2p2

\4

a4

N2

3(
q,nq

n̄r~vq!@ n̄l~vq!11#~nq11!2~\vq!5r2~vq!

gq
(h)1gq

(anh) .

~13!

Each term in the sum is given a Boltzmann weight in calc
lating the thermally averaged rate of energy transfer.gq
5(2p/\2)( l uVlqu2r(vq), whereVlq are the matrix elements
connecting states of the nanocrystal withnq phonons in
mode q with states of the~equivalent! reservoirs. Upon
evaluation of the matrix elements, we find

gq
(h)5

2p

\3

a2b

N
~\vq!3~nq11!@ n̄l~vq!11#. ~14!

To calculate the rate of energy transfer, we still need to co
pute the energy redistribution rategq

(anh), due to anharmonic
coupling, for states withnq phonons in modeq. We thus
need to estimate the size of the cubic coupling consta
uq,q8,q9 , that appear in the definition ofH1, which vary as
@24,25#

uq,q8,q95RN21/2~vqvq8vq9!
1/2d~kq1kq81kq9!. ~15!

Since we focus on low temperatures umklapp proces
which are exponentially rare, have been neglected. In m
eculesR is of the order 1023 when the coupling matrix ele
ments are expressed in units of K; we usedR5231023 in
our calculations.

In principle, a very large network of harmonic states
the nanocrystal are coupled together, even if we only c
sider cubic anharmonic terms. In practice, only relatively f
of these states mix strongly, and we need only consider
subset of states that participate significantly in energy re
tribution. The search for such states is a common prob
faced in the computational study of vibrational energy red
tribution in molecules, and is routinely performed by Artifi
cial Intelligence algorithms, which are extensively discuss
in Ref. @26#. We adopt this approach to calculate the effe
tive subset of states that participate in energy redistribu
in the nanocrystal. Briefly, starting with a state withnq
phonons in modeq, we search for the subset of stat
coupled by the anharmonic terms strongly enough and s
ciently close in energy, as determined by a cutoff criterio
then repeat this process iteratively to identify the network
states that form the basis of the reduced nanocrystal Ha
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tonian. We also require that the average coupling times
average density of resonantly coupled states is of order
necessary criterion for quantum mechanical energy flow
finite coupled nonlinear oscillator system@23,27#. We then
diagonalize the reduced Hamiltonian and determinegq

(anh)

from the line width of the resulting spectrum. We compu
gq

(anh) for eachq andnq , averaging over the phonons in a
other modes, giving each combination a Boltzmann weig
Values ofgq

(anh) are then introduced into Eq.~13!, and the
average rates of energy transfer are calculated. Finally,
thermal conductivity is obtained asL(H12H2)/DT.

III. RESULTS AND DISCUSSION

We turn now to calculation of the quantum mechani
thermal conductivity through a nanocrystal bridging two re
ervoirs. Since we focus on low temperatures we assume
discussed above, that only the lowest waveguide mode
tributes to the thermal conductivity. We take the harmo
frequencies of the nanocrystal to follow the dispersion re
tion, vq5c8usin(akq/2)u. We usekBc8/\5625 K in our cal-
culations, which is representative of Si. Values ofkq are
discrete and spaced by 2p/Na, whereN is the number of
atoms along the length of the crystal, anda the atomic spac-
ing. We set the dimensionless coupling parameter in Eq.~9!
to a51.431023 and setb51 in our definition of the reser
voir mode density given by Eq.~7!. We then calculate the
thermal conductivity,k, using both the harmonic and anha
monic Hamiltonians for nanocrystals ranging in length fro
100 to 1200 atoms. The result fork in the harmonic limit is
given by Eq.~11!, and the complete result including nan
crystal anharmonicity is computed as described at the en
the previous section. The thermal conductivity is plotted
Fig. 2, where we expressk in units ofpa2bakB

4/\3; in these
units the harmonic limit,kh , is independent of system spe
cific parametersa, b, anda.

In Fig. 2~a! we plot the thermal conductivityk at tem-
peraturesT51.0, 1.5, 1.7, and 2.0 K. Size specific effec
leading to fluctuations ink are apparent, particularly at 2.
K. At each temperature the thermal conductivity follows p
dictions of the harmonic limit at smallerN, then, with the
onset of energy redistribution and its increasing rate w
larger N, k turns over and is approximately constant byN
'1000 or roughly the 100 nm scale for these paramet
The turnover regime is clearly broader at smallerT. In Fig.
2~b! we comparek with kh at T52.5 K. Again, size depen
dence resulting in fluctuation ofk with N is apparent, while
on averagek becomes independent ofN with larger N, ap-
parently consistent with Fourier’s law, despite the absenc
umklapp processes or diffuse scattering at the boundarie

Normal scattering due to anharmonicity of the nanocrys
apparently affects thermal conductivity, giving rise to a
gime wherek appears to be length-independent. Normal p
cesses can affectk because the rate of emission of phono
from the nanocrystalg (h) depends on the frequencies a
occupation numbers of the nanocrystal modes, as seen
Eq. ~14!. When the redistribution rateg (anh) of phonons
within the nanocrystal is faster than the emission rate,
energy transfer rate from one reservoir to the other is
fected. The energy transfer rate apparently varies as 1/N in
e
, a
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this regime, giving rise to a thermal conductivity that do
not vary withN.

The apparent independence of the thermal conductivity
the length of the nanocrystal would seem to indicate con
mity to Fourier’s law. However, the argument that norm
scattering affects thermal conduction by redistributi
phonons in the nanocrystal cannot be stretched to arbitra
long crystals. For much longer crystals, redistribution
phonons by normal scattering is essentially complete follo
ing absorption; additional phonon-phonon scattering occ
ring within a longer crystal no longer affects the distributio
of phonons that it emits. We show in the Appendix that th
limit occurs when the resonances of the nanocrystal over
We note that in the harmonic limit, as discussed above, if
energy levels of the nanocrystal are resolvable at any gi
length of the nanocrystal, due to sufficiently weak coupli
to the reservoirs, then they remain resolvable for any na
crystal length. This is no longer the case for the anharmo
nanocrystal. Resonances will ultimately overlap as the na
crystal grows. In the resonance-overlap limit, in the abse
of umklapp processes, we find thatk rises withN, as shown
in the Appendix. In this limit, we find

FIG. 2. ~a! Thermal conductivityk in units ofpa2bakB
4/\3, as

a function of lengthN at T51.0 K ~circles!, 1.5 K ~triangles!, 1.7
K ~squares!, and 2.0 K~diamonds!; ~b! comparison ofk including
anharmonicity~X! at T52.5 K with the harmonic result~curve!.
The insert in~b! showsk calculated for the anharmonic nanocryst
ultimately rising withN at largeN.
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k5
a4b2akB

6

\5QD
2 CNT7, ~16!

whereQD is the Debye temperature andC'315p2. Using
the limiting value fork at sufficiently largeN given by Eq.
~16!, we plotk atT52.5 K in Fig. 2~b! over a wide range of
N.

Normal scattering of phonons due to anharmonicity
longer significantly affects the energy transport rate throu
the nanocrystal when its length is sufficient for phonons
tering from one reservoir to redistribute before reaching
other side. When the nanocrystal is this long, redistribut
will have occurred before any phonon can be emitted. T
traversal time across the nanocrystal isL/c, whereL is the
nanocrystal length andc is the speed of sound. The redistr
bution time is of order 1/g (anh). Sincec/L is of the order of
the spacing of nanocrystal levels, resonance overlap oc
when g (anh).c/L. We thus indeed expect, as found in t
Appendix, that the effect of normal scattering on heat tra
fer between the reservoirs, or thermal conductivity of t
nanocrystal, is dramatically reduced upon increasing
length of the nanocrystal beyond that where the nanocry
resonances begin to overlap. Ultimately, in the macrosco
limit and with only normal scattering, the thermal conduct
ity diverges withN, as it must@9,11,12#.

IV. CONCLUDING REMARKS

We find the thermal conductivity of a low temperatu
nanocrystal coupled weakly to two thermal reservoirs app
ently conforms to Fourier’s heat law over a range of leng
due only to normal phonon-phonon scattering arising fr
anharmonicity. Redistribution of phonons within the nan
crystal by normal scattering following absorption affects t
emission rate, reducing the rate of energy flow from
higher temperature reservoir to the lower as the length of
nanocrystal increases.

When the nanocrystal is so small that anharmonic effe
at low temperature have no effect on heat flow, the ther
conductivity rises with the length of the nanocrystal, as
pected for a harmonic system. The onset of the appa
Fourier heat law regime occurs about where the redistr
tion rate of phonons due to normal scattering is the sam
the emission rate for phonons to tunnel out of the nanocry
to the reservoirs. As the onset is approached, the the
conductivity appears to fluctuate with nanocrystal size, th
turns over to a regime in length where it appears length
dependent. Phonon redistribution by normal scattering ce
to affect the energy transfer rate from the high tempera
reservoir to the low temperature reservoir when the sca
ing rate is so high that any phonon absorbed by the na
crystal has sufficient time to scatter before reaching the o
end. In this case, roughly where the resonances of the n
crystal begin to overlap, the rate of heat transfer through
nanocrystal no longer varies with increasing crystal leng
and the thermal conductivity diverges with length. This p
ture could change if, even assuming no asperities or o
imperfections, we account for umklapp processes@9,12#,
which we have neglected in the low-temperature calculati
presented in this article.

There have been numerous calculations of heat transfe
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phonons through classical one-dimensional objects@13–19#.
These include calculations on harmonic chains with rand
impurities @13,14#, anharmonic chains@13,15,16,19#, and
special quasi-one-dimensional models that have no obv
physical basis@17,18#. One long-standing puzzle since th
early theoretical and computational studies of such a w
range of models has been the difficulty of extracting Fou
er’s heat law from the classical analysis of relatively simp
systems. Though certain special models that exhibit str
chaos do, through numerical analysis@16–18#, appear to ex-
hibit Fourier’s heat law, the study of models of chains
nonlinear oscillators coupled to thermal baths, even if c
otic, fail to yield a convergent thermal conductivity@15#. A
recent numerical study@19# of heat flow through a classica
nonlinear chain of order 102 atoms bridging two lattice res
ervoirs found that some forms for the chain-lattice intera
tions might give rise to a convergent thermal conductivi
Our analysis of quantum mechanical thermal conduct
through an anharmonic nanocrystal highlights the difficu
of drawing conclusions about convergence of thermal c
ductivity from a numerical study with chains of 102 or 103

atoms.
A complete understanding of how Fourier’s law of he

transfer through a macroscopic system evolves from a mi
scopic model still eludes us. We have addressed this prob
here with a quantum mechanical study of heat trans
through a finite anharmonic crystal at low temperature. W
have, however, restricted our analysis to include only so
scattering processes, normal processes, that arise from a
monicity. These, while very much more probable than u
klapp processes at sufficiently low temperatures, ultimat
cannot give rise to Fourier’s law. We have found, howev
an interesting regime of nanocrystal lengths over which
thermal conduction of a small crystal bridging two reservo
appears to conform to Fourier’s law.
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APPENDIX

We provide here details of our calculation of the therm
conductance through a nanocrystal for the case where
energy level line-widths of the nanocrystal overlap. In th
limit the line widths of the nanocrystal levels are sufficien
large so thatgq1gq8.vq2vq8 ,qÞq8, in which case Eq.
~13! no longer gives the rate of heat transfer by phonons. T
rate of heat transfer from the right, high temperature res
voir to the left, low temperature reservoir, assuming the r
ervoirs are otherwise identical, is given by

H15
2p

\2 E E dv rdv lr~v r !\v r uVlr u2r2~v l !, ~A1!

wherer(v) is the mode density of either reservoir at mo
frequencyv. In Eq. ~A1! we have replaced the sum in Eq
~6! with an integral and inserted this into Eq.~4!. We calcu-
late the coupling matrix elements in Eq.~A1! by analogy to
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the theory of Raman scattering and resonance fluoresce
the former describing coherent and the latter incoherent
sorption and emission of phonons by the nanocrystal brid
We distinguish the coupling matrix elements accounting
Raman scattering and resonance fluorescence with the
scripts R and F, respectively. Then, since cross terms a
negligible @21,22#,

uVlr u25uVlr ;Ru21uVlr ;Fu2. ~A2!
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The Raman terms are given by

uVlr ;Ru25\22U(
q

(
nq

~ n̄l11!1/2~nq11!n̄r
1/2t lqtqr

v2vq1 igq
U2

.

~A3!

The resonance fluorescence terms are given by
the

.

uVlr ;Fu25\24U(
q,nq

(
m,nm

~ n̄l11!1/2~nm11!1/2~nq11!1/2n̄r
1/2t lmVmq

(anh)tqr

~v2vm1 igm!~v2vq1 igq!
U2

. ~A4!

As discussed in the text, the linear coupling coefficientst lq are given byt lq5aN21/2\(v lvq)1/2, whereN is the number of
atoms along the length of the nanocrystal;nl , nr , andnq are the occupation numbers of modes,l, r, andq, respectively,
belonging respectively to the left and right reservoirs, and the nanocrystal;n̄ denotes most probable value, calculated with
Planck distribution;Vmq

(anh) is the anharmonic contribution to the coupling between statesq and m. We turn first to the
contribution of the Raman, and then to the contribution of resonance fluorescence terms to the rate of heat transfer

Inserting Eq.~A3! into Eq. ~A1!, we find for the Raman contribution to the heat transfer rate

HR
15

2p2

\4

a4

N2 (
q,nq

(
q8,nq8

n̄r~vq!@ n̄l~vq!11#~nq11!~nq81dqq8!~\vq!4\vq8r
2~vq!~gq1gq8!

~vq2vq8!21~gq1gq8!
2 . ~A5!
duc-

-

of
Since we assume the resonances of the nanocrystal ove
we can approximate the sum overq8 as an integral,(q8→*dvq8rnc(vq8). In the Debye approximation, the nan
crystal mode density isrnc(vq8)'N/vD , wherevD is the
Debye frequency. For simplicity, and without affecting t
scaling ofH1 with N and T, we assume thatnq8'nq and
vq8'vq in the integral. Then the Raman contribution to t
heat transfer rate becomes

HR
15

2p3

\4

a4

NvD
(
q,nq

n̄r~vq!@ n̄l~vq!11#

3~nq11!nq~\vq!5r2~vq!, ~A6!

where we have neglected any terms of orderN22. We ap-
proximate the sums overq and nq as integrals. Then(q
→*dxqrx(xq), where xq5\vq /kBT; and (nq

→*dnq@e2nq\vq /kBT/Z#, whereZ is the partition function.
We assume that the mode density of the 2-dimensional
ervoirs can be described by the Debye approximationr
5bv. For the quasi-one-dimensional nanocrystal,rx(xq)
'NT/pQD in the Debye approximation, whereQD is the
Debye temperature.
ap,

s-

The heat transfer rate is then

HR
1'

2p2

\6

a4b2

vD

kB
7T8

QD
E dx

x7e2x

~ex21!4 . ~A7!

Importantly, we see thatH1 is independent ofN, as it should
be in the absence of unklapp processes. The thermal con
tivity from the Raman contribution,kR5(Na)dHR

1/dT,
whereNa is the length of the nanocrystal, is then

kR'
2p2a4b2a

\5
N

kB
6T7

QD
2 E dxx8e22x, ~A8!

where we approximated the integral in Eq.~A7! by
*dxx7e22x. The integral in Eq.~A8! gives 8!/29 taking the
limits of x to be 0 and̀ , which is justified at low tempera
ture.

The resonance fluorescence contribution to the rate
heat transfer is found upon inserting Eq.~A4! into Eq. ~A1!,
HF
15

4p2

\6

a4

N2 (
q,nq

(
q8,nq8

(
m,nm

(
m8,nm8

n̄r~vq!@ n̄l~vq!11#~\vq!4\vq8r
2~vq!~gq1gq8!Vq8m8

(anh)Vmq
(anh)

@~vq2vq8!21~gq1gq8!
2#~vq2vq81 igm!~vq82vm8 2 igm8!

3@~nq11!~nq81dqq8!~nm11!~nm81dmm8!#
1/2. ~A9!
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The harmonic~natural! linewidth due to coupling of zero
order nanocrystal modeq to the reservoirs isgq , while the
contribution due to dephasing by the nanocrystal isgm . The
sums overm andm8 can be approximated by integrals, i.e
(m→p21*dvm@vq2vm1 igm#21, and likewise for m8.
We assume for simplicity thatnq5nm'nq85nm8 . Then
sinceg (anh)'(p/\2)(uV(anh)u2/gm), we find thatHF

1'HR
1 .

We thus find that the rate of heat transfer due to the
herent Raman process of absorbing and emitting a phono
the same as the incoherent, resonance fluorescent pro
where emission follows dephasing due to anharmonic c
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pling in the nanocrystal. We can understand this result in
following way. The intensity due to resonant Raman scat
ing is approximately@22# I R'YemitVabs, whereVabs is the
absorption rate andYemit is the emission probability. The
intensity due to resonance fluorescence is approximately@22#
I F'YemitYtransVabs, where Ytrans is the probability of pure
dephasing before emission. When there is resonance ove
due to anharmonic coupling within the nanocrystal,Ytrans
'1, so that the coherent and incoherent contributions to
heat transfer rate are about the same. The thermal condu
ity is thenk'2kR , which is Eq.~16!.
v.

ys.

g

@1# T.S. Tinghe, J.M. Worlock, and M.L. Roukes, Appl. Phy
Lett. 70, 2687~1997!.

@2# M.L. Roukes, Physica B263, 1 ~1999!.
@3# D.E. Angelescu, M.C. Cross, and M.L. Roukes, Superlatti

Microstruct.23, 673 ~1998!.
@4# L.G.C. Rego and G. Kirczenow, Phys. Rev. Lett.81, 232

~1998!.
@5# M.P. Blencowe, Phys. Rev. B59, 4992~1999!.
@6# See references cited in Refs.@3–5#.
@7# R.S. Berry, Nature~London! 393, 212 ~1998!; M. Schmidt, R.

Kusche, B. von Issendorff, and H. Haberland,ibid. 393, 238
~1998!.

@8# D. K. Ferry and S. M. Goodnick,Transport in Nanostructures
~Cambridge University Press, Cambridge, 1997!.

@9# R. Peierls, Ann. Phys.~Leipzig! 3, 1055~1929!; The Quantum
Theory of Solids~Oxford Univeristy Press, London, 1955!.

@10# H.B.G. Casimir, Physica~Amsterdam! 5, 495~1938!; P.D. Th-
acher, Phys. Rev.156, 975 ~1967!.

@11# J. Callaway, Phys. Rev.113, 1046~1959!.
@12# P. Carruthers, Rev. Mod. Phys.33, 92 ~1961!.
@13# D.N. Payton, M. Rich, and W.M. Visscher, Phys. Rev.160,

160 ~1967!.
@14# A. Casher and J.L. Lebowitz, J. Math. Phys.12, 1701~1971!;

A.J. O’Connor and J.L. Lebowitz,ibid. 15, 692 ~1974!.
s

@15# S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett.78, 1896
~1997!; Europhys. Lett.43, 271 ~1998!.

@16# F. Mokross and H. Bu¨ttner, J. Phys. C16, 4539~1983!.
@17# G. Casati, J. Ford, F. Vivaldi, and W.M. Visscher, Phys. Re

Lett. 52, 1861~1984!.
@18# T. Prosen and M. Robnik, J. Phys. A25, 3449~1992!.
@19# B. Hu, B. Li, and H. Zhao, Phys. Rev. E57, 2992~1998!.
@20# A. Dhar and D. Dhar, Phys. Rev. Lett.82, 480 ~1999!.
@21# D.L. Huber, Phys. Rev.158, 843~1967!; 170, 418~1968!; 178,

93 ~1969!.
@22# D.A. Weitz, S. Garoff, J.I. Gersten, A. Nitzan, J. Chem. Ph

78, 5324~1983!.
@23# D.M. Leitner and P.G. Wolynes, Phys. Rev. Lett.76, 216

~1996!; J. Chem. Phys.101, 541 ~1996!.
@24# D. Madsen, R. Pearman, and M. Gruebele, J. Chem. Phys.106,

5874 ~1997!.
@25# G. Leibfried and W. Ludwig, inSolid State Physics, edited by

F. Seitz and D. Turnbull~Academic Press, New York, 1961!,
Vol. 12, p. 275.

@26# R. E. Wyatt and C. Iung, inDynamics of Molecules and
Chemical Reactions, edited by R. E. Wyatt and J. Z. H. Zhan
~Marcel Dekker, New York, 1996!, p. 59; A.A. Stuchebrukhov
and R.A. Marcus, J. Chem. Phys.98, 6044~1993!; R. Bigwood
and M. Gruebele, Chem. Phys. Lett.235, 604 ~1995!.

@27# D.E. Logan and P.G. Wolynes, J. Chem. Phys.93, 494~1990!.


