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High-order direct correlation functions of uniform fluids and their application
to the high-order perturbative density functional theory
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Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York, 14260
(Received 24 August 1999

Simple analytical expressions for the direct correlation functions of uniform fluids of all orders are derived
based on a simple weighted density approximation. The equation thus obtained for the third-order direct
correlation function is in satisfactory agreement with simulation data for uniform hard sphere fluids. The
obtained expressions are employed to derive two general equations for the perturbative density functional
theory of all orders. One of them concerns the direct correlation functions, while the other concerns the direct
correlation functions weighted with the present weighting function. The general equations have been used to
determine the equilibrium structure about a test molecule immersed in a bulk fluid of the same species. The
calculations indicated that both equations with expansions truncated at the fifth order provided for bulk fluids
improvements with respect to the second-order perturbative density functional {leceorsponding to the
hypernetted-chain closureThe second equation with the bulk density considered as an adjustable parameter,
determined by equating the “virial pressure” calculated for a bulk fluid to the Carnahan-Starling pressure,
provided the best agreement with simulation data. The second equation with an adjusted bulk density was also
used to determine the density profile of a hard sphere fluid in a spherical cavity; good agreement with
simulation data was obtained.

PACS numbss): 61.20.Gy, 71.15.Mb

[. INTRODUCTION approximate the functional in terms of the local density of

the system. The basic assumption of all density functional

Over the past decade the density functional methods, ddheories is that the thermodynamic potential of a nonuniform
veloped originally for the study of many electron quantumsystem can be obtained from that of the corresponding uni-
Systemile haS p|ayed a key r0|e in providing a Comprehen_form SyStem.. What dle(IﬂgUISheS the Var_IOUS theories from
sive picture of the complex thermodynamic behavior of flu-One another is the detailed manner in which each formulates

ids in confined geometries, because of its physical clarity and€ link between the two. The existing DFTS fall mainly into
computational simplicity2—5]. As quite general approaches ;EWO (_:ateglyorrlles.(_l) wlejFv¥e|gh(tjeg(n(r)]nperturbgtl\()e dgnsﬂy
to the equilibrium distribution in nonuniform fluids, the den- functional theories ) and(2) the perturbative density

sity functional theories have proven to be some of the mosf[uncuonal theorieSPDFT). In the former, physically moti-

: . i - “vatedad hocassumptions were made to render the excess
succe_ssful, widely applicable approach_es to a variety Of.mfree energy of the inhomogeneous system calculable; this
terfacial phenomena, such as adsorption, wetting, freezin

. . Yvas done by constructing an approximation of the local or
etc. [6._|10]]; In the dens_lt)ll functlona}I approach(,j the grar_1d lobal excess free energy by mapping the excess free energy
potential of a many particle system is expressed as a uniqys particle or the correlation function of the inhomogeneous

functional of its local density11], and acquires its minimum system to that of a uniform system with an effective or
value when calculated for the equilibrium density obtainedyeighted local density. The WDFT approaches have been
by solving the corresponding variational problem. In themostly employed to predict the structure of a one-component
functional for the grand potentialX[p(r)]=Fig[p(r)]  fluid near one or between two wall42,13, and some of
+Fep(r)]1+Sdrp(r)[ @ex(r) — u], w is the chemical po- them have been extended to binary mixtuire4—16, elec-
tential, g, (r) is the external potential which causes the den-trolyte solutions[17,18, colloidal dispersiong19,20, and

sity distributionp(r), the ideal-gas free enerd¥y[ p(r)] is  also to the study of freezinN@1,22 etc. These WDFTs have

given by the exact relation achieved some success in predicting results in good agree-
ment with computer simulations for hard sphere fluids, but
Fidlp(r)]1=B8"1fdrp(r){In[p(r)\3]—1}, they are computationally demanding. Furthermore, most of

the WDFTs[23,24 fail, to a greater or lesser extent, when
wherex=[h?/(2mmB~1)]*? is the de Broglie wavelength, applied to more realistic potentials such as the inverse-power
andB=1/KT is the reciprocal temperature. However, the ex-and Yukawa potentials. In the perturbative density functional
act relation for the exces®ver the ideal gas contributipn theories(PDFT), the excess free energy of the inhomoge-
free energyF.,] p(r)] which originates from interparticle in- neous system is functionally expanded about that of the cor-
teractions is not known. Therefore a major effort in the de-responding uniform system
velopment of the density functional thedi®FT) has been to

1
BFe)lp]zﬁFeX(pb)_r;lmf drl'“f dry,
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whereVp(r)=p(r) —py, is the departure of the density from data, and the behavior of the higher order direct correlation
the densityp,, of a uniform system an@{" are then order ~ functions is examinedno simulation data are available in
direct correlation function€DCFs of the uniform system. In  literature for comparison In Sec. lll, the obtained expres-
most applications of the theory the expansion has been trursions allow to derive two general PDFT equations for all
cated at the second order due to the lack of information reorders, which are employed to determine the equilibrium
garding the higher-order direct correlation functions for thestructure about a test particle immersed in a bulk hard sphere
uniform system. The second order PDFT has been criticizefluid as well as the equilibrium density profile of a hard
by Cutrin[25] and Baus and Cold26], who demonstrated sphere fluid in a spherical cavity. Finally, Sec. IV summa-
that the perturbative expansion is slowly convergent for hardizes the results.

sphere fluids. In applications to systems characterized by pair

potentials such ag(r)~r ", the second order PDFT has Il. APPROXIMATE ANALYTICAL EXPRESSIONS
proven even less adequdt27]; in application to the one- FOR THE DIRECT CORRELATION EUNCTIONS
component plasm28], the second order PDFT failed to OF UNIFORM FLUIDS OF ALL ORDERS

predict a freezing transition at all. These results pointed to

the need for a detailed analysis of the form and behavior of In the weighted density approximation[16],
the higher-order direct correlation functions that reside in theC)(r;[p]), the first order direct correlation function of non-
omitted terms. In this respect, Barrat, Hansen, and Pastomniform fluids is approximated as

(BHP) [29] have suggested an approximation &) based

on the factorization: C§&(r,r’;pp)=t(r)t(r)t([r—r’]), cO(r;[ph=CcP(p(r)), 3
with t(r) determined by requiring thzﬁff)(r,r’;pb) should
satisfy, in the Fourier space, for=3, the exact relation Wherecgl’(ﬁ(r)) is the first order direct correlation function

5 of a uniform fluid for a weighted density(r) defined as
Cé)n)(kl 1o !kn—1!0;pb) = é,_pbcé)nil)(kl yres ;kn—]_ ;pb)

F(r)=j dr’p(r")yw(r—r’|;p(r)). (4)
n=2. 2

Later, Curtin and Ashcroft30] suggested an approximation  In the simple weighted density approximatipds], p(r)

for C&)(r,r';p,) based on a weighted-density approxima-in the “weighting function” w of Eq. (4) is replaced by,

tion (WDA) for the excess free energy functional of an in- While the results obtained in this manner are more approxi-
homogeneous system, while Denton and Ashci@l] mate than those obtained in R¢L6], this approximation
proposed approximate analytical expressions fo@llows us to derive simple expressions for the DCFs of all
C(ry,rp,.... n1pp) With n=3,4,5 based on the WDA for orders as the present paper demonstrates. The resulting
the first-order direct correlation function of an inhomoge-Weighting functionw is required to satisfy the usual normal-
neous systenil6]. These three approaches have equivalentZation condition

accuracies and thé:§)3)(r,r’;pb) thus calculated were in

agreement with simulation data. Among these three ap- , ey

p?oaches, the first required the numerica? solution of an ir?— f dr'w(r=r"f;pp)=1 ®
tegral equation, the second a solution of a differential equa-

tion in the Fourier space, while the third became veryand the unique specification of follows from the relation-
complicated when extended to higher-order direct correlatioship:

functionsC{"(r,,r,..../n;pp) With n>5. Recently, Khein

and Ashcroff 32] proposed a symmetric algebraic ansatz for ) S " @ )

C&(r,r";p,) which provided satisfactory agreement with “mp(rwpimc (H[P])}:Co (Ir=r';pp). (6)
simulation data. All the above approaches have not been

used in the PDFTs approaches mainly because the resulti : - _ . :
approximations for high-order direct correlation functionsr-%uatlon(e) together with Eqs(3)—(5) provide the follow

are computationally demanding. Therefore there is a need folpg form for the weighting function:
simple, analytical expressions f@"(r;,r5,....r;pp) for @ lr—pl
all n which can be conveniently employed to develop a w(|r—r’|;pb)=M.
PDFT approach beyond the second order. This is the moti- c (pp)
vation of this paper.

The plan of the present paper is as follows: In  Approximate expressions for the DCFs of all orders can
Sec. Il, approximate analytical expressions for be derived on the basis of the equation

)

o (ST P )
0 (r1.r2 n;Pb) n _ . " CH(rilp])
c! )(r r r )=Ilim
o (LI, fn-13Pp PO=P §p(ry) - Sp(rn_1)
(

for all n are derived based on a simple weighted density
approximation(SWDA) [33]; the predictions of the expres-

sion obtained for the third order direct correlation function of
a uniform hard sphere fluid are compared with simulationwhich leads to
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FIG. 2. Three-particle direct correlation function

ka for wave vectors of equal magnitude. The curve represents th@fﬁ)(k,cose;pb) for |k|=|k'|=k=2.3045 and a packing fraction
present approximation for hard sphere; the dots are the MD data of=0.45; ¢ is the angle betweek andk’. The dotted curve pre-

BHP for soft spheref29].

Yy e Footipp)

(n—1)
=W(r,r1;pp) W, Tao1;00)C8Y  (pp)
CE)Z)(ryrl;pb)'"CE)Z)(rirn—l;Pb)

=

(9)

Forn=3, Eq.(9) yields

CHUr,T1,12;pp) =W(r,T1;pp)W(T,T2;pp)CS (pp)

ct(pp)

__ Y YV ~(2
[C (pp)]?

0 (r!rl;pb)CE)Z)(rer;pb)

(10
which in the Fourier space becomes

csY (pp)

CoY(kk'spp) = — 57—
’ [C5 (pp)]?

CP (k;pp)CP (K'; pp)-
(11)

All the direct correlation functions should be symmetrical,
however, Eqgs(9), (10), and(11) are symmetrical only in the

special cases in which the magnitudes of the wave vectorsgf;

are equal. This deficiency can be corredteee Eqs(12) and
(23)].

Equation(11) was used to calcula@{® for a hard sphere
liquid by employing the Percus-Yevick approximations for
C@O(r—r'|;pp) andC{(pp). The results are plotted in Fig.
1 versuska, wherea= (3/4mp,)*3, for the special casg|
=|k’[; for comparison the MD dat29] for soft spheres are
also included. The density,0®=0.871 at which the hard-

spherecgf’) was computed, was selected to ensure agreemen

with the BHP soft sphere approximatip®9] atk=0. Figure
1 shows that the dependence ©f> on the wave-vector

sents the present approximation, the long-dashed curvéSEdn
Ref.[32], and the dots are the simulation results with two standard
deviation errors barg34].

magnitude is in satisfactory agreement with the MD data, to
within the statistical uncertainty of the MD data.

As suggested previous[B1], Eqg.(11) can be made sym-
metrical using the following simple symmetry requirement
on Eq.(11):

1
CEV (k.5 pp) = S[CE (kK5 pp) + CF (K, [k+ K[ pp)

+C (K" [k+K'[;pp)]. (12
Equation(11) combined with Eq(12) has a form similar to
Eq. (5) in Ref.[32]. In Figs. 2—4, theC{®) given by Eq.(12)

is plotted for|k|=|k’| and various choices of the wave-
vector magnitude, at a packing fractiom=p,7wo°/6
=0.45; also included are the Monte CafMC) simulations

for a hard-sphere fluid with two standard deviation error bars
[34] and the results of Ed5) of Ref.[32]. The predictions of
Eqg. (12) are not in complete agreement with the MC data,
but they are almost comparable to those of Ej.in Ref.
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FIG. 4. The same as in Fig. 2, but fke=7.0404.
. , expressions for the direct correlation functions of any order,
[32]. From Figs. 2—4 one can observe that/les=|k'|=Kk  \yhile that of Ref[31], which are given up to the fifth order,
increases, the discrepancy increases; this is expected becaysg very complex. In some cases, as shown in Figs. 1 and 2,
the present approximatidieq. (11) combined with Eq(12]  our approximations do not introduce major errors, while in

satisfies Eq(2) only for |k|=|k'[=0: others, shown in Figs. 3 and 4 they produce errors for values
C(l)"( : of cos(p) near—bl. I_—ioweverd %s Shh(t))wn Iaterdi_n this [?]apgr, the
3 _ o (pp 2. 2. accuracy can be improved both by regardingin the de-
CB (0,0;p5)= [C”)'( )]ZCE) )(O’F’b)Cg (0;py) rivatives of Cgl)(pb) as an adjustable parameter and/or by
0" 1P symmetrizing the basic equati¢®) as in Eq.(23). While our
Cél)”(pb) ’ , approximation introduces some inaccuracies, its simplicity
= CH (pp)C (pp) allows to extract some information about any order direct

[CS (pp)]? correlation function. In Fig. 5, the three, four, and five-
@ particle DCFs are plotted versusa for a uniform hard-
=Cs” (0;pp). (13 sphere fluidat a density,o3=0.871) for small values ok;
) ) Fig. 6 presents the results for large valuekofFrom Fig. 5
It should be noted that the approximate expressions Ofne can see that the absolute valu€g? atk=0 increases
RefS-,[29:3Q satisfied Eq.(2) only for |k|:|k'|,:O andk  markedly as the order increases; the same behavior is also
worth emphasizing 1t b the present squstion and ¢ (Eeeled by Fig. 7 where the normalized. functions of
O 0" (k; pp)/CyV(0;py) are plotted fom=2,3,4,5. From Fig.
o 21 e i on o WO SypoTaAS e o G ek e asles Sucuro o) &
substitution ofp(r) in the “weighting function” w by py . ingreasingly lost with increa}sing when the order i_s raised,
However, that simplification, allowed us to obtain simple g;)'f]e?g?&isdsbiesczﬁz?t trg?]gi're‘:t correlation function of hard
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Ill. HIGH-ORDER PERTURBATIVE DENSITY

* n-1 (1=
FUNCTIONAL THEORY FOR NONUNIFORM FLUIDS Co

oh (pb)
g(r)=eXP( _B‘i’(r)ﬂ; (=D etV (pp)1n*

Let us consider a classical fluid at a fixed temperature
kT=8"1 and chemical potentiaj. in an external field
@ex(r). In DFT, the density profile of an inhomogeneous X

fluid is given by the equation

p(r)=ppexfl — Beedr)+CH(r;[p])—CH(pp)].
(14)

Expanding the first-order DCF of a nonuniform fluid about

an uniform fluid, one can write

CO(r;[ph=C(pp) + f dry(p(ry)—pp)CE(r,r1;pp)

L1
+nZ3 —(n—l)l f drlf drz"'f drn_l
n-1

x I () = puICE' (15, hn-sip0).
(15

Substituting expressionéd) for C{V(r,rq,....rn_1;pp) in
Eq. (15), yields

o

1 " ipy)
D(r-rp=CL ; :
CHLPN =6 o)+ 2, =T oo

n-1

f dr'C(r,r";pp)(p(r' ) —pp)|

(16)

X

and the density profile equation acquires the form

(n—1)
1 Ci” T(py)

“D e (]

p(r)=pbeXP( _:8§Dext(r)+nzz n

X

n—-1
fdr’%”(r,r’;pb><p<r'>—pb)} ) (17)

n—-1
fdr’CBZ)(r,r’;pb)(g(r’)—1)} ) (20)

If the expansion in Eq(20) is truncated at the second order,
one obtains

g(r)=exr{—ﬁ¢(r)+pbf dr'cg”(r,r';pb)(g(r')—1)}
(21)

Combining Eq.(21) with the Ornstein-ZernikéOZ) equa-
tion

g(r>—1=632)(r;pb>+pbf dr'CE(r,r";pp)(9(r')—1)
leads to

g(n=exgd—B¢(r)+g(r)—1-CP(r;pp)] (22

which represents the hypernetted-ch@iiNC) closure of the

OZ equation. Equatio20) with the expansion truncated at
different orders was solved in spherical coordinates and the
calculations indicated that the predictions of EB0) with

the expansion truncated at the third order was in better agree-
ment with simulation data than that truncated at the second
order; at the fourth order the accuracy was decreased, while
at the fifth order the accuracy was increased. The predictions
of the fifth-order PDFT were almost identical to those of the
sixth-order PDFT. In Fig. 8, the predictions of EG0O) with

the expansion truncated at the second and the fifth order are
plotted for a bulk densityp,o®=0.6; the simulation data
[36] are also included for comparison. Figure 8 shows that
the predictions of Eq(20) with the expansion truncated at
the fifth order are still unsatisfactory at and near the contact
point. There are two reasons for the discrepaiitythe lack

of symmetry with respect to,r,...,r,_1 in the expressions

of the high-order direct correlation functions E(R) on
which Eq.(20) is based and2) the approximation made in
the calculation of the weighting functiow. Consequently,
there are two ways to improve E@0): one is to symmetrize

Let us consider a homogeneous bulk hard sphere fluid angypressior(9), and another one is to regapg in the deriva-
select one of the molecules considered located in the origif)yeg of Cgl)(pb) as an adjustable parameter. Consequently,

as a test molecule; the pair potentig{r) between the test
molecule and any other molecule is regarded as the externg},

potential pay(r)

o, <o

d(r)= 0 (18

, I>o.

The resulting nonuniform density profile around the test mol-

ecule is given by the expressi¢p85]

p(r)=ppa(r), (19

where g(r) is the radial distribution function of the bulk

fluid. Thus, for this special type of inhomogeneity, Ef7)
provides the following equation fay(r):

we replace Eq(9) by Eqg.(23) which is the weighted Eq9)
is symmetrical with respect to all arguments

rre,....'n—1,
C(On)(rvrl“"vrnfl;pb)

:Cg)n)(rovrirlr'"!rn—2;pb)

= f Cé")(ro,r,rl,...,rn_z;pb)w(ro,rn_l;pb)dro

(n-1)
_ Cg)l) (pp)

[C6Y (pp)]"
><(r01rn—2;Pb)CE)Z)(rOvrn—l;pb)drOa
n=3. (23

Jng)(ro,r?Pb)CE)Z)(ro,rlipb)'"CE)Z)
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FIG. 10. The same as in Fig. 9, but fpgo°=0.8
The dashed curve is given by E&O) with the expansion truncated
at the second order, the dotted line is given by &) with the

expansion truncated at the fifth order, the dot-dashed curve is giveﬁ(r) = pp eX

—Be t(r)+J dry(p(ry) = pu)CE(r,r15pp)
by Eq. (26) with the expansion truncated at the fifth order, and the F( ex L 1 0 1
dots represent the simulation d4&6].

I (n—1)
cV T (pp)

+ ' C(Z) ,H;
& (n_1)1Cy (pbﬂ“f o ATrpe)

The substitution of Eq(23) into Eq. (15) yields

n—-1
) , xU052>(r',r";pb>(p<r'>—pb)dr'} dr”). (25
CO(r;[p])=CS ><pb>+f dr1(p(ry)— p)CR(r 1 11p0)

o

(n-1) and theg(r) for a uniform fluid:
Cg)l) (pb)
+ 2,

(2 (1
2, e ) O

X

g<r>=exp(—ﬁ¢(r>+pbj dry(g(ry) — 1)CE(r,ry;pp)

o

n-1
fCEP(r',r";pb>(p<r')—pb)dr'} dr”.

_ (n—=1)
p g lcgl) (pb)

, CE(r,r";pp)
n=3 (n—I[C (pp)I"

Using Eq.(24), one obtains the(r) for a nonuniform fluid X

3.0

n—-1
fC&zkr',r";pb)(g(r')—1)dr'} dr”)- (26

Figure 8 presents the predictions of E26) for an expansion
truncated at the fifth order and shows that they are improved
25 | 1 by imposing the symmetry condition on the expressions for
\ the high order direct correlation functions. However, an ad-
| ditional improvement is achieved by regardipgin the de-
\

g(r)

20 H

rivatives of C{"(p;,) and only in these derivatives as an ad-
15l \‘v | justable parameter, determined by equating the virial
\ pressure predicted by E(QR6) according to the formula
R
10} Y B R SUEERE S - Bp° 27ppB [~ de(r)
N —1_ 3
o 1 3 fo g(r)—dr redr (27)
05
to the pressure given by the Carnahan-Starling equ®ioh
0.01 0 210 ) 310 4.0

Bp®®  1+y+n*—7°
= 3 y (28)
Pb (1=7n)
FIG. 9. g(r) for a uniform hard sphere fluid witp,o®=0.6. a0 ) _ )
The curve is given by Ec(26) with the expansion truncated at the Wheren=p,mo>/6 is the packing fraction. Figures 9 and 10

the simulation dat§36].

fifth order andp,, as an adjusted parameter, and the dots represefiresent the predictions of E6) for an expansion truncated

at the fifth order and an adjusted parametgdetermined as
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confined in a spherical cavity. The dots represent the simulation
data[38], and the curve the predictions of EQ9). the predictions of Eq(29) for an expansion truncated at the

. . fifth order and with an adjuste@, in the derivatives of
above, as well as the s!mulatlon d4&6]. They show that C{(p,) for two densities an®R=4.5¢, as well as the com-
the agreement is _much |mproveq. ., puter simulation datg38]. BecauseF,[ p(r)] is a universal
. Equatlo_n(25) W.'” be_ now applied to a harq sphere fluid functional for systems involving pairwise additive interac-
In a spherical cavity with a hard Wz.i” and radigs- o/2. In tions and independent of the external potential responsible
this case, the density profile equation has the form for the inhomogeneity, it is reasonable to consider that the

adjustedpy, is equal in this case to that obtained above for the
_ _ _ 2 . radial distribution function in a uniform system; of course,
P(r)=po exp( ’B%Xt(r)Jrf dra(p(r) = pp)Co (1.1 1ip) pp at infinity for the former is equal to the bulk, in the
latter [the adjustedp, is used only in the derivatives of
P CM(py) 1. Figures 11 and 12 show that the predictions of the
f Co ' (rr";pp) present theory are in good agreement with simulation data,
and at least as good as the results of earlier and more com-

plex theoried 39-40.

o (n—-1)
. Co’ (py)
=5 (n=1)I[CE (pp)]"

n—-1
X f c&”(r’,r";pb><p<r'>—pb)dr'} dr”),
IV. CONCLUSION

rl<R,=0, [r|>R, (29 In summary, simple analytical expressions for the direct

where c_orrelation _fu_nctions of all orders fo_r L_miform quids_are de-

rived, and it is shown that the predictions of the third order

Cex() =%, |r|>R direct correlation function are in reasonable agreement with
simulation data for hard sphere fluids. Further these expres-

(30)  sions are employed to build a perturbative density functional

theory of nonuniform fluids beyond the second order whose
and the density, is a bulk density unaffected by the exter- predictions are in good agreement with simulation data for
nal field due to the cavity wallhence at a position far away both a uniform hard sphere fluid and a nonuniform hard
from the cavity wall {r|—)]. Figures 11 and 12 present sphere fluid in a spherical cavity.

=0, |r|<R
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