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Ballistic versus diffusive pair dispersion in the Richardson regime
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Two-particle dispersion in fully developed turbulence is modeled within an asymmetric Le´vy-walk frame-
work which yields the Richardsont3 law and which recovers recently observed results on the probability
distribution function of pair separations in two-dimensional turbulence@M.C. Jullien, J. Paret, and P. Tabeling,
Phys. Rev. Lett.82, 2872~1999!#. The ballistic nature of the Richardson dispersion is discussed in terms of the
persistence parameter and compared with the Richardson diffusive behavior.

PACS number~s!: 47.27.Qb, 05.402a
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I. INTRODUCTION

The mechanism behind the Richardsont3 pair separation
in turbulent flows has been a puzzle since it was reporte
1926 @1#, and has led to a large number of works on e
hanced diffusion@2–9#; see Ref.@10# for a review. It is only
recently that emphasis has been put on characterizing
trajectories of single particles and of two-particle separati
in flows, both experimentally and theoretically. Analyzin
and understanding the trajectories could shed light on
type of stochastic process underlying this strongly enhan
diffusion, and could help to distinguish between the vario
proposed models.

In general, models for the anomaloust3 law can be clas-
sified in terms of local and nonlocal equations for the pro
ability distribution functions~PDFs! of the two-particle sepa
rations. Richardson’s equation, which is a modified diffus
equation with a space-dependent diffusion coefficient, is
example of a local description which is diffusive in natu
@1#. A very different approach based on a nonlocal integ
differential equation has been formulated in terms of rand
walks in continuous time and the Le´vy-walk idea @11–13#.
The Lévy-walk approach is a probabilistic description
anomalous diffusion, based on Le´vy-stable distributions with
slowly decaying tails. In contrast to the diffusive character
the Richardson equation, characteristic for Le´vy walks is the
persistence of ballistic motion on all scales.

One is confronted therefore with two very differe
mechanisms, which lead to thet3 law. These mechanism
differ, however, in their PDFs. Recent experiments on Ri
arson dispersion in two-dimensional turbulent flow ha
shown that the results of the PDF corresponding to the
chardsont3 behavior could not be fitted by the Richards
expression, and have not been able to find indications
Lévy walks @14#.

Here we introduce a model based on asymmetric L´vy
walks which yields the Richardsont3 dispersion and recov
ers the experimentally observed PDF. The current model
tends a previous work on symmetric Le´vy walks @13# and
demonstrates the relevance of the persistence paramete
troduced in Ref.@15# to describe diffusion under the influ
ence of flow velocity fields. The importance of measuri
the trajectories, and the possibility to obtain from them
persistence parameter is discussed.
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II. SCALING REGIMES FOR TURBULENT TRANSPORT

Well-developed turbulent flows, when neglecting inte
mittency, are an example of scaling velocity fields, in whi
the two-time correlation function of the relative velocities
points separated by the distancer behaves as
^v(r ,t1)v(r ,t2)&}^v2(r )&g@(t22t1)/t(r )#, wheret(r ) is a
distance-dependent correlation time. Under Kolmogo
scaling, the mean square relative velocity and the correla
time scale as

^v2~r !&}v0
2S r

r 0
D a

~1!

and

t~r !}t0S r

r 0
D b

, ~2!

wherer 0 , t0, andv0 are some characteristic lengths, time
and velocities. Kolmogorov’s considerations lead to the v
ues of a52/3 andb52/3 which fulfill the equalityb51
2a/2. This equality relies on the existence of a single
mensional parameter, which characterizes the kinem
similarity of the flow @16#. Thus, if a unique kinematic pa
rameterJ of dimension@La/Tb# exists, which determines
the flow’s behavior in a certain range, then from scali
considerations it follows immediately that any velocity~if
only scaling and coordinate-dependent! behaves asv2(r )
}(Jr b2a)2/b , so thata52(12a/b) in Eq. ~1!. Further-
more, a characteristic correlation time exists which sca
with r as t(r )}(J21r a)1/b, so thatb5a/b in Eq. ~2!, and
the equalityb512a/2 follows. Under the above assump
tion the behavior of the flow is characterized by the expon
a and by the value of the parameterJ. The value of the
dimensionless combinationPs5v0t0 /r 0 remains, however,
unspecified. It is referred to as a persistence parameter o
flow and plays a central role in describing single partic
diffusion and pair separation@15#. In the Kolmogorov case
the unique parameterJ is the energy dissipation rate«,
whose dimension is@L3/T2#, from which the values ofa
52/3 andb52/3 follow.

Let us now recall some general properties of particle d
persion in such scaling fields. The mean square separa
2717 ©2000 The American Physical Society
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of particles is connected with the two-time correlation fun
tion of the relative velocities@10#:

d^r 2~ t !&
dt

52E
0

t

^v„r ~ t !,t…v„r ~ t8!,t8…&dt8. ~3!

If the correlation timet(r ) is small enough, the mean fre
path l (r )5v(r )t(r ) is small compared tor, so that changes
in r during the correlation time can be neglected, and b
velocities can be evaluated at the same space point. M
over, the lower boundary of time integration can be shifted
2`. Thus, using Eqs.~1! and ~2!:

d^r 2~ t !&
dt

52^v2~r !&E
2`

t

gS t2t8

t~r ! Ddt8

52^v2~r !&t~r !}v0
2t0S r

r 0
D a1b

. ~4!

This corresponds to diffusive behavior with a positio
dependent diffusion coefficient,K(r )}r a1b5r 4/3, as pro-
posed by Richardson@1#. Taking, as a scaling assumptionr
}^r 2(t)&1/25R and integrating Eq.~4!, we find

R25^r 2~ t !&}S v0
2t

r 0
a1b

t D [2/22(a1b)]

, ~5!

so that the mean square separationR grows asR2}tg with
g52/@22(a1b)#. For the Kolmogorov valuesa5b52/3,
the Richardsong53 behavior follows.

Another picture emerges when one focuses on the q
tion of whether the turbulent motion is dominated by a d
fusive process, or mainly by persistent ballistic events in
two-particle separation. The parameter for the validity of
either of the limiting behaviors in the local picture is th
dimensionless perturbative expansion parameterl (r )/r
5v(r )t(r )/r 5v0t0 /r 0, namely, the persistence parame
of the flowPs @15#. Small values ofPs correspond to erratic
diffusive motion, while large values ofPs imply that the
motion is strongly persistent with high weight of ballist
events. This immediately suggests the applicability of
Lévy-walk scheme. In the latter case the integration of
ballistic equation of motion

d

dt
R5v~R! ~6!

yields

Rmax
2 ~ t !5S 22a

2 D 4/(22a)

~v0r 0
a/2!4/(22a)tg, ~7!

where we tookv(R)5^v2(r )&1/25v0(r /r 0)a/2. This behav-
ior corresponds to

R2}S v0

r 0
a/2

t D 4/~22a!

. ~8!

Remarkably, the exponent is nowg54/(22a), which with
a5b52/3 again has the value 3.
-
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Although leading to the same Richardson type behav
R2}t3, Eqs.~5! and~8! depend differently on the paramete
of the flow. Equation~8! corresponds to the fastest possib
separation, in which the direction of the relative veloc
points outwards the whole time, while the diffusive sepa
tion given by Eq.~5! is slower, due to multiple changes i
the directions of the velocities. Assuming thatPs is the only
relevant parameter in the problem, we arrive at

R2~ t !5 f ~Ps!Rmax
2 ~ t !, ~9!

where the functionf (Ps) behaves asf (Ps)}Ps
g for Ps!1

and f (Ps)→const forPs@1. Namely, the proportionality co
efficient between Eqs.~5! and ~8! is Ps

3 in the Kolmogorov
case.

Since, depending on the persistence parameterPs , the
dispersion can be either diffusive (Ps!1) or ballistic (Ps
@1) in nature, one expects different probability dens
functions~PDFs! in these two limits. In the diffusive regime
the PDF p(r ,t) obeys Richardson’s diffusion equation
which, assuming spherical symmetry reads

]p

]t
5

1

r d21

]

]r
~K0r d211a1b!

]

]r
p. ~10!

The Green’s function solution of Eq.~10! has a stretched
Gaussian form@12#:

p~r ,t !5F2pd/2zd/z21
G~2/z!

G~d/2!G
21

~K0t !2d/zexpS 2
r z

z2K0t
D .

~11!

In Eq. ~11! d is the spatial dimension and the parametez
obeys

z522~a1b!52/g. ~12!

In the Kolmogorov casez52/3. In the strongly correlated
regimePs@1, a simple closed form forp(r ,t) is not known
in general. Under certain conditionsp(r ,t) has been ob-
tained in a closed form for a Le´vy distribution of ballistic
persistences which in our model corresponds toPs@1. This
PDF is characterized by a peak at the wing of the distribut
which, as we later see, is typical for large persistence par
eters @17#, Ps@1, range dominated by Le´vy walks. When
averaged over the distribution of velocities, Eq.~11! has
been recovered@13#.

The experimental findings in Ref.@14# suggest thatp(r ,t)
in the Richardson dispersion regime in two-dimensional t
bulence is still a stretched Gaussian, Eq.~11!, but with z
being close to 0.5, a value significantly lower than the o
which follows from Richardson’s equation.

III. THE MODEL

In order to understand how the transition from diffusive
ballistic motion depends on the relevant parameters and w
the range of validity of Eq.~11! is, we consider a one
dimensional model, proposed in Ref.@15# which is a stochas-
tic model that enables the derivation of thet3 law under a
broad range of system parameters. The approach is heur
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the model behaves diffusively for smallt0 and changes to
being ballistic fort0 large. This model is akin to that of Re
@13# in that it also relies on Le´vy walks, which provide an
extension to Drude’s approach to transport. Thus, we c
sider the motion of particles on a line, whose velocities
position dependent. We take the magnitude of the velocit
be a function ofr only, v(r )5v0(r /r 0)a/2. Moreover, we
account for the temporal changes of the flow by letting
particle change its velocity direction from time to time, whi
keeping the velocity’s magnitude constant. We also let
probability of such a change depend on the particle’s p
tion. This modifies the model of Ref.@13#, which assumed a
symmetric Lévy-walk process. Within the model the differ
ential probabilitydp of a change duringdt is

dp5
dt

t~r !
5t0

21~r /r 0!2bdt. ~13!

Here different scattering events are considered to be inde
dent ~they are viewed to stem, say, from different eddies!.

The model proposed here accounts for two import
properties of dispersion in real turbulent flows:~a! The fact
that the relative velocity scales~as in the Kolmogorov-
Obukhov energy spectrum form!, and ~b! that the velocity
correlation time grows with the interparticle distance. T
model is, of course, simple when compared to real flows,
nevertheless, as shown later, the predictions of our mo
compare favorably with the experimental results.

Within a Drude scattering picture we now calculate fro
Eq. ~13! the probability of being scattered while moving
distancedr:

dp5
dr

v~r !t~r !
5

1

v0t0
~r /r 0!2(b1a/2)dr. ~14!

The probability not to be scattered on the way fromr 1 to r 2
can be obtained by the procedure used for the Hertz di
bution @18,19#,

P~r 2ur 1!5expS 2E
r 1

r 2 1

v0t0
~r /r 0!2(b1a/2)dr D

5expS 2Ps
21r 0

(b1a/2)21E
r 1

r 2
r 2(b1a/2)dr D .

~15!

Performing the integration, we get forb,12a/2:

P~r 2ur 1!5expF2
Ps

21

12~b1a/2! S r 2

r 0
D 12(b1a/2)G

3expF Ps
21

12~b1a/2! S r 1

r 0
D 12(b1a/2)G . ~16!

For b512a/2 this probability corresponds to

P~r 2ur 1!5S r 2

r 1
D 21/Ps

~17!

for r 2.r 1, and to
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e
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P~r 2ur 1!5S r 2

r 1
D 1/Ps

~18!

for r 2,r 1. The step length distribution, which directly re
lates to the turning points in the scattering process,C(r 2ur 1),
follows from Eqs.~17! and ~18!. For r 2.r 1 we have

C~r 2ur 1!5
1

Psr 1
S r 2

r 1
D 21/Ps21

, ~19!

whereas forr 2,r 1 we obtain

C~r 2ur 1!5
1

Psr 1
S r 2

r 1
D 1/Ps21

. ~20!

By arriving at the turning points, the direction of motion
chosen anew. The time necessary to travel fromr 1 to r 2 is
given by the integration of the ballistic equation of motio
dr/dt5v(r ), whose solution, forv(r )5v0(r /r 0)a/2, is

Dt5
2

22a
v0

21r 0
2a/2ur 2

12a/22r 1
12a/2u. ~21!

The random process considered here is very similar to
genuine Le´vy-walk process of Ref.@17#, which considers a
particle moving between turning points whose relative d
tances are distributed according to a PDF with a power-
tail. The models differ in that~i! here the velocity between
turning points is not constant, but depends on the actual
tance~a fact which was also taken into account when co
sidering the Richardson dispersion@11,13#!, and~ii ! that here
the distribution of possible turning points is strongly asy
metric and depends also on the initial position. Note that h
the power-law distributions appear quite naturally as a re
of the model assumptions, with exponents that depend on
persistence parameterPs . As in earlier works on Le´vy
walks, the diffusional properties depend on the power-l
exponent~on Ps in our case! which dictates if the moments
of the distributions in Eqs.~19! and ~20! exist or diverge.

IV. SIMULATION RESULTS

Let us now turn to the results of simulations. The alg
rithm used is quite straightforward: we generate a seque
of possible turning pointsr i according to the probability dis
tributions, Eqs.~19! and ~20!, and also the correspondin
time intervalsDt i . The position of the particle at a give
moment of timeT is obtained by determining its position a
its last turning point beforeT ~i.e., at the timet i5( iDt i , so
that t i,T,t i1Dt i 11!, and by calculating the position atT
throughr (T)5r i1Dr (T2t i), with Dr (t) being

Dr 5F r 1
12a/26

22a

2
v0r 0

a/2t G2/~22a!

, ~22!

where the sign in Eq.~22! depends on the direction of th
velocity. In what follows we fix the values ofa, v0 , andr 0
to a52/3 andv05r 051 and leavet0 to be a free paramete
of simulations. Figure 1 presents typical trajectories obtain
by the algorithm for persistence parametersPs50.4 andPs
50.1. The initial separation is chosen to be 0.1. The traj
tories display persistences on many scales, emphasizing
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contribution of long Le´vy-walk segments in thePs50.4
case. The figure shows clearly that forPs50.1 the trajectory
has a much larger number of scattering events than in
casePs50.4 and that it corresponds therefore to the dif
sive Richardson limit. The results presented below are de
mined by performing some 33105 to 33106 realizations of
the process.

The simulations confirm that the model leads to a pow
law dependenceR2(t)5R0tg; see Fig. 2. The slopes of a
lines of the figure on double logarithmic scales are consis
with the value ofg53. The value of the prefactorR0 grows
with Ps , and for largePs values approaches the prefact
obtained for a purely ballistic process, for whichR2(t)
5Rmax

2 (t). This relation is shown in Fig. 2 as a thick sol
line. At this point it is convenient to introduce the dime
sionless distancej5R(t)/Rmax(t). In order to elucidate scal
ing with Ps we plotted in Fig. 3^j2(t)& at t51000 as a
function of Ps , which basically follows Eq.~9!.

In order to assess the importance of correlations we h
calculated the correlation function of the radial separat
velocities taken backwards in time~BCF!, as introduced in

FIG. 1. Typical trajectoriesr (t) for two different values of the
persistence parameterPs50.4 andPs50.1. The dots along the tra
jectories denote the turning points, namely, the points of poss
changes in direction.

FIG. 2. A double logarithmic representation ofR2(t) vs t for
different values of the parameterPs : Ps50.1 ~triangles!, Ps50.3
~circles!, Ps51.0 ~diamonds!, and Ps510 ~squares!. The data is
consistent with the slopeg53 expected for the Richardson beha
ior. The thick line indicates the purely ballistic behavior of Eq.~7!.
e
-
r-

r-

nt

ve
n

Ref. @14#. This function is defined asC(t)5^v r(t
2t)v r(t)&/^v r

2(t)& and shows what part of its history is re
membered by a particle in motion. We plot in Fig. 4C(t)
calculated att51000. The function is plotted for values o
Ps ranging fromPs50.1 toPs510.0 and indicates a consid
erable increase in correlation with growingPs . For moderate
values of Ps (Ps50.4) the behavior ofC(t) strongly re-
sembles the experimental findings of Ref.@14#.

Let us now turn to the form of the PDF of distances
follows from our model. This distributionP(j) is plotted in
Fig. 5 as a function of the dimensionless distancej
5r/Rmax(t). The timet is taken to bet51000 andPs varies
from Ps50.1 ~diffusive regime! through an intermediate re
gime with Ps51.0 to Ps510 ~ballistically dominated re-
gime!. Strong differences between these three regimes
clearly evident. Thus, in the diffusive regime the distributi
is strongly peaked at small values ofj, and shows a
stretched-Gaussian decay for largerj values. On the con-
trary, for Ps510 the distribution is peaked nearj51, indi-
cating that most particles have not been scattered and m
ballistically. The transition between the two regimes occ
at Ps51, where the forward step-length distribution, E
~19!, ceases to be normalizable, which implies that a fin
amount of particles can achieve the maximum possible se

le
FIG. 3. The mean squared dimensionless distance^j2& vs Ps

which corresponds to the functionf (Ps) in Eq. ~9!. The dots are the
calculated values and the line is a guide to the eye.

FIG. 4. The backward correlation functionC(t) for t51000 for
different values ofPs : Ps50.1 ~triangles!, Ps50.3 ~circles!, Ps

50.4 ~crosses!, Ps51.0 ~diamonds!, andPs510 ~squares!.
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PRE 61 2721BALLISTIC VERSUS DIFFUSIVE PAIR DISPERSION . . .
rationRmax(t) without being scattered at all. The distributio
P(j) obtained numerically for this case is shown by a dot
line. For t51000 this distribution shows a rather low centr
peak and a flat tail ending with a small local maximum. Th
maximum corresponds to a finite-time effect and is due
the fact that although the majority of particles perform d
fusive motion, some of them can reach the distancej51
without being scattered. The amount of such particles
creases with time. The distributionsP(j) are time indepen-
dent, as can be readily inferred from Fig. 6, where two su
distributions, for Ps50.1 and Ps50.4, are plotted fort
5100 andt51000. Note that forPs50.1 the distribution
follows closely Richardson’s solution, Eq.~11!, also shown
in Fig. 6 by a dashed line.

The results following from our Le´vy-walk model can be
now compared with recent experimental observations in t
dimensional turbulent flows. According to Refs.@14# and
@20# the mean square separation of the pair at timet, which
can be read out of the value of the prefactorR0'0.0025 in
the expression̂ r 2(t)&5R0t3, is approximately 0.06 of the
maximal ballistic separationRmax, which can be obtained
from the mean square velocity of the flow,^v2(r )&5Ar2/3

with A'0.26. From Fig. 3 one readily finds that the value
^r 2(t)&/Rmax

2 50.06 corresponds toPs'0.4. Note that the
form of the BCF calculated for this value ofPs agrees quali-
tatively well with the experimentally determined scalin
form, although the experimental curve is somewhat m
rounded near its maximum att50; compare our Fig. 4 with
Fig. 5 of Ref.@14#. Moreover, the probability distribution o
the interparticle distances in its initial part is well fitted by
stretched-Gaussian expressionp(j)5A exp(2ajz), as in Eq.

FIG. 5. The PDF as a function of the dimensionless distancj
for Ps50.1 ~solid line!, Ps51 ~dotted line!, andPs510.0~dashed-
dotted line!. Note the peaks atj50 for Ps50.1 and atj51 for
Ps510. See text for details.
d
l

o

e-

h

-

f

e

~11!, but with z50.47 anda52.31, i.e., parameters close t
those obtained experimentallyz50.5 anda52.6 @14#. These
findings confirm that our stochastic model captures reas
ably well the most important features of particles’ dispers
by turbulent fields. For the valuePs50.4 the probability
distribution in Eq.~19! has finite both first and second mo
ments. Nevertheless, the pair separation is not purely di
sive and its PDF differs considerably from the Richards
PDF. This stems from the fact that the mean free path of
relative particle motion is approximately 0.4 of the interpa
ticle distance, i.e., the motion is highly weighted by a ball
tic component@20#.

The persistence parameter which corresponds to the
perimental realization in Ref.@14# has been shown to bePs
.0.4. This value has been inferred from the analysis of
data, as discussed above. For consistency, thePs could also
be obtained from the distribution of ballistic events. Th
distribution can be found directly from the pair separati
trajectories. Fitting the distribution to the power law in E
~19! gives the power exponent, and thereforePs . We believe
that such measurements will further clarify the nature of
Richardsont3 law.
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FIG. 6. The PDFsP(j) vs j for Ps50.1 andPs50.4 plotted on
a decimal log-linear scale. The PDFs obtained fort5100~triangles!
and t51000 ~circles! display a scaling behavior. The calculate
PDF for Ps50.1 follows the Richardson stretched-Gaussian P
with z52/3 shown as a dashed line. The PDF forPs50.4 is shown
to fit a stretched Gaussian withz50.47 ~full line!.
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