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Dissipative and dispersive behaviors of lattice-based models for hydrodynamics

Yue-Hong Qian1,* and Shi-Yi Chen2
1Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 22 January 1999!

Both dissipation and dispersion are present in many complex systems; their interactions through nonlinearity
can lead to interesting features. We investigate in this paper the dissipation-dispersion interactions that exist in
lattice-based kinetic models for hydrodynamics. The classical Chapman-Enskog expansion is used to derive the
dispersion coefficients at third order of Knudsen number. Unlike the dissipation coefficient~viscosity! that is
alwayspositive, the dispersion coefficient can be eitherpositiveor negative. It would be interesting to know if
there is any other physics in these models as compared with the traditional dispersionless Navier-Stokes
dynamics. Traveling wave solutions in one dimension are studied and two different solutions have been found:
~1! monotonic shock solutions and~2! oscillatory shock solutions, according to different conditions. In two-
and three-dimensional systems, whether or not these oscillatory behaviors caused by the interactions between
nonlinearity, dissipation, and dispersion have anything to do with vortex cascades~direct or inverse! would be
an interesting question and we leave it for future studies.

PACS number~s!: 47.11.1j, 51.10.1y
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I. INTRODUCTION

For many complex systems we have to use comp
simulations to understand some behaviors of the syste
Though computers become more and more powerful, lot
effort has been made to design simple and efficient num
cal methods. A lattice-gas automata model introduced
1986 is such a method to simulate hydrodynamics@1,2#. Lat-
tice Bhatnagar-Gross-Krook models~lattice BGK! @3–5# was
introduced to overcome some shortcomings of lattice-gas
tomata models while preserving strength. The advanta
and disadvantages of the latter have been well studied@6,7#.

It is generally believed that Boltzmann equation is mo
fundamental than hydrodynamic equations, and the class
kinetic theory provides a systematic derivation of the Eu
Navier-Stokes, Burnett, and super-Burnett equations as
cessive approximations of the Boltzmann equation in the
der of Knudsen numbere @8#. The most difficult task in using
the Burnett or super-Burnett equations is that additio
boundary conditions are required to find the solutions, a
there is no systematic way of imposing these additional c
ditions correctly@8#.

In lattice-based models, it is also well established that
Navier-Stokes equation can be derived using the Chapm
Enskog expansion up to second order@2,3#. Many authors
further asserted that the Burnett-like equation could be
tained by performing at higher order using the Chapm
Enskog expansion@2,7,9#. One motivation of this paper is to
carry out these higher-order Chapman-Enskog expansion
investigate whether or not it is consistent to do so. Attent
should be paid, however, when the classic Chapman-Ens
expansion is applied because of the noncommutative fea
of cross derivatives of two time scales. The Burnett-li
equations could be derived for lattice BGK models. The s
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ond motivation is to investigate the physical effects of the
high-order terms since they exist in simulations. Since th
high-order terms represent the dispersion, it is interesting
study the consequences of interactions between nonlinea
dissipation, and dispersion, which are all present in ma
complex systems.

The paper is organized as follows. In Sec. II, we w
derive the Burnett-like third-order equations, the correspo
ing equations for continuous time and space, but disc
velocity kinetic BGK models will be given in Sec. III; a
linear dispersion relation and shock wave relations are p
sented in Sec. IV and Sec. V will offer a theoretical analy
of a traveling wave solution and its stability; numerical r
sults will be shown in Sec. VI and the last section is for
discussion and concluding remarks.

II. CHAPMAN-ENSKOG EXPANSION: THIRD-ORDER
HYDRODYNAMICS

The time evolution of lattice-based hydrodynamic mod
consists of two alternating substeps: neighbor-to-neigh
propagation of moving particles and collisional interaction
all particles at the same site. The starting equation is
following @4,10#

f i~xW1cW i ,t11!5 f i~xW ,t !1v@ f i
eq~xW ,t !2 f i~xW ,t !#, ~1!

wheref i is the mean density of particles with discrete velo
ity cW i( i 50,1,2, . . . ,B), which belongs to a predetermine
finite set andv the relaxation parameter, which limits to
<v<2. The key point is how to choose the equilibriu
density f i

eq that depends only on the conserved and phy
cally meaningful quantities. We use the samef i

eq as that of
Refs.@4#, @10#,

f i
eq5tprS 11

ciaua

c
s

1
~ciacib2cs

2dab!uaub

2cs
4 D , ~2!g-
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where cs is a constant andtp a weighting factor that are
given in the following table ford-dimensionalb velocity
DdQb models for the sake of self-containedness@3,4,10#:

Model t0 t1 t2 t3 t4 cs
2

D1Q3 2
3

1
6 0 0 0 1

3

D1Q5 1
2

1
6 0 0 1

12 1
D2Q7 1

2
1
12 0 0 0 1

4

D2Q9 4
9

1
9

1
36 0 0 1

3

D2Q13 2
5

8
75

1
25 0 1

300
2
5

D3Q15 2
9

1
9 0 1

72 0 1
3

D3Q19 1
3

1
18

1
36 0 0 1

3

D3Q33 43
150

4
75

2
75

1
150

1
300

2
5

D4Q25 1
3 0 1

36 0 0 1
3

The hydrodynamic densityr and velocityuW are defined by

(
i 50

B

f i5(
i 50

B

f t
eq5r, (

i 50

B

cW i f i5(
i 50

B

cW i f i
eq5ruW . ~3!

We assume a weak deviation from the local equilibriu
f i

eq(xW ,t),

f i~xW ,t !5 f i
eq~xW ,t !1e f i

~1!~xW ,t !1e2f i
~2!~xW ,t !1¯ , ~4!

wheree is a small dimensionless number~Knudsen number!.
The space and time derivatives are expressed in term
multiple-scale technique up to the third order in time,

]a5e]a , ~5!

] t5e] t1
1e2] t2

1e3] t3
. ~6!

In classical kinetic theory, Euler, Navier-Stokes, Burnett, a
super-Burnett equations constitute the successive approx
tions of the Boltzmann equation in the order of Knuds
number e. Like in classic kinetic theory, the lattice-base
models for hydrodynamics use the Chapman-Enskog ex
sion in order to derive the large-scale dynamical equatio
The basic ingredients of the derivation are the same a
Refs.@2, 3, 7, 11, 12#. The steps are as follows.~1! Use the
double Taylor expansion in time and space of the evolut
Eq. ~1!. ~2! Replace the densityf i with the approximation
~4!. ~3! Substitute the time and space derivatives with
multiple-scale technique~5! and ~6!. ~4! Regroup terms in
power orders ofe. ~5! Sum overi and use the conservation
~3!. The conservation quantities lead to the constraints
high-order correctionsf i

( j ) ,

(
i 50

B

f i
~ j !50, (

i 50

B

cW i f i
~ j !50, j .0. ~7!

The first-ordere equations are the inviscid Euler equation

] t1
r1]a~rua!50, ~8!

] t1
~rua!1]b~ruaub!52cs

2]ar ~9!

and the second-ordere2 yields the dissipative terms,
of

d
a-

n-
s.
in

n

e

n

] t2
r50, ~10!

] t2
~rua!5n@]bb~rua!1]ab~rub!#, ~11!

wheren is the shear viscosity$n5c2/2@(2/v)21#%.
At the third ordere3, the Taylor expansion gives the fo

lowing lengthy equation,

] t3
f i

eq1cia]a f i
~2!1] t1

f i
~2!1] t2

f i
~1!

1 1
2 ~] t1t2

1] t2t1
12cia] t2a! f i

eq

1 1
2 ~] t1t1

12cia] t1a1ciacib]ab! f i
~1!

1 1
6 ~] t1t1t1

13cia] t1t1a13ciacib] t1ab

1ciacibcig]abg! f i
eq

52v f i
~3! . ~12!

Special attention is needed for the underlined terms. S
ming the cross derivative] t1t2

f i
eq in the above equation ove

i, we get

] t1t2
~r!.

It results in two different results by using the first- an
second-order equations~8!–~11!. ~1! If we take the deriva-
tive over t2 first, thent1 ,] t2t1

(r)50 is obtained;~2! if we

take the opposite order, then we have] t1t2
(r)5

2n]a@]bb(rua)1]ab(rub)#.
It is obvious that these two differential operators are n

commutative,

] t1t2
~• !Þ] t2t1

~• !

where• is eitherr or rua . Fortunately, as it is shown in th
lengthy equation~12! that the sum of these two terms
important and all other terms involved can be uniquely d
termined. After a tedious algebraic calculation, we obtain
third-ordere3 equations,

] t3
r5

cs
2

6
]abb~rua!, ~13!

] t3
~rua!5

cs
4

6 S 12

v22
12

v
11D ]abb~r!. ~14!

The wave vector expansion method has been used by
et al. @13# for the two-dimensional~2D! Frisch-Hasslacher-
Pomeau model and by Coevordenet al. @14# for the four-
dimensional ~4D! face-centered-hyper-cube model. Up
second order of smallk there is an agreement of the dispe
sion relations between the wave vector expansions and
present study.

The final Burnett-like dynamical equations~8! are the fol-
lowing:

] tr1]a~rua!5B0]abb~rua!, ~15!

] t~rua!1]b~ruaub!52cs
2]ar1n@]bb~rua!1]ab~rub!#

1B1]abb~r!, ~16!
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whereB0 andB1 are dispersion coefficients,

n5
cs

2

2 S 2

v
21D , B05

cs
2

6
, B15

cs
4

6 S 12

v22
12

v
11D .

~17!

B05constÞ0 comes from the time and space discretenes
lattice-based models. Integrating Eq.~15! over space, the to
tal mass is still conserved, the same is true for the mom
tum in Eq. ~16!. Indeed, we can use variable changes, t
rua5rua2B0D(rua) ~and r̄5r), to make the continuity
equation~15! in the usual form, while it is not trivial to
figure out the form for the momentum equation.

Higher-order~fourth and up! dynamical equations~super-
Burnett-like! @8# can be obtained while tremendous care h
to be taken since more noncommutative operators are
volved and results will be published elsewhere.

III. DISCRETE KINETIC BGK MODELS IN CONTINUOUS
TIME AND SPACE

In finite difference schemes, dispersion terms appear
numerical artifact without physical soundness. Lattice BG
models can be considered as a variant of a finite differe
scheme, and it may be arguable that these dispersion t
are numerical. This is only partially correct since kine
models with continuous time and space@15# have similar
terms as Burnett first worked out more than 60 years ago
what follows, we outline the results of discrete kinetic BG
models that use the differential form of the evolution equ
tion ~1!,

] t f i~ t,xW !1cia]a f i~ t,xW !5v~ f i
eq2 f i !. ~18!

The same form of equations as Eqs.~15! and ~16! is ob-
tained, the only changes come from transport coefficient

n5
cs

2

v
, B050, B15

2cs
4

v2 . ~19!

These results are independent of any numerical sche
only the Chapman-Enskog expansion and physical conse
tions are used.

IV. LINEAR DISPERSION RELATION
AND SHOCK CONDITIONS

Neglecting the nonlinear term in Eq.~16! and using the
Fourier analysis expi(Vt2kx) in one dimension~V is the com-
plex frequency andk real wave number!, we obtain the linear
dispersion relation from Eqs.~15! and ~16!,

V22 i2nk2V2~11B0k2!~cs
21B1k2!k250. ~20!

The sound speed is defined asCs5Re(V)/k and we get,

Cs5A~11B0k2!~cs
21B1k2!2n2k2. ~21!

Numerical simulations will be used to check this formula
The Rankine-Hugoniot relations across a shock mus

satisfied. From the continuity and momentum equations
assuming a moving shock at speed ofVs , these relations
read as
of

n-
t

s
n-

a

e
ms

In

-

es,
a-

e
d

r1~u12Vs!5r2~u22Vs!, ~22!

r1u1~u12Vs!1cs
2r15r2u2~u22Vs!1cs

2r2 , ~23!

where subscripts 1 and 2 denote the downstream and
stream conditions. After simplification by using the dens
ratio R ~defined asR5r1 /r2), we have

Vs5u11
cs

AR
, ~24!

u12u25
R21

AR
cs . ~25!

V. TRAVELING WAVE ANALYSIS
FOR SHOCK STRUCTURE

In Sec. IV we studied the linear dispersion relation
omitting the nonlinear term and the Rankine-Hugoniot re
tions by ignoring the viscous and dispersive terms. Acros
shock wave, both nonlinear and high-order derivatives te
are important and cannot be neglected. We consider o
dimensional cases and assume that a traveling wave solu
exists that depends only onh5x2Vt (V is the traveling
speed that is equal toVs in the shock wave case!. We get the
following equations from Eqs.~15! and ~16!:

2rV1ru2B0~ru!hh5K1 , ~26!

2ruV1ru21cs
2r22n~ru!h2B1~r!hh5K2 , ~27!

whereK1 and K2 are integration constants that depend
boundary conditions. Here we use the shock wave con
tions. Two h-independent solutionsr5r1 , u5u1 and r
5r2 , u5u2 are the two fixed points of the above dynamic
Eqs.~26! and~27!. Linearizing these equations around fixe
points, we get the eigenvalue equation

l42S 1

B0
1

1

B1
~cs

22u
*
2 ! Dl22

2nV

B0B1
l

1
1

B0B1
~cs

22u
*
2 12u* V2V2!50, ~28!

whereu* is the steady solution of velocity corresponding
either the downstreaming velocityu1 or that of upstreaming
u2 of a shock wave. The stability of fixed points depends
the sign of the real part ofl; if the imaginary part ofl is not
zero, then an oscillatory solution appears. This fourth-or
polynomial equation is difficult to solve and we have to u
numerical solutions.

For degenerated systems~either n50 or B050 or B1
50), we can obtain the analytical criterion determining t
boundary between monotonic and oscillatory shocks. For
stance, let us consider the continuous time and space dis
kinetic BGK models. WithB050, we have the eigenvalu
equation

B1l212nVl2~cs
22u

*
2 12u* V2V2!50. ~29!

The solution is
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l5
2nV6An2V21B1~cs

22u
*
2 12u* V2V2!

B1
. ~30!

The determinant is

D5n2V21B1~cs
22u

*
2 12u* V2V2!.

We now can study the stability of the two steady solutio
with V5ARcs ,

u* 5u15
R21

AR
cs ,

D5n2Rcs
21B1

R21

R
cs

2

5
R212R22

R

cs
6

v2.n2Rcs
2.0, when R.1.0. ~31!

This solution is unstable since at least one root ofl is posi-
tive.

u* 5u250,

D5n2Rcs
21B1~12R!cs

25~22R!
cs

6

v2 ,n2Rcs
2. ~32!

The solution is stable since the real part ofl is negative
while oscillations appear whenR.2.0 for the imaginary part
of l is not zero. Otherwise, monotonic shock persists wh
1.0,R,2.0.

FIG. 1. Dispersion relation: the sound speedcs vs wave number
k using differentv50.75, 1.00, 1.50. Curves are predictions a
points are simulations: h for v50.75, s for 1.00, and3 for
1.50.

FIG. 2. The density profiles withR51.5 at t52000. Different
values ofv are used: 1 for v50.75,h for 1.00,s for 1.25, and
d for 1.75. The model D1Q5 on a lattice of 8192 nodes is utiliz
s

n

VI. NUMERICAL RESULTS

We use the one-dimensional five-velocity model~D1Q5!
to numerically study the interactions of dissipation and d
persion. The first verification is to measure the dispers
relation~21!. Figure 1 shows the sound speedCs in function
of wave numberk. Continuous curves are theoretical pred
tions and points are numerical simulations, a satisfact
agreement is achieved. The deviation ofCs from the disper-
sionless dynamics can be as high as 4%. In the follow
simulations, we consider a lattice of 8192 nodes and use
upstreaming densityr2 , velocity u2 ~50 for simplicity!, and
that of downstreamr1 ,u1 . From Sec. V, we haveV
5ARcs andu15(R21/R)cs . The initial shock is located a
x52048. The control parameters are now the density ratiR
characterizing the strength of shock and relaxation param
v determining the viscosityv and dispersion coefficientB1
~B0 is a constant!.

In Fig. 2, the density profile is presented at timet
52000 steps forR51.5 and differentv ranging from 0.75,
1.00, 1.25, and 1.75. Monotonic shock wave solutions
v50.75, 1.00, 1.25 while oscillatory forv51.75 are cap-
tured. Figure 3 is similar to Fig. 2 whileR52.0 and v
50.25, 0.50, 0.75, and 1.25. We notice that the higher d
sity ratio R results in more pronounced dispersion effe
while comparing these two pictures. It can be easily e
plained as follows: largerR makes the shock thinner
which in turn causes the third-order dispersion terms to
more effective; these features are very reminiscent of
KdV soliton simulations of Zabusky and Kruskal@16#.

In a certain case, we observe an overshoot of density r
after the shock. This is shown in Fig. 4 withR52.4, v

.

FIG. 3. The density profiles withR52.0 at t52000. Different
values ofv are used: 1 for v50.25,h for 0.50,s for 0.75, and
d for 1.25. The model D1Q5 on a lattice of 8192 nodes is utilize

FIG. 4. The density profile withR52.4 and v50.675 at t
51000. A single hump of density right after the shock is observ



e
pe

i
g
-
ry
ra
f
re
ci
re
e
lt

ic
he
o

uta-
by

are

ing
ob-

oot
-
ion,
is-

to
rest-

by

and

are
ic

2716 PRE 61YUE-HONG QIAN AND SHI-YI CHEN
50.675. Appert and d’Humie`res@17# found a similar density
profile when they studied the liquid-gas interface; it was th
not quite understood. We suggest that the third-order dis
sion might be responsible for it. A natural question to ask
what the density profile looks like if the dispersion is stron
A case withR52.0, v51.29 is presented in Fig. 5. Oscilla
tion attains a saturation that is similar to the bounda
generated solitary waves studied by Chu, Xiang, and Ba
sky by using the KdV equation@18#. In the presence o
quadratic nonlinearity, the monotonic shock regime cor
sponds to the dissipation dominating regime, while the os
latory solutions correspond to the dispersion effective
gime. It would be interesting to find the boundary betwe
these two regimes in theR-v diagram, the numerical resu
is shown in Fig. 6. There is a sharp starting aroundR
51.815, which roughly corresponds tov51.1 at whichB1
changes its sign.

VII. DISCUSSIONS AND CONCLUDING REMARKS

We reported in this paper the Burnett-like hydrodynam
equations up to third-order for lattice BGK models using t
Chapman-Enskog expansion. Great care has been paid t

FIG. 5. Density profile withR52.0 andv51.29 att52000. A
saturated oscillation after the shock is captured.
.

tt.
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n
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s
.

-
n-

-
l-
-

n

the

derivation since the cross time derivatives are not comm
tive. Linear dispersion relation is obtained and confirmed
numerical simulation. Though the derived equations
quite general, we used a one-dimensional model~D1Q5! to
study the interactions of dissipation and dispersion. Us
shock wave boundary conditions, two regimes have been
served: monotonic shocks~dissipation dominating! and os-
cillatory shocks~dispersion effective!. The boundary of the
two regimes is numerically determined. Density oversh
~humps! and saturation~oscillatory! are also captured as con
sequences of interactions between nonlinearity, dissipat
and dispersion. Whether or not the newly derived third d
persion terms in two and three dimensions can help us
understand vortex cascades in turbulence is a quite inte
ing and debatable question.
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FIG. 6. The relation of density ratioR with the relaxation pa-
rameterv that separates the monotonic shock wave solutions
oscillatory shock wave solutions. A sharp change aroundR
51.815 is numerically found. Above the curve, the solutions
oscillatory solutions, while below it the solutions are monoton
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