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Heat flow through an insulating nanocrystal
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We calculate the low temperature, quantum mechanical rate of heat flow through a nanocrystal due to
phonon transport by solving a many-body Salinger equation for oscillators in Fermi resonance. By analogy
to Raman scattering through molecules, we find that normal processes due to anharmonicity of the nanocrystal
give rise, over an intermediate range of lengths, to a largely length-independent thermal conductivity that
resembles Fourier’s law, but is in fact of a different origin. For longer crystals conductivity rises with length,
as predicted for a harmonic solid. For shorter nanocrystals thermal conductivity also rises with length, followed
by a turnover regime in which thermal conductivity is size specific.

PACS numbdp): 63.22+m, 44.10+i, 61.46+w, 85.30.Vw

[. INTRODUCTION asperities along its edges or impurities within it.
The role of anharmonicity in thermal conductivity of a
Recent progress in the direct measurement of heat corvacroscopic object was clarified by Peierls long 40

duction by phonons through suspended nanostrucfufes Phonon scattering through umklapp processes thermalizes
which may permit calorimetry at the level of individual the phonons locally along the macroscopic conductor, thus
phonons(*“yoctocalorimetry”) [2], has generated renewed provu_dlng a mechan_lsm for resistance that is otherwise ab-
interest and activity in the quantum mechanical theory of th sent in the harmonic approximation. At low temperatures,
thermal conductivity of electrical insulatof8—5]. Theory owever, umklapp collisions become exponentially rare, and

has f d lculati ¢ the th | d bscattering from imperfections on the surface or in the con-
as focused on calculation of the thermal conductance by,.ior pecome the predominant means of thermal resistance
drawing on analogies to electrical transmission through con

. : , ) . ~'[10]. In the model we consider, depicted in Fig. 1, phonons
fined geometries plon_eered by Landal} Both adiabatic onduct heat through a finite-size object at low temperature.
and nonadiabatic regimes have been addressed, where

I flecti £ oh lated h i fionon scattering occurs through the so-called normal pro-
atter treats reflection of phonons related to the Specific gezoggeg rather than umklapp processes, but these, as we show
ometry of the bridge-reservoir interface. Theoretical work ony

. elow, can still affect thermal conduction in a finite system.
the quantum mechanical thermal conductance through aNakt the interface of the nanocrystal and reservoir some
row bndge has hereto treated the modes ,O,f thg bridge onons are reflected, and, as seen below, the degree of re-
harmonic. As a result, the thermal conductivity diverges a le

he | b of the bridae i in thi | h ction or transmission, i.e., the tunneling probability, de-
the length of the bridge Increases. In this article, we ShoW,e 45 o the mode frequencies of the nanocrystal: if a high-

that anharmonicity modifies heat flow in a nanoqrystal a”dfrequency phonon scatters normally into two iow frequency
over a range of lengths, leads to a nearly Iength—lndepende%onons via cubic anharmonic coupling, the rate of heat

Iqw tempg;atrlljre;her_maLcon?uct|V|ty that is apparently CONYransmitted to the lower temperature reservoir is not the same
S|s:[rehnt with the hourler: e;]a_lthahw. . d d is dei ng had no scattering occurred.
e system through which heat is conducted Is depicted \yq aqgress the nature of heat transfer through a quantum

in Fig. 1. A nanocrystal bridg@ng two reservoirs at Slightly.mechanical nanocrystal by solving a many-body Sdimger
different temperatures transmits heat between the reservm&luaﬁon for many oscillators, each representing a normal

as phonons en'ter or leave. As in the nonad|abat'|c mOdelﬁ‘lode of the nanocrystal, in Fermi resonance. We restrict
considered earligi3,4], phonons are reflected at the interface

of the reservoir and nanocrystal. The nanocrystal thus acts

effectively as a “quantum dot” or cluster through which

phonons pass. We can expect the thermal conductivity of the

nanocrystal to depend sensitively on its size, as do thermo-

dynamic[7] and electrical transpof8] properties of clusters, T
and indeed we observe regimes of strong size dependence in

the calculations we present below. As in earlier models

[3-5], we take the reservoirs to be effectively two-

dimensional objects and assume, as in earlier Wa#&], an

effectively one-dimensional nanocrystal, consistent with the

experimental device described in REE]. Since our focus is FIG. 1. Schematic illustration of a nanocrystal bridging two 2D
on phonon-phonon scattering due to anharmonicity and itthermal reservoirs. The length of the nanocrystal is assumed much
effect on thermal conductivity through the nanocrystal, wegreater than its width. The reservoir on the right is at a temperature
assume a perfect nanocrystal, with no diffuse scattering frorhigher byAT.

Nanocrystal T+AT
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PRE 61 HEAT FLOW THROUGH AN INSULATING NANOCRYSTAL 2903

ourselves to low temperatures, of order 1 K. At low tempera-
ture normal processes are the predominant means for Hro= > trqdlaq+H.c., (3@
phonon-phonon scattering in a perfect crystal. This both sim- ra
plifies our quantum mechanical calculations and allows us to
examine if normal processes, which in macroscopic crystals HLsz t|qaf‘aq+ H.c., (3b)
have at most a very small effect on thermal conduction ow- l.a
ing to momentum conservatigil,12, might have a greater
inflgence on heat flow through finite systems. Detailgd e = 2 Ugqr q”(aT+aq)(a‘r,Jraq,)(a‘r”Jraq”)_
perimental study of these effects at low temperatures is now aa.q q q q
beginning to become possibj&,2]. Classical heat transfer (30
through finite systems at low temperatufé8—20, includ- o , )
ing investigation of the specific role of anharmonicity on W€ assume the contribution of higher order anharmonic cou-
thermal conduction, has already received a great deal of aR!iN9 terms to the rate of energy redistribution within the
tention, but corresponding quantum mechanical studies dpanocrystal is relatively small at low temperature, as is the
heat flow in mesoscopic systems have not been extensivEaSe for large moleculd23].
The classical studies aimed at elucidating the necessary ang e first evaluate the rate of energy transfer from the
sufficient conditions for heat transfer to follow Fourier's law. N'9ner temperature to the lower temperature reservoir
In fact such studies have shown anomalous transport corifrough the nanocrystal, which we write as
nected to boundary effects. We shall comment briefly on
some of these studies at the end of this article. H*:f dop(w)fio,T,. (4

We make use of a correspondence between quantum me-

chanical heat flow through a nanocrystal and the calculatioy,e gnerqy transfer rate through the nanocrystal in the other
of Raman scattering of photons by a molecule. In a Rama'airection isH~, expressed by replacing by 1. From the

prr?lcefﬁ[Zl,Zlﬂ, a rgolc:[:‘.cule gbsorfbs andhthen emgs pgogonsanergy transfer rate through the nanocrystal we obtain the
while thermal conduction arises from phonons absorbed angloma| conductivity as

emitted by the nanocrystal. The rate of scattering through a
molecule depends sensitively on the rate of energy redistri- k=L(HT—H")/AT, (5)
bution within the molecule on the time scale of the Raman

process, which results from anharmonic coupling among mowhereAT is the difference in the temperatures of the reser-
lecular vibrations. Likewise, anharmonicity may redistributevoirs, andL is the length of the nanocrystal. We calculate the
phononic energy absorbed by the nanocrystal among itsate of heat transfer using the golden rule since we assume
modes. The rate of energy redistribution arising from phonorthat, due to constrictions or physical separation at the
scattering within the nanocrystal ultimately affects the ther+eservoir-nanocrystal interface, states of the reservoir and
mal conductivity, just as the rate of vibrational energy redis-nanocrystal are weakly coupled. The rate of decay from the
tribution affects the Raman scattering of a molecule. Weright reservoir to the left one is then

therefore compute the rate of energy redistribution in the

nanocrystal due to anharmonicity as part of calculating its 2 5

thermal conductivity. We find that, due to both normal scat- L= Z ﬁ|vlr| p(w)), (6)
tering and the nanocrystal-reservoir interactions, there is a

range of nanocrystal lengths over which compliance withyherey, | defined below, are matrix elements coupling the

Fourier's law is apparent. two reservoirs via the nanocrystal. In the following we as-
sume for simplicity that the properties of the left and right
Il. THERMAL CONDUCTIVITY OF NANOCRYSTAL reservoirs other than the temperature are identical, so that the

|mode densitiesp(w), of both reservoirs at the same mode
frequency are the same. We use the Debye approximation for
the mode density of the two-dimensional reservoirs,

p(w)=Bow, )

where 8 depends on the volume of and speed of sound
) through the reservoirs.
wherew is a mode frequency araithe number operator of  \we calculate the coupling matrix elements in Eg). by

modesr, | and g, which label modes of the right and left analogy to the theory of Raman scattering. For the system
reservoirs, and the nanocrystal, respectively. The interactiogefined above

Hamiltonian is

We define the system of a nanocrystal coupled to rese
voirs illustrated in Fig. 1 by the HamiltoniaH=Hy+H;.
The zero-order Hamiltonian is taken to be harmonic,

Ho=2> hwala+> hwala+> fivalag, (1)
r | q

2

(M + )Y+ )0 gty ®
‘ .

w—wqt1yg

Hi=HgrotH o+ Hne, 2 Vi [2=172> >
q g

where these terms describe the interaction between the right _

reservoir and nanocrystal, the left reservoir and nanocrystaln Ed. (8), nj, n, and nq are the occupation numbers of
and the anharmonic couplings within the nanocrystal, respedhodes/, r, andg, respectively, belonging respectively to the
tively. We define left and right reservoirs, and the nanocrystafjenotes most
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probable value, calculated with the Planck distribution. Theto «, which is justified at low temperature. We thus find that
coefficientst,, andt;, account for the linear coupling be- the thermal conductivity in the harmonic limit varies ag
tween the atoms at the ends of the reservoirs and nanocrystatNT4, in agreement with the temperature scaling for the
If the mass-weighted normal coordinates contain contribulow temperature, nonadiabatic thermal conductance derived
tions from each internal coordinate of the systg29], t, by Angelescu, Cross, and Rouked. As expected the ther-
andt,, scale as the square root of the product of the frequenmal conductivity diverges in the harmonic limit.

cies of the coupled modes, We now include in the imaginary pary,, of Eqg.(8) the
Y 1o contribution due to energy redistribution within the nano-
tig=aN " i (wjwg) ©)  crystal, so thaty,=¥{” + y{"™, where the latter term ac-

counts for anharmonicity in the nanocrystal. In this case,

where N is the number of atoms along the length of theupon integration of Eq(4).

nanocrystal. We assume the dimensionless coefficieimas
been calculated for a particular system.

2 4
The imaginary pary, in Eq. (8) corresponds to the decay 1+ _2m o

rate from states containing, phonons in mode. There are h* N2

two contributions to this decay. There is decay due to cou- _ _ ) -

pling of the nanocrystal modes to the reservoj/rfﬁ) and <3S Ni(@g)[Ni(wq) +1](Ng+1)“(hwg) p (wq)

there is decayy{"™, due to phonon scattering in the nano- g Y+ ¥ '

crystal caused by the anharmonic termsHyf We assume (13)

for simplicity that the line widths of the nanocrystal levels

are sufficiently narrow so thay,+yq <wg—@q,0#9’,  Each term in the sum is given a Boltzmann weight in calcu-

which can always be realized by makiagsufficiently small. lating the thermally averaged rate of energy transfey.

In the absence of anharmonicity, we note that if this Co“di'=(217/?12)2||V|q|2p(wq) whereV, are the matrix elements

tion holds for oneN it holds for any other, smce/g ) varies connecting states of the nanocrystal with phonons in

asN~* (see below We discuss the limit of overlapping mode q with states of the(equivalen} reservoirs. Upon
resonances at the end of Sec. Ill. We are then left with integyaluation of the matrix elements, we find

grating Eq.(4) to calculate the energy transfer rate from the

higher temperature reservoir to the lower temperature reser- 27 o?B _
voir through the nanocrystal. ygh)=—3 W(ﬁwq)3(nq+ 1)[n(wq) +1]. (14
Let us consider first the harmonic case, ild;=Hgqg h
N _ ; . S .
n Hb:/?e fli.lnpdon integration of E¢(4) and thermally averaging To calculate the rate of energy transfer, we still need to com-
q L

pute the energy redistribution ra#*™, due to anharmonic
. o coupling, for states witmg phonons in modey. We thus
> nr(wq)[nq(wq)+1](hwq)4, (100  need to estimate the size of the cubic coupling constants
q Ugq,q» that appear in the definition d,, which vary as
[24,29

. T a?pB
RN

h3

whereh denotes harmonic. In the lim&T—0, the thermal
EO_I’IdUCtIVIty IS kp= Ldl'-|+/dT. ertlng )$q=ﬁwq/kBT and Ugorqr= RN_”Z(wqwq,qu)llzé(kq+ kg +kg). (15)
=aN, wherea is the interatomic spacing,
Since we focus on low temperatures umklapp processes,
which are exponentially rare, have been neglected. In mol-
eculesR is of the order 10° when the coupling matrix ele-
ments are expressed in units of K; we uged2x10 3 in
wherekg is the Boltzmann constant. The mode frequencieur calculations.
of the nanocrystal at low temperature can be assumed to vary In principle, a very large network of harmonic states of
aswq= \/cqu2+ wmz, wherec is the speed of sound, is the  the nanocrystal are coupled together, even if we only con-
wave vector of mode, andm labels a waveguide mode of sider cubic anharmonic terms. In practice, only relatively few
the narrow nanocrystal. At sufficiently low temperatures,of these states mix strongly, and we need only consider the
only the lowest waveguide modm=0, contributes signifi- subset of states that participate significantly in energy redis-
cantly to the thermal conductivity of a narrow structure tribution. The search for such states is a common problem
[3-5] like the nanocrystal in Fig. 1; sinc@,=0,wq=Ck,. faced in the computational study of vibrational energy redis-
The dispersion could also be nonlingaee below. By ap- tribution in molecules, and is routinely performed by Artifi-
proximating the sum as an integral,— [dxp,(x), where cial Intelligence algorithms, which are extensively discussed
px(Xg)=NT/mOp in the Debye approximation an@p is in Ref.[26]. We adopt this approach to calculate the effec-
the Debye temperature, we have tive subset of states that participate in energy redistribution
in the nanocrystal. Briefly, starting with a state wi
5!a’Ba ) phonons in modeg, we search for the subset of states
Kn™ WNKET : (12) coupled by the anharmonic terms strongly enough and suffi-
ciently close in energy, as determined by a cutoff criterion,
The numerical constant 5! is obtained by takingthen repeat this process iteratively to identify the network of
Jdx[x%eX(e*+1)/(e*—1)%]~ fdx x®e X with limits from 0  states that form the basis of the reduced nanocrystal Hamil-

ma’Ba x2eXa(eXa+1)
— 413 q
Kn=—3 KpT % T (11)
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tonian. We also require that the average coupling times the

average density of resonantly coupled states is of order 1, a °
necessary criterion for quantum mechanical energy flow ina 200 f °
finite coupled nonlinear oscillator systel@3,27. We then o> (a)
diagonalize the reduced Hamiltonian and determjg@" °
from the line width of the resulting spectrum. We compute %o
¥ for eachq andng, averaging over the phonons in all °
other modes, giving each combination a Boltzmann weight. ., | bty %00
Values of y¢"" are then introduced into Eq13), and the o b ® o,
average rates of energy transfer are calculated. Finally, the 4 A‘AA °°°°0°o°°o°oo°¢oo°°°°°°°°°°
thermal conductivity is obtained afH*—H™)/AT. oA
o
Oog,
e
I1l. RESULTS AND DISCUSSION 0 0 200 400 60[2] 800 1000 1200
We turn now to calculation of the quantum mechanical

thermal conductivity through a nanocrystal bridging two res- 3000 5
ervoirs. Since we focus on low temperatures we assume, as log ¥
discussed above, that only the lowest waveguide mode con- 4

tributes to the thermal conductivity. We take the harmonic
frequencies of the nanocrystal to follow the dispersion rela-
tion, wg=c’|sin(ak,/2)|. We usekgc'/%=625 K in our cal-
culations, which is representative of Si. Values kgf are
discrete and spaced bym2Na, whereN is the number of
atoms along the length of the crystal, amthe atomic spac-
ing. We set the dimensionless coupling parameter in(gq. 1000
to a=1.4x10 % and set3=1 in our definition of the reser-
voir mode density given by Ed7). We then calculate the
thermal conductivityx, using both the harmonic and anhar- x X %o Xx
monic Hamiltonians for nanocrystals ranging in length from w”‘x*x"xxx"xxx”xx’“xx“x& el *
100 to 1200 atoms. The result farin the harmonic limit is 0 400 800 1200
given by Eq.(11), and the complete result including nano- N
crystal anharmonicity is computed as described at the end of
th_e previous section. The_ the_rmal cor12ducti4\/ity ig plotted in, ¢ nction of lengthN at T=1.0 K (circles, 1.5 K (triangles, 1.7
Fig. 2, where we expressin units of ma”Bakg/h % inthese i (squarey and 2.0 K(diamonds; (b) comparison ofc including
units the harmonic limitxy,, is independent of system spe- anharmonicity(X) at T=2.5 K with the harmonic resuitcurve.
cific parametersy, 3, anda. The insert in(b) showsk calculated for the anharmonic nanocrystal
In Fig. 2(a) we plot the thermal conductivitx at tem-  ultimately rising withN at largeN.
peraturesT=1.0, 1.5, 1.7, and 2.0 K. Size specific effects
leading to fluctuations inc are apparent, particularly at 2.0 this regime, giving rise to a thermal conductivity that does
K. At each temperature the thermal conductivity follows pre-not vary withN.
dictions of the harmonic limit at smalle¥, then, with the The apparent independence of the thermal conductivity on
onset of energy redistribution and its increasing rate withthe length of the nanocrystal would seem to indicate confor-
largerN, « turns over and is approximately constant My  mity to Fourier's law. However, the argument that normal
~1000 or roughly the 100 nm scale for these parametersscattering affects thermal conduction by redistributing
The turnover regime is clearly broader at smallein Fig.  phonons in the nanocrystal cannot be stretched to arbitrarily
2(b) we comparec with x, at T=2.5 K. Again, size depen- long crystals. For much longer crystals, redistribution of
dence resulting in fluctuation of with N is apparent, while  phonons by normal scattering is essentially complete follow-
on average« becomes independent df with largerN, ap-  ing absorption; additional phonon-phonon scattering occur-
parently consistent with Fourier's law, despite the absence afing within a longer crystal no longer affects the distribution
umklapp processes or diffuse scattering at the boundaries. of phonons that it emits. We show in the Appendix that this
Normal scattering due to anharmonicity of the nanocrystalimit occurs when the resonances of the nanocrystal overlap.
apparently affects thermal conductivity, giving rise to a re-We note that in the harmonic limit, as discussed above, if the
gime wherex appears to be length-independent. Normal proenergy levels of the nanocrystal are resolvable at any given
cesses can affeet because the rate of emission of phononslength of the nanocrystal, due to sufficiently weak coupling
from the nanocrystaly(" depends on the frequencies andto the reservoirs, then they remain resolvable for any nano-
occupation numbers of the nanocrystal modes, as seen froanystal length. This is no longer the case for the anharmonic
Eq. (14). When the redistribution rate/2™™ of phonons nanocrystal. Resonances will ultimately overlap as the nano-
within the nanocrystal is faster than the emission rate, therystal grows. In the resonance-overlap limit, in the absence
energy transfer rate from one reservoir to the other is afof umklapp processes, we find thatrises withN, as shown
fected. The energy transfer rate apparently varies lsiri/ in the Appendix. In this limit, we find

2000 25

FIG. 2. (a) Thermal conductivity in units of ma?Baky/#°, as
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o*praks phonons through classical one-dimensional objgtss-19.
K= ﬁ—5@D2_CNT7' (16) These include calculations on harmonic chains with random

impurities [13,14], anharmonic chaing13,15,16,19 and
special quasi-one-dimensional models that have no obvious
physical basig§17,18. One long-standing puzzle since the
early theoretical and computational studies of such a wide
range of models has been the difficulty of extracting Fouri-

Normal scattering of phonons due to anharmonicity noer’s heat law from the c_Iassica[ analysis of relativelly.simple
longer significantly affects the energy transport rate throughSyStemS' Though certam.speual models that exhibit strong
the nanocrystal when its length is sufficient for phonons en-C.ha.‘OS do,_through numerical analypl§—18, appear to ex-
tering from one reservoir to redistribute before reaching theh'blt.Fou”er’S. heat law, the study of models of cha|_ns of

. o -~ . 2 " nonlinear oscillators coupled to thermal baths, even if cha-
other side. When the nanocrystal is this long, redistribution

) ; otic, fail to yield a convergent thermal conductivity5]. A
will have Qccurred before any phonon_ can be em_ltted. h ecent numerical study19] of heat flow through a classical
traversal time across the nanocrystal i€, wherelL is the

nanocrystal length andis the speed of sound. The redistri- nonlinear chain of order £0atoms bridging two lattice res-
bution time is of order @M. Sincec/L is of the order of ervoirs found that some forms for the chain-lattice interac-

the spacing of nanocrystal levels, resonance overlap occu%ons might give rise to a convergent thermal conductivity.
. ’ . ur analysis of quantum mechanical thermal conduction
when y@"M>c/L. We thus indeed expect, as found in the y d

. . through an anharmonic nanocrystal highlights the difficult

Appendix, that the effect .Of normal scattering on'h'eat transbf drzgwing conclusions about c{)nverggnc% of thermal coz-
fer between the reservoirs, or thermal conductivity of the
nanocrystal, is dramatically reduced upon increasing th
length of the nanocrystal beyond that where the nanocrysta
resonances begin to overlap. Ultimately, in the macroscopi
limit and with only normal scattering, the thermal conductiv-

ity diverges withN, as it mus{9,11,17.

where @, is the Debye temperature at~31572. Using
the limiting value forx at sufficiently largeN given by Eq.
(16), we plotk atT=2.5 Kin Fig. 2b) over a wide range of
N.

ductivity from a numerical study with chains of 20r 10°
toms.

A complete understanding of how Fourier's law of heat
fransfer through a macroscopic system evolves from a micro-
scopic model still eludes us. We have addressed this problem
here with a quantum mechanical study of heat transfer
through a finite anharmonic crystal at low temperature. We
IV. CONCLUDING REMARKS have, however, restricted our analysis to include only some

We find the thermal conductivity of a low temperature scattering processes, normal processes, that arise from anhar-

nanocrystal coupled weakly to two thermal reservoirs appargl‘on'c'ty' These, V\/thlleﬁygry trlnulch nt10re protbable tr:?n utml
ently conforms to Fourier’s heat law over a range of Iength§< app processes at suficiently low temperatures, ultimately

due only to normal phonon-phonon scattering arising fromcannot give rise to Fourier's law. We have found, however,

anharmonicity. Redistribution of phonons within the nano-2" interesting regime of nanocrystal lengths over which the

crystal by normal scattering following absorption affects thethermal conduction of a Sm?“ (,:rystal bridging two reservoirs
appears to conform to Fourier’s law.

emission rate, reducing the rate of energy flow from the
higher temperature reservoir to the lower as the length of the
nanocrystal increases. ACKNOWLEDGMENTS

When the nanocrystal is so small that anharmonic effects 5+ tnhanks A. Buldum and S. Ciraci of Bilkent Uni-

at low t(_amperature have no effect on heat flow, the therma\I/ersity, Ankara, Turkey for helpful discussions. This work
conductivity rises with the length of the nanocrystal, as ex-

pected for a harmonic system. The onset of the apparerwas supported in part by NSF Grant No. CHE-9530680.
Fourier heat law regime occurs about where the redistribu-
tion rate of phonons due to normal scattering is the same as APPENDIX
the emission rate for phonons to tunnel out of the nanocrystal \ye provide here details of our calculation of the thermal
to the reservoirs. As the onset is approached, the thermal,nqyctance through a nanocrystal for the case where the
conductivity appears to fluctuate with nanocrystal size, therngrgy Jevel line-widths of the nanocrystal overlap. In this
turns over to a regime in length where it appears length infimt the line widths of the nanocrystal levels are sufficiently
dependent. Phonon redistribution by normal scattering ceasgasrge S0 thaty,+ vy > wg— wg ,q#q’, in which case Eq

qT Yq'— @Wq~ @q’ , :

to affect the energy transfer rate from the high temperature; 3) hq |onger gives the rate of heat transfer by phonons. The

reservoir to the low temperature reservoir when the scattelia of heat transfer from the right, high temperature reser-

ing rate is so high that any phonon absorbed by the nang;gir 1 the left, low temperature reservoir, assuming the res-
crystal has sufficient time to scatter before reaching the othg{,,qirs are otherwise identical. is given by

end. In this case, roughly where the resonances of the nano-

crystal begin to overlap, the rate of heat transfer through the o

nanocrystal no longer varies with increasing crystal length, H+:_2f f dw,dw p(w,) oV, |2p%(w), (Al)

and the thermal conductivity diverges with length. This pic- h

ture could change if, even assuming no asperities or other

imperfections, we account for umklapp proces$esl2], wherep(w) is the mode density of either reservoir at mode

which we have neglected in the low-temperature calculationfrequencyw. In Eq. (A1) we have replaced the sum in Eq.

presented in this article. (6) with an integral and inserted this into Ed). We calcu-
There have been numerous calculations of heat transfer Hgte the coupling matrix elements in E@\1) by analogy to
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the theory of Raman scattering and resonance fluorescencehe Raman terms are given by

the former describing coherent and the latter incoherent ab-

sorption and emission of phonons by the nanocrystal bridge. _ 1o —

We distinguish the coupling matrix elements accounting for 5 o (M +1)M(ng+1)n % gtg
Raman scattering and resonance fluorescence with the sub- Viel?=172 2 nE w—wqtiyg |
scripts R and F, respectively. Then, since cross terms are ! (A3)
negligible[21,22,

‘ 2

IVie 2= Virrl2+ Vi el (A2)  The resonance fluorescence terms are given by

(n+ DY+ 1) Mg+ 1)1, V™,

d.ng M,Npy, (w_wm+i7m)(w_wq+i7q) | '

‘ 2

|Vlr;F|2:ﬁ74 (A4)

As discussed in the text, the linear coupling coefficiapfsare given byt;;=aN~Y%i(w 0,)*% whereN is the number of
atoms along the length of the nanocrystl; n,, andn, are the occupation numbers of modgs;, and g, respectively,
belonging respectively to the left and right reservoirs, and the nanocrgsiainotes most probable value, calculated with the
Planck distribution;VEﬁgh) is the anharmonic contribution to the coupling between stgtemd m. We turn first to the

contribution of the Raman, and then to the contribution of resonance fluorescence terms to the rate of heat transfer.
Inserting Eq.(A3) into Eq. (A1), we find for the Raman contribution to the heat transfer rate

, 27 ot Ny (@g)[Ni(wg) +1](Ng+1)(Ng + S4q) (frwg) *hwg p*(@0g) (gt var)
= X

: . (A5)
74 N2 QMg g’ ng (wq—wq)z-i-('yq-i— 'yq,)z
|

Since we assume the resonances of the nanocrystal overlap, The heat transfer rate is then
we can approximate the sum ovef as an integral >,
— Jdwqpn(wqr). In the Debye approximation, the nano- .
crystal mode density ipn(wq')~N/wp, wherewp, is the H ~ 27 o*p? kBTSJ y x’e? A7)
Debye frequency. For simplicity, and without affecting the R 46 wp Op (e*—1)*

scaling ofH* with N and T, we assume that, ~nq and
g~ wq in the integral. Then the Raman contribution to the
heat transfer rate becomes Importantly, we see thad * is independent o, as it should
be in the absence of unklapp processes. The thermal conduc-

273 ot — — tivity from the Raman contributionxgr=(Na)dH%/dT,
He=—7 oo 2 Ni(wg)[ni(wg) +1] i i
R™ 34 Nop &, © @/t whereNa is the length of the nanocrystal, is then
g
X (Ng+ng(hwg)®p(wg), (AB)

2m2a*B?a kSTY .

where we have neglected any terms of ortler’. We ap- KRS g N o2 J' dxxe™?, (A8)

. . 5
proximate the sums ovey and nq as integrals. Therx,
— JdXqpx(Xg),  where Xq=fhwq/kgT; and Enq
— [dny[e ""@a/ksT/Z], whereZ is the partition function. where we approximated the integral in E@A7) by
We assume that the mode density of the 2-dimensional reg-dxx’e”?*. The integral in Eq(A8) gives 8!/2 taking the
ervoirs can be described by the Debye approximatjon, limits of x to be 0 and», which is justified at low tempera-
=Bow. For the quasi-one-dimensional nanocrystal(x) ture.

~NT/70®p in the Debye approximation, whel@y is the The resonance fluorescence contribution to the rate of
Debye temperature. heat transfer is found upon inserting E44) into Eq.(Al),
4m? o N (wg)[N(0g)+ 1](hwg) fiog p?(@e)(ve+ Yq VMV

, [(wq_ w(,1)2+(7q+ Yq’)z](wq_w(;“’iYm)(‘l’q'_wr’n_iym’)

’
'm

X[(Ng+1)(Ngr+ Sqq) (Nt 1) (Npys + Sy ) V2 (A9)
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The harmonic(natura) linewidth due to coupling of zero-
order nanocrystal mode to the reservoirs ig/,, while the
contribution due to dephasing by the nanocrystaljs The
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pling in the nanocrystal. We can understand this result in the
following way. The intensity due to resonant Raman scatter-
ing is approximately{22] 1z~ Y emilaps, WhereQ s is the

sums ovem andm’ can be approximated by integrals, i.e., absorption rate an® ., is the emission probability. The

S dog wg— ontiyn] "t and likewise form'.
We assume for simplicity thab,=ny,~ng =nq . Then
since Y@M~ (7/42) (V@M 2/ y,), we find thatH ~H} .

intensity due to resonance fluorescence is approximg2ely
Ie~YemitYrandlanss Where Y0 IS the probability of pure
dephasing before emission. When there is resonance overlap

We thus find that the rate of heat transfer due to the codue to anharmonic coupling within the nanocrysté,s
herent Raman process of absorbing and emitting a phonon is1, so that the coherent and incoherent contributions to the
the same as the incoherent, resonance fluorescent procebsat transfer rate are about the same. The thermal conductiv-
where emission follows dephasing due to anharmonic couity is then k~2«g, which is Eq.(16).
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