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Ballistic versus diffusive pair dispersion in the Richardson regime
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Two-particle dispersion in fully developed turbulence is modeled within an asymméticwalk frame-
work which yields the Richardsot? law and which recovers recently observed results on the probability
distribution function of pair separations in two-dimensional turbuld€. Jullien, J. Paret, and P. Tabeling,
Phys. Rev. Lett82, 2872(1999]. The ballistic nature of the Richardson dispersion is discussed in terms of the
persistence parameter and compared with the Richardson diffusive behavior.

PACS numbeg(s): 47.27.Qb, 05.46a

I. INTRODUCTION II. SCALING REGIMES FOR TURBULENT TRANSPORT

. . : . . Well-developed turbulent flows, when neglecting inter-
The mechanism behind the Richardsdrpair separation mittency, are an example of scaling velocity fields, in which

in turbulent flows has been a puzzle since it was reported ifhe tyyo_time correlation function of the relative velocities at
1926 [1], and has led to a large number of works on en-poinis  separated by the distance behaves as
hanced dlfoSIor[Z—Q],_See Ref[lO] for a review. It is Only v(r,tl)v(r,t2)>°<(vz(r))g[(t2—tl)/T(r)], where T(r) is a
recently that emphasis has been put on characterizing thgqince dependent correlation time. Under Kolmogorov

fcrajectories of single particles and of two-pe_lrticle separat_ion§ca"ng’ the mean square relative velocity and the correlation
in flows, both experimentally and theoretically. Analyzing time scale as

and understanding the trajectories could shed light on the
type of stochastic process underlying this strongly enhanced P
diffusion, and could help to distinguish between the various <vz(r)>ocv(2)<—)
proposed models. "o
In general, models for the anomalotislaw can be clas-
sified in terms of local and nonlocal equations for the prob—and
ability distribution functiongPDF9 of the two-patrticle sepa- B
rations. Richardson’s equation, which is a modified diffusion o r
s. Ric nis d diffus (1) To( ) 2
equation with a space-dependent diffusion coefficient, is an )
example of a local description which is diffusive in nature
[1]. A very different approach based on a nonlocal integrowherer, 7o, andv, are some characteristic lengths, times,
differential equation has been formulated in terms of randon@nd velocities. Kolmogorov's considerations lead to the val-
walks in continuous time and the \ngwalk idea[11-13.  ues of a=2/3 and 8= 2/3 which fulfill the equalitys=1
The Levy-walk approach is a probabilistic description of —a/2. This equality relies on the existence of a single di-
anomalous diffusion, based on\estable distributions with mensional parameter, which characterizes the kinematic
slowly decaying tails. In contrast to the diffusive character ofsimilarity of the flow[16]. Thus, if a unique kinematic pa-
the Richardson equation, characteristic fovy.evalks is the rameter= of dimension[L%/T"] exists, which determines
persistence of ballistic motion on all scales. the flow’s behavior in a certain range, then from scaling
One is confronted therefore with two very different considerations it follows immediately that any velociif
mechanisms, which lead to thé law. These mechanisms only scaling and coordinate-dependebehaves av2(r)
differ, however, in their PDFs. Recent experiments on Rich=(Er°~?)?P | so thata=2(1-a/b) in Eq. (1). Further-
arson dispersion in two-dimensional turbulent flow havemore, a characteristic correlation time exists which scales
shown that the results of the PDF corresponding to the Riwith r as 7(r)(Z~r#), so thatg=a/b in Eq. (2), and
chardsont® behavior could not be fitted by the Richardsonthe equality3=1—«a/2 follows. Under the above assump-
expression, and have not been able to find indications fotion the behavior of the flow is characterized by the exponent
Levy walks [14]. a and by the value of the parametgr. The value of the
Here we introduce a model based on asymmetrigyLe dimensionless combinatioRs=uvy7y/ro remains, however,
walks which yields the Richardsdn dispersion and recov- unspecified. It is referred to as a persistence parameter of the
ers the experimentally observed PDF. The current model exflow and plays a central role in describing single particle
tends a previous work on symmetric Wyewalks [13] and  diffusion and pair separatiofi5]. In the Kolmogorov case
demonstrates the relevance of the persistence parameter the unique parameteE is the energy dissipation rate,
troduced in Ref[15] to describe diffusion under the influ- whose dimension i§L>/T2], from which the values ofx
ence of flow velocity fields. The importance of measuring=2/3 andB=2/3 follow.
the trajectories, and the possibility to obtain from them the Let us now recall some general properties of particle dis-
persistence parameter is discussed. persion in such scaling fields. The mean square separation
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of particles is connected with the two-time correlation func-  Although leading to the same Richardson type behavior,
tion of the relative velocitie$10]: R%x=t3, Egs.(5) and(8) depend differently on the parameters
ar2(0) t of the fI_ow. I_Equa;i_oL(B)hcog_equnds ';o Lhe falste_zst po:Tsit_)Ie
. s , separation, in which the direction of the relative velocity
dt —Zfo(v(r(t),t)v(r(t ). t))dt’. &) points outwards the whole time, while the diffusive separa-
tion given by Eq.(5) is slower, due to multiple changes in
If the correlation timer(r) is small enough, the mean free the directions of the velocities. Assuming tiatis the only
pathl(r)=v(r)=(r) is small compared to, so that changes relevant parameter in the problem, we arrive at
in r during the correlation time can be neglected, and both

velocities can be evaluated at the same space point. More- R%(t)=f(Pg)Rya(1), (€)
over, the lower boundary of time integration can be shifted to )
— o, Thus, using Eqs(1) and (2): where the functiorf (Ps) behaves ag(Pg)* P! for Ps<1
andf(Pg)— const forP,>1. Namely, the proportionality co-
d(r3(t)) 5 t t—t") efficient between Eqg5) and(8) is Pg in the Kolmogorov
dt =2(v (”)J_JQ(W)C’ case.
Since, depending on the persistence paramter the
) s [T atp dispersion can be either diffusivd?{<1) or ballistic (P
=2(v(r))7(r)*voTo| — (4 >1) in nature, one expects different probability density

functions(PDFg9 in these two limits. In the diffusive regime
This corresponds to diffusive behavior with a position-the PDF p(r,t) obeys Richardson’s diffusion equation,
dependent diffusion coefficient(r)«r®*#=r43 as pro- Which, assuming spherical symmetry reads
posed by Richardsofl]. Taking, as a scaling assumption
«(r2(t))¥2=R and integrating Eq(4), we find gp 1 4 d-1+a+p ?
ot pd-19r (Kor Var P (10

Uo
R2=<r2<t>>o«(rg+ﬁt

2. ) [212=(a+p)]

' (5) The Green’s function solution of Eq10) has a stretched-
Gaussian formi12]:

so that the mean square separatiogrows asR?x«t? with

y=2[2—(a+ B)]. For the Kolmogorov valuea=B8=2/3, (r )= Zﬁd/ZZd/z—lr(Z/Z) (Ket)~Y7exy] — re

the Richardsony= 3 behavior follows. peT r'(d/2) 0 22K ot
Another picture emerges when one focuses on the ques- (1)

tion of whether the turbulent motion is dominated by a dif-

fusive process, or mainly by persistent ballistic events in thdn Eq. (11) d is the spatial dimension and the parameter

two-particle separation. The parameter for the validity of theobeys

either of the limiting behaviors in the local picture is the

dimensionless perturbative expansion parameltr)/r z=2—(a+p)=2ly. (12

=v(r)7(r)/r=vq71e/ry, Namely, the persistence parameter

of the flow P [15]. Small values oP, correspond to erratic, !N the Kolmogorov case=2/3. In the strongly correlated

diffusive motion, while large values oP imply that the regimePs>1, a simple closed form fap(r,t) is not known

motion is strongly persistent with high weight of ballistic in general. Under certain conditions(r,t) has been ob-

events. This immediately suggests the applicability of thdained in a closed form for a g distribution of ballistic

Lévy-walk scheme. In the latter case the integration of thePersistences which in our model correspond®e-1. This
ballistic equation of motion PDF is characterized by a peak at the wing of the distribution

which, as we later see, is typical for large persistence param-
d eters[17], Ps>1, range dominated by Mg walks. When
giR~v(R) (6)  averaged over the distribution of velocities, Ed1) has
been recoverefil3].
yields The experimental findings in Rdfl4] suggest thap(r,t)
in the Richardson dispersion regime in two-dimensional tur-
5 2— o\ ¥(2=a) o al(o bulence is still a stretched Gaussian, Efjl), but with z
Rma>é(t):(7) (vorgH ¥ @, (1) being close to 0.5, a value significantly lower than the one
which follows from Richardson’s equation.

-1

where we tooky (R)=(v?(r))Y?=v(r/ry)*2 This behav-

ior corresponds to Ill. THE MODEL
42— a) In order to understand how the transition from diffusive to
R2oc| Y% ¢ (g)  ballistic motion depends on the relevant parameters and what
rg’Z the range of validity of Eq.(11) is, we consider a one-

dimensional model, proposed in REE5] which is a stochas-
Remarkably, the exponent is now=4/(2— «), which with  tic model that enables the derivation of ttielaw under a
a= B=2/3 again has the value 3. broad range of system parameters. The approach is heuristic:
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being ballistic forr, large. This model is akin to that of Ref. (18)

[13] in that it also relies on Dey walks, which provide an

extension to Drude’s approach to transport. Thus, we confor r,<r;. The step length distribution, which directly re-
sider the motion of particles on a line, whose velocities argates to the turning points in the scattering procasg,|r ;),

position dependent. We take the magnitude of the velocity tgollows from Eqs.(17) and(18). Forr,>r; we have
be a function ofr only, v(r)=v,(r/ro)*. Moreover, we

the model behaves diffusively for smat} and changes to | ry| s
P(r; r1)=(—)
r

account for the temporal changes of the flow by letting the rp| YPs1

particle change its velocity direction from time to time, while W(rafry)= E(a) ' (19
keeping the velocity’'s magnitude constant. We also let the

probability of such a change depend on the particle’s posiwhereas for ,<r; we obtain

tion. This modifies the model of Rdf13], which assumed a -

symmetric Ley-walk process. Within the model the differ- W(r,|ry)= _(r_z) s (20)
ential probabilitydp of a change duringlt is 22V Pl '

dt . - By arriving at the turning points, the direction of motion is
dp= FOEL (rlrg)~#dt. (13 chosen anew. The time necessary to travel frgnto r is
given by the integration of the ballistic equation of motion,

Here different scattering events are considered to be indepeflf/dt=v(r), whose solution, fop (r) =vo(r/r)*’ is
dent(they are viewed to stem, say, from different edilies 2

The model proposed here accounts for two important At=—u51r5“’2|r§‘“’2—r}““’2|. (22)
properties of dispersion in real turbulent flows) The fact 2-a
that the relative velocity scaleg@s in the Kolmogorov-
Obukhov energy spectrum fojmand (b) that the velocity
correlation time grows with the interparticle distance. The
model is, of course, simple when compared to real flows, bu
nevertheless, as shown later, the predictions of our mod?
compare favorably with the experimental results.

Within a Drude scattering picture we now calculate from
Eq. (13) the probability of being scattered while moving a
distancedr:

The random process considered here is very similar to the
genuine Ley-walk process of Ref[17], which considers a
article moving between turning points whose relative dis-
pnces are distributed according to a PDF with a power-law
ail. The models differ in thafi) here the velocity between
turning points is not constant, but depends on the actual dis-
tance(a fact which was also taken into account when con-
sidering the Richardson dispersidii,13]), and(ii) that here
the distribution of possible turning points is strongly asym-
d 1 metric and depends also on the initial position. Note that here
dp= ————=——(r/ry)~F+edr, (14)  the power-law distributions appear quite naturally as a result
v(r)7(r)  voTo of the model assumptions, with exponents that depend on the

. persistence parameté?.. As in earlier works on [ey
The probability not to be scattered on the way frofor, — waiks, the diffusional properties depend on the power-law

gan be[ obtasiﬂned by the procedure used for the Hertz diStriéxponent(on P. in our casg which dictates if the moments
ution[18,19,

of the distributions in Eqs(19) and (20) exist or diverge.

1
P(r2|r1)=ex;:( _f ZU_T(r/rO)—(5+a/2)dr> IV. SIMULATION RESULTS
r 0’0
! Let us now turn to the results of simulations. The algo-
—exd — p-lBta2)-1 rzr*(‘”“’z)dr rithm used is quite straightforward: we generate a sequence
- s 0 ( ' of possible turning points; according to the probability dis-

tributions, Egs.(19) and (20), and also the corresponding

15 t{ime intervalsAt; . The position of the particle at a given
moment of timeT is obtained by determining its position at
its last turning point beford (i.e., at the timg;=,;At;, so
thatt;<T<t;+At;,,), and by calculating the position at
throughr (T)=r;+Ar(T—t;), with Ar(t) being

Performing the integration, we get f@<1— «a/2:

Pgl r 1-(B+al2)
P = ~ =g ary | ]

2« 22— a)
Pt ry\ (a2 Ar=|rial2e——y rot , (22)
Xexg———=| — . (18 2
_ 3 where the sign in Eq(22) depends on the direction of the
For B=1- a/2 this probability corresponds to velocity. In what follows we fix the values af, vy, andr,

to «=2/3 andvy=ry=1 and leavery to be a free parameter

of simulations. Figure 1 presents typical trajectories obtained
by the algorithm for persistence parametBs=0.4 andP
=0.1. The initial separation is chosen to be 0.1. The trajec-
forr,>r4, and to tories display persistences on many scales, emphasizing the

ro)\ —1Ps
2
P(r2|r1):(a) (17
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FIG. 1. Typical trajectories(t) for two different values of the
persistence parametBg=0.4 andP,=0.1. The dots along the tra- FIG. 3. The mean squared dimensionless distg@ég vs Py
jectories denote the turning points, namely, the points of possiblevhich corresponds to the functidiiP) in Eq. (9). The dots are the
changes in direction. calculated values and the line is a guide to the eye.

contribution of long Ley-walk segments in the®;=0.4 Ref. [14]. This function is defined asC(7)=(v,(t
case. The figure shows clearly that fg=0.1 the trajectory — 7)v,(t))/(vZ(t)) and shows what part of its history is re-
has a much larger number of scattering events than in theembered by a particle in motion. We plot in Fig.C4 7)
caseP,=0.4 and that it corresponds therefore to the diffu-calculated at=1000. The function is plotted for values of
sive Richardson limit. The results presented below are detelR ranging fromPs= 0.1 toPs=10.0 and indicates a consid-
mined by performing some>810° to 3% 10° realizations of  erable increase in correlation with growiRg. For moderate

the process. values of P (Ps=0.4) the behavior ofC(7) strongly re-
The simulations confirm that the model leads to a powersembles the experimental findings of Rf4].
law dependenc&®?(t)=Rqt”; see Fig. 2. The slopes of all Let us now turn to the form of the PDF of distances as

lines of the figure on double logarithmic scales are consisterfbllows from our model. This distributioR (&) is plotted in
with the value ofy= 3. The value of the prefact®, grows Fig. 5 as a function of the dimensionless distange
with Py, and for largePg values approaches the prefactor =r/Ro{t). The timet is taken to be&=1000 andP varies
obtained for a purely ballistic process, for whidR?(t) from P,=0.1 (diffusive regime through an intermediate re-
=RZ2,{1). This relation is shown in Fig. 2 as a thick solid gime Wlth Ps=1.0 to P4=10 (ballistically dominated re-
line. At this point it is convenient to introduce the dimen- gime). Strong d|fferences between these three regimes are
sionless distancé=R(t)/Ra(t). In order to elucidate scal- clearly evident. Thus, in the diffusive regime the distribution
ing with P we plotted in Fig. 3(£%(t)) att=1000 as a is strongly peaked at small values & and shows a
function of Pg, which basically follows Eq(9). stretched-Gaussian decay for largewvalues. On the con-

In order to assess the importance of correlations we haveary, for P=10 the distribution is peaked ne&s=1, indi-
calculated the correlation function of the radial separatiorcating that most particles have not been scattered and move

velocities taken backwards in tim@CF), as introduced in  ballistically. The transition between the two regimes occurs
at Ps=1, where the forward step-length distribution, Eq.

(19), ceases to be normalizable, which implies that a finite

1:} amount of particles can achieve the maximum possible sepa-
9 L
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FIG. 2. A double logarithmic representation Bf(t) vs t for T
different values of the parameté;: P,=0.1 (triangleg, P;=0.3
(circles, Ps=1.0 (diamond$, and P,=10 (squares The data is FIG. 4. The backward correlation functi@{( ) for t=1000 for

consistent with the slopg=3 expected for the Richardson behav- different values ofP,: P,=0.1 (triangles, Ps=0.3 (circles, Pg
ior. The thick line indicates the purely ballistic behavior of Ed. =0.4 (crossep P,=1.0 (diamond$, and P,=10 (squarek
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FIG. 5. The PDF as a function of the dimensionless distance ~ FIG. 6. The PDF®(¢) vs £ for Ps=0.1 andPs=0.4 plotted on
for Ps=0.1(solid line), Ps=1 (dotted ling, andP,=10.0(dashed- @ decimal log-linear scale. The PDFs obtained fed00(triangles

dotted lin@. Note the peaks af=0 for P,=0.1 and até=1 for and t=1000 (circles display a scaling behavior. The calculated
P.=10. See text for details. PDF for P,=0.1 follows the Richardson stretched-Gaussian PDF

with z=2/3 shown as a dashed line. The PDF Far=0.4 is shown
to fit a stretched Gaussian wii=0.47 (full line).
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ration R,,,(t) without being scattered at all. The distribution
P (&) obtained numerically for this case is shown by a dotted

. N A (11), but withz=0.47 anda=2.31, i.e., parameters close to
line. Fort=1000 this distribution shows a rather low central y "\ 0.0 o experimentaliy= 0.5 anda=2.6[14]. These
peak and a flat tail ending with a small local maximum. This

maximum corresponds to a finite-time effect and is due tc;‘indings confirm that our stochastic model captures reason-
the fact that although the majority of particles perform dif- ably well the most important features of particles’ dispersion

. : i by turbulent fields. For the valu®,=0.4 the probability
wi?;]\;eutmboé:g;' Ssgggrgé tr_:_irg ;;T;Jﬁ?co? ;Tlihdlsgiﬁcegs de(_jistribution in Eq.(19) has finite both first and second mo-
creases with time. The distribution(£) are time indepen- ments. Nevertheless, the pair separation is not purely diffu-

dent, as can be readily inferred from Fig. 6, where two suc sive and its PDF differs considerably from the Richardson
o e r]DDF. This stems from the fact that the mean free path of the
distributions, for Ps=0.1 and Ps=0.4, are plo_ttec_i fqrt relative particle motion is approximately 0.4 of the interpar-
=100 andt=1000. Note that foPs=0.1 the distribution 0y gistance, i.e., the motion is highly weighted by a ballis-
foIIo_ws closely R|chard_son s solution, E¢L1), also shown tic componen{20].
in Fig. 6 by a dasheq line. . The persistence parameter which corresponds to the ex-
The results foI.Iowmg from our Ley-walk model' can'be perimental realization in Ref14] has been shown to e
now compared with recent experimental observations in two-:0 4. This value has been inferred from the analysis of the
dimensional turbulent flows. According o Refsl4] "’F”d daté, 'as discussed above. For consistencyPtheould also
[20] the mean square separation of the pair at til’TWhICh be obtained from the distribution of ballistic events. This
can be read out of the value of the prefadRyr-0.0025 in distribution can be found directly from the pair separation

- 2 _ 3 . .
the expressior{r=(t)) =R,t", is approximately 0.06 of the trajectories. Fitting the distribution to the power law in Eq.

maximal ballistic separatiofR,,,,, Which can be obtained 19) qi th t and therefere We beli
from the mean square velocity of the flogw?(r))=Ar?? (19) gives the power exponent, and therefbre We believe

) . oo that such measurements will further clarify the nature of the
with A=~0.26. From Fig. 3 one readily finds that the value of bt

P 3
(r?(t))/R2,=0.06 corresponds t®;~0.4. Note that the Richardsort™ law.
form of the BCF calculated for this value B agrees quali-
tatively well with the experimentally determined scaling
form, although the experimental curve is somewhat more The authors gratefully acknowledge the support of the
rounded near its maximum at=0; compare our Fig. 4 with  Alexander von Humboldt Stiftung, of the German-Israeli
Fig. 5 of Ref.[14]. Moreover, the probability distribution of Foundation(GIF), of the DFG through SFB428, and of the
the interparticle distances in its initial part is well fitted by a Fonds der Chemischen Industrie. Valuable discussions with

stretched-Gaussian expressipf¥) =A exp(—a&), as in Eq.  P. Tabeling are acknowledged.
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