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Criticality of the “critical state” of granular media: Dilatancy angle in the Tetris model
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The dilatancy angle describes the propensity of a granular medium to dilate under an applied shear. Using a
simple spin model(the Tetris modglwhich accounts for geometrical “frustration” effects, we study such a
dilatancy angle as a function of density. An exact mapping can be drawn with a directed percolation process
which proves that there exists a critical density above which the system expands and below which it
contracts under shear. When applied to packings constructed by a random deposition under gravity, the
dilatancy angle is shown to be strongly anisotropic, and it constitutes an efficient tool to characterize the
texture of the medium.

PACS numbd(s): 81.05.Rm

. INTRODUCTION zero longitudinal strain rate,,=0, and the volumetric strain
) ) ) . rate (here vertical expansior,, is measured. The direction
Granular matgrlal$1] give rise to a num_ber of 0_r|g|nal of the velocity of the upper wall makes an anglewith

phenomena, which mostly result from their peculiar rheoegpect to the horizontal direction. This angle is called the
the grains(rigid equal-sized spherical particlea granular
system displays a rather complex behavior which shows that Eyy
the origin of this rheology has to be found at the level of the tan(¢) = —. (1)
geometrical arrangement of the grains. Exy

Guided by these considerations, models have been preyore generally, the tangent of the dilation angle is the ratio

p(_)sed to account for t_he geometrical constr_amts of asSeNMLt the volumetric strain ratétr(é)] to the deviatoric part of
blies of hard-core particleR2—8]. The motivation of these the strain rate.

models is not to reproduce faithfully the local details of Numerous experimental studies have confirmed the valid-
granular media, but rather to show that simple geometricayy, of such a behavior, and have lead to extensions such as
constraints can reproduce under coarse-graining some fegat is known in soil mechanics as the “critical state” con-
tures observed in real granular media. Along these lines, ONEept[12]. Assuming that the incrementébngent mechani-

of the most impressive examples is the “Tetris” mofI3]  cal behavior can be parametrized using only the density of
which, in its simplest version, is basically a spin model withthe medium p, a loose medium will tend under continuous
only hard core repulsion interactions. This model has beeshear towards a state such that no more contraction takes
introduced in order to discuss the slow kinetics of the complace, i.e., it will assume asymptotically a density such
paction of granular media under vibrations. In spite of thethat(p.) =0. This state is by definition the “critical state.”
simplicity of the definition of the model, the kinetics of com- Conversely, if the strain were homogeneous, a dense granu-
paction has been shown to display a very close resembland¢ar media would dilate until it reached the critical state den-
to most of the experimentally observed features of compacsity p.. However, for dense media, the strain may be local-

tion [9] and segregatiofil0]. ized in a narrow shear band which may allow a further
Our aim here is to consider again the Tetris model and to
focus on a basic property of the quasistatic shearing of a y

granular assembly. It is well known since Reynolds that
dense granular media have to dilate in order to accommodate
a sheaf11], whereas loose systems contract. This observa-
tion is important since it gives access to one of the basic
ingredients(the direction of the plastic strain rateecessary

to describe the mechanical behavior in continuum modeling. X

The d'la,tancy angle is defined as the ratio Of_the r_ate of FIG. 1. Schematic view of shearing of granular media in a shear
volume increase to the ratg of Shearlng. Dgnotlng WBII]' cell. The upper part of the cell moves only if the medium dilates so
the componenky of the strain tensog, Fig. 1 illustrates an 4t the direction of the motion forms an angle the dilatancy
experiment where a shear ratg, is imposed together with a angle, with the horizontal direction.
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FIG. 3. Procedure used to define the dilation angle. All particles
FIG. 2. lllustration of the Tetris model. The sites of a squarelocated on a semi-infinite linghe particles enclosed in the round-
lattice can host elongated particles shown as rectangles. The widgflge rectangle on the left-hand side of the lajtare moved by one
and length of the particles induce geometrical frustrations. lattice unit in the horizontal directiofshown by the arrows Using
the hard-core repulsion between particles, we determine the par-
shearing without any more volume change so that the meajff'es Which are pusheshown in blackand those which may stay
density may remain at a value somewhat higher than th Place(gray. For each column we consider the lowéstgeneral
critical value. Recent triaxial tesf&3] in a scanner apparatus 1€ Most externablack site.(The gray particles within the cluster
have however shown that in the shear bands the density 8{ black particles do not play any role in the determination of the
. . Y . dilation angle. The curve connecting all these points defines the
the medium was quite comparable to the critical density, thus " : ; : ;
oviding further evidence for the validity of the critical state profile of the pushed region. The line connecting the first and the
E(r)n\ge;:)tg urther eviden r validity critical s last points of this profile determines the anglevith respect to the

e . . direction of motion. This angle provides the value of the dilation
The word “critical” used in this context has become the angle for the particular realization considered. The dilation angle is

classical terminology, but it has nopaiori relation with any  5¢yally measured performing an average over a large number of
kind of critical phenomenon in the statistical physics vo- (ggjizations.

cabulary{14]. One of the results presented in this article is to . _
show that indeed the critical state of soil mechanics is also #r to the line, although a parallel displacement may also be

critical point in the sense of phase transitions, for the Tetrigonsidered. As this set of particles is moved, all other par-
model considered here. ticles which may overlap with them are also translated with

the same displacement. In this way, we determine théset
of particles which moves. In the sequel, we will show that
this domain is nothing but a directed percolation clufiéi
A group of lattice gas models in which the main ingredi- grown from the line. Anticipating on the following, the mean
ent is the geometrical frustration has been introduced reshape ofD will be shown to be a wedge limited by a gener-
cently under the name Tetr[2,3]. The Tetris model is a ally rough boundary whose mean orientation forms an angle
simple lattice model in which the sites of a square lattice carys with the direction of motion. The angk¢ can be shown to
be occupied byin its simplest versiona single type of rect- be exactly equal to the dilatancy angle as defined previously.
angular shaped particle with only two possible orientations EXxploiting the nonoverlap constraint, we may simply de-
along the principal axis of the underlying lattice. A hard-coretermine the rule for constructing the domafin. Let us
repulsion between particles is considered so that two parchoose the particular case of a displacement in the direction
ticles cannot overlap. This forbids in particular that two near<(1,0), and consider a nonempty sitgj() which is displaced.
est neighbor sites could be both occupied by particles aligne@ihe particles which may have to be displaced together with
with the inter-site vector. An illustration of a typical admis- site (i,j) can be identified easily.
sible configuration is shown schematically in Fig. 2. More If the particle in {,j) is horizontal, (+1,) if the site is
generally one can consider particles that move on a latticeccupied by a particle with any orientation,+(2,j) if the
and present randomly chosen shapes and $BesThe in-  site is occupied by a horizontal particle. If the particle in
teractions in the system obey to the general rule that onéi,j) is vertical, (+1,j) if the site is occupied by a particle
cannot have particle overlaps. The interactions are not spavith any orientation, i(+1,j = 1) if the site is occupied by a
tially quenched but are determined in a self-consistent wayertical particle.
by the local arrangements of the particles. The definition of Using these rules, it is straightforward to identify the clus-
the dilation angle as sketched in Fig. 1 is difficult to imple- ter of particlesD. The model thus appears to be a directed
ment in practice in the Tetris model due to the underlyingpercolation problem with a mixed site/bond local formula-
lattice structure which defines the geometric constraints onlyion. Thus unless long range correlations are induced by the
for particles on the lattice sites, and not in the continuum. construction of the packing, the resulting problem will be-
We may, however, circumvent this difficulty through the long to the universality class of directed percolation. The
following construction illustrated in Fig. 3. We consider a density of particlesp e[ 0,1], in the lattice plays the role of
semi-infinite line starting at the origin and oriented along onethe site or bond presence probability, i.e., the control param-
of the four cardinal directions. This line {&nd all the sites eter of the transition.
attached to it anepushed in one of the principal directions of  Let us recall, for sake of clarity, some properties of the
the underlying square lattice by one lattice constant. In thewo-dimensional directed percolation. Fp& p,. (wherep.
following, we will consider only a displacement perpendicu-is the directed percolation threshplda typical connected

II. MODEL AND DEFINITION OF DILATANCY
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FIG. 4. Lattice over which directed site percolation is taking
place. The arc bonds connect second neighbors along tds
(horizonta).

cluster extends over a distance of the ordegoih the par-

allel direction(the preferential directiorand a distancé, in

the perpendicular direction. Fqg>p, there appears a di-
rected percolating cluster which extends over the whole sys-
tem. This cluster possesses a network of nodes and compart-
ments. Each compartment has an anisotropic shape similar to
the Conngcte(_d cluster b_elom’ charactgrlzed bf” in the shearing procedure. Starting frop=1, where one has a dilation
parallel direction and, in the perpendicular direction. On ih an angle of/4, the dilation angle reduces until @or p
both sides of the percolation transition, the two lengths_ ) A further reduction ofp brings the system in a subcritical
present the power-law behavigi~|p—pc| " and&, ~[p  regime where only a finite layer of thickne&s«(pr—p) " along
—pe ™ they axis is mobilized and the system compactifies.

Region with
positive angles

FIG. 5. Schematic representation of the mobilized region in the

. MONOCRYSTAL finite layer of thickness;=(pg—p)~ "' along they axis is

Let us first examine a simple geometrical packing. Therd"Pilized. This means that it not possible to define in the
exist (two) special ordered configurations of particles suchS2Me way the dilation angle fgr<pg (negative angles
that the density can reach unitgne particle per sife This  Vhat happens in practice is that fporpg the shearing pro-
corresponds to a perfect staggered distribution of particle oridUces a compaction of the system in front of the semi-infinite
entations. Thus a simple way of continuously tuning the denlin® Pushing the system. Figure 5 summarizes schematically
sity is to randomly dilute one of these perfectly orderegthe situation for all the values qn‘ The horizontal line cor-
states. In this case, if a site is occupied by a particle, it§€SPONds t@=pg and a zero dilation angle.

orientation is prescribed. Therefore the above rules can be W€ performed numerical simulations of this problem us-
easily reformulated as a simple directed site percolatiofd @ transfer matrix algorithm which allowed to generate

problem in a lattice having a particular distribution of bondsSYStem of size up to & (3x 10%). These large system sizes
(up to second neighborsFigure 4 illustrates the specific allowed for a very accurate determination of the dilatancy

distribution of bonds corresponding to such an ordered stat@ndle as a function of the occupation probabilignsity p.
For p=1, suppose that the initial seed is jjofor j=0  Flgure 6 shows the boundaries of the domainsfor p

and this line is pushed in the direction. Then the infinite =0-58, close to the directed percolation threshpid and
cluster is the set of sites,() such tha=—i, for a vertical P= 07 ) . )
spin at the origin. Thus moving the semi-infinite liteeed Figure 7_shows the_z estimated dilatancy angle as afu_nctlon
introduces vacancies in the lattice which was initially fully Of the density of particles. Angles are evaluated on lattice of
occupied. The system dilates and its dilation angleyjs = Siz€ 10 (3x10% and are averaged over 100 different re-

_— alizations. The onset of dilatancy is thus estimated to be
As p is reduced, the orientation of the boundary changes
up to the stage where it becomes parallel to xhaxis for pr=0.583+0.001. ©)

p=pgr. At this point the dilatancy is zero. A motion is pos- . o .

sible without changing the volume. This point correspondsl he singular variation of/ close to the onset of dilatancy
precisely to the directed percolation threshaiding the pre-  Ed- (2) has been checked to be consistent with our numeri-
cise rules defined aboyeFrom the theory of directed perco- cally determined values as shown by the dotted curve in Fig.
lation, we can directly conclude that the behavior of the di-7 Which corresponds to the expected critical behavior.
latancy angle/ in the vicinity of pg obeys

tan(y) o (p—pr) "™, 2
It is worth emphasizing that the directed percolation prob-
where the correlation length exponents afe=1.732 and lem associated with the dilatancy angle determination is sim-
v, ~1.096 independently of the lattice used. ply a site percolation problem in the above special case
A further decrease gf leads to a subcritical regime where where each site is assigned only one possible orientation for
only a finite cluster is connected to the initial seed. Only athe particle. In the more general case, the way the cluster is

IV. RANDOM SEQUENTIAL DEPOSITION
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of a random sequential deposition. The dashed line represents a fit
(a) (b) obtained using Eq(2) with pg=0.70+0.01. The relative errors
diverge at the transition.

FIG. 6. Shapes of the boundaries of two clusters @r p : . : .
=0.58(close to the threshold for a vanishing dilataheyd (b) p add new partlcles. leferen_tl_y from the previous case, in the
=0.7. The clusters mobilized are above and in both cases the lingndoOM sequentlal_ deposition S|mulat|pns cogld not have
intepolating linearly between the first and the last point the boundP&en performed using the transfer matrix algorithm and thus
aries defines the dilation angle. we generated systems of size up to 8AG00. We studied

the dilatancy angle in such systems stopping the construction
grown locally depends on the specific orientation of the parat differentp values, averaging for eaghover 100 realiza-
ticle. Thus it is a mixed site/bond percolation problem.tions. Figure 8 shows the estimated dilatancy angle which is
Therefore, depending on the way the system has been buiiefinitely different from the data of Fig. 7. In particular the
the onset for dilatancpg will vary. onset of dilatancy is determined to be

This is illustrated by constructing the system through a —0.70-001 4
random deposition process, i.e., differently from the above Pr= 0. /O=U.0L. )

procedure. The algorithm used to construct the system is thg,\yever. this procedure is not expected to induce long range
following. At each time step, an empty site and a particle g g|ations in the particle density or orientation, and thus,
orientation are chosen at random. If the particle can fit ofye expect that the universality class of the model remains
this site(without overlap with other particlgsthen the site is _unchanged. In particular, the critical behavior E). is ex-

occupied, otherwise a new random trial is made. This ig)ected to hold with the same exponents. Although the system
similar to the “random sequential” problem often studied in gj;e5 are much smaller in the present case, our data are con-
the literaturg/ 16], here adapted to the Tetris model. sistent with such a law.

This procedure leads to a maximum density of particles

around p,a~0.75 above which it becomes impossible to V. BALLISTIC DEPOSITION UNDER GRAVITY

' ' ‘ ‘ Finally we would like to point out another property re-
0.9 1 lated to the texture of the medium. Up to now the two pro-
T TABLE |. Results for the dilatancy angles obtained using dif-
0.7 | . 1 : . o
— .- ferently prepared samples and different displacement orientations at
E I p~0.8. Dilution indicates samples obtained by diluting a perfect
o 057 1 monocrystal (see text to the desired density; BDG indicates
%0 I samples obtained with a ballistic deposition procedure under grav-
2 03 . ] ity. We cannot compare directly in this table the results obtained
§ /E with the random sequential deposition procedi®8D) because, as
I . . . . . .
E mentioned in the text, this procedure leads to a maximum density of
0.1 1 particles aroung,,,~0.75 above which it becomes impossible to
f add new particles.
-0.1 : : : :
0.5 0.6 0.7 0.8 0.9 1 Method Orientation W
P Dilution +xty 31.0:0.1
FIG. 7. Dilatancy angle as a function of the dengitiy the case BDG -y 6.6+0.5
of a random dilution of the perfectly ordered Tetris model. The BDG X 23.8£0.5
dashed line represents a fit obtained using @y with pg=0.583 BDG +y 5.8+0.5

+0.001. The relative errors diverge at the transition.
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cedures followed to generate the packing of particles did nomedia(even consisting of perfect spheresasily develop a
single out any privileged direction. non isotropic texture as can be shown by studying the distri-
We now construct the packing by random deposition un-bution of contact normal orientations. This remark is almost
der gravity. Particles with a random orientation are placed abbvious from a theoretical point of view, however, few at-
a randomx position, and largey. Then the particle falls tempts have been made to incorporate these texture effects in
(along —y) down to the first site where it hits an overlap the dilatancy angle or even more generally in the rheology of
constraint. In this way, the packing assumes a well definegranular media.
bulk densityp~0.8.
We used this construction procedure to generate lattices VI. CONCLUSION
of size 500 1500 (averaged over 500 samplesutting out . . , .
e top prt o he ltice e ischarecterzed by very, Y4 12V% S0uT 6 dletency an oe el tened
wide interface and a nonconstant density profile. On this ’ : ISty
configuration(and thus at a fixed densjtyve measured the IS wel Iino.v\./n for grinular.medm. T_he onset of dilatancy,
dilatancy angle for different orientations of the imposed dis--€- the “critical state of soil meghamcs, has been s.hown to
placement on the wall with respect to “gravity.” correspond to a directed percolation threshold density, hence

Table | shows the resulting dilatancy angles obtained fo#ustlfylng_the_te_rm critical” in this expression. From this
the same densitp=0.81 using the following different con- point of view it is important to stress how any comparison of

. - our approach with real granular materials should be done in
structions. The dilution of the ordered state and the sequeny neighborhood of the critical point where we expect a
tial deposition(in both of these cases the dilatancy angleIargely universal(in the sense of critical phenomena in the

does not depend on the orientation of the maftidiis worth tatistical physics vocabulgrpehavior. Using different lat-
noticing how a direct comparison between this case and th phy : : 9 o
|Fes we expect, for instance, to recover the same critical

others is not possible because with the random Sequenti%ehavior(same exponentsout not the same values for the

gﬁgoilgl?igtignze%%gﬂ?c:nozzrg d;”j;gg;éirmgzatth:fgg;' critical density. To our knowledge this is the first time that

. . ; . such a mapping has been proposed. We have also shown that
(a:g\a/liltn?t |?1r?xgy|;[tgcc);ggegr\?v\gt%oﬁlr:jd ;(tézerfﬁ;d'%g?erréoforthe dilatancy angle was not only determined by the density
9 Y. ’ y P but also by the packing history. Finally, we have shown from

two orientations of the sem|-|n_f|n|te linex€0 andy>0 or a simple anisotropic construction that texture affects the di-
y<0). We checked that the dilatancy angle was not depenl'atancy angle, even for a fixed density

dent on this orientation.

The data reported in Table | indeed show that the dila-
tancy angle can be dependent on the direction of the imposed
displacement. This measurement is thus sensitive to texture We wish to thank S. Krishnamurthy, H.J. Herrmann, and
effects. As a side result, we note that the usual characteriz&. Radjai for useful discussions related to the issues raised
tion of the dilatancy in terms of a single scalangle, albeit  in this study. This work has been partially supported from
useful, is generally an oversimplification for textured media.the European Network-Fractals under Contract No.
Indeed, a number of studies have revedled that granular FMRXCT980183.
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