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Critical dynamics of Heisenberg fluids at the gas-liquid transition
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We derive the static and dynamical model describing the critical statics and dynamics of a Heisenberg fluid
in a magnetic field near its gas-liquid critical point. It turns out that the model is equivalent to the one
describing a liquid mixture near its plait point. Using the results known for that case we predict the critical
behavior of the liquid and magnetic transport coefficients and the velocity and absorption of the sound mode.

PACS numbse(s): 64.60.Ht, 05.70.Jk, 75.50.Mm, 64.70.Fx

[. INTRODUCTION sound velocity and sound absorption as well. As one knows

W id fluid wh lecules h both t from the critical behavior at a plait point the asymptotic be-
€ consider a Tiuld whose molecules have both ransngg 5, might be masked by strong nonasymptotic effects.

tional and spin degrees of freedom. We assume that the iR ;s '\ve expect the situation in magnetic fluids to be simi-
teraction of the spins is described by a Heisenberg mode|,. however, this has to await computer simulations, experi-

Such a magnetic fluid in zero magnetic field manifests a lingnenta) realizations of such a magnetic fluid are not yet avail-
of magnetic transitions of second order and a gas-liquidypje.

phase transition. The topology of the phase diagram depends

on the ratio of the strength of the magnetic to the nonmag- || HYDRODYNAMICS OF HEISENBERG FLUIDS

netic interaction(for example, see Ref.1] for the phase

diagram in mean field theory and Reffg,3] for Monte Carlo A. Continuity equations and dissipation

calculations at the magnetic phase transjtion a finite ex- In order to obtain the hydrodynamic equations for a

ternal field the magnetic transition is absent but the gasHeisenberg fluid we have to consider the corresponding con-
liquid transition remains. There might be another liquid-served densities. Of course, all conserved local dengjtiers
liguid transition[4] but this transition is of no interest here. volume of a normal fluidinamely, the entropy densig(x),

Due to the finite field the fluid has a finite magnetization andthe mass density(x), and the momentum densiy@(x)]
therefore the spin and transnational degrees of freedom afgave to be taken into account. In addition, a classical spin
coupled. This coupling in a finite field makes the investiga-densityii(x) enters the hydrodynamics. The corresponding
tion of the gas-liquid transition interesting—7]. Until now,  intensive local fields are then the temperatigx), the
investigations of the critical behavior have been restricted t@hemical potential.(x), the velocitys (x), and the magnetic
static phenomena. In this paper we consider the dynamicale|q j(x). The reversible continuity equations can be ex-

critical behavior of the system. We set up a dynamical model, essed by generalized Poisson bracket relations and a cor-
suitable for the description of the dynamical critical beha"'responding Hamiltoniaft{:

ior.

The hydrodynamics of such fluids are well known and da
have been derived using several meth@e=®, e.g., Ref$8], - —taH, 2.9
[9]). The dynamical critical model is compatible with linear-
ized hydrodynamics in the region where the wave vector i§ here o denotess, p, j, or M. The Hamiltonian is the total
smaller than the inverse correlation length. By methods OEnergy of the system,
nonequilibrium thermodynamicgl0,11] we derive the re-
versible and irreversible terms in the equations of motion for 3 -
the conserved quantities containing the order parameter at H:f d°xe(s(x),p(X),J (x),M(x)) 2.2
the gas-liquid critical point. Further it is shown that the
model for the critical dynamic behavior is equivalent to thewhere e is the total energy density of the system. In the
modelH describing the critical dynamiCS of a mixture near presence of an external magnetic flé‘idx, the energy den-
the plait point{12]. Thus, asymptotically a Heisenberg mag- sjty separates into three parts,
netic liquid in ahomogenoudield lies in the universality
class of modeH (pure fluid. This correspondence allows us e=u-+eg,— He*. i (2.3
to use the results obtained in R¢L2] by renormalization
group theory and to predict the critical temperature depenwith the internal energy and the kinetic energg,, defined
dence of hydrodynamic transport coefficients such as thermdiy
conductivity, magnetic diffusion, and the thermomagnetic 1
diffusion ratio. In addition, we consider sound propagation _ AR T =2
and predict the frequency and temperature dependence of the du=Tdstudp+H-dm, e 2P @4
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The magnetic field in Eq.(2.4) is defined by H [9]. Thus, the total energyt has to remain constant in time,
=(dulam)s , ;, which represents the internal magnetic field Which can be immediately verified by inserting E(®.10—
produced by the spin density. Following Rgf1], the gen-  (2.13 into

eralized Poisson brackefa, 8} between the conserved den-

;ities are determined_ from the group generators of o.perations ﬁ — f d3x§ =0. (2.14

in coordinate and spin space. The momentum density, as the at at

generator of translations in coordinate space, determines the -

Poisson brackets, Defining j (x) = p(Xx)v(x), and introducing the tensor
{s(0),J(x)}=s(x)V" 8(x=x"), (2.5 [Pli=Pi=Pd, (219

-, S, , we rewrite Eq.(2.12 as
[0 =p)V 8x=x), (26 A
1 1 ! 1 ! ! ! 1 ! (9] i
{100, J k(X)) =]i(X) V(X =X") = ji(X) Vi 8(x—X"). {9_tl+Vk[PUkUi+Pki]:0- (2.16

(2.7

In quantum mechanics, the spin operator is the generator 60 the conservation equations for the mass dergit/)
rotations in spin space, acting only on the spin and not quar@"d the momentum densit.12, we immediately obtain
tities in coordinate space. The commutator between the spit€ edquation
components corresponds to a classical Poisson bracket be- 9o

I

. . - 1
tween the classical spin density components, W-kavkvi{— ~V P =0 (2.17
p
{m;i (), My(X")} = — €My (X) S(X—X"). 2.9 _ _ _ o
for the velocity. The hydrodynamic equation for the kinetic
We use the Einstein summation convention throughout. Thenergy is completely determined by E@2.12 and (2.17).

spin density is given byn(x)=3;S 8(x—x;), where in a We get

coarse grained theory t}"é represents theﬁ mean spin in a Jeun A

small volume arounds;. The spin vectorS; itself is not ot = Voo P01+ PaViw;. (2.18
affected by transformations in coordinate space such as

translation or rotation. This is in contrast to a classical magrhe first term on the right hand side in H@.19 represents
netization density in the Maxwell theory. Thus, the transla-y,q divergence of the kinetic energy currepti+P- 5. In

tion operator acts only on the scatafunction; and the Pois- 5 yqition. an energy source term appears in en18 be-

son bracket between the components ®f and the .56 the kinetic energy is not a conserved density. The total

momentum density are the same as for the scalar fields 'Qnergy densitye is conserved and therefore obeys the conti-
Egs.(2.5 and(2.6): nuity equation,

M0, J(x )} =m(x" )V 8(x=x). (2.9 e .
—=-V.J,, (2.19
Inserting Egs.(2.5—-(2.8) and (2.2) into Eq. (2.1), the fol- at

lowing continuity equations are obtained: . ) o
whereJ, is the total energy current. Without dissipative ef-

s . fects, the total energy current is the sum of the convective
2t TV (s0)=0, (210 flow es and the flow of mechanical worR- 5.
In order to treat dissipation we have to amend the total
p - energy current in order to include two dissipative processes
e +V-(pv)=0, (2.11 [10]. The first of these accounts for the finite viscosity of the
fluid. Viscosity causes additional mechanical work when dif-
ferent fluid layers shift against each other, and is taken into

(9_Jti+ViP+VIUIji:0 (2.1  account using an extension of the pressure tensor,
J ' '
; Pyi=P i+ 1Ly, (2.20
m
—r Tew(HmHOM+Vom=0. (213 wherell,; is a symmetric tensor. The second dissipative pro-

cess takes into account the energy transport by heat conduc-

In Egs.(2.10 and(2.11) the symbol " denotes the scalar tion, which may be included by adding a heat curréito
product of vectors. So far, Eq&.10—(2.13 do not contain  the total energy current. Thus we get

dissipative processes. We have made use of the fact that the

external field is homogeneous, otherwise an additional term je=ez?+ P.-o+ jq (2.21)
proportional to the scalar product between the magnetization

and the gradient of the field appears. This would change thfor the total energy current with dissipation. From E2.3)
resulting critical model drastically and is not consideredwe obtain the hydrodynamic equation for the internal energy
here. In fact, it would lead to anisotropies in the fluid systemu. It is given by
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du  de deg, . om TABLE I. CurrentsJ; and conjugated thermodynamic forces
grimirraiarn eX~E. (2.22 in a Heisenberg ferrofluid at zero external field.
Inserting Egs.(2.13), (2.18), and (2.19 into Eq. (2.21) we Ji Xi
obtain for the internal energy the equation 1
J I TVJ
u - - - -
=V [ur+J]1-P. —H® (HXm).
p V- [ug+J4]—PyiViw; —H® (HXm) 5w i?T
(2.23 K T?
. . 1
From Eq.(2.4) we also determine the equation for the en- Jm TVH®
tropy density conservation
1
s du . Jdm  dp n TVV(S)
The final equation for the entropy density is found by insert-
ing Egs.(2.23 and (2.1]) into Eq. (2.24. The Heisenberg di;
energy of a spin system depends only on the orientation of (9—,['+ViP+V|u,ji: -vVaP-v, 1 (2.28

the spins. So we assume that the spin density does not con-
tribute to the energy transport, which is expressed in Eq
(2.27) for the case of the absence of a magnetic current. As o g
consequence, only the continuity equatéhl3 has been E‘n;luded. The entropy source terf®.27) is given explicitly
used to obtain Eq(2.23. Changes in the spin orientation

cause magnetic spin currents that affect the structure of the T VH®

system, and therefore, the density of entropy. In order to qsz_(jq_3<m).ﬁ). —_— Jm).
obtain an equation for the entropy densityve have to in- T T
clude the dissipative processes in E2J13. These processes vy V.5

depend on the external magnetic field. In the following we i (OF v
will consider two cases. First, the case of zero external mag- T T

netic field and, second, the case of a homogeneous magnetic (m) = )
field. where J'™ and II'® are symmetric tensors. The total con-

traction with the antisymmetric part H and, respectively,
with Vv vanishes, leading to the absence of antisymmetric
contributions in Eq(2.29. In the absence of boundaries, the
In the case of a zero external magnetic field=0 all  relation B=H—4mM between the vacuum fielB (which
spin components are conserved, andBdL3 is extended to obeys the Maxwell equatiorﬁ ) L5>:0), the macroscopic
am, . magnetic fieldH, and the magnetizatioh?l, reduces toB
— m ~ . . . .
—= teHm+Viom=-VJ;7, (229 — 4H (uis the permeability In this case the macroscopic
ot
_ _ _ ~ magnetic fieldH also obeys the Maxwell equatiof-H
wherlei is the spin current tensor. The resulting equation=0. ThereforeVH is a traceless tensor and no term propor-

for the energy density is tional to the divergence of the magnetic field appears in Eq.
(2.29. From Eqg.(2.29 we can see that the entropy source

for the momentum density when dissipative processes are

(2.29

B. Zero external magnetic field

m)

S m
§+§-(sﬁ)= _6.(Jq JW.H fq. (226 has the structure
at T
where the first term on the right hand side is the divergence ds= _Z IiXi (2:30
of the entropy current, angl denotes the source term for the
entropy, which is given by with the currentsJ; and corresponding thermodynamic
. forcesX; listed in Table I. The thermodynamic forces have
3 amoG E_ (m). V—H—H' 2/ different tensor characters. The first one in Table | is a scalar,
Gs= = (Jg=J"™-H)- T2 I T T the second is a polar vector, the third is a polar tensor of the

(2.27  second rank, and the last one is an axial tensor of the second
rank. The currents in Table | are functions of the thermody-

In the above equatioab denotes the dyadic producablij  namic forcesJ;=J;({X;}). For small gradients we can as-
=a;b; of two vectorsa andb. The symbol “:" expresses sume a linear dependende=3;L;;X;, whereL;; are the
the total contractionA:B=A;;B;;, of two second rank ten- Onsager coefficients. Generally, all currents may depend on
sors. Separating the tensors into traceless symmetric partsl] thermodynamic forces that define a set of Onsager coef-
e.g., intolI®, together with the tracel =1/3l1,,, and us- ficients, which, of course, have different tensor character de-
ing Eq. (2.12 together with(2.20, we get the following pending on the tensor character of the connected current and
equation: force. But the interaction symmetry and the tensor character



PRE 61 CRITICAL DYNAMICS OF HEISENBERG FLUIDS A . .. 2867

of the thermodynamic forces restrict the form of the thermo- TABLE Il. CurrentsJ; and conjugated thermodynamic forogs
dynamic forces in a current, thus reducing the number ofn a Heisenberg ferrofluid in a fixed external field.
nonvanishing Onsager coefficients. For an isotropic systens,
the form of the thermodynamic forces follows from invari- Ji X
ance under coordinate inversion and arbitrary rotation, so

that the four different tensor characters in Table | cannot I1
have any cross coefficients. The currents decouple to

[EEY =l
S
— <y

Jq= 3™ H=— VT, (2.3

'
=l -
<
T
N

JM=—2\VH®, (2.32 Jgm

II=—-27VVv®, (2.33

=

=l -
<
<

=-¢V-7, (2.34

with the thermal conductivity, the coefficient for the spin

diffusion \¢, the shear viscosity), and the bulk viscosity. L VT .  VH vy
Equations(2.29), (2.26), (2.29), (2.28, and (2.11) together gs=—(Jg—JI™MH,)- ?—ng)- T . (OF T
with the currentg2.31), constitute the hydrodynamic equa-

tion for the Heisenberg fluid at zero external magnetic field. V.o
For the hydrodynamic equations linearized about the mean —H?.

valuess, p, m=0 andj=0 we obtain

(2.42

Js « In Eq. (2.42 we have neglected the contributions of the fast
“4sV.5= _TVZT, (2.35  modes, which are related to the relaxation process. The en-
ot T tropy source ternt2.42) includes the currents and the corre-
sponding thermodynamic forces listed in Table Il. The tensor
character of the third thermodynamic force in Table Il is

— 20
at =AsVH, (2.36 different from that in the case of zero magnetic field given in
Table I. The magnetic field in Eq2.42 is an axial vector,
ap . therefore the gradient of thecomponent is a polar vector.
E*’va =0, (2.39  The interaction between the molecules of the liquid remains

isotropic in the case of a finite external magnetic field. The
same symmetry arguments as before can be applied now in
V(V-3). (2.39  order to determine the nonvanishing Onsager coefficients.
The main difference to the zero magnetic field case is that we
now have the polar vectdr T as well as€HZ. The symme-
C. Homogeneous external magnetic field try of the system permits a cross coefficient that couples the
In the following, we will consider a fluid in an external gradient of the temperature and the gradient of the magnetic
field component. Thus, the resulting currents are

aJ
at

N 4_
+VP=WZJ+(§+§n

magnetic fieldH®*=H®§,, with &, the unit vector in the
direction. In this case only thecomponenin,(x) of the spin
density is conserved. As a consequence spin diffusion exists
only for this component. The dissipation in tkey plane . . .
takes place via relaxation. Hence H@.25 splits into the JW=—BVT—aVH,, (2.44
two equations,

Jq—IV"H,=—yVT-TBVH,, (2.43

5 II=-27VVv®, (2.45
Mz b __gim

It +[HXm]Z+V|U|mZ— VJZ ) (239 H:_gﬁﬁ (24@
am, In Egs.(2.43 and(2.44) we have already used the symmetry

+[(H-H®) X, + Vom,=—-r,, (240

properties of the Onsager coefficients. The resulting three
Onsager coefficients, B, and y determine the spin diffu-
where« denotesx or y andr, a source term. Repeating the sion, the thermomagnetic diffusion ratio, and the thermal
steps of the previous subsection we obtain the continuityonductivity. At vanishing external magnetic field, the sys-
equation for the entropy density, tem is described by the case of the previous subsection,

where the heat and spin modes decouple. Thus, the cross

coefficientB is a function of the external magnetic field, with
+t0s, (24D the property,

ot

s -~ = [I—3H,
Ew.(sl;)——v-(f

with the entropy source term, ,B(Iflex= 0)=0. (2.47
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As in the case of zero magnetic field, the coefficientand ~ We have also introduced the spin density per unit mass
{ represent the shear and bulk viscosity. =m,/p. The equation foro is easily derived from Egs.
Linearizing the hydrodynamic equations about the mear{2.48 and(2.49),

valuess, m, Fandeo we obtain

do kg [dT V2 ”s
s .y HpTlae) VT (259
L TsVeu= ?V2T+ﬁV2HZ, (2.48 Ha
and this describes heat conduction in the magnetic fluid.
ap . From this equation we identify the thermal diffusion constant
am . KT (9T 2
SV 5= BVT+aVH,, (2.50 Pt (259
om, - . . In general, at local thermodynamic equilibrium we have for
7+H><m—H(ex)>< m=—agm, , (251  the gradient of the internal magnetic field
i s v*HZ:(—Z) €T+( ) v*mz+( ) vp
—HVP=7V%+| (+ 57 |V(V-5). (252 IT /o p IMy/ 75 P/ im,
(2.58

am,

P Z . obtain
mean magnetizatiom(H,) =mé&,. The transverse magneti-
am, dH, B
+_
JH, TP JT mop @
densities. Therefore, we take into account the dynamical

In the equations above we have explicitely inserted an eXterl'nserting this into the equation for the spin curréht44), we
nal homogeneous magnetic field imdirection, causing a
zationm, is not conserved and does not belong to the set of oH, .
slow variables. However, it couples via the nonlinear revers:](zm)z — a( ) m,+
ible terms considered below to the equations of the other TP
; ; - am JH -
equation for the transverse components in the form of a re- XVT+ z z 218 (2.59
laxation equation. The relaxation coefficient is connected Hz) 1 o\ P )1
to the source term in Eq2.40 by | = agm, .

_ o Considering a magnetic fluid at regt£0), at constant tem-
D. The hydrodynamic transport coefficients perature and at constant pressure we derive from(E§0

The Onsager coefficients introduced in E¢.43 and the following spin diffusion equation:
(2.44) are related to the thermal conductivity, thermomag- Py
netic diffusion ratio, and spin diffusion coefficient in a way z
that is quite analogous to their relationship to the thermal ot pliu,
conductivity, the thermodiffusion ratio, and the mass diffu-
sion in binary liquid mixtures. Assuming a vanishing spin Thus, the spin diffusion coefficient reads

current (2.44 (J{™=0), the gradients of the temperature

u, o

) Vu,. (2.60
T,P

- - oH -
gnd magnetip fie_Id are related MH,= —.(,BIa)VT. Insert- Dm:g P Z) (J(Zm)=0). (2.61
ing this relation into Eq(2.43, we obtain for the heat cur- P Aoz 1 p
rent
At vanishing spin current and at constant pressure, a tem-
- TB%\ . perature gradient causes a spin density gradient. From Eq.
Jg=—|7v— "o VT, (2.53 (2.59 we immediately obtain
fro.m which we identify the thermal conductivity at vanishing V,= — Mz z N E VT, (2.62
spin current to be Hz) ;o | T a
) My P
T8 sm hich leads to the identification of the th ic dif
kr=y— — (IM=0). (2.54  Which leads to the identification of the thermomagnetic dif-
a fusion ratio,
At constant spin density and pressure, the temperature gradi- kr [, aH, B
ent is proportional to the gradient of the entropy density per T ( T ) ( aT + ik (2.63
unit masso=s/p, ZTp pg P
- aT R This transport coefficient corresponds to the thermodiffusion
=75 Vo. (259 ratio in binary mixtures. In the same way, we obtain for the

uz,P magnetic pressure diffusion coefficient the expression,
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ke [du, dH, port coefficients their renormalized counterparts may appear
R op (2.64  (then without the overcircle Then the static functional
ZTp T.u (A20) reads
With Egs. (2.61)—(2.64), the spin current retains the same 1 . 1 .. 1o o o
structure as the mass current in binary mixture3): H=f d®x §°T¢2+ §(V¢)2+ qu'au' G1+d10- G102
3y . kre ke 1 1 1o oo 1 @
5 =—Dp VMZ+TVT+FVP . (2.6 +§azzfl§+§ajj'j+§3’1'ﬁ1¢2+§3/2312 2+E¢4
I1l. STATIC FUNCTIONAL OF THE HEISENBERG FLUID _ ﬁl' Gy — F\zaz] _ (3.4
Static functional of the Heisenberg fluid
at the gas-liquid transition The coefficientss;; are related to the thermodynamic deriva-
The general steps of the derivation of the static functionaf'Ves.
describing the critical behavior of a system is presented in p [oH\© 1 (gp\©
the Appendix. In the case of the Heisenberg fluid, the local [ay1]ij :_(_'> , a22=—<—) , (3.5
densitiesa;(x) introduced in the Appendix are the entropy RT\dui/, , RTp\dp),
densitys(x), the mass density(x), the momentum density
j(x), and the spin density(x). The external fields=;(x) ) (oﬂ:I)(o) 1 ( IP )(0) 36
i i dpp===|— =——| == , .
are the temperatur€(x), the chemical potentiglk(x), the 127RT\ 9p i RTp | 9 .

velocity v(x), and the magnetic fiel&(x). In respect to the
gas-liquid transition, the entropy density represents the ordehere the superscrifD) indicates that the derivatives are
parameter implying that the fluctuation terms of this densityyncritical background quantities. The components of the spin
have to be taken into account up to fourth order. The remaingensity are abbreviated f§,];= ;. The coefficient3.5)

ing terms in the static functionglA20) are the quadratic and(3.6) represent the zeroth order contribution to the static
terms of all the densities mentioned,e;(x)A«a;(x), the

gradient term [VAs(x)]2 and the non-Gaussian Vertex functionsl'qq. The fields h;=y,(1/2¢) and h,
terms [As(x)]®,  [As(x)]%, Arﬁ(x)[As(x)]i, and  =%,(1/2¢) are chosen so as to compensate the finite expec-
Ap(x)[As(x)]%. The total energy densitg(s,p,m,J) is the  tation values ofj; andé,. The spin density and, are odd
sum of the internal energy densitys,p,m) and the kinetic  quantities with respect to time inversion. The static func-
energye,i,=j 2/2p. Thus, the momentum density appears intional has to be invariant under time inversion and under the

Eq. (A20) up to quadratic order and nbj (x)[As(x)]? term  changeH®— —H®. This means that the coupling (H®)
exists(this follows from the different behavior of the densi- obeys ;71(_ |3|ex) =_ ;71(H*ex). At vanishing external mag-

ties under time inversign In order to change from the |\ ;. goi e havey,(H®=0)=0, and the static functional
chemical potential to the experimentally accessible pressur

it is convenient to introduce the entropy per unit mass&A) simplifies to
o(x)=s(x)/p(x) and the spin density per unit mags,(x) 1 . 1 .. 1. i .
=m(x)/p(x). The structure of the static functional remains Hzf d3x{—°7-¢>2+ Z(V)2+ =Gy ayy G+ 810 G185
invariant, buts andm are replaced by and z,,. The third- 2 2 2

order term of the order parametpAo(x)]® and the qua- 1 1 1 %
dratic couplings of the secondary densities to the order pa- + Eazzfﬁ*' Eajf. i+ E"yzazc},q E:ﬁ4—ﬁzﬁlz’-
rameter,Ao(X)Ap(x) and Ao (X)Aum(x), are eliminated :
by introducing the densities, (3.7
;{,(X)z \/N_A[AO'(X)—<0'(X))], (3.1 Then the spin density completely decouples from the order
parameter.
o A The order parameter correlation function, calculated from
G1(x)=Ng Aﬁm(X)—<E [Aa(xX)=(a(x))]], Eq. (3.4) [for the cummulant)., see Eq(A25)],
H,P
(3.2 oo _El' Jo
Go="\57) (39

82(x) =N,

ap
A e A - .
() (aa)ﬁ,P[ 7(X) <U(X)>]} is related to the specific heat at fixed pressure and magnetic

(3.3) field, which is strongly divergent with exponent as ex-
pected. The correlations of the secondary densities,
N, denotes the Avogadro number. The momentum density
fluctuationsfz \/N_AAf are also resca_led by the square root <alia1j>c:E(%) ' (ﬁzﬁz)ﬁRTp(a—p) '
of the Avogadro number. The overcircle denotes that these p \dHj/ o PJ
guantities are unrenormalized. In the calculation of the trans- (3.9
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i and the pressur@vhich is the conjugated fieldnly depend
) = RTP(E) ~» (310  on thez component of the magnetization per unit mass
o,P o,H

RT( ap
Then EQq.(3.17) reduces to

@bde=— | S

are weakly divergentwith exponenta) [14]. The vertex 0

. . . . Yz ap

functions are calculated from the one-particle irreducible o_:_( ) _ (3.18

graphs in a perturbative expansion in the couplings. The ver- Y2 Iz 5y

tex functions are related to the correlations by ) _ =
Inserting Eq.(3.18 into Eq.(3.16 shows that the vectd;,

I °, . o . 1 in Eq. (3.6) contains only az component. The relations

ag g, <<Q1Q1>c <d1q2>c) 319 (3.16 and(3.15 simplify to

(8a01)c  (8282)c %, 1 (aP)
o,t

o

=T e
r FQzQz

9192 A —axye— (3.19

Y2 RTpl\du,
where superscript T’ denotes the transpose of a vector.
From the perturbation expansion one can see that the statand
vertex functions have the structure s ’
Jd
o 1, ., . 877~ azZ% = %—( &ﬂz) . (3.20
Fgp0, =80~ 5 7171 G(0), (3.12 2ot

The coefficienta,, is thez component of the vectaﬂz, and
> 1. a,, is thezzelement of the matria;; =[a;4];; in Eq. (3.5
— = _ 2z 29 o j 1 i . . .
Tay0,= 8127 5 7172G(0), (3.13 Nondiagonal elements of this matrix vanish. Thus, for an
external magnetic field in thedirection, the static functional
o 1., ., (3.4) reduces to
[ g,0,= 822~ 5 ¥56(0). (3.14

1,., 1 -, 1
_ 3y e %2, = 2,540 & & L4 a2

The functionG () contains the contributions of the pertur- H_f d X[z TOOF 2(V¢) * 2l q.+ 2 8241,
bation expansion in the static couplifiy This coupling is 1 1 1
the fourth-order coupling of theé* model that is obtained o o T ep L= Lo o 99
when the secondary densities in Eg.4) are eliminated in Falilet 532t 5311+ 5 Y1
the partition function[15,12. In Egs.(3.12—(3.14), G is N
eliminated by inserting one of the equations into the two 1, , o, Uo 4P e P e
remaining equations. This leads to two relations between the + 2 Y2027+ ﬂ‘ﬁ hz01,= Nz - (3.2
background parameters; and the static vertex functions
Fqiqj. Using the thermodynamic expressio(&5—(3.10),

these may be expressed as

(ﬂz(qlx,qu) denotes the secondary density vector in the
X-y subspace. The coefficient,

o 5H pP 07H
apy1|  p [JH; ai=£( X) =—<—y) : (3.22
{an 5, ]fRT(ﬁﬂj)gt’ (3.19 RT\duy) , RT\duy)
o is the inverse magnetic susceptibility in tley subspace,
- Y 1 (0P 31 which thermodynamically decouples completely from the
R -3 AT J (3.18 density-pressure subspace. Therefore no distinction is neces-

sary between the derivative at constant density in (B

°, J and the derivative along the critical line in E®.15. Thus

n_ _( p ) , (3.17  there is only a single index in Eq. (3.22. Due to the ab-
ot

sence of a term in Eq3.21) which containgj, , as well as
other densities, the corresponding static correlations are con-
The indext in Egs.(3.19—(3.17 denotes derivatives parallel stant,
to the critical line. These themodynamic derivatives remain
finite at the critical point, and are treated as constants in the
critical region.
Time inversion symmetry of the external magnetic field

implies that the coupling between the order parameter an®he remaining nonzero correlations are those of the densities

the secondary density vectdy must have the structurg, 91z andd; in Egs.(3.9 and (3.10. As in binary mixtures,
— H®F(|H®(2) with a regular functiorf. Applying an exter- the secondary densities can be thermodynamically orthogo-

nal magnetic field in the direction, the only nonzero com- nalized by introducing proper linear combinations

1
<Q1xq1x>c:<quQ1y>c:€- (3.23

ponent of the veptq%/l is Fhez component;*{z(o,o,yz). 4 ,\711 I\le fy
From Eq.(3.17), it immediately follows that §p/d ), o )z - & (3.29
=(dpldpy),=0. Thus, along the critical line, the density 92 M2 My, 112
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The elements of the transformation matrix are determined by

.. . . . 1 aHz) ? Iz
two conditions: (i) the thermodynamic correlations of the (F,fhy)=——=RTp>
secondary densities are diagonal; diigl the v coupling of szmg aP ot dH; 0P
m, with the order parameter vanishes. This leads to )
J
. 155 x| (3.32
a7, Az 2ot
H Y2 ¥o\2 toteH,) Thus, the vertex function contains the magnetic susceptibil-
8z~ 283 tan| 7 ity, which behaves like du,/dH,),p~t  in the
(3.25  asymptotic critical region.
Apart from the Gaussian term of the transverse spin com-
° ponents, which do not contribute to the critical behavior, the
a,, azzﬁ static functionals(3.4) and (3.30 are the same as those of
,\712: _ 3’2 __ i( ‘9P> (3.26 binary liquid mixtures at the plait poiritL.2]. All thermody-
Vs p-\ dH, Ut’ namic relations can be taken over from this system if one
877~ azZ% ' replaces the concentratianand the chemical potentid of

the liquid mixture by the spin density, and the magnetic
. field H, of the magnetic liquid. Therefore the static critical
VIR 1( p ) (3.27) behavior of the quantities in the magnetic liquid is the same
' ' as the static critical behavior of the corresponding quantities
in the liquid mixture at the plait point.

Mo=1. (3.29
IV. DYNAMIC MODEL FOR HEISENBERG FLUIDS
The thermodynamic derivatives on the right hand side in the A. General relations
above equations are obtained by inserting relatis5— Using Zwanzig's projection operator method, one can de-
(3.17) into (3.25~(3.27). We have also introduced rive dynamic equations that describe the time development

of the slow densitiessee Ref.[16]). Considering a set

Opuy 1/ 0P dp {ay(x,t)} of slow densities, one obtains
Xoi=\om,) Tp2lamy) lamy) - G2
2ot P Z gt 2 ot da;(X,t) SH({a(X,1)})
T:Vi({ak(x,t)})—z Aijw"-ai(x,t)
The resulting static functional is then : n 4.2
aloe 1 o 1,1 with A;j=—L;;V? for conserved densities antl; =L;; for
HZJ dX| 5 7¢+ 5 (V) ™+ 5 am mi+ 5 an, M nonconserved densities. The term
1 .. 1 1. ... u. , o SH{ (XD}
+ 58] 'J+§anL'qL+§7m2m2¢2+ H¢4 Vi({ak(X,t)})=f dx 2 [Qij(x,t;x .t )W
o Qi (X, t;x",t")
hmzmz]. (3.30 - W (4.2)

Sincerh, appears to quadratic order only, the Coefficia,lg} constitutes the reversible part of the equations. The functions

represents the complete static vertex funcﬁ‘qqml, and we Qij are determined by

ha.Ve !’ ! ! ’
QI](X1t1X 1t ):kBT{ai(X1t)1ak(X vt )}1 (43)
1 1 RT ; ;
(g fhy)e= _ _ X (3.31) where the curly bracket$.,.} denote generalized Poisson
aa mym m P o ' brackets.H represents a static functional of the type dis-
171

cussed in Sec. Il. The coefficients; are related to the On-
sager coefficients of hydrodynamic theory. The functions
which does not contain a singular temperature dependenceg,(x,t) include the contributions of the fast variables, which
The coefficient of the quadratic term of the secondary denwill be considered as stochastic forces. Assuming that these
sity amzzl“ﬁr?z)m2 represents the zeroth order of the corre-stochastic force®);(x,t) are determined by a Markov pro-
sponding vertex function. The complete vertex function ancc€ss. the coefficienta;; fulfill the relations

the corresponding correlation are related to the thermody-

namic derivatives by (6i(x, 1) 6;(x",t"))=Ajj6(x—x") 6(t—1"). (4.4
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B. Dynamic model equations N

om oH . »
In the case of Heisenberg fluids the densiieg(x,t)} E:kB-rOlVZ%+Vm({01k})+ Om, (4.11

are represented by the hydrodynamic densit&s,t),

p(x,), M(x,1), andj(x,t) considered in Sec. Il. The gener- yhije the equations for the mass density7) and the mo-
alized Poisson bracket2.5—(2.9) determine the reversible 1 antum density4.8) remain unchanged. The reversible con-

part (4.2), which is independent of the external magneticy:ip tions determined by the generalized Poisson brackets are
field. The dissipative part described by the coefficiehfsis

different depending on whether the external magnetic field is

zero or nonzero. The coefficients; are related to the On- Vo({a) = —kBTﬁ- ( Sﬁ) , (4.12
sager coefficients introduced in Sec. Il. They may be identi- 5]

fied by comparing the general structure of the dynamic equa-

tions with the linearized hydrodynamic equations. These are

given in Egs(2.35 and(2.37) for the zero external magnetic Vi({a) = —kgT Vimi.H + kBmeﬂ,
field, and in Eqs(2.48—(2.52 for a homogeneous external i=xy,z JF om
magnetic field in the direction. (4.13

In the case of a homogeneous external magnetic fietd in

direction we obtain . SH
Vo({ah)=—kgTV-|{ p—]|, (4.19
as_k V25H+kT V25H+V +6 7
i~ KeyVis o tkeTB am, s({ah) + 0s,
(A9 Gr({ad) = —keT| ST+ 72 g
j{and)=—keT| sV——+p B 2, ™V om
My Tﬁv25H+kT vy (a )+ 6 SH oH
T TRV g TV s Vi (o)) + o, ot S [
(4.6 8 i:xz,y,z ST @13
dp Introducing the order paramet.1) and the secondary den-
E‘Vp({“k})' (4.7) sities (3.2 and (3.3), we obtain the final dynamic equations
for the case of a homogeneous external magnetic field in the
o 4 SH 5H z direction,
4. kBT( {0+ —7“) Vi— +kgT7?V2—
& 3 3l 3l 0p o M o L OH . L OH  OH .
_:FV _°+LV o +L¢V A _g _)V(ﬁ'f'qu,
+V! ({ay}) + 6, 4.9 ot 5 oG M2 g
(4.1
MM eTag kv {and) + 6 (4.9
— = —Kglag=—+Vn (1o - ‘ 2, ._.,OH H . SH | 6H -
at 5ml - ﬂ:LVZ_o'f',&/VZ A +L12V A _é N 'Va1+6q11
o 0 o ot 5 o]t PR
The Onsager coefficients, 8, 7, {9, and7(®) have been 4.17)
introduced in Eqs(2.43—(2.46). The superscript0) indi-
cates uncritical background values. The equation of mass
conservation(4.7) does not contain dissipative ternt®n- %_f_ VzﬁH“_ Vzﬁ+§\vz 5H_°V* ﬁ
.- - =Ls . 12V 5 . LV —
sager coefficienjsor stochastic forces. In E@4.8), the mo- ot 5 54, 58, 5,

mentum density has been separated into a longitudinal com-

ponentﬂ defined byﬁXf|=5, which is necessary for the S . o

description of the sound mode, and a transverse component —gv- ( QZT> —G1V ——+ by, (4.18
j; defined byV - j,=0, which is necessary for the description d o)

of the shear mode. Formally, we have added a relaxation

equation for the transverse components of the magnetizationgj SH SH . 6H
even though it does not belong to the set of densities of —=\V? - +)\tV2T—&V .
conserved variables. It turns out that the reversible couplings‘?t ] OJt 542
to the other densities are irrelevant for the critical behavior.

In the case of zero external magnetic field, the Onsager e azv* 5H_ ﬁ@ o _ ﬁw«h— 2 5HW1
coefficient3=0 and the heat conduction mode and the spin 8, 5¢ 59, iy 8
diffusion mode decouple. Equatiortd.5), (4.6), and (4.9
reduce to _6H e SHY

-4 (J|V—+ViJ—.)_§|V (d’ — |+,
ds oH e i ol 9J
E:kByVZEJrvS({ak})Jr Os, (4.10 4.19
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TABLE lll. Cutoff dimensions of the kinetic coefficients. TABLE IV. Cutoff dimensions of the time scale ratios.

Cutoff dim. Kinetic coeff. Cutoff dim. Time scale ratio
AO o, ° ° o
N F A0 L Ly Ly
L.Ly fon ' oo [oa
A7 Lokky A P NI N
A4 @, A-2 rrrr
AN N
R r
aql OoH o OH . o . OH o ° A4 _
—— - —a—_—_——0|— ql+wLesz+qul a

57_{ o ’ o 5H -
X—=+0LpE,X——+ 0y, .
Lo &4,

last equation we have

(4.20

time scale ratios are irrelevant. The same is true for the time
scale ratios in the last row which is proportional A0 4.
Only the ratios with a cutoff dimension of°, in the first

. . °oT LT . . . row in Table 1V, are relevant in the critical region. In order
dimensional vectoq; =(q, ,q,). The corresponding static y, oyamine the influence of the transverse spin components
functional{ is given by Eq(3.21). Only three out of the Six 1, e remaining densities in the perturbation expansion, we
kinetic coefficients appearing in Eqg.16—(4.20 are inde- a6 1o consider the mode coupling terms, which include the
pendent. They are related to the Onsager coefficients intrQzansyerse spin component and other densities. The cutoff
duced in Eqs(2.43 and(2.44 by dimensions of the mode couplings are listed in Table V.
Within perturbation theory, the vertex functions can be

In the introduced the three

f:R_Z, [ = g +(‘9’“Z) R4 , (4.21) expressed in terms of the time scale ratios introduced in
p P do .J.,pT Table IV and mode coupling parameters introduced in Egs.
- 5 5 (4.25 and (4.26), namely,
=y a—2( “Z) 3+(&MZ) 2l @422
90| b do | PT 8 élz @E
’ ’ oo ! oo ! B (4'2D
The remaining three coefficients are expressed by these three he AN @

coefficients. We have
which are all proportional ta\ €2, Only those terms which

o Jap o ° ap z o ap o
Lﬁb__(%), F, )\—(%)Q F, le—_(£ R L

The relaxation coefficient in Eq4.20 is a, =RTagr/p.

include relevant time scale ratios contribute to the critical
behavior.

In the dynamic equationg4.16—(4.20 some further
terms do not lead to relevant contributions. First, Eq19
for the momentum density and E@t.20 for the transverse

The linear mode coupling parameters are spin components are coupled Wi=x,y(m{/5ai)€ai and

Q[(&H/éf)ﬁ]cﬂ. These terms lead to vertices with two
transverse spin component lines in the dynamic functional.
Thus, contributions to each of the two two-point-vertex func-
tions always must have at least one internal transverse spin
line. As a result, one obtains a coupligd/ a, ~A 2" € that

&=RTp, (4.24

wLZTﬁLZv

while the nonlinear mode couplings are defined as

. RT . RT/[dp is irrelevant. Combinations of these two vertices only pro-
QZW, 'Z\/T e (4.29 duce irrelevant contributions. Second, inserting férthe
A AP terms §, Gy ¥ (SH/8G;,) and §[ p&,x (6H/5G,) in Eq.
RT RT (0,%) (4.20, leads to expression ﬂg"yz&2(ay,—ax,0)T and
g = . 0= A (4.26
pVNA pINA L 99 ) p TABLE V. Cutoff dimensions of the mode couplings. We have

From power counting arguments we obtain the cutdfj introducede=4-d.

dimensions of the kinetic coefficients, as shown in Table Ill.

Within the perturbation expansion the kinetic coefficients ap- Mode coupling Cutoff dim.
pear in the form of time scale ratios, which determine which o A8
contributions to the critical behavior are relevant and irrel- L Al
evant. The time scale ratios and their cutoff dimension are 8 ALFe2
shown in Table IV. From this table it is seen that the set of 8,40 AZFe2
time scale ratios in the second row has a cutoff dimension of 4 A3+e2

A2, which means that contributions proportional to these
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TABLE VI. One loop expressions of the dynamicfunctions  notes the time scale ratio defined by the renormalized model

and amplitude functions. kinetic coefficientd’, L, and u,
Function One loop expression L2(1)
wi(l)= 5. (5.2)
N (1 p(h)
o -3
4" The flow of the kinetic coefficienE' (the kinetic coefficient
2 I'@ follows from I' by separating the static contributions
O T ox1—wd) and of the time scale ratiz;, are determined by the flow
A 3) ;
5 equations,
i
¢ 16 dr@) dws(l) 1
2 | =g, | =—Zws(Dg?,
fi dl 2
E 36(1-w3) (5.3

with proper initial conditions. The functiong, and g(rd) are
calculated from the static and dynamic renormalization fac-
tors within the perturbation expansion, and their one-loop
expressions are given in Table VI. The statidunction,
»(U), depends only on the fourth-order coupling of ipe

aiéﬁ&(&y,—ﬁx,O)T. These axial vectors do not give pertur-
bational contributions to the vertex functions with the polar
vectors from above. Therefore, these two vertices contribut odelu(l). Itis obtained from the renormalization of thé

to the g, — g, -two-point fu_nctlon only_. Thus we can con- terms of the static two-point order parameter vertex function.
cludg .that in the perturbation expansion, the transverse .SpLPhe dynamic function, 2{® (w, ), which is obtained from
densities completely decouple from the remaining densities . A S .
diti fici id v th . e the renormalization of thé“ terms of the dynamic order
and it is sufficient to consider only the equations #rds,  parameter two-point function, depends on the time scale ratio

., and J. N99|9Ctin9atfge§2i=x,y(5H/5(°?1i)Vai in EQ. w3 and the mode coupling parameter

(4.19 and §[(5H/S])-V]4, in Eq. (4.20 the dynamic )

equationd4.16—(4.19 have the same form as in the case of £2(1)= g°(l) (5.4)
binary liquid mixtures at the plait poift.2]. Having consid- t INGIOR '
ered the dynamical critical phenomena in the Heisenberg lig-

uid, one can now proceed along the lines developed in Refd.his mode coupling is determined by the flow equation
[17,18. From the dynamical functional one calculates the dt. (1) 1

dynamical correlations by a perturbation expansion in the n)_ = (d)

mode couplings and the static couplings. T 5 Dt g8+ ). 5.5

The function{ht(w3,ft) is obtained from the renormalization

. _ “of the k? terms of the transverse momentum current density
In the previous section we have shown that the dynamigyo-point function. The reduced temperatureenters the

model for the Heisenberg fluid in an external homogeneougansport coefficients through the matching condition,
magnetic field reduces to the model known from binary lig-

uid mixtures. The relations of the hydrodynamic transport E(1)

coefficients to the model parameters and their explicit calcu- R 1, (5.6
lation within renormalization group theory for a liquid mix- 0

ture have been treated in R¢12]. Therefore we shall not jth the correlation length(t). The spin diffusion coeffi-

repeat these steps in the present paper, and only summariggntp ., appearing in Eq(5.1) is given by
the results we obtained. "

V. HYDRODYNAMIC TRANSPORT COEFFICIENTS

H,

Dp(l) = =
A. Critical heat and spin diffusion m(D)= RT I,

) {fu+2al+a2r @)
T,P

From calculations analogous to those for binary liquid
mixtures at the plait poirft12], we obtain, at zero frequency, X[1+Gws(l), fo(1),u(h)];- 5.7
the thermal conductivity,

| 1 2(oH,\ .
e (5, oo
m ziTP

The parametea in the above equation is determined by the
thermodynamic derivative,

(7“2) , (5.9
+GWA(1), f(1),u()], (5.1) 90 [y p

whereG(ws, f;,u) contains the contributions of the pertur- which depends only weakly on the temperature and therefore
bation expansion of the amplitude function for the dynamiccan be considered as a constant in the critical region. The
order parameter two-point function. The corresponding oné¢hermomagnetic diffusion ratio related to the cross effect be-
loop expression is listed in Table VI. The quantityy de-  tween heat conduction and spin diffusion is
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TABLE VII. Asymptotic temperature dependence of the hydrodynamic transport coefficients of a Heisen-
berg fluid in a homogeneous magnetic field.

TC Crit. Beh. Remark
KT Finite Constant magnetization current
thermal conductivity enhancement depend. on background par.
D Goes to zero ylv=1.8
magnetic diffusion g x,=0.916(2 loop)
Ky Diverging ~D;!
thermal magnetic YR
diffusion ratio
7 Diverging
viscosity &% x,=0.065(2 loop
Cs sound velocity Finite frequency zero
a sound absorption W& small frequencyz~3
k(1) p 1 [. & apy The thermodynamic expressions for the static vertex func-
T ~  RT D(1) al \aT )” . (5.9 fions a,; and lo“gfimz have been given in Eqg3.31) and

(3.32. The parameterg? and &5 are related to the linear
The asymptotic critical behavior resulting from these expresmode coupling parametér [Eq. (4.24] by
sions for the transport coefficients.1), (5.7), and (5.9 is

listed in Table VII. 1 ( gp) . 1 (r?Mz)
— ¢

B. Critical viscosity p

The shear viscosity can be calculated as in pure fluids and _ _
liquid mixtures. At zero frequency the resulting expressionThe complex function/s can be written as
for the shear viscosity is

1+ Y2(HFE (1))
1+y2(HF (1), W)’

Vs(u(t,1),W(l))= (5.1

1
7(t)= R—T(Kl)ZMU L+ E(f(D),ws(D))]. (5.10

The amplitude functiorE(f(I),ws(l)) contains the contri- The static parametey? is related to the corresponding pa-
butions of the perturbation expansion in the couplifgjatic  rameter in the static function&B.30 by

and dynamit. In one loop order this function is given in

Table VI and depends only on the mode coupling and the

2
time ratiow;. The kinetic coefficienh(l) is determined by 2_@ 51
the flow equation, e, (5.17
At . . o
L7 =MD(=2+ ), (5.1)  The amplitude function of the specific he&{® and the dy-

namic amplitude functio- . can be calculated within per-

while ws(1) and f,(1) are calculated from Eq<5.3) and turbation expansion. At vanishing frequenéy, turns into

(5.5). the amplitude functions of the specific heat. Thus we have
C. Critical sound propagation limF*(v,W)= F(f)(u), (5.18
. . . . . w—0
Neglecting the contribution of the viscosity and thermal
conductivity the sound velocity and the sound attenuation . _ _
can be written simply as with u being the static coupling of the* model. The un-
renormalized counterpaft is related to parameters of Eq.
c2(t,0) =R C4(t,w)], (5.12  (3.30 via
Dyt )= — — IM[CE(t, )] (513 ¥
,w)=——1Im ,w) |, . o o m
s w u:u—3a—2. (5.19
2

wheret denotes the reduced temperature, nds given by
) 22, 228(s) _ The parametew, which depends explicitly on the correlation
Cs(t,w)=aj[a,C1+Col V(v (t,1),W(1))]. length £(t), and the parametd®, which depends explicitly
(5.19 on the frequency, are defined by



2876 R. FOLK AND G. MOSER PRE 61

E72(1) ) port properties of the liquid are not affected by the magnetic
v(t,l)= @2 w(l)= 2T () A=w2())(E T transition. However, the situation may become more compli-
0 8 0 (5.20 cated depending on the strength of the magnetic relative to
' the nonmagnetic interactions. Multicritical behavior might
dr(l) al_so be p_og_sible and further work has to be done to consider
| =g =T+ ). (5.21) this possibilty.
So far, only the situation in homogeneousxternal field
The flow parametelris connected to the reduced temperaturehas _been con_S|dered. In the case_ofr&mmogeneoue_xter- .
by a matching condition of the form nal fleId,'addltlonaI dynamic cpupllngs are present, involving
the gradient of the external field. In consequence, transport
u(t,1))2 1 coefficients such as viscosity, sound velocity, sound absorp-
( 5 +i\Tv(I)‘ =7 (5.22  tion, etc., may become anisotrog®ee, e.g., Ref.9]). This
is also expected to influence fluctuation effects.

which implicitly defines a functior (t,w). In the limit »

—0, the relation reduces to the static matching condition Eq. ACKNOWLEDGMENTS
(5.6), which is equivalent to setting=1. We thank I. Mryglod for helpful discussions and a critical
reading of the manuscript. This work was supported by the
VI. CONCLUSION Fonds zur Falerung der wissenschaftlichen Forschung un-

. . . L. .. der Project No. P12422-TPH.
The dynamical critical properties near the gas-liquid criti-

cal line (as a function of the magnetic figldf the Heisen-
berg liquid in a magnetic field turns out to remain in the
same universality class as the gas-liquid critical point in a The static critical behavior of the Heisenberg fluid is ob-
pure nonmagnetic liquid. The nonuniversal properties, howtained from the static functional, from which the static cor-
ever, can be identified with those of a liquid mixture near therelation functions are calculated. These determine the critical
plait point. This means that the thermal conductivity of thebehavior of the thermodynamic derivatives. The derivation
liquid at constant magnetization current is nondivergent bubf the static functional follows the same steps as in the case
enhanced, while the magnetic diffusion coefficient goes taf binary liquid mixtures[15,12 and normal fluidg22]. In

zero and the thermomagnetic ratio divergese Table VIl.  the following, we sketch the general steps used to obtain
This critical behavior of the dynamic magnetic properties issuch a static functional for the description of the critical be-
due to the coupling of magnetization to the order parametefiavior.

at the gas-liquid transition in the finite static magnetic field. et the system be characterized Ry 1 extensive local

In the case when the magnetic field goes to zero, the ampliensities per volumey(x),...,ay. The functionay(x) rep-

tude of the divergence of the Onsager coefficient correspondesents the entropy density, while the remaining densities,
ing to the spin diffusion goes to zero, and the magnetic susyhich depend on the specific system are the mass density,
ceptibility becomes uncritical. In this limit the the momentum density, and the magnetization density for the
thermomagnetic diffusion ratio goes to zero, whereas the erHeisenberg liquid. The intensive external fields conjugate to
hancement of thermal conductivity increases and crossee densities are denoted By(x),...,Fn(X). Fo(X) repre-
over into the divergent behavior of a pure nonmagnetic fluidsents the local temperature, the remaining fields correspond

Regarding the sound mode, the sound velocity at zergo the local chemical potential, the local velocity, and the
frequency is finite aT ;. At the plait point in liquid mixtures, magnetic field for the Heisenberg liquid. In the case of local
the magnitude of the sound velocity @ might be very  thermodynamic equilibrium, a local probability function
small, whereas at the consolute point it is very large, and this
influences the observable behavior near the critical point 1 s QUX)
[12]. Therefore the observable critical behavior of the W'OC:/T/’eX _J d*x kg T(X)
Heisenberg liquid depends on tk&o far unknowh magni-
tude of the sound velocity &t, . In the limit of zero external is introduced, which is found from the microscopic Hamil-
magnetic field, the sound velocity goes to zerd at tonian by means of nonequilibrium thermodynanii28]. A/

All of these predictions may be tested in computer simu4s a suitable normalization constant. The local thermody-
lations. The results presented here apply to magnetic liquidgamic potentiak)(x) is determined by the Legendre trans-
irrespective of the existence of a ferromagnetic phase in thtorm,
field free case. Thus, there may be a wider class of suitable N
liquids where real experiments can test our findings. So far, _
no experiments on the dynamical critical behavior near the Q(x)—e({ak(x)})—zo @i (¥)Fi(x), (A2)
gas-liquid phase transition for magnetic fluid systdrhg—

21] interacting via short range Heisenberg force have beewheree({a(x)}) is the local total energy density, which is a
performed. function of the extensive densities. The functidx) in Eq.

Quite different critical behavior is to be expected at the(A2) is interpreted as the local Gibb’s free energy density,
magnetic phase transition in zero field. In this case one exwhich is a function of the conjugate fiel@s . In the follow-
pects the critical magnetic transport properties to belong ting, we assume that the extensive densities fluctuate around a
the universality class of a solid ferromagnet, while the transspatially constant mean value. Thus, we can write

APPENDIX: GENERAL THEORY

(A1)
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ai(X)=aj+Aa;i(x), 1=0,..N (A3) Using Eg. (A6), the local probability distribution may be
written

e({ax(x)})=e+Ae({Aay(X)}). (A4)

Let the external fields vary as

1
Wioc=—e e, (A14)

N
Fi(x)=Fi+oFi(x), 1=0,..N. (A5)  with the functionals,
The local thermodynamic potential is then expanded in pow-

ers of the variation$F;(x). Inserting Eqs(A3)—(A5) into HZJ d*xH{A a(x)}), (A15)
Eq. (A2) and expanding up to first order in the variations of

the field, the Gibb’s free energy splits up into the following N
three terms, o= [ @3 r(apF . (@19
=0
o _00 % - -
T ke © d ak(X)})—i:0 ri{{a(x)}) 8Fi(x). and the normalization factor
(A6)
_ _ o _ _ N= f D({Aay})e e, (A17)
The first term is the equilibrium Gibb’s free energy density,
N At fixed external fields, which meansF;(x) =0, we obtain
Q(‘)):e—z aiF;. (A7)  the expectation values at local thermodynamic equilibrium.
i=0 From Eq.(A14), we have
The second term contains the contributions due to fluctua- 1
tions in the densities, (AQa ()= /\_/j DA ) A (x)e ",
0
(A18)

1

N T

N
Ae({A -2, FiAq; , A8 . I N
(A0 igo A (A8) with the equilibrium normalization constant/y=N{(6H

=0). Expanding the fluctuation of the local energy density
and this term defines the static functional for the criticalAe({A a(x)}) into powers ofA a,(x) and its gradients, we
theory. The last term in Eq/A6) describes the linear re- obtain
sponse of the system to small variations in the external fields.

The functionsr;({a,(x)}) are N

1
Ae(x)=nz1 o Z

e
T) Aail(X)' . 'Aa’in(X)

—P+Foay(x) i, 7=0 e
rol@00) =g (n9) :
® Jd'e
Fiai(x) (aVa. avain)m“u(x)'"VAain(X) :
rifax)})= 'kB'T ., i=1,.N. (A10) o

In Eq. (A9) we have introduced the mean pressBrdn the ~ For the description of the critical behavior it is sufficient to
case of local thermodynamic equilibrium, a local pressureconsider powers oA« up to fourth order and powers of the
P(x) may be defined from a local Gibbs-Duhem relation, gradients up to quadratic order. Thus we obtain

N 1 N
e({ak(x)})+P(x)=Zo FiXai(x). (A1) H=J d3x[§ij§=:0 ajAai(x)Aa;(x)

N
The local pressure varies around the mean value; thus we E - , _
haveP(x) =P+ 8P(x). Inserting(A3) and(A4) into (Al11), 3 i,lzzo Cij (VA@i())(VA;())
the equilibrium Gibbs-Duhem relation defines the equilib- N
rium pressure, 1
M presst o D vpAa(0Aq()Aay(x)
N 3! k=0
e+P=> Fa, (A12) 1 N

while the pressure variation is obtained, (A20)

N

SPX)=S ai(X)6F () (A13) after inserting Eqs(A8) and (A19) into (A15). In the equa-
= s tion above, no linear terms appear because they cancel, since,



2878

oe
F= (—) (A21)
aai {ak:#ai}

is used. The expansion coefficiemts are given by the back-

ground values of thermodynamic derivatives,

7e | 1 [oF 1 (oF,
r?air?aj _kBT r?aj { _kBT r?ai

1

) {oit .
(A22)

it
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Inserting Eq.(A16) into Eq. (A24) we obtain on the other
side

(@i(X))1oc— (@i(X))

1 N
:kB_TJEOfd3x’<ai(x—x’)aj(0)>05Fj(O).

(A27)

Comparing Eq(A27) with Eq. (A26) the correlation func-

The response of the densities to variations of the conjugatedons may be related to the thermodynamic derivatives. In-
fields determines the correlation functions of the densitiestroducing the Fourier transformed correlation functions,

Expanding the local probability functidi1) to first order in
&H, one gets

-H

W|OC=(j\/—O(1+ SH—(6H)). (A23)

(aja))=(aja;)(k=0)= j A3 (e (x—x") a;(0) ),
(A28)

we obtain

The corresponding nonequilibrium expectation values are

then
(@i (X)) ioc=(@i(X)) +{ai(X) §H)c, (A24)
where the index denotes the cummulant,
(aiaj)e=(aiaj) —(ai){e). (A25)

(mray)e=k T(ﬁ“‘)
ajaj)c=KgT| —=—
File,, )

(A29)

Because EQ(A26) is a local relation, the above thermody-
namic derivatives are also local functions, and contain con-
tributions from fluctuations. The static function@?20) to-

Assuming that the deviation between the local nonequilibgether with Eq. (A29) constitutes the basis for the
rium mean value and the local equilibrium mean value isaPplication of renormalization group theory. Within the

small, we may write

N ﬁai
(@i (X))o (axi(x))= 2, (—aF ) SF;(x). (A26)
i=0

VR

scope of a critical theory it remains to establish an order
parameter, which of course depends on the particular system.
In the same way, relevant and irrelevant couplings are deter-
mined and the number of terms in EGA20) is reduced
considerably.
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