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Novel surface state in a class of incommensurate systems
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We study the Landau model of the class of incommensurate systems with a scalar order parameter where the
modulated phase is driven by a gradient-squared term with negative coefficient. For example, theoretical
studies of cholesteric liquid crystals in a field~electric or magnetic! suggest that such an modulated phase
should exist at high chirality. The bulk phase diagram in the presence of a bulk external field which couples
linearly to the order parameter exhibits a modulated phase inside a loop in the temperature-field plane, and a
homogeneous phase outside. On analyzing the same model for a semi-infinite system, we find a surprising
result; the system exhibits surface states in a region where the bulk phase is homogeneous~but close to the
modulated region!. These states are very different from the well-known surface states induced either by a
surface field or by enhanced interactions at the surface, for they exist and are energetically favored even when
the sole effect of the surface is to terminate the bulk, as expressed by free boundary conditions taken at the
surface. Near the surface, the surface-state order parameter is very different from the bulk value~in fact, it has
the opposite sign!. When the temperature or the bulk field are varied to move away from the modulated state,
we find a surface phase transition at which the surface states become energetically unfavorable, though they
continue to exist as metastable states. We then study how a surface field changes the surface phase diagram.

PACS number~s!: 61.30.Cz, 64.60.Kw, 64.70.Md
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I. INTRODUCTION

It is well known that a surface field can give rise to we
ting phenomena and also that enhanced interactions ne
surface can give rise to surface order without bulk order@1#.
Nakanishi and Fisher@2# have given a unified picture of wet
ting and surface ordering at the phenomenological~Landau-
theory! level; these effects require that surface terms
added to the bulk free energy. In this article, we report
entirely new surface effect which should occur in a particu
class of incommensurate systems. We find that surface s
exist and are energetically favored by the mere presenc
the surface, without surface terms such as those consid
in Ref. @2#.

Candidate physical systems for observing these state
clude highly chiral cholesterics in electric or magnetic fie
where a bulk undulating phase was recently predicted to
cur @3#. This phase is an undulating structure in which t
amount of orientational order varies periodically in conjun
tion with an oscillation of the direction of the local opt
axis. It is expected to occur under appropriate conditions
temperature and a strong aligning electric or magnetic fi
As discussed in Sec. III C of Ref.@3#, the order parameter
for the modulated state are the amplitudes of the harmo
of the modulated density associated with the state, suc
the magnetic density in the case of magnetic systems.
free energy that results is identical to that of Landau mod
in which the coefficient of the gradient-squared elastic ter
is negative, necessitating the inclusion of terms quadrati
second derivatives. When the coefficient of the gradie
squared term vanishes, a Lifshitz point occurs in the ph
diagram @4#. Therefore other candidates include Lifshit
point systems such as the magnetic material MnP@5,6#, and
PRE 611063-651X/2000/61~3!/2753~6!/$15.00
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Langmuir monolayers and diblock copolymers@7# with
modulated phases.

Our Landau model gives a bulk temperature-field ph
diagram with a closed loop separating the modulated ph
~favored inside! from the homogeneous phase. The surpr
is that the mere existence of the surface produces a sur
state which is energetically favored within a second clos
loop well outside the first. Outside the second loop, the s
face state exists but it is metastable~the equilibrium solution
is simply the homogeneous bulk state!. The order paramete
in the surface state is not a small perturbation to the b
order parameter. It differs considerably from the bulk ord
parameter in a small region close to the surface, decayin
the bulk value away from the surface. The width of th
region depends very weakly on the temperature. In partic
it does not diverge at any temperature, and thus the s
does not wet the surface. In the presence of a surface
~coupling linearly to the order parameter!, the surface phase
may still occur but the line of surface transitions no long
forms a closed loop. From the above and other evidence,
surface states are very different from the states considere
Refs.@1,2#.

This paper is organized as follows. Section II presents
effective Landau-Ginzburg model and then describes ana
cal and numerical results for the bulk phase diagram. Sec
III presents analytical and numerical results for the surfa
states, in the absence of a surface field. Section IV sh
how the surface phase diagram is modified by a surface fi
Finally Sec. V discusses the results and their possible r
ization.

II. MODEL AND BULK PHASE DIAGRAM

In this section we introduce the model used in the res
the article, and we study the bulk phase diagram, espec
2753 ©2000 The American Physical Society



d

-

th
n
ur
ng

t
itiv
s
lie
; i

f

t
ns
u
r
t
se
d
r

th
ua
e
ar
e
in

an
-

r-

ng

e

t to

hen
n

e is
n-

n

el
e
ition

ical
ent

-

2754 PRE 61A. E. JACOBS, D. MUKAMEL, AND D. W. ALLENDER
the transition line separating the homogeneous and mo
lated states. The bulk free energyFb is the spatial integral of
the densityFb , which is the following functional of the sca
lar order parameterf(x):

Fb@f#52hf1
1

2
rf21

1

4
f42

1

2
~f8!21

1

2
~f9!2, ~1!

wheref85df/dx. We have scaled the order parameter,
energy and the unit of length to simplify the coefficients, a
so h and r are the rescaled ordering field and temperat
variables, respectively. The corresponding Euler-Lagra
equation is

f-81f92h1rf1f350. ~2!

Nakanishi and Fisher@2# examined a very differen
model; the gradient-squared term appeared with a pos
coefficient, the (f9)2 term was omitted, and surface term
were added. Their model, without the surface terms, app
to the usual Ising model with ferromagnetic interactions
has only the disordered and homogeneous~ferromagnetically
ordered! phases, and its bulk~r,h! phase diagram consists o
a first-order line ath50 and r ,0 which terminates at a
critical point atr 50. The model of Eq.~1!, but without the
(f8)2 term, exhibits a Lifshitz point ath5r 50 and a first-
order line forr ,0.

Without the bulk fieldh, the model~1! has a disordered
phase at high temperature~T!, a second-order transition a
r 51/4 to a modulated phase, and a strong first-order tra
tion at r'21.2 to one of two degenerate homogeneo
phases; the modulated phase is almost sinusoidal ove
entire range, and its wave number is almost independen
T. In the ~r,h! plane, the modulated phase occupies a clo
loop @8,5,9#. Outside this loop, the energetically favore
phase is the homogeneous phase, with order parametef0
found from

2h1rf01f0
350; ~3!

its free-energy density isF052hf011/2rf0
211/4f0

4.
Figure 1 gives the bulk phase diagram, as found for

most part by numerical solution of the Euler-Lagrange eq
tion ~2! with periodic boundary conditions. Th
homogeneous-modulated transition is second-order ner
51/4, but otherwise first order. The second-order segm
and the tricritical points at its ends are found analytically
the following.

We consider a spatially modulated order parameter
expand it in harmonics. Ifq is the wave number of the modu
lated structure ande is the amplitude of the leading ha
monic, then the order parameter takes the form

f~x!5f01e cos~qx!1e2@f2 cos~2qx!1f̄2#1O~e3!,
~4!

wheref2 and f̄2 are constants to be determined. Inserti
this order parameter in the free energy~1! and integrating
over a period, one finds the following expansion of the fr
energy~per unit volume!:

^Fb&5F01e2F21e4F41O~e6! ~5!
u-
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with coefficients

F25
1

4 S r 13f0
22

1

4D , ~6!

F45
1

4
~r 13f0

212!f2
21

1

2
~r 13f0

2!f̄2
21

3

2
f0f̄2

1
3

4
f0f21

3

32
. ~7!

The free energy has already been minimized with respec
the wave numberq, giving q5A1/21O(e2). The homoge-
neous phase is unstable to a modulated perturbation w
F2,0. Provided thatF4.0 then, a second-order transitio
occurs at

h56
2

3)
S 1

8
1r DA1

4
2r . ~8!

WhenF4 is negative, the transition to the modulated phas
first order. To find the tricritical points separating the co
tinuous and first-order segments, we minimizeF4 with re-
spect tof2 andf̄2 and then set the result equal to zero. O
the lineF250, F4 is minimized byf2522f0/3 andf̄25
26f0 ; the minimum value is

F45
3

32
2

19

4
f0

2, ~9!

and so the two tricritical points are located at

r 529/152, h56A6/193. ~10!

FIG. 1. The~r,h! bulk phase diagram corresponding to mod
~1!. The undulating state~U! is energetically preferred inside th
loop, and the homogeneously ordered state outside it. The trans
between the states is either first-order~solid line! or second-order
~dashed line!; two tricitical points ~solid circles! separate the two
types of transition. The first-order segment was found by numer
solution of the Euler-Lagrange equation, the second-order segm
from Eq. ~8!, and the tricritical points from Eq.~10!. At lower
temperatures, a first-order transition ath50 separates the two ho
mogeneously ordered statesf.0 andf,0.
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III. SURFACE PHASE DIAGRAM

In this section we consider the surface phase diagram
the model~1! for a semi-infinite system, with no surfac
field. The presence of the surface generally produces s
localized near the surface, and the states are energeti
favored in part of the phase diagram. We studied the sur
states in the region where the bulk phase is homogene
and examined their transitions with varying temperature
the external field. Only a cursory examination was made
the region where the bulk is modulated; in this region,
found many solutions of the Euler-Lagrange equation,
many that a detailed analysis was felt unjustified at this tim
That is, surface states and surface phase transitions may
inside the bulk modulated loop, but have not been studie

We consider a system occupying the half-spacex>0, and
we assume that the order parameter depends only onx. The
bulk energyFb is found by integrating the density of Eq.~1!.
In this section, we treat the surface very simply, by assum
that it merely terminates the bulk; we thus take free bou
ary conditions at the surface. In Sec. IV, however, we
sume that the surface also applies a local ordering fieldhs ;
then the total energy isFb1Fs , where

Fs52hsfs ~11!

andfs is the order parameter atx50. The general boundar
conditions are then

fs81fs-2hs50, f0950. ~12!

We solved the Euler-Lagrange equation~2! numerically
subject to the boundary conditions~12!. This equation can
have many solutions, depending on the bulk fieldh and the
temperature variabler. Figure 2 gives the surface phase d
gram for hs50, as found from examining these solution

FIG. 2. The~r,h! surface phase diagram forhs50. The surface
states are energetically favorable inside the outer loop~with the
qualification noted in the text!, and the homogeneous states outsi
The transition is first order except at the isolated pointr 51, h50
~indicated by a dot! where it is continuous. The inner loop is th
loop of Fig. 1~the scale precludes display of details!. The leftmost
of the three horizontal lines ath50 is the bulk transition between
the ordered statesf.0 andf,0. At the rightmost line~dashed!,
the surface state changes discontinuously and the bulk state
tinuously. At the middle line, both surface and bulk states cha
discontinuously.
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The surface states are energetically favorable inside the o
loop of the figure~with the qualification noted above!, and
the homogeneous states outside; the surface states exi~as
solutions of the Euler-Lagrange equation! outside this loop
but are only metastable there. An interesting feature is
the surface orders atr 51 for h50, but the bulk orders only
at r 51/4. Many more surface states were found at low
temperatures, but they were always metastable.

Figure 3 shows a typical profile of the surface state in
ordered region, for a small and negative bulk field~to break
the symmetry! andhs50. The order parameter decays to t
bulk value~which is negative! far from the surface, but it is
large and positive near it; the overshooting and the dam
oscillations result from a complex decay constant, as sho
below. Correspondingly, when the bulk field is positive, t
order parameter of the surface state is negative near the
and then decays to the positive bulk value. Thus ath50
there is a first-order transition at which the surface st
changes sign.

To provide an analytical understanding of these numer
results and also those of the next section, we present
following stability analysis of the homogeneous bulk sta
The analysis is valid when the deviation of the order para
eter from the bulk value is small.

The order parameter is written asf5f01c, wheref0 is
given by Eq. ~3! and c is the deviation. The free-energ
densityF5Fb2F0 associated withc is

F5
1

2
~r 13f0

2!c21f0c31
1

4
c42

1

2
~c8!21

1

2
~c9!2.

~13!

The energy is minimized by an order parameterc which
satisfies the Euler-Lagrange equation

~r 13f0
2!c13f0c21c31c91c-850. ~14!

To prepare for the next section, we include also the surf
free energy~11!. The boundary conditions are then

c8~0!1c-~0!2hs50, c9~0!50. ~15!

.

on-
e

FIG. 3. Order parameterf(x) of the surface state for paramete
r 522, h502, andhs50. The order parameter is large and po
tive near the surface; it crosses zero and then decays to the
value for largex.
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For hs50, the homogeneous bulk statec50 is clearly a
solution of Eqs.~14! and ~15!. This solution is stable ove
some region of the~r,h! plane, but it becomes unstable at t
transition to the bulk modulated state.

To study the surface states, we solve Eqs.~14! and ~15!
perturbatively inc. The expansion starts from the solution

c1~x!5Ae2ax1A* e2a* x ~16!

of the linearized Eq.~14!. The amplitudeA and the decay
constanta are both complex; the latter~with positive real
part! is found from

a25
1

2
~211 ig!, ~17!

where i 5A21 and g5@4(r 13f0
2)21#1/2. The condition

c19(0)50 in Eq. ~15! gives the amplitudeA in terms ofm
5c(0) as

A5
m

2 S 12
i

g D . ~18!

It is convenient to takem as the expansion parameter.
The solution~16! gives the free energy to orderm2. In

order to obtain the free energy to the required order (m4),
one must find the higher-order contributions toc. Let c
5c11c2 , wherec2 is the nonlinear part ofc. Inserting this
form in Eq. ~14!, using Eq.~16! and keeping terms tom3,
one finds

c2~x!5B1e22ax1
1

2
B2e2~a1a* !x1C1e23ax

1C2e2~2a1a* !x1De2ax1c.c. ~19!

with c2(0)5c29(0)50 and coefficients

B152~315) i !f0m2/126,

B2522f0m2/3,

C152~27111) i !m3/13104,

C25~312) i !m3/84,

D5S 5

14
2

19

126
) i Df0m22S 7

208
1

47

4368
) i Dm3.

On using the resultc5c11c2 in the free energy~13! and
integrating overx, one finds that the free energy of the su
face state~per unit area! is given by

F52hsm1a2m21
2

9
f0m31

3

56
m41O~m5!, ~20!

where

a252~r 13f0
2!

i

2g

a32a* 3

aa*
. ~21!

The amplitude of the surface structure is determined by m
mizing the free energy with respect tom for given surface
i-

field hs . This amounts to satisfying the first condition in E
~15!. We now use the free energy~20! to discuss the surface
phase diagram in the region wherem is small.

Consider first the casehs50. For zero bulk fieldh, f0
50 and there is no surface state whena2.0 ~that is,c50!.
Settinga250, one finds a continuous transition atr 51 from
the disordered bulk statem50 to a surface state withm
Þ0; this is the second-order point at the right of Fig. 2. F
field hÞ0, the bulk order parameterf0 is also nonzero and
the free-energy expansion~20! has a cubic term,m3; this
term gives a first-order transition to the surface state, ag
as found numerically. Near the point~r 51, h50!, m is small
and the transition line can be found approximately from
free-energy expansion~20!. Away from this point, however,
the full free energy must be minimized numerically; Fig.
gives the resulting~r,h! surface phase diagram forhs50.

IV. EFFECT OF A SURFACE FIELD

We consider now the surface phase diagram for nonz
surface fieldhs . Positivehs , for example, tends to increas
the order parameters of all states in the region near the
face. The new feature is that the Euler-Lagrange equa
must now be solved numerically for what were homog
neous bulk states aths50; for lack of a better term, we refe
to these surface-field-modified bulk states simply as b
states. These are the prewetting states considered by N
nishi and Fisher@2# and others. Figures 4 and 5 give parts
typical phase diagrams forhs.0, as found by numerical so
lution of Eq. ~2!. subject to the boundary conditions~12!.

Figure 4 shows the high-temperature part of the ph
diagram forhs51024. The surface field breaks the trans
tions of Fig. 2 into two first-order lines at which the surfa
state changes discontinuously. In the region bounded by
upper line and the left vertical~where the bulk fieldh is
positive!, the order parameter of the surface state is nega
at the boundaryx50 (fs,0). The lower line ends at a
second-order point. Below this point there is a first-ord
transition between the paramagnetic state and the sur
state withfs.0, while above it the two states are indistin
guishable. The free-energy expansion~20! can be used to

FIG. 4. The high-temperature part of the~r,h! surface phase
diagram for hs51024. Both transition lines are first order. Th
lower line ends at a second-order point marked by the solid ci
~see text!.
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PRE 61 2757NOVEL SURFACE STATE IN A CLASS OF . . .
find this point to leading order inhs ; the result is

a25
3

2 S 3

14D
1/3

hs
2/3,

f052
9

2 S 3

14D
2/3

hs
1/3, ~22!

in good agreement with the numerical results.
Figure 5 shows the low-temperature part of the phase

gram for hs51021. Paradoxically, a positive surface fie
cooperates, rather than competes, with a negative bulk
to enhance the stability of the lower surface state~and it
competes with a positive bulk field for the other!. These
effects occur because the order parameter of the surface
changes sign~as seen in Fig. 3!.

V. DISCUSSION

We have developed and analyzed a model to describe
effect of a substrate~or a free surface! on a material which
has a bulk phase transition between homogeneous and m
lated states. Modulated states tend to form because the
energy of the model contains a term, quadratic in first deri
tives of the order parameter, which has a negative coe
cient. We treated the surface first as simply terminating
bulk, and then in addition as supplying a surface field c
pling linearly to the order parameter.

The important new result of our analysis is the quite u

FIG. 5. The low-temperature part of the~r,h! surface phase dia
gram forhs51021. All transitions are first order. The surface fie
enhances the stability of the lower surface state, for whichf~0!.0
andf~`!,0, and decreases the stability of the other. The leftm
segment of the horizontal line ath50 represents the transition be
tween the two bulk states; these states are not homogeneous
presence of the surface field. The other segments describe
driven instabilities of the surface states; for example, the low
surface state cannot exist forh.0.
,
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expected existence of solutions localized at the surface,
lutions which exist even if the surface field is zero. The
solutions are energetically favored for temperature and fi
values that are outside but not too far from the closed lo
within which the modulated bulk state is stable. When t
surface field differs from zero, the loop breaks apart~as
shown in Fig. 4 and 5!.

We now turn our attention to the applicability of our re
sults to cholesteric liquid crystals in a field@3#. It is obvi-
ously desirable to estimate the conditions of chirality, te
perature, field, and surface interactions for which the surf
states should be observable. To do this, we should exam
the relationship between the variables of the theory and
experimental variables, by comparing the expressions forF2
and F4 in Sec. II of this paper with the analogous expre
sions in Sec. III C of Ref.@3#. It is reasonable, however, an
far simpler, to expect the loop regions to scale by the sa
factors; this should be true independent of the strength
surface interactions. From Figs. 1 and 2, the outer~surface-
state! loop extends over the range24.5&r ,1 while the
inner loop extends over21.2&r ,1/4, about a factor of 4.
Accordingly, we estimate the surface-state region to be f
times the size of the undulating-state region in temperat
From Ref.@3#, the undulating state should occur for intrins
pitches in the range of 1260–630 nm, at electric fields of
order of a few hundreds of kV/cm, or magnetic fields
roughly 40 T; the temperature width was estimated to b
few tenths of a degree. These conditions are very difficul
achieve and account for the fact that the undulating state
not yet been observed, although some groups plan to atte
the experiments. The surface-state region is expected t
one degree wide. Techniques sensitive to birefringence n
the surface, such as Brewster-angle ellipsometry@10,11#,
may be able to detect the surface states.

The surface states should appear in incommensurate
tems where the modulated phase is driven by a nega
gradient-squared term. Conditions may be favorable in m
netic Lifshitz-point materials like MnP, or in Langmui
monolayers or diblock copolymers. Other systems in whic
modulated phase is driven by a negative gradient-squa
term are sodium nitrite and thiourea@12#; related systems are
quartz and berlinite, but for these the modulated phase is
dimensional.
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