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Dissipative and dispersive behaviors of lattice-based models for hydrodynamics
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Both dissipation and dispersion are present in many complex systems; their interactions through nonlinearity
can lead to interesting features. We investigate in this paper the dissipation-dispersion interactions that exist in
lattice-based kinetic models for hydrodynamics. The classical Chapman-Enskog expansion is used to derive the
dispersion coefficients at third order of Knudsen number. Unlike the dissipation coefficigcsity) that is
alwayspositive the dispersion coefficient can be eitlparsitiveor negative It would be interesting to know if
there is any other physics in these models as compared with the traditional dispersionless Navier-Stokes
dynamics. Traveling wave solutions in one dimension are studied and two different solutions have been found:
(1) monotonic shock solutions ar(@) oscillatory shock solutions, according to different conditions. In two-
and three-dimensional systems, whether or not these oscillatory behaviors caused by the interactions between
nonlinearity, dissipation, and dispersion have anything to do with vortex cas(didss or inversgwould be
an interesting question and we leave it for future studies.

PACS numbds): 47.11+j, 51.10+y

[. INTRODUCTION ond motivation is to investigate the physical effects of these
high-order terms since they exist in simulations. Since these
For many complex systems we have to use computehigh-order terms represent the dispersion, it is interesting to
simulations to understand some behaviors of the systemstudy the consequences of interactions between nonlinearity,
Though computers become more and more powerful, lots oflissipation, and dispersion, which are all present in many
effort has been made to design simple and efficient numericomplex systems.
cal methods. A lattice-gas automata model introduced in The paper is organized as follows. In Sec. Il, we will
1986 is such a method to simulate hydrodynarficg]. Lat-  derive the Burnett-like third-order equations, the correspond-
tice Bhatnagar-Gross-Krook modélattice BGK) [3-5]was ~ ing equations for continuous time and space, but discrete
introduced to overcome some shortcomings of lattice-gas awelocity kinetic BGK models will be given in Sec. IlI; a
tomata models while preserving strength. The advantagdiiear dispersion relation and shock wave relations are pre-
and disadvantages of the latter have been well studg. sented in Sec. IV and Sec. V will offer a theoretical analysis
It is genera”y believed that Boltzmann equation is moreOf a traveling wave solution and its Stability; numerical re-
fundamental than hydrodynamic equations, and the classicgHlts will be shown in Sec. VI and the last section is for a
kinetic theory provides a systematic derivation of the Eulerdiscussion and concluding remarks.
Navier-Stokes, Burnett, and super-Burnett equations as suc-
cessive approximations of the Boltzmann equation in the or-
der of Knudsen number[8]. The most difficult task in using Il. CHAPMAN-ENSKOG EXPANSION: THIRD-ORDER
the Burnett or super-Burnett equations is that additional HYDRODYNAMICS
boundary conditions are required to find the solutions, and

there is no systematic way of imposing these additional con- The time evolution of I_attlce-based hydr_odynamlc m_odels
ditions correctly{8]. consists of two alternating substeps: neighbor-to-neighbor

In lattice-based models, it is also well established that thé)lrlopagatlion of mhoving partit;les aﬂd collis.ional inter.actiqn Ohf
Navier-Stokes equation can be derived using the Chapma ol partlc ez 1aC§ the same site. The starting equation is the
Enskog expansion up to second ord2r3]. Many authors ollowing [4,10]
further asserted that the Burnett-like equation could be ob- FR+E t+ 1) =F (%) + wl FEAK 1) — (Rt 1
tained by performing at higher order using the Chapman- (XH G D =HX D+l XD =fikD], - @)
Enskog expansiof2,7,9. One motivation of this paper is to \heref; is the mean density of particles with discrete veloc-
carry out these higher-order Chapman-Enskog expansions g ¢ (i=0,1,2 ... B), which belongs to a predetermined
investigate whether or not it is consistent to do so. Attentiorypite set andw the relaxation parameter, which limits to 0
should be paid, however, when the classic Chapman-Enskog ,<2. The key point is how to choose the equilibrium
expansion is applied because of the noncommutative featu'i?ensityffq that depends only on the conserved and physi-

of cross derivatives of two tlme.scales. The Burnett-llkeca"y meaningful quantities. We use the safféas that of
equations could be derived for lattice BGK models. The S€CRhefs [4], [10]
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where cg is a constant and, a weighting factor that are d,.p=0, (10)
given in the following table ford-dimensionalb velocity 2
DdQb models for the sake of self-containedn€3gt,10: 0, (pUL) = V[0 5p(pUs) + dap(pUp)], (12)
Model to ty ta ts ty ¢ wherev is the shear viscositfy=c2/2[ (2/w) —1]}.

2 1 1 At the third ordere®, the Taylor expansion gives the fol-
D1Qs3 3 ° 0 0 ? 3 lowing lengthy equation,
D1Q5 5 s 0 0 B 1
D2Q7 3 i 0 0 0 ; O, FEH Cia 0o f(2 4 a2+ gy 1Y
D2Q9 3 3 % 0 0 3 . eq
D2Q13 z . i 0 = Z +3 ((9’[1’[2+ I, T 2Cia'9t2a) fi
D3Q15 5 s 0 7 0 3 1 (1)
D3Q33 ﬁ) 7s %5 0 30 % +5 (9t,t,t, 7 3Ciadt,t 0t 3CiaCipdt ap
D4Q25 3 0 3 0 0 3

+C aci,BCi yﬁaﬁy) f ?q

The hydrodynamic density and velocityd are defined by = — of® (12
i
B B B B
2 2 - Special attention is needed for the underlined terms. Sum-
f.=> fea— f = 9= 5.
2’0 ' Z’o e i=20 Gl i=§:o Gfit=pd. ming the cross derivative; ; fin the above equation over
- i, we get

We assume a weak deviation from the local equilibrium
f:eo(i!t)v a1lt2(p)'

fi(X, ) =YK+ ef V(K1) + 2f2(X,t)++--, (4 It results in two different results by using the first- and

_ _ . second-order equatiori8)—(11). (1) If we take the deriva-
whereeis a smallldlmens[onlgss numb@nudsen nL_lmbe)r tive overt, first, thent,,d;, (p)=0 is obtained;2) if we
The_space and time derivatives are expressgd_ln terms ofi e the opposite order, then we have,, (p)=
multiple-scale technique up to the third order in time, 12

—vd,[dpp(pUs) +dap5(pUp) ].

d,=€d,, (5) It is obvious that these two differential operators are not
commutative,
— 2 3
Oy = €dy + €0y, + €0, (6) () ()
12 2'1

In classical kinetic theory, Euler, Navier-Stokes, Burnett, anthere is eitherp or pu,, . Fortunately, as it is shown in the
super-Burnett equations constitute the successive approxim%-ngthy equatiof(lZ)ptﬁét the sum o’f these two terms is
tions of the Boltzmann equation in the order of KnUdS(':'r'important and all other terms involved can be uniquely de-

numbere. Like in class!c kinetic theory, the lattice-based termined. After a tedious algebraic calculation, we obtain the
models for hydrodynamics use the Chapman-Enskog eXPalk: 4 order &3 equations

sion in order to derive the large-scale dynamical equations.

The basic ingredients of the derivation are the same as in c2

Refs.[2, 3, 7, 11, 12 The steps are as follow&l) Use the O p= Eaaﬁﬁ(pua), (13
double Taylor expansion in time and space of the evolution

Eqg. (1). (2) Replace the densit§; with the approximation cti12 12

(4). (3) Substitute the time and space derivatives with the d.(puy)= —S<—2— —+1)<?a/33(9)- (14)
multiple-scale techniqué5) and (6). (4) Regroup terms in $ 6lo° w

power orders ot.  (5) Sum over and use the conservations the wave vector expansion method has been used by Luo
(3). The conservation quantities lead to the constraints OR¢ a1, [13] for the two-dimensiona(2D) Frisch-Hasslacher-

high-order correction${!, Pomeau model and by Coevordenal. [14] for the four-
B B dimensional (4D) face-centered-hyper-cube model. Up to
() — < c(i)_ . second order of smak there is an agreement of the disper-
Z‘o fi’=0, Z’o cfi’=0, j=0. ™ sion relations between the wave vector expansions and the

present study.
The first-ordere equations are the inviscid Euler equations,  The final Burnett-like dynamical equatiof®) are the fol-
lowing:
atlp+&a(pua):0! (8)
ﬁtp+ 0’)a(pua): BO‘?aﬂB(pua)i (15)

_ A2
91, (PUa) +0p(pUallp) = = C5dap O 5(pu) + I5(pUaUg) = — Gyt 15 pUa) + sl pUp)]

and the second-orde# yields the dissipative terms, +B1dupp(p), (16)
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whereB, andB, are dispersion coefficients, p1(Ur—Vg) = po(u—Vy), (22)
2 2 4
v—% E—l B _% B _% 1_2_1_2+1 _ p1U1(Uy—Ve)+Cip1=pols(Up— V) +C2ps, (23
2lw )0 7% 6 Tl 6lw?

(17)  where subscripts 1 and 2 denote the downstream and up-

) ] stream conditions. After simplification by using the density
Bo=const-0 comes from the time and space discreteness ofytig R (defined aR=p,/p,), we have

lattice-based models. Integrating Ed5) over space, the to-
tal mass is still conserved, the same is true for the momen-

tum in Eqg.(16). Indeed, we can use variable changes, that Ve=u,+ &, (24)

pu,=pu,—ByA(pu,) (andp=p), to make the continuity VR

equation(15) in the usual form, while it is not trivial to

figure out the form for the momentum equation. U —u :Ec (25)
Higher-order(fourth and up dynamical equationésuper- ro2 JR %

Burnett-like) [8] can be obtained while tremendous care has
to be taken since more noncommutative operators are in-

volved and results will be published elsewhere. V. TRAVELING WAVE ANALYSIS

FOR SHOCK STRUCTURE

. DISCRETE KINETIC BGK MODELS IN CONTINUOUS In Sec. IV we studied the linear dispersion relation by
TIME AND SPACE omitting the nonlinear term and the Rankine-Hugoniot rela-
tions by ignoring the viscous and dispersive terms. Across a

ical artifact without phveical 4 L at BGK&]OCk wave, both nonlinear and high-order derivatives terms
numerical artiiact without physical soundness. Latlice are important and cannot be neglected. We consider one-

models can be considered as a variant of a finite dncferenc8imensional cases and assume that a traveling wave solution

scheme, and it may be arguable that these dispersion terMSicts that depends only on=x—Vt (V is the traveling
are numerical. This is only partially correct since kinetic

models with continuous time and spalkb| have similar ?gﬁ)ﬁ;ga;;:ggiﬁzx tggs(sf;czli(nvc\j/a/g).cajse\Ne getthe
terms as Burnett first worked out more than 60 years ago. In '

In finite difference schemes, dispersion terms appear as

what follows, we outline the results of discrete kinetic BGK — pV+pu—By(pu),,=Kj, (26)

models that use the differential form of the evolution equa-

tion (1), —puV+pu®+cip—2u(pu) ,~Ba(p) ,,=Ka,  (27)
O Fi(,%) + €, fi(1,%) = o(fF9=1)). (18

whereK; and K, are integration constants that depend on
boundary conditions. Here we use the shock wave condi-
tions. Two 7-independent solutiong=p;, u=u; and p
=p,, U=U, are the two fixed points of the above dynamical

The same form of equations as E@$5) and (16) is ob-
tained, the only changes come from transport coefficients,

c§ c‘s‘ Eqgs.(26) and(27). Linearizing these equations around fixed
V=" By=0, Blzﬁ. (199  points, we get the eigenvalue equation
. . 1 1 2vV
These results are independent of any numerical schemes, M=+ = (c2—u?) |\2- A
only the Chapman-Enskog expansion and physical conserva- Bo Bi BoB:
tions are used. 1
+ (c2—u2+2u,V-V?)=0, (28)

IV. LINEAR DISPERSION RELATION BoB1

AND SHOCK CONDITIONS whereu, is the steady solution of velocity corresponding to
Neglecting the nonlinear term in E¢L6) and using the €ither the downstreaming velocity or that of upstreaming
Fourier analysis eXf$* %) in one dimensior(() is the com- U2 of a shock wave. The stability of fixed points depends on

plex frequency an# real wave numbey we obtain the linear the sign of the real part of; if the imaginary part oh is not
dispersion relation from Eq$15) and (16), zero, then an oscillatory solution appears. This fourth-order

polynomial equation is difficult to solve and we have to use
02—i20k?Q— (1+Bok?)(c2+B1k»)k?=0. (200  numerical solutions.
For degenerated systentsither =0 or B,=0 or B;

The sound speed is defined @s= Re(2)/k and we get, =0), we can obtain the analytical criterion determining the
s . - boundary between monotonic and oscillatory shocks. For in-
Cs=V(1+Bok?)(ci+Bk?) — vk, (21)  stance, let us consider the continuous time and space discrete

) ) ) ] . kinetic BGK models. WithB,=0, we have the eigenvalue
Numerical simulations will be used to check this formula. equation

The Rankine-Hugoniot relations across a shock must be
satisfied. From the continuity and momentum equations and le2+2yv>\—(c§—ui +2u, V—V?)=0. (29
assuming a moving shock at speed\df, these relations
read as The solution is
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FIG. 1. Dispersion relation: the sound spegd/s wave number FIG. 3. The density profiles witR=2.0 att=2000. Different
k using differentw=0.75, 1.00, 1.50. Curves are predictions and,ajyes ofw are used: + for w=0.25,01 for 0.50,0 for 0.75, and
Eosl?)ts are simulations: U for @=0.75, O for 1.00, andx for @ for 1.25. The model D1Q5 on a lattice of 8192 nodes is utilized.

VI. NUMERICAL RESULTS

— W+ r2V2+By(c2—uZ +2u, V-V?)

A= . (30 We use the one-dimensional five-velocity modelQ5)
By to numerically study the interactions of dissipation and dis-
The determinant is persion. The first verification is to measure the dispersion
o2 5 5 relation(21). Figure 1 shows the sound spe@glin function
A=vVo+By(cs—uy +2u, V—V7). of wave numbek. Continuous curves are theoretical predic-

o . tions and points are numerical simulations, a satisfactory
xteh rl?lv\;:ﬁancsstudy the stability of the two steady SOIu“onSagreement is achieved. The deviationGffrom the disper-
' sionless dynamics can be as high as 4%. In the following
R—1 simulations, we consider a lattice of 8192 nodes and use the
Cs, upstreaming density,, velocity u, (=0 for simplicity), and
VR that of downstreamp;,u;. From Sec. V, we haveV
R—1 =Rc, andu; = (R-1/R)c,. The initial shock is located at
A= ych§+ BlT cg x=2048. The control parameters are now the density Rtio
characterizing the strength of shock and relaxation parameter
R2+2R—2 Cg o determining the viscosity and dispersion coefficier3;
= ”’R2>0, when R>1.0. (31)  (Bg is a constant
@ In Fig. 2, the density profile is presented at tinhe

U* ZUJ_:

This solution is unstable since at least one rook @6 posi- =2000 steps foR=1.5 and differentw ranging from 0.75,
tive. 1.00, 1.25, and 1.75. Monotonic shock wave solutions for
0=0.75, 1.00, 1.25 while oscillatory foab=1.75 are cap-
U, =uz=0, tured. Figure 3 is similar to Fig. 2 whil®=2.0 and w

=0.25, 0.50, 0.75, and 1.25. We notice that the higher den-
sity ratio R results in more pronounced dispersion effects
while comparing these two pictures. It can be easily ex-
plained as follows: largelR makes the shock thinner,
The solution is stable since the real partlofis negative  which in turn causes the third-order dispersion terms to be
while oscillations appear wheR> 2.0 for the imaginary part more effective; these features are very reminiscent of the
of \ is not zero. Otherwise, monotonic shock persists wherKdV soliton simulations of Zabusky and KrusKdl6].
1.0<R<2.0. In a certain case, we observe an overshoot of density right
after the shock. This is shown in Fig. 4 witR=2.4, w

6
Cc
A=1*RZ+B(1-R)c2=(2-R) w—§<v2Rc§. (32)
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values ofw are used: + for w=0.75, for 1.00,0 for 1.25, and FIG. 4. The density profile wittR=2.4 and w=0.675 att

@ for 1.75. The model D1Q5 on a lattice of 8192 nodes is utilized.=1000. A single hump of density right after the shock is observed.
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FIG. 5. Density profile wittR=2.0 andw=1.29 att=2000. A FIG. 6. The relation of density rati® with the relaxation pa-
saturated oscillation after the shock is captured. rameterw that separates the monotonic shock wave solutions and

R oscillatory shock wave solutions. A sharp change aroutdd
=0.675. Appert and d’'Humies[17] found a similar density =1.815 is numerically found. Above the curve, the solutions are
profile when they studied the liquid-gas interface; it was therscillatory solutions, while below it the solutions are monotonic
not quite understood. We suggest that the third-order dispegshock wave solutions.
sion might be responsible for it. A natural question to askis = . ) ) o
what the density profile looks like if the dispersion is strong.qer'vaf['on since the_ Cross tl_me_derlva'glves are not commuta-
A case WithR= 2.0, w=1.29 is presented in Fig. 5. Oscilla- tive. Linear ql|spers_|on relation is obtalne_d and confl_rmed by

numerical simulation. Though the derived equations are

tion attains a saturation that is similar to the boundary- uite general, we used a one-dimensional mdBEIOS) to
generated solitary waves studied by Chu, Xiang, and Barard 9 '

. . study the interactions of dissipation and dispersion. Usin
sky by using j[he Kdv equat|0|ﬁ18].. In the presence of shocyk wave boundary conditior?s, two regimesphave been og-
qguadratic nonlinearity, the monotonic shock regime COMe5arved: monotonic shocklissipation dominatingand os-
sponds to the dissipation dominating regime, while the OSC"'ciIIatory shocks(dispersion effective The boundary of the
latory solutions correspond to the dispersion effective reyq regimes is numerically determined. Density overshoot
gime. It would be interesting to find the boundary betweeny, ;g and saturatiotoscillatory are also captured as con-
these two regimes in the-« diagram, the numerical result g ences of interactions between nonlinearity, dissipation,
is shown in Fig. 6. There is a sharp starting aroulRd g gispersion. Whether or not the newly derived third dis-
=1.815, which roughly corresponds @=1.1 at whichBy  persion terms in two and three dimensions can help us to
changes its sign. understand vortex cascades in turbulence is a quite interest-

ing and debatable question.
VII. DISCUSSIONS AND CONCLUDING REMARKS
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