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Criticality of the ‘‘critical state’’ of granular media: Dilatancy angle in the Tetris model
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The dilatancy angle describes the propensity of a granular medium to dilate under an applied shear. Using a
simple spin model~the Tetris model! which accounts for geometrical ‘‘frustration’’ effects, we study such a
dilatancy angle as a function of density. An exact mapping can be drawn with a directed percolation process
which proves that there exists a critical densityrc above which the system expands and below which it
contracts under shear. When applied to packings constructed by a random deposition under gravity, the
dilatancy angle is shown to be strongly anisotropic, and it constitutes an efficient tool to characterize the
texture of the medium.

PACS number~s!: 81.05.Rm
l
o
o

th
he

pr
em

of
ic
fe
o

ith
ee
m
h
-

an
a

t
f
a

da
rv
s

in
o

the

tio

lid-
h as
n-

of
s

akes

’
anu-
n-
al-
er

ear
so
I. INTRODUCTION

Granular materials@1# give rise to a number of origina
phenomena, which mostly result from their peculiar rhe
logical behavior. Even using the most simple description
the grains~rigid equal-sized spherical particles! a granular
system displays a rather complex behavior which shows
the origin of this rheology has to be found at the level of t
geometrical arrangement of the grains.

Guided by these considerations, models have been
posed to account for the geometrical constraints of ass
blies of hard-core particles@2–8#. The motivation of these
models is not to reproduce faithfully the local details
granular media, but rather to show that simple geometr
constraints can reproduce under coarse-graining some
tures observed in real granular media. Along these lines,
of the most impressive examples is the ‘‘Tetris’’ model@2,3#
which, in its simplest version, is basically a spin model w
only hard core repulsion interactions. This model has b
introduced in order to discuss the slow kinetics of the co
paction of granular media under vibrations. In spite of t
simplicity of the definition of the model, the kinetics of com
paction has been shown to display a very close resembl
to most of the experimentally observed features of comp
tion @9# and segregation@10#.

Our aim here is to consider again the Tetris model and
focus on a basic property of the quasistatic shearing o
granular assembly. It is well known since Reynolds th
dense granular media have to dilate in order to accommo
a shear@11#, whereas loose systems contract. This obse
tion is important since it gives access to one of the ba
ingredients~the direction of the plastic strain rate! necessary
to describe the mechanical behavior in continuum model
The dilatancy angle is defined as the ratio of the rate
volume increase to the rate of shearing. Denoting with«xy
the componentxy of the strain tensor«, Fig. 1 illustrates an
experiment where a shear rate«̇xy is imposed together with a
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zero longitudinal strain rate«̇xx50, and the volumetric strain
rate~here vertical expansion! «̇yy is measured. The direction
of the velocity of the upper wall makes an anglec with
respect to the horizontal direction. This angle is called
dilatancy anglec. In this particular geometry we have

tan~c!5
«̇yy

«̇xy

. ~1!

More generally, the tangent of the dilation angle is the ra
of the volumetric strain rate@ tr( «̇)# to the deviatoric part of
the strain rate.

Numerous experimental studies have confirmed the va
ity of such a behavior, and have lead to extensions suc
what is known in soil mechanics as the ‘‘critical state’’ co
cept@12#. Assuming that the incremental~tangent! mechani-
cal behavior can be parametrized using only the density
the medium,r, a loose medium will tend under continuou
shear towards a state such that no more contraction t
place, i.e., it will assume asymptotically a densityrc such
thatc(rc)50. This state is by definition the ‘‘critical state.’
Conversely, if the strain were homogeneous, a dense gr
lar media would dilate until it reached the critical state de
sity rc . However, for dense media, the strain may be loc
ized in a narrow shear band which may allow a furth

FIG. 1. Schematic view of shearing of granular media in a sh
cell. The upper part of the cell moves only if the medium dilates
that the direction of the motion forms an anglec, the dilatancy
angle, with the horizontal direction.
2813 ©2000 The American Physical Society
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2814 PRE 61PICCIONI, LORETO, AND ROUX
shearing without any more volume change so that the m
density may remain at a value somewhat higher than
critical value. Recent triaxial tests@13# in a scanner apparatu
have however shown that in the shear bands the densit
the medium was quite comparable to the critical density, t
providing further evidence for the validity of the critical sta
concept.

The word ‘‘critical’’ used in this context has become th
classical terminology, but it has no apriori relation with any
kind of critical phenomenon in the statistical physics v
cabulary@14#. One of the results presented in this article is
show that indeed the critical state of soil mechanics is als
critical point in the sense of phase transitions, for the Te
model considered here.

II. MODEL AND DEFINITION OF DILATANCY

A group of lattice gas models in which the main ingred
ent is the geometrical frustration has been introduced
cently under the name Tetris@2,3#. The Tetris model is a
simple lattice model in which the sites of a square lattice
be occupied by~in its simplest version! a single type of rect-
angular shaped particle with only two possible orientatio
along the principal axis of the underlying lattice. A hard-co
repulsion between particles is considered so that two
ticles cannot overlap. This forbids in particular that two ne
est neighbor sites could be both occupied by particles alig
with the inter-site vector. An illustration of a typical admi
sible configuration is shown schematically in Fig. 2. Mo
generally one can consider particles that move on a lat
and present randomly chosen shapes and sizes@3#. The in-
teractions in the system obey to the general rule that
cannot have particle overlaps. The interactions are not
tially quenched but are determined in a self-consistent w
by the local arrangements of the particles. The definition
the dilation angle as sketched in Fig. 1 is difficult to impl
ment in practice in the Tetris model due to the underly
lattice structure which defines the geometric constraints o
for particles on the lattice sites, and not in the continuum

We may, however, circumvent this difficulty through th
following construction illustrated in Fig. 3. We consider
semi-infinite line starting at the origin and oriented along o
of the four cardinal directions. This line is~and all the sites
attached to it are! pushed in one of the principal directions
the underlying square lattice by one lattice constant. In
following, we will consider only a displacement perpendic

FIG. 2. Illustration of the Tetris model. The sites of a squa
lattice can host elongated particles shown as rectangles. The w
and length of the particles induce geometrical frustrations.
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lar to the line, although a parallel displacement may also
considered. As this set of particles is moved, all other p
ticles which may overlap with them are also translated w
the same displacement. In this way, we determine the seD
of particles which moves. In the sequel, we will show th
this domain is nothing but a directed percolation cluster@15#
grown from the line. Anticipating on the following, the mea
shape ofD will be shown to be a wedge limited by a gene
ally rough boundary whose mean orientation forms an an
c with the direction of motion. The anglec can be shown to
be exactly equal to the dilatancy angle as defined previou

Exploiting the nonoverlap constraint, we may simply d
termine the rule for constructing the domainD. Let us
choose the particular case of a displacement in the direc
~1,0!, and consider a nonempty site (i , j ) which is displaced.
The particles which may have to be displaced together w
site (i , j ) can be identified easily.

If the particle in (i , j ) is horizontal, (i 11,j ) if the site is
occupied by a particle with any orientation, (i 12,j ) if the
site is occupied by a horizontal particle. If the particle
( i , j ) is vertical, (i 11,j ) if the site is occupied by a particle
with any orientation, (i 11,j 61) if the site is occupied by a
vertical particle.

Using these rules, it is straightforward to identify the clu
ter of particlesD. The model thus appears to be a direct
percolation problem with a mixed site/bond local formul
tion. Thus unless long range correlations are induced by
construction of the packing, the resulting problem will b
long to the universality class of directed percolation. T
density of particles,pP@0,1#, in the lattice plays the role o
the site or bond presence probability, i.e., the control para
eter of the transition.

Let us recall, for sake of clarity, some properties of t
two-dimensional directed percolation. Forp,pc ~wherepc
is the directed percolation threshold!, a typical connected

th

FIG. 3. Procedure used to define the dilation angle. All partic
located on a semi-infinite line~the particles enclosed in the round
edge rectangle on the left-hand side of the lattice! are moved by one
lattice unit in the horizontal direction~shown by the arrows!. Using
the hard-core repulsion between particles, we determine the
ticles which are pushed~shown in black! and those which may stay
in place~gray!. For each column we consider the lowest~in general
the most external! black site.~The gray particles within the cluste
of black particles do not play any role in the determination of t
dilation angle!. The curve connecting all these points defines
profile of the pushed region. The line connecting the first and
last points of this profile determines the anglec with respect to the
direction of motion. This angle provides the value of the dilati
angle for the particular realization considered. The dilation angl
actually measured performing an average over a large numbe
realizations.
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cluster extends over a distance of the order ofj i in the par-
allel direction~the preferential direction! and a distancej' in
the perpendicular direction. Forp.pc there appears a di
rected percolating cluster which extends over the whole s
tem. This cluster possesses a network of nodes and com
ments. Each compartment has an anisotropic shape simil
the connected cluster belowpc , characterized byj i in the
parallel direction andj' in the perpendicular direction. O
both sides of the percolation transition, the two leng
present the power-law behaviorj i;up2pcu2n i and j';up
2pcu2n'.

III. MONOCRYSTAL

Let us first examine a simple geometrical packing. Th
exist ~two! special ordered configurations of particles su
that the density can reach unity~one particle per site!. This
corresponds to a perfect staggered distribution of particle
entations. Thus a simple way of continuously tuning the d
sity is to randomly dilute one of these perfectly order
states. In this case, if a site is occupied by a particle,
orientation is prescribed. Therefore the above rules can
easily reformulated as a simple directed site percola
problem in a lattice having a particular distribution of bon
~up to second neighbors!. Figure 4 illustrates the specifi
distribution of bonds corresponding to such an ordered st

For p51, suppose that the initial seed is (0,j ) for j >0
and this line is pushed in thex direction. Then the infinite
cluster is the set of sites (i , j ) such thatj >2 i , for a vertical
spin at the origin. Thus moving the semi-infinite line~seed!
introduces vacancies in the lattice which was initially fu
occupied. The system dilates and its dilation angle isc1
5p/4.

As p is reduced, the orientation of the boundary chan
up to the stage where it becomes parallel to thex axis for
p5pR . At this point the dilatancy is zero. A motion is po
sible without changing the volume. This point correspon
precisely to the directed percolation threshold~using the pre-
cise rules defined above!. From the theory of directed perco
lation, we can directly conclude that the behavior of the
latancy anglec in the vicinity of pR obeys

tan~c!}~p2pR!n i2n', ~2!

where the correlation length exponents aren i'1.732 and
n''1.096 independently of the lattice used.

A further decrease ofp leads to a subcritical regime wher
only a finite cluster is connected to the initial seed. Only

FIG. 4. Lattice over which directed site percolation is taki
place. The arc bonds connect second neighbors along thex axis
~horizontal!.
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finite layer of thicknessj i}(pR2p)2n i along they axis is
mobilized. This means that it not possible to define in t
same way the dilation angle forp,pR ~negative angles!.
What happens in practice is that forp,pR the shearing pro-
duces a compaction of the system in front of the semi-infin
line pushing the system. Figure 5 summarizes schematic
the situation for all the values ofp. The horizontal line cor-
responds top5pR and a zero dilation angle.

We performed numerical simulations of this problem u
ing a transfer matrix algorithm which allowed to genera
system of size up to 1043(33104). These large system size
allowed for a very accurate determination of the dilatan
angle as a function of the occupation probability~density! p.
Figure 6 shows the boundaries of the domainsD for p
50.58, close to the directed percolation thresholdpR , and
p50.7.

Figure 7 shows the estimated dilatancy angle as a func
of the density of particles. Angles are evaluated on lattice
size 1043(33104) and are averaged over 100 different r
alizations. The onset of dilatancy is thus estimated to be

pR50.58360.001. ~3!

The singular variation ofc close to the onset of dilatanc
Eq. ~2! has been checked to be consistent with our num
cally determined values as shown by the dotted curve in F
7 which corresponds to the expected critical behavior.

IV. RANDOM SEQUENTIAL DEPOSITION

It is worth emphasizing that the directed percolation pro
lem associated with the dilatancy angle determination is s
ply a site percolation problem in the above special c
where each site is assigned only one possible orientation
the particle. In the more general case, the way the cluste

FIG. 5. Schematic representation of the mobilized region in
shearing procedure. Starting fromp51, where one has a dilation
with an angle ofp/4, the dilation angle reduces until 0~for p
5pR). A further reduction ofp brings the system in a subcritica
regime where only a finite layer of thicknessj i}(pR2p)2n i along
the y axis is mobilized and the system compactifies.
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2816 PRE 61PICCIONI, LORETO, AND ROUX
grown locally depends on the specific orientation of the p
ticle. Thus it is a mixed site/bond percolation proble
Therefore, depending on the way the system has been b
the onset for dilatancypR will vary.

This is illustrated by constructing the system through
random deposition process, i.e., differently from the abo
procedure. The algorithm used to construct the system is
following. At each time step, an empty site and a parti
orientation are chosen at random. If the particle can fit
this site~without overlap with other particles!, then the site is
occupied, otherwise a new random trial is made. This
similar to the ‘‘random sequential’’ problem often studied
the literature@16#, here adapted to the Tetris model.

This procedure leads to a maximum density of partic
around pmax'0.75 above which it becomes impossible

FIG. 6. Shapes of the boundaries of two clusters for~a! p
50.58 ~close to the threshold for a vanishing dilatancy! and ~b! p
50.7. The clusters mobilized are above and in both cases the
intepolating linearly between the first and the last point the bou
aries defines the dilation angle.

FIG. 7. Dilatancy angle as a function of the densityp in the case
of a random dilution of the perfectly ordered Tetris model. T
dashed line represents a fit obtained using Eq.~2! with pR50.583
60.001. The relative errors diverge at the transition.
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add new particles. Differently from the previous case, in
random sequential deposition simulations could not h
been performed using the transfer matrix algorithm and t
we generated systems of size up to 50031500. We studied
the dilatancy angle in such systems stopping the construc
at differentp values, averaging for eachp over 100 realiza-
tions. Figure 8 shows the estimated dilatancy angle whic
definitely different from the data of Fig. 7. In particular th
onset of dilatancy is determined to be

pR50.7060.01. ~4!

However, this procedure is not expected to induce long ra
correlations in the particle density or orientation, and th
we expect that the universality class of the model rema
unchanged. In particular, the critical behavior Eq.~2! is ex-
pected to hold with the same exponents. Although the sys
sizes are much smaller in the present case, our data are
sistent with such a law.

V. BALLISTIC DEPOSITION UNDER GRAVITY

Finally we would like to point out another property re
lated to the texture of the medium. Up to now the two pr

TABLE I. Results for the dilatancy angles obtained using d
ferently prepared samples and different displacement orientation
p'0.8. Dilution indicates samples obtained by diluting a perf
monocrystal ~see text! to the desired density; BDG indicate
samples obtained with a ballistic deposition procedure under g
ity. We cannot compare directly in this table the results obtain
with the random sequential deposition procedure~RSD! because, as
mentioned in the text, this procedure leads to a maximum densit
particles aroundpmax'0.75 above which it becomes impossible
add new particles.

Method Orientation c

Dilution 6x6y 31.060.1
BDG 2y 6.660.5
BDG 6x 23.860.5
BDG 1y 5.860.5

ne
-

FIG. 8. Dilatancy angle as a function of the densityp in the case
of a random sequential deposition. The dashed line represents
obtained using Eq.~2! with pR50.7060.01. The relative errors
diverge at the transition.



n

un

p
ne

ic

er
h

is

fo
-
e
le

th
nt

fo

e

ila
s
tu
riz

ia

tri-
ost
t-
ts in
of

in
s it
y,
to
nce

of
e in
t a
e

ical
e
at
that

sity
m
di-

nd
ised
m
o.

PRE 61 2817CRITICALITY OF THE ‘‘CRITICAL STATE’’ O F . . .
cedures followed to generate the packing of particles did
single out any privileged direction.

We now construct the packing by random deposition
der gravity. Particles with a random orientation are placed
a randomx position, and largey. Then the particle falls
~along 2y) down to the first site where it hits an overla
constraint. In this way, the packing assumes a well defi
bulk densityp'0.8.

We used this construction procedure to generate latt
of size 50031500 ~averaged over 500 samples! cutting out
the top part of the lattice which is characterized by a v
wide interface and a nonconstant density profile. On t
configuration~and thus at a fixed density! we measured the
dilatancy angle for different orientations of the imposed d
placement on the wall with respect to ‘‘gravity.’’

Table I shows the resulting dilatancy angles obtained
the same densityp50.81 using the following different con
structions. The dilution of the ordered state and the sequ
tial deposition~in both of these cases the dilatancy ang
does not depend on the orientation of the motion!. It is worth
noticing how a direct comparison between this case and
others is not possible because with the random seque
deposition one cannot obtain densities larger than.0.75.
The ballistic deposition using a displacement along2y
~against gravity!, y ~along gravity!, andx ~perpendicular to
gravity!. In the latter case, we could study the problem
two orientations of the semi-infinite line (x50 andy.0 or
y,0). We checked that the dilatancy angle was not dep
dent on this orientation.

The data reported in Table I indeed show that the d
tancy angle can be dependent on the direction of the impo
displacement. This measurement is thus sensitive to tex
effects. As a side result, we note that the usual characte
tion of the dilatancy in terms of a single scalar~angle!, albeit
useful, is generally an oversimplification for textured med
Indeed, a number of studies have revealed@17# that granular
se
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media~even consisting of perfect spheres! easily develop a
non isotropic texture as can be shown by studying the dis
bution of contact normal orientations. This remark is alm
obvious from a theoretical point of view, however, few a
tempts have been made to incorporate these texture effec
the dilatancy angle or even more generally in the rheology
granular media.

VI. CONCLUSION

We have shown that dilatancy can be precisely defined
the Tetris model, and that it is a function of the density a
is well known for granular media. The onset of dilatanc
i.e., the ‘‘critical state’’ of soil mechanics, has been shown
correspond to a directed percolation threshold density, he
justifying the term ‘‘critical’’ in this expression. From this
point of view it is important to stress how any comparison
our approach with real granular materials should be don
the neighborhood of the critical point where we expec
largely universal~in the sense of critical phenomena in th
statistical physics vocabulary! behavior. Using different lat-
tices we expect, for instance, to recover the same crit
behavior~same exponents! but not the same values for th
critical density. To our knowledge this is the first time th
such a mapping has been proposed. We have also shown
the dilatancy angle was not only determined by the den
but also by the packing history. Finally, we have shown fro
a simple anisotropic construction that texture affects the
latancy angle, even for a fixed density.
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