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Bifurcation analysis of the plane sheet pinch
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A numerical bifurcation analysis of the electrically driven plane sheet pinch is presented. The electrical
conductivity varies across the sheet such as to allow instability of the quiescent basic state at some critical
Hartmann number. The most unstable perturbation is the two-dimensional tearing mode. Restricting the whole
problem to two spatial dimensions, this mode is followed up to a time-asymptotic steady state, which proves
to be sensitive to three-dimensional perturbations even close to the point where the primary instability sets in.
A comprehensive three-dimensional stability analysis of the two-dimensional steady tearing-mode state is
performed by varying parameters of the sheet pinch. The instability with respect to three-dimensional pertur-
bations is suppressed by a sufficiently strong magnetic field in the invariant direction of the equilibrium. For a
special choice of the system parameters, the unstably perturbed state is followed up in its nonlinear evolution
and is found to approach a three-dimensional steady state.

PACS number~s!: 47.65.1a, 52.30.2q, 95.30.Qd
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I. INTRODUCTION

Finite-resistivity plasma instabilities play an importa
role for the release of stored magnetic energy in many as
physical objects. They also restrict the plasma stability
several fusion devices@1#. The simplest configuration in
which they appear is the plane sheet pinch. In a pinc
conducting fluid can be held together by the action of
electric current passing through it with the pressure gradie
being balanced by the Lorentz force. Of special interest is
resistive tearing instability, which was studied by Furthet al.
@2# by using a boundary layer approach and afterwards
merically without making the boundary-layer approximati
@3–5#. All these studies refer to the infinite Hartmann num
ber case because of their neglect of the kinematic visco
The Hartmann number Ha, which is the geometric mean
two Reynolds-like numbers, one being kinetic and the ot
magnetic, is the essential parameter that determines the
bal stability boundaries of the plane sheet pinch as wel
those of its cylindrical counterpart@6,7#. Thus kinematic vis-
cosity has to be included.

A recent sheet pinch study@8# has been done with spa
tially and temporally uniform kinematic viscosity and ma
netic diffusivity, and with impenetrable stress-free boun
aries. It is found that the quiescent ground state~in which the
current density is uniform and the magnetic field profi
across the sheet is linear! remains stable, no matter ho
strong the driving electric field. This study was extended
the case of magnetic diffusivity varying across the she
which results in the profiles of the equilibrium magnetic fie
deviating from linear behavior. In particular, the conductiv
profile may be chosen such that the magnetic-field and/or
current profile have inflection points. A Squire theore
could be proven for this configuration@9# whose stability
depends on the Hartmann number, the degree of current
centration about the midplane of the sheet, and on the m
netic shear~i.e., the asymmetry of the equilibrium magnet
field! @10#.

A stability analysis can be considered as part of a bif
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cation analysis, which will be provided for the cases of tw
as well as of three spatial dimensions in the present pape
a bifurcation analysis one tries to determine the set of p
sible time-asymptotic states, the attractors, for given val
of the system parameters. The bifurcations from a st
sheet-pinch equilibrium have previously been studied for
case of two spatial dimensions@11,12#. Grauer@13# investi-
gated the interaction of two different tearing modes in t
two-dimensional slab geometry by reducing the dynamics
the bifurcation point to that on a four-dimensional cen
manifold. The new time-asymptotic states were found to
of the tearing-mode type, but, e.g., also traveling waves w
found.

We note here that even though with increasing Hartma
number the equilibrium becomes first unstable to tw
dimensional perturbations~according to the Squire theorem!,
the new final states may be three-dimensional. This is on
the problems the present paper is addressed to. The
question arising is which type of two-dimensional~2D! time-
asymptotic state develops nonlinearly from the tearing m
when the whole problem is restricted to two spatial dime
sions. The bifurcation studies@11–13# predict steady state
for the generic cases. Similarly, large scale perturbations
sheared magnetic field equilibrium were found to result in
final tearing-mode type stationary state via multiple coal
cence of the magnetic island structures@14#. A question
coming up then is whether the 2D time-asymptotic states
stable with respect to three-dimensional perturbations. If n
how do the stability properties depend on parameters suc
the strength of a constant external magnetic field or
wavelength of perturbations in the invariant direction of t
2D state? Finally, what are the characteristic properties of
three-dimensional time-asymptotic states, when they m
fest? In the present paper a comprehensive stability ana
of the two-dimensional time-asymptotic states that deve
from the tearing mode is presented. For the case of a
tially uniform resistivity these problems were addressed
numerical studies of the magnetohydrodynamic~MHD!
equations by Dahlburget al. @15,16#, who found two-
2695 ©2000 The American Physical Society
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2696 PRE 61JÖRG SCHUMACHER AND NORBERT SEEHAFER
dimensional quasiequilibria of the tearing-mode type to
unstable to three-dimensional perturbations. Second
three-dimensional instabilities were similarly observed
nonstatic primary states with, in addition to a sheared m
netic field, a pressure-driven jetlike flow@17#, and their non-
linear development was proposed as a scenario for the
sition to MHD turbulence.

The outline of the paper is as follows. In Sec. II the phy
cal model is introduced. The MHD equations as well
boundary and initial conditions are discussed. In Sec. III
provide the results of the bifurcation analysis. First the
results are discussed. After that we investigate the linear
bility of 2D time-asymptotic states with respect to 3D pe
turbations. For appropriate choices of the external parame
the 2D states prove to be 3D unstable. The 3D asymptotic
investigated by a full three-dimensional long-time simulati
of the pinch dynamics. Finally we discuss our results and
with an outlook in Sec. IV.

II. PHYSICAL MODEL

A. MHD equations

We use the nonrelativistic, incompressible MHD equ
tions

rS ]v

]t
1~v•“ !vD5rn¹2v2“p1J3B, ~1!

]B

]t
52“3~hm0J2v3B!, ~2!

“•v50, “•B50, ~3!

wherev is the fluid velocity,B the magnetic induction,m0
the magnetic permeability in a vacuum,J5“3B/m0 the
electric current density,r the mass density,p the pressure,n
the kinematic viscosity, andh the magnetic diffusivity.
While r andn are assumed constant,h varies spatially:

h~x!5h0h̃~x!, ~4!

whereh0 is a dimensional constant andh̃(x) a dimension-
less function of position.

Let the pinch width~sheet thickness! L5L1 and some yet
arbitrary field strengthB0 be used as the units of length an
magnetic induction. WritingvA5B0 /Am0r for the Alfvén
velocity corresponding toB0, we transform to dimensionles
quantities. Specificallyx, B, v, t, p, J, andE are normal-
ized by L,B0 ,vA ,tA5L/vA ,r0vA

2 ,B0 /(m0L), and B0vA ,
respectively. The quantityE is the electric field. Equations
~1! and ~2! then become

]v

]t
52~v•“ !v1M 21¹2v2“p1J3B, ~5!

]B

]t
52“3~S21h̃J2v3B!, ~6!

where
e
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M5
vAL

n
and S5

vAL

h0
~7!

are Reynolds-like numbers based on the Alfve´n velocity:S is
the Lundquist number andM its viscous analoge. The geo
metric mean of the two Reynolds-like numbers gives
Hartmann number

Ha5AMS. ~8!

Finally, the dimensionless Ohm’s law becomes

S21h̃J5E1v3B. ~9!

B. Boundary conditions and static equilibrium

We use Cartesian coordinatesx1 ,x2 ,x3 and consider our
magnetofluid in the slab 0,x1,1. x1 is referred to as the
cross-sheet coordinate. In thex2 and x3 directions periodic
boundary conditions with periodsL2 and L3, respectively,
are used.

The boundary planes are assumed to be impenetrable
stress-free, i.e.,

v15
]v2

]x1
5

]v3

]x1
50 at x150,1. ~10!

The system is driven by an electric field of strengthE* in
thex3 direction, which can be prescribed only on the boun
ary. We further assume that there is no magnetic flux thro
the boundary

B150 at x150,1. ~11!

Conditions~10! and ~11! imply that the tangential compo
nents ofv3B on the boundary planes vanish, so that acco
ing to Eq.~9!

J250, J35
E* S

h̃b

at x150,1, ~12!

whereh̃b is the value ofh̃ on the boundaries. The bounda
conditions for the tangential components ofB then become

]B2

]x1
5

E* S

h̃b

,
]B3

]x1
50 at x150,1. ~13!

A detailed discussion of these boundary conditions is fou
in Ref. @8#.

Any stationary state with the fluid at rest has to satisfy
equations

2“p1J3B50, ~14!

“3~ h̃J!50. ~15!

Equations~14!, ~15! and the boundary conditions are sat
fied by the Harris equilibrium

h̃5cosh2@~x120.5!/a#, ~16!
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PRE 61 2697BIFURCATION ANALYSIS OF THE PLANE SHEET PINCH
J5Je5S 0,0,
1

a tanh~1/2a!cosh2@~x120.5!/a#
D , ~17!

B5Be5S 0,
tanh@~x120.5!/a#

tanh~1/2a!
1B2

e,B3
eD , ~18!

p5pe52
Be2

2
, ~19!

whereB2
e andB3

e are constants. The resistivity given by E
~16! decreases from the boundary towards the sheet ce
where it takes on a minimum value. This is in accordan
with the expectation that the plasma is hotter within the c
rent sheet combined with the decrease of the typical Spi
resistivity with temperature, i.e.,h̃;T23/2. Unlike other
studies@15,16# where the system is infinitely extended in th
cross-sheet (x1) direction, we do not use the current she
half width a as the unit of length. Instead, we normalize
the finite distanceL5L1 between the two boundary plane
The magnetic field unitB0 was chosen in such a way that,
the case ofB2

e50, uB2
eu51 on the boundary planes.

We use the notations

b5B2Be, j5J2Je, ~20!

where v and b are our dynamical variables, for which th
stress-free boundary conditions are now as follows :

v15
]v2

]x1
5

]v3

]x1
5b15

]b2

]x1
5

]b3

]x1
50 at x150,1.

~21!

We Fourier expand both vector fields into mod
; exp$i(k2x21k3x3)% in thex2 andx3 directions. In the cross
sheet directionx1 sine and cosine expansions are used
correspondence with the imposed stress-free boundary
ditions ~for more details see Ref.@8#!. Dynamical integra-
tions of the system are performed in Fourier space by me
of a pseudo-spectral method with 2/3-rule dealiazing. T
grid size for the 3D integrations was taken to be 32316
316 which was found to be sufficient for our low-Hartman
number studies~see Table I!. Time integration was per
formed using a Runge-Kutta scheme with a variable ti
step. Compared to similar calculations with a spatially u
form resistivity, the simulations were extremely time expe
sive since only very short time steps were possible. Ad
tionally one has to keep in mind that our spectral resolut
is restricted by the evaluation of the Jacobian necessary
the linear stability analysis of the time-asymptotic states. T
used resolution results in the inversion of a 283632836
matrix.

TABLE I. Parameters of the 2D and 3D sheet pinch simulation

Run Ha L2 L3 (N1 ,N2 ,N3)

1 66.21 4 ~32,16,–!
2 66.30 4 ~32,16,–!
3 67.00 4 ~32,16,–!
4 67.00 4 4 ~32,16,16!
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III. RESULTS

A. 2D time asymptotics

We started with a determination of the stability bounda
for the static sheet pinch equilibrium. The Squire theor
allowed a restriction tox3 invariant perturbations~i.e., to
perturbations with wave numberk350). Furthermore, due to
the invariance of the equilibrium in thex2 direction stability
could be tested for each wave numberk2 ~or the correspond-
ing Fourier mode! separately. First, the system was assum
to be infinitely extended in thex2 direction. In this case the
wave numberk2 of a perturbation can adopt any real valu
Figure 1 shows the stability boundary in the Hartma
number–wavelength plane forB2

e50 anda50.1(B2
e and a

are fixed to these values throughout the paper!. Since the
equilibrium profileB2

e(x1) is symmetric (B2
e50), the value

of B3
e has no influence on the stability~see Ref.@10#!. The

unstable region lies to the right of the boundary curve. F
the spatial resolution used, instability sets in at Ha5Hac
564.57 andk25k2c52.67.

In calculations using the full nonlinear equations the
pect ratioL2 ~in the 3D caseL3 as well! has to be fixed to a
finite value. We have usedL254 in all nonlinear calcula-
tions. There are some subtleties concerning the onset o
stability and the application of the Squire theorem whenL2
is finite, due to the fact that only a discrete set ofk2 values is
admitted. WithL254 instability sets in at Ha5@Hac#L254

566.20784 andk25@k2c#L2545p, corresponding to a criti-

cal wavelength of 2. Unstable 3D modes at Hartmann nu
bers close to@Hac#L254 are excluded if the aspect ratioL3 is
finite ~for more details see the Appendix!. Figure 2 shows,
for Ha570, a comparison of the growth rate of the mo
unstable 2D mode, which has wavelength 2 in thex2 direc-
tion, with the growth rates of the most unstable 3D mo
with the same wavelength in thex2 direction and different
wavelengths in thex3 direction.

When Ha exceeds the critical value@Hac#L254 the tearing
mode grows due to a bifurcation where a pair of identi
real eigenvalues becomes positive. A superposition of
static equilibrium and the most unstable eigenvector w
taken as the initial state to follow up the nonlinear develo
ment of the tearing mode in two spatial dimensions.

.

FIG. 1. Stability boundary for the quiescent basic state witha
50.1 andB2

e50 in the Ha-L2 plane.L252p/k2 is the wavelength
of the perturbation in thex2 direction~stability was tested for each
wave numberk2 separately!.
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After several hundred Alfve´n timestA convergence to a
stationary state was observed. This state is of course line
stable with respect to two-dimensional perturbations. It
also clear that the development to the time-asymptotic st
is decellerated the closer to the critical value@Hac#L254 the
Hartmann number is taken. This was indicated first by
convergence of the maximum eigenvalue to zero. Nam
due to the marginal stability with respect to translations
the x2 direction, one eigenvalue of the time-asymptotic st
has to vanish. For this real eigenvaluel0 we had, for in-
stance,l0.2531024 for t5700 and Ha566.21, l0.
2531024 for t5500 and Ha566.3 ~and l0.2231024

for t5800 and Ha566.3), but alreadyl0.2231026 for
t5500 and Ha567 ~and l0.21028 for t5800 and Ha
567). The time development of run 1 became extrem
slow. This run close to@Hac#L254 was performed in order to
make it as sure as possible that secondary bifurcations c
to the primary bifurcation point were not overlooked. Sin
the time-asymptotic solutions for Ha566.21, 66.3, and 67
are all of the same type, the solutions simulated for
566.3 and Ha567 are likely to belong to a branch origina
ing in the primary bifurcation. In Fig. 3 the time develo
ments of the specific kinetic energyEkin5(1/2V)*Vv2dV,
the specific magnetic energyEmag5(1/2V)*Vb2dV, and their
sum, the total energyEtot , are plotted for runs 2 and 3~run 3
only shown in the inset!. Nearly perfect steady states a
reached for both Hartmann numbers at later stages. Fo
567 energies are practically constant in time att5800. The
amplitude of the eigenvectors is not determined by the
bility analysis. For Ha567 thus two energetically differen
initial conditions were considered and were found to re
toward the same asymptotic state, one from energetically
low and the other from energetically above the asympto
energy~in the first case, not shown in the figure, the energ
increase as functions of time and then become almost
stant!.

In Fig. 4 the asymptotic state is shown for Ha5S5M
567. Field lines ofB, stream lines ofv, and contour lines of
the current density componentJ3 are drawn. One observes

FIG. 2. Maximum real parts of the eigenvalue spectrum vsL3

resulting from the stability analysis of the quiescent basic state
a50.1 andL252 at Ha5M5S570. L352p/k3 is the wavelength
of the perturbation in thex3 direction~stability was tested for each
wave numberk3 separately!. The dotted line marks the maximum
growth rate of the most unstable 2D mode (k350) for the same
parameters.
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magnetic island structure with a chain ofX and O points,
fluid motion in the form of convectionlike cells or rolls, an
a filamentation of the original current sheet. ForJ3 only the
most inner part of the sheet is shown to highlight the fi
mentation despite of the dominantJ3

e . Two wavelengths in
the x2 direction are seen, corresponding to the fact thatL2
54 and the critical perturbation has wavelength 2.

B. 3D secondary instability of the 2D time-asymptotic states

Once the 2D time-asymptotic states close to the bifur
tion point were calculated with sufficient accuracy, their li
ear stability with respect to 3D perturbations could be inv
tigated. Though the stability boundary of the quiescent ba
state is determined by the Hartmann number, the bifurca
states may depend onSandM separately. We have restricte
ourselves, however, to cases with Ha5S5M . The two-
dimensional states were extrapolated to three dimension

r
FIG. 3. Temporal behavior of the specific kinetic~dotted line!,

magnetic~dashed line!, and total~solid line! energies for the non-
linear two-dimensional development of the tearing mode for
5S5M566.3, a50.1, andL254. The inset shows additionally
the corresponding development for Ha5S5M567.

FIG. 4. Magnetic field lines~left!, velocity stream lines
~middle!, and contour lines of the current density componentJ3

~right! for Ha567, a50.1, andL254 at t5800. Solid ~dashed!
velocity stream lines correspond to clockwise~counterclockwise!
motion. Only the inner part of the current sheet is shown for
current density contour plot to highlight the filamentation ofJ3.
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PRE 61 2699BIFURCATION ANALYSIS OF THE PLANE SHEET PINCH
continuing them constantly in thex3 direction, and the sta
bility analysis was performed for the resulting 3D system
Since the equilibria were invariant in thex3 direction, stabil-
ity could be tested for each wave numberk3 separately. Tak-
ing into account just one wave number,k3572p/L3, in the
x3 direction, the aspect ratio or pinch heightL3 was varied.
We also added constant magnetic shear componentsB3

e to
the saturated 2D states. This could be done since such
stant field components do not influence a 2D solution: T
contribution ofB3

e to the Lorentz forceJ3B in Eq. ~1! van-
ishes since bothJ and the added magnetic field are in thex3
direction, and its contribution to the term“3(v3B) in Eq.
~2! vanishes as a consequence of the incompressibility c
dition “•v50 @in the incompressible case one has“3(v
3B)5(B•“)v2(v•“)B#.

The motivation for adding aB3
e is that in many applica-

tions externally generated magnetic fields are present in
dition to the self-consistently supported ones. In the so
atmosphere, for instance, current sheets may form when
gions of obliquely directed magnetic field are brought
gether and will then in general have a sheetwise field co
ponent. In magnetic fusion devices such as the tokam
toroidal magnetic fields, which correspond to sheetw
fields in plane geometry, are externally applied to stabil
the confined plasma.

Results of the stability calculations for Ha5M5S566.3
and Ha5M5S567 are shown in Fig. 5 where the maximu
real part of the eigenvalue spectrum is plotted against
varying parametersL3 and B3

e. In the case ofB3
e50 the

two-dimensional saturated states are always unstable, na
to three-dimensional disturbances with a sufficiently la
wavelength in thex3 direction ~see upper panel in Fig. 5!.

At the stability threshold always two identical real eige
values become positive. The multiplicity two results from t
symmetry of the system with respect to reflections in
planes x35const, due to which the linearly independe
modes with wave numbers1k3 and 2k3, respectively, be-
come simultaneously unstable~the periodic boundary condi
tions, which allow the decomposition into Fourier modes,
also needed here! @18#. The secondary instability to three
dimensional perturbations is always suppressed by a s
ciently strong fieldB3

e ~see lower panel in Fig. 5!. This is in
accordance with the general expectation that a magnetic
impedes motions with gradients in the direction of the fie
due to the tension associated with the lines of force.

The closer to the critical value@Hac#L254 the Hartmann
number is, the larger is the minimum wavelength of the u
stable perturbations in the third dimension~see upper pane
in Fig. 5!. Now the Squire theorem does not exclude that
perturbationsto the quiescent basic stateare unstable imme
diately above the critical Hartmann number, provided th
wavelengths 2p/k3 are sufficiently large~see the Appendix!.
One might suspect, therefore, that the unstable 3D pertu
tions to the 2D time-asymptotic tearing-mode state are a
unstable perturbations with respect to the basic state a
same Hartmann number. This is not the case, however: C
sider, for example, the curve for Ha566.3 in Fig. 5~maxi-
mum growth rate over wavelength of the perturbation in
x3 direction!. ForL352p/k357 one observes 3D instabilit
of the 2D time-asymptotic state. Can the quiescent ba
.
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state for Ha566.3 be unstable to a 3D perturbation wi
wavelength 7 in thex3 direction? The wave numberk2 of
such a 3D perturbation can take on the valuesn•2p/4,
n51,2,3, . . . ~since we have chosen the fixed aspect ra
L254). Squire’s theorem connects the 3D perturbation t
2D perturbation with wave numberk̃25@k2

21(2p/7)2#1/2

which is simultaneously unstable or stable at the Hartm
number Hã5(k2 / k̃2)66.3. With k252p/4, i.e., with the
smallest possibleuk2u, one finds Ha˜557.6, which is below
the critical value Hac564.57 ~see Fig. 1!. That is to say, a
3D mode withk252p/4 ~and k352p/7) cannot be an un-
stable perturbation to the quiescent basic state at Ha566.3.
For the next possiblek2 value, 2•2p/4, one has Ha˜563.7,
still below the critical value Hac . For all higherk2 values the
wavelength 2p/ k̃2 lies clearly below the unstable wave
length domain~see Fig. 1! for Hac<Ha<66.3.

Figures 6 and 7 show an unstable 3D eigenstate to
time-asymptotic 2D state witha50.1 andL254 at Ha567
~which is shown in Fig. 4!. The fields are shown in Fig. 6 in
the x2-x3 plane to underline qualitatively new structures
the third dimension. As in Fig. 4, two wavelengths of th
perturbation inx2 are shown. The 2D equilibrium is mixe
with the 3D perturbation in the ratio 50% equilibrium to 50
perturbation. In the perturbed state velocity and magn

FIG. 5. Maximum real parts of the eigenvalue spectrum ver
L3 ~upper panel! and B3

e ~lower panel! for a50.1 andL254 at
different Hartmann numbers Ha~alwaysS5M ). L352p/k3 is the
wavelength of the perturbation in thex3 direction ~stability was
tested for each wave numberk3 separately!.
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2700 PRE 61JÖRG SCHUMACHER AND NORBERT SEEHAFER
field have components in thex3 direction and all structures
including the current filaments, are modulated in this dir
tion.

Previous analyses of secondary instabilities of the sh
pinch @15,16#, as well as analyses of similar instabilities
hydrodynamic shear flows@19#, have indicated that these in
stabilities are ideal, i.e., their growth rates independen
dissipation. It appears interesting, therefore, to compare

FIG. 6. Most unstable 3D eigenstate with wave numberk3

52p/4 to the time-asymptotic 2D state~see also Fig. 4! at Ha
567. Vector plots of the velocity field~left! and contour lines of the
magnetic field componentB3 ~right! in planesx150.6 ~upper row!
and x150.4 ~lower row! are shown. Dotted contour lines indica
negativeB3, solid lines positive ones. The time-asymptotic 2D st
is mixed with the 3D perturbation in the ratio 50% equilibrium
50% perturbation.

FIG. 7. IsosurfacesuJu55.45 for the same data set as in Fig.
The maximum value ofuJu is 9.77.
-

et

f
he

growth rates of the secondary instability with those of t
primary one at the same Hartmann numbers. The growth
of the most unstable 2D tearing mode~those with wave-
length 2! for Ha566.3 is 8.831024, the corresponding
growth rate for Ha567 is 7.531023. A comparison with the
upper panel in Fig. 5 shows that the secondary instab
grows approximately five times as fast as the primary o
This agrees with results of Dahlburget al. @15,16#. However,
since all our calculations were restricted toS and M values
close to the primary bifurcation point, where the growth ra
of all primary or secondary modes go through zero or
still negative, they do not allow yet a characterization of t
secondary mode as ideal or nonideal; saturation of
growth rate may occur for largerS andM.

C. 3D time asymptotics

Finally, full three-dimensional simulations were pe
formed to follow the unstable modes in their nonlinear ev
lution. The resistivity gradients made the simulations ag
extremely time expensive. The calculations were thus
stricted to the caseL35L254, B2

e5B3
e50, and Ha567.

The asymptotic 2D state was extrapolated constantly into
third dimension and was mixed with the most unstable
eigenstate giving the initial condition. The first phase of t
full three-dimensional simulation was done with a low
spectral resolution, namely, 163, up to the timet0.2900. In
Fig. 8, the temporal behavior of the specific energies a
this initial growth phase for the next 900 time units is show
which was calculated with the highest resolution as given
Table I. The energies still oscillate slightly, but with a d
creasing amplitude, indicating convergence to a thr
dimensional steady state of the sheet pinch configuration

Furthermore, the solution is characterized by a clear
apparently time-independent spatial structure. In the ri
panel of Fig. 9 corresponding level surfaces ofuvu are shown
at t5550. We found the same shape of the level surface
uvu at t5900. Additionally, the same level surfaces a
shown for the 2D time-asymptotic state with otherwise t
same parameters in the left panel of Fig. 9. The compari
indicates that there is some relation between the two s
tions — the isosurfaces ofuvu in the 3D case are obtaine

FIG. 8. Temporal behavior of the specific kinetic, magnetic, a
total energies for the nonlinear development of the thr
dimensional system forL25L354, B2

e5B3
e50, and Ha567. The

time t0 was 2900.
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from those in the 2D case by a modulation in thex3 direc-
tion. This suggests, but does not prove, that the unstable
perturbations to the time-asymptotic 2D state do not dr
the system to a completely different solution existing som
where in phase space, but that 2D and 3D solutions origin
simultaneously in the primary bifurcation of the quiesce
basic state.

IV. SUMMARY AND OUTLOOK

We have numerically studied the primary and second
bifurcations of an electrically driven plane sheet pinch w
stress-free boundaries. The profile of the electrical cond
tivity across the sheet was chosen such as to concentrat
electric current largely about the midplane of the sheet
thus to allow instability of the quiescent basic state at so
critical Hartmann number. Our results can be summarize
follows.

~1! The most unstable perturbations to the basic state
two-dimensional tearing modes. If the whole problem is
stricted to two spatial dimensions, also the bifurcating tim
asymptotic state is of the tearing-mode type, namely, a
tionary solution characterized by a magnetic island struc
with a chain ofX andO points, fluid motion in the form of
convectionlike rolls, and a filamentation of the original cu
rent sheet. We have calculated this state with precision
the aspect ratioL254 and Hartmann numbers close to t
critical one. In contrast to the stability boundary the bifurc
ing solutions may depend on the two Reynolds-like numb
of the problem separately. We have restricted ourselve
M5S5Ha.

~2! The bifurcating steady ~time-asymptotic! two-
dimensional state was tested for stability with respect
three-dimensional perturbations. It proved to be unstabl
3D perturbations with a sufficiently large wavelength in t
third direction. At the stability threshold always two identic
real eigenvalues become positive~i.e., there are two purely
growing unstable eigenmodes!. We also added constant ex
ternal magnetic field components along the invariant dir
tion to the 2D tearing-mode equilibrium. If these compone
are sufficiently strong, they suppress the secondary insta
ity with respect to three-dimensional perturbations, which

FIG. 9. Isosurfacesuvu50.03 and uvu50.016 for the time-
asymptotic 2D state~left! and for the self-consistent 3D state att
5550~right!. The values of the parameters areL25L354 (L3 only
needed in the 3D case!, B2

e5B3
e50, and Ha567. The maximum

and minimum values ofuvu are 0.0384 and 0.0017, respectively,
the 2D case~left! and 0.0311 and 0.0, respectively, in the 3D ca
~right!.
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in accordance with the general expectation that a magn
field impedes motions with gradients in the direction of t
field and has been noted before@16#.

~3! Full three-dimensional simulations were performed
follow the unstable 3D modes in their nonlinear evolutio
The solution seems to converge to a 3D steady state.
though velocity and magnetic field have now components
the invariant direction of the 2D state and all structures
modulated in this direction, there is still some resemblanc
the 2D tearing mode state. This suggests, but does not pr
that the unstable 3D perturbations to the 2D state do
drive the system to a completely different region in pha
space. 2D and 3D solutions might originate simultaneou
in the primary bifurcation of the basic equilibrium.

Since our calculations were made very close to the
mary bifurcation point, we suppose that the steady
tearing-mode state is unstable from the beginning and
there is a direct transition of the system from the quiesc
basic state to three-dimensional attractors. This is true if
2D state is not stabilized by an external magnetic field alo
its invariant direction. Furthermore, a sufficiently smallL3
ensures stability of the 2D state in a certain Hartmann nu
ber interval above the critical value~since the unstable 3D
perturbations, whose wavelength must exceed some thr
old value, are then not admitted!. Finally, the aspect ratioL2
and the magnetic Prandtl numberPrm5n/h05S/M might
influence the bifurcation scenario, possibly in such a w
that in some parameter ranges the 2D tearing-mode solu
bifurcates stably from the basic state.

Secondary instabilities that succeed primary tw
dimensional ones and that lead to three dimensionality h
been considered as an important step in the transition f
laminar to turbulent states in linearly unstable nonconduct
shear flows@19–21#. For the case of linearly stable she
flows ~e.g., the plane Couette flow!, it was suggested tha
nonlinear stationary and linearly unstable three-dimensio
states, which develop already below the onset threshold
turbulence@22,23#, can form a chaotic repellor in phas
space@24#. Such a repellor can cause the transient turbul
states above the onset threshold. There is some analog
the magnetohydrodynamic pinch to shear flows, and Da
burg et al. @15,16# have presented numerical evidence th
the secondary instability of two-dimensional quasiequilib
of the tearing-mode type can lead to turbulence in a pl
sheet pinch. In their calculations the pinch was not driven
an external electric field~nor mechanically driven! and the
electrical conductivity was assumed to be spatially unifor
In such a case the pinch always decays resistively, tha
velocity and magnetic field tend to zero ast→`. By our
choice of the resistivity profile and the applied electric fie
we could calculate exact time asymptotic, in particu
steady states and could corroborate the result of Dahlb
et al., that saturated two-dimensional tearing-mode states
unstable to three-dimensional perturbations. We did not
serve a transition to a turbulencelike state yet. Irregular
havior may be expected to arise through subsequent bifu
tions when the Reynolds-like numbers are further raised
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APPENDIX: INSTABILITY OF THE QUIESCENT BASIC
STATE AND SQUIRE’S THEOREM IN THE CASE

OF A FINITE ASPECT RATIO L 2

Squire’s theorem states that for increasing Hartma
number two-dimensional perturbations to the quiescent b
state become unstable first. Specifically: For each th
dimensional eigenmode with wave numbersk2 , k3, and
growth ratel at Hartmann number Ha, there exists a tw
dimensional~i.e.,x3 invariant! eigenmode with wave numbe
k̃25(k2

21k3
2)1/2 and growth ratel̃5( k̃2 /k2)l at Hartmann

number Hã5(k2 / k̃2)Ha @9#.

1. CaseL 2Ä`

If the stability problem is considered on the infini
x2-x3 plane, i.e., with all wave numbersk2 andk3 allowed,
for increasing Ha one or several two-dimensional mo
with a critical wave numberk2c ~and the corresponding criti
cal wavelengthL2c52p/k2c) become unstable at a critica
Hartmann number Hac where all three-dimensional mode
are still stable. Above Hac the critical valuek2c broadens to
an unstablek2 interval. The latter means, however, th
three-dimensional modes could be unstable immedia
above Hac . Namely, consider a 3D eigenmode with wa
numbersk2 ,k3 and growth ratel at some Hartmann numbe
Ha5Hac1e, e.0. If k2 is chosen from the interior of the
unstablek2 interval at Ha, thenk̃25(k2

21k3
2)1/2 lies within

the unstablek2 interval at the Hartmann number H˜

5(k2 / k̃2)Ha, where Hac,Hã,Hac1e, if only uk3u is cho-
sen sufficiently small. This does not mean yet that the
mode to which the 3D mode is connected is unstable, s
there are in general also stable 2D eigenmodes with the s
wave numberk̃2. But if the associated 2D mode is unstab
i.e., if the real part ofl̃5( k̃2 /k2)l is positive, this implies
that also Re(l).0. The possibility of unstable three
dimensional eigenmodes close to the critical Hartmann n
ber is excluded by the Squire theorem, however, ifL3 is
finite, i.e., if there is a positive lower bound~however small!
to the modulus of the wave numberk3. In that case there is a
finite Hartmann number interval above Hac where all un-
stable eigensolutions are purely two dimensional.

2. CaseL 2 finite

Fixing L2 to a finite value complicates the problem, sin
only a set of discrete values is admitted fork2. If not just
L25n•2p/k2c , with n denoting a positive integer numbe
that is, if k2c is not just an admissiblek2, instability to 2D
modes will set in at some Hartmann number@Hac#L2

above

Hac and for a wave number@k2c#L2
different fromk2c .

a. Subcase L2ÏL 2cÄ2pÕk2c

In the caseL2<L2c for all k2 holds k2>k2c and conse-
quently the smallest admissiblek2 becomes unstable firs
i.e., @k2c#L2

52p/L2>k2c . It is easily seen that as in th

case ofL25` ~i! directly at the onset of instability only 2D
modes can be unstable~since modes withk250 cannot be
unstable@10# and the Squire theorem thus would connect a
unstable 3D mode to a 2D mode with wave numberk̃2
n
ic
e-

-

s

ly

D
ce
me
,

-

y

.@k2c#L2
outside the unstablek2 interval at the Hartmann

number@Hac#L2
), ~ii ! immediately above@Hac#L2

also un-
stable 3D modes are possible~or at least not forbidden by
Squire’s theorem!, ~iii ! a finite aspect ratioL3 ~however
large! ensures that in a finite Hartmann number interval clo
to the onset of instability only purely two-dimensional eige
modes are unstable~see also Fig. 2 where the pinch is stab
with respect to 3D modes forL3&6).

b. Subcase L2ÌL 2cÄ2pÕk2c

More involved is the situation forL2.L2c . Then it can-
not be excluded generally that 3D modes become unst
first, and in principal each individual situation has to
tested separately. One can distinguish between the c
@k2c#L2

.k2c and@k2c#L2
,k2c , of which the first one is sim-

pler. In both cases special complications arise from the
that 3D modes with wave numbersk2 smaller than@k2c#L2

,

that is to say, withk25n•2p/L2,@k2c#L2
5n0•2p/L2 (n,

n0 denoting integer numbers! can come into play.
In the case of@k2c#L2

.k2c these 3D modes~with k2

smaller than@k2c#L2
) are the only 3D modes that could be

come unstable at a Hartmann number less than@Hac#L2

~where the first 2D mode becomes unstable!; if they re-
mained stable, the situation is similar to that in Appendix 2
The 3D modes withk2,k2c must remain stable close to th
onset of 2D instability, however, if@Hac#L2

does not exceed

Hac too much~and @k2c#L2
does not differ too much from

k2c), such that~i! uk3u has to be larger than some positiv
threshold value in order thatk̃25(k2

21k3
2)1/2 ~with k2

5n•2p/L2 , n,n0) can come into the unstablek2 interval
close to the onset of instability~since there is a finite gap
between the unstablek2 interval and the largest admissib
k2 that is smaller thank2c) and~ii ! as a consequence of th
Hã5(k2 / k̃2)Ha must be smaller than Hac . If this is the case
and, furthermore,@k2c#L2

.k2c , the situation is the same a

for L2<2p/k2c .
The numerical example of this paper belongs to the c

egory just discussed:L2 finite, L2.2p/k2c , @k2c#L2
.k2c ,

and close to the onset of instability no unstable 3D mo
with k2,@k2c#L2

. We foundk2c52.67, corresponding to a

critical wavelength ofL2c52.35, and Hac564.57. The criti-
cal values for the fixed aspect ratioL254 are @k2c#L254

5p, corresponding to a critical wavelength of@L2c#L254

52, and @Hac#L254566.20784~see also Fig. 1!. Loosely

speaking, an unstable 3D mode has to fit now betweenc
and @Hac#L254 with its critical Hartmann number Ha˜. It can

only have the wave numberk252p/45p/2, since otherwise
k̃25(k2

21k3
2)1/2.@k2c#L2

~i.e., the associated 2D mod
would be stable!. This implies, in order to have instability

k̃25@~p/2!21k3
2#1/2.k2c52.67 ~A1!

and, consequently,

Hã5
p/2

k̃2

@Hac#L254,
p/2

k2c
@Hac#L254.38.9, ~A2!
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which lies below Hac . 3D modes withk25p/2 cannot be
unstable even for Hartmann numbers significantly abo
@Hac#L254. 3D modes withk25@k2c#L254, on the other hand,

can be unstable immediately above@Hac#L254 and are stabi-
l

s-

d
-

e
lized by an upper bound to the aspect ratioL3, as discussed
in the preceding subsections of this appendix. We found
conditionL3,1000 to be sufficient to stabilize all 3D mode
at Ha566.208 (.@Hac#L254566.20784).
t
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