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Bifurcation analysis of the plane sheet pinch
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A numerical bifurcation analysis of the electrically driven plane sheet pinch is presented. The electrical
conductivity varies across the sheet such as to allow instability of the quiescent basic state at some critical
Hartmann number. The most unstable perturbation is the two-dimensional tearing mode. Restricting the whole
problem to two spatial dimensions, this mode is followed up to a time-asymptotic steady state, which proves
to be sensitive to three-dimensional perturbations even close to the point where the primary instability sets in.
A comprehensive three-dimensional stability analysis of the two-dimensional steady tearing-mode state is
performed by varying parameters of the sheet pinch. The instability with respect to three-dimensional pertur-
bations is suppressed by a sufficiently strong magnetic field in the invariant direction of the equilibrium. For a
special choice of the system parameters, the unstably perturbed state is followed up in its nonlinear evolution
and is found to approach a three-dimensional steady state.

PACS numbes): 47.65+a, 52.30-q, 95.30.Qd

[. INTRODUCTION cation analysis, which will be provided for the cases of two
as well as of three spatial dimensions in the present paper. In

Finite-resistivity plasma instabilities play an important a bifurcation analysis one tries to determine the set of pos-
role for the release of stored magnetic energy in many astrcsible time-asymptotic states, the attractors, for given values
physical objects. They also restrict the plasma stability inof the system parameters. The bifurcations from a static
several fusion device§l]. The simplest configuration in sheet-pinch equilibrium have previously been studied for the
which they appear is the plane sheet pinch. In a pinch &ase of two spatial dimensiof$1,12. Grauer[13] investi-
conducting fluid can be held together by the action of angated the interaction of two different tearing modes in the
electric current passing through it with the pressure gradientsvo-dimensional slab geometry by reducing the dynamics at
being balanced by the Lorentz force. Of special interest is théhe bifurcation point to that on a four-dimensional center
resistive tearing instability, which was studied by Fuetral.  manifold. The new time-asymptotic states were found to be
[2] by using a boundary layer approach and afterwards nuef the tearing-mode type, but, e.g., also traveling waves were
merically without making the boundary-layer approximationfound.
[3-5]. All these studies refer to the infinite Hartmann num-  We note here that even though with increasing Hartmann
ber case because of their neglect of the kinematic viscositynjumber the equilibrium becomes first unstable to two-
The Hartmann number Ha, which is the geometric mean oflimensional perturbationgccording to the Squire theorgm
two Reynolds-like numbers, one being kinetic and the othethe new final states may be three-dimensional. This is one of
magnetic, is the essential parameter that determines the gltie problems the present paper is addressed to. The first
bal stability boundaries of the plane sheet pinch as well aguestion arising is which type of two-dimensioaD) time-
those of its cylindrical counterpal®,7]. Thus kinematic vis- asymptotic state develops nonlinearly from the tearing mode
cosity has to be included. when the whole problem is restricted to two spatial dimen-

A recent sheet pinch study] has been done with spa- sions. The bifurcation studigd1-13 predict steady states
tially and temporally uniform kinematic viscosity and mag- for the generic cases. Similarly, large scale perturbations of a
netic diffusivity, and with impenetrable stress-free bound-sheared magnetic field equilibrium were found to result in a
aries. It is found that the quiescent ground statevhich the  final tearing-mode type stationary state via multiple coales-
current density is uniform and the magnetic field profilecence of the magnetic island structurgst]. A question
across the sheet is lingaremains stable, no matter how coming up then is whether the 2D time-asymptotic states are
strong the driving electric field. This study was extended tostable with respect to three-dimensional perturbations. If not,
the case of magnetic diffusivity varying across the sheethow do the stability properties depend on parameters such as
which results in the profiles of the equilibrium magnetic fieldthe strength of a constant external magnetic field or the
deviating from linear behavior. In particular, the conductivity wavelength of perturbations in the invariant direction of the
profile may be chosen such that the magnetic-field and/or theD state? Finally, what are the characteristic properties of the
current profile have inflection points. A Squire theoremthree-dimensional time-asymptotic states, when they mani-
could be proven for this configuratiof®] whose stability fest? In the present paper a comprehensive stability analysis
depends on the Hartmann number, the degree of current coof the two-dimensional time-asymptotic states that develop
centration about the midplane of the sheet, and on the madrom the tearing mode is presented. For the case of a spa-
netic sheafi.e., the asymmetry of the equilibrium magnetic tially uniform resistivity these problems were addressed in
field) [10]. numerical studies of the magnetohydrodynaniMHD)

A stability analysis can be considered as part of a bifur-equations by Dahlburget al. [15,16, who found two-
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dimensional quasiequilibria of the tearing-mode type to be val val
unstable to three-dimensional perturbations. Secondary M= . and S= e (7)
three-dimensional instabilities were similarly observed for 0

nonstatic primary states with, in addition to a sheared mags,q Reynolds-like numbers based on the Affvelocity: Sis
netic field, a pressure-driven jetlike flg@7], and their non- 4 Lundquist number anifl its viscous analoge. The geo-

Iin_ear development was proposed as a scenario for the trapsetric mean of the two Reynolds-like numbers gives the
sition to MHD turbulence. Hartmann number

The outline of the paper is as follows. In Sec. Il the physi-
cal model is introduced. The MHD equations as well as Ha=MS. (8)
boundary and initial conditions are discussed. In Sec. Il we
provide the results of the bifurcation analysis. First the 2DFinally, the dimensionless Ohm's law becomes
results are discussed. After that we investigate the linear sta-
bility of 2D time-asymptotic states with respect to 3D per- S 1J=E+vXB. (9)
turbations. For appropriate choices of the external parameters
the 2D states prove to be 3D unstable. The 3D asymptotics is

investigated by a full three-dimensional long-time simulation B. Boundary conditions and static equilibrium
of the pinch dynamics. Finally we discuss our results and end We use Cartesian coordinates,X,,x; and consider our
with an outlook in Sec. IV. magnetofluid in the slab@x,<1. x, is referred to as the
cross-sheet coordinate. In tlxg and x5 directions periodic
Il. PHYSICAL MODEL boundary conditions with periods, and L, respectively,
are used.

A. MHD equations The boundary planes are assumed to be impenetrable and

We use the nonrelativistic, incompressible MHD equa-stress-free, i.e.,

tions
W2 _ M3 g g 0,1 (10)
v V=T =——= at x,=0,1.
p| % +(v- V)V | =ppV =V p+IxB, (1) P I

The system is driven by an electric field of strenfthin
IB the x5 direction, which can be prescribed only on the bound-
—=—-VX(gugd—vXB), (2 ary. We further assume that there is no magnetic flux through

Jt the boundary
V.v=0, V-B=0, () B,=0 at x;=0,1. (12)

wherev is the fluid velocity,B the magnetic inductiong,  Conditions(10) and (11) imply that the tangential compo-
the magnetic permeability in a vacuurd=V XB/uy the  nents ofvX B on the boundary planes vanish, so that accord-
electric current densityp the mass densityy the pressurey  ing to Eq.(9)

the kinematic viscosity, andy the magnetic diffusivity.

While p and v are assumed constang,varies spatially: E*S
JZZO, J3: ~ at X1=O,l, (12)
7o

7(X) = 707(X), (4)

where7, is the value ofy on the boundaries. The boundary

where 7, is a dimensional constant ang(x) a dimension-  conditions for the tangential componentsBthen become
less function of position.

Let the pinch width(sheet thicknegd. =L, and some yet dB, E*S 0B,
arbitrary field strengttB, be used as the units of length and —= —=
magnetic induction. Writingy a=Bo/Vuop for the Alfven

velocity corresponding t8,, we transform to dimensionless . . . . .
quantities. Specifically, B, v, t, p, J, andE are normal- A detailed discussion of these boundary conditions is found

%, %b, 7%, 0 at x;=0,1. (13

- in Ref. [8].

ized by L,By,ua,7a=L/va,povs,Bo/(uol), and Bous, . . . .

respec}[/ively OThAe unantitjé ig OthAe e?ef:ﬁ i((): 12iel q quj)at?ons Any stationary state with the fluid at rest has to satisfy the
: ‘ equations

(1) and(2) then become

av ~Vp+JIXB=0, (14)
Ez—(v-V)v+M*1V2v—Vp+Jx B, (5) B
VX(75d)=0. (15)
oB - Equati iti is-
L 1~ guations(14), (15) and the boundary conditions are satis
ot~ " VX(STnd=vxB), ©®  fied by the Harris equilibrium

where 7=cosH[(x;—0.5)/a], (16)
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TABLE |. Parameters of the 2D and 3D sheet pinch simulations. 4 T ' '
Run Ha L, Ls (N1,N5,N3)
1 66.21 4 (32,16,9 3r stable
2 66.30 4 (32,165 o | L
) 2¢
3 67.00 4 (32,16,9
4 67.00 4 4 (32,16,16 2
[LZC]LE=4
Ha,
[Ha Jio-s
3=3=( 0,0 ! (17) ; PR
"atanh(1/2a)cosR[(x,—0.5)/a]/’ & = 8 gg oF B
B Be— tani (x,—0.5/a] L BeBe 19) FIG. 1. Stability boundary for the quiescent basic state \ith
" tanh(1/2a) 2=3) =0.1 andB$=0 in the Hal , plane.L,=2/k, is the wavelength
of the perturbation in the, direction (stability was tested for each
. B®? wave numbek, separately.
P=p=——5", (19
IIl. RESULTS
whereB_g andB_§ are constants. The resistivity given by Eq. A. 2D time asymptotics

(16) decreases from the boundary towards the sheet center \ye started with a determination of the stability boundary

where it takes on a minimum value. This is in accordancegy the static sheet pinch equilibrium. The Squire theorem
with the expectation that the plasma is hotter within the cur4jowed a restriction toxs invariant perturbationgi.e., to

rent sheet combined with the de(irease of the typical Spitzeﬁerturbations with wave numbkg=0). Furthermore, due to
resistivity with temperature, i.e.p~T %2 Unlike other the invariance of the equilibrium in the, direction stability
studieg 15,16 where the system is infinitely extended in the could be tested for each wave numher(or the correspond-
cross-sheetx;) direction, we do not use the current sheeting Fourier modgseparately. First, the system was assumed
half width a as the unit of length. Instead, we normalize toto be infinitely extended in the, direction. In this case the
the finite distancé. =L, between the two boundary planes. wave numbek, of a perturbation can adopt any real value.
The magnetic field uniB, was chosen in such a way that, in Figure 1 shows the stability boundary in the Hartmann
the case 0B3=0, [B5/=1 on the boundary planes. number—wavelength plane f@5=0 anda=0.1(B anda
We use the notations are fixed to these values throughout the pap8ince the
b=B—B°, j—J—J° 20 eqtiLibrium prgfiIeBg(xl) is symmet.r.ic B5=0), the value
of B3 has no influence on the stabilitgee Ref[10]). The
wherev and b are our dynamical variables, for which the unstable region lies to the right of the boundary curve. For
stress-free boundary conditions are now as follows : the spatial resolution used, instability sets in at=Htg,
=64.57 ank,=k,.=2.67.
In calculations using the full nonlinear equations the as-
0 at x=01 pect ratioL, (in the 3D casd.; as wel) has to be fixed to a
(21)  finite value. We have used,=4 in all nonlinear calcula-
tions. There are some subtleties concerning the onset of in-
We Fourier expand both vector fields into modesstability and the application of the Squire theorem when
~ expli(kaxtkaxa)} in thex, andx; directions. In the cross- s finite, due to the fact that only a discrete seketalues is

sheet directionx; sine and cosine expansions are used imadmitted. WithL,=4 instability sets in at Ha[Hac]L2:4
correspondence with the imposed stress-free boundary con-¢e 55784 and,=[Ky.],._4= 1, corresponding to a criti-
. clL,= :

ditions (for more details see Ref8]). Dynamical integra-

tions of the system are performed in Fo)l/Jrier space b)g/] mearfidl wavelength of 2. Unstable 3D modes at Hartmann num-
of a pseudo-spectral method with 2/3-rule dealiazing. The€rs close t@Ha], -4 are excluded if the aspect ratig is

grid size for the 3D integrations was taken to bex3s finite (for more details see the AppendgixFigure 2 shows,

% 16 which was found to be sufficient for our low-Hartmann- for Ha=70, a comparison of the growth rate of the most
number studiessee Table )l Time integration was per- unstable 2D mode, which has wavelength 2 in pedirec-
formed using a Runge-Kutta scheme with a variable timeion, with the growth rates of the most unstable 3D mode
step. Compared to similar calculations with a spatially uni-with the same wavelength in the direction and different
form resistivity, the simulations were extremely time expen-wavelengths in the direction.

sive since only very short time steps were possible. Addi- When Ha exceeds the critical vallila] -4 the tearing
tionally one has to keep in mind that our spectral resolutiormode grows due to a bifurcation where a pair of identical
is restricted by the evaluation of the Jacobian necessary faeal eigenvalues becomes positive. A superposition of the
the linear stability analysis of the time-asymptotic states. Th&tatic equilibrium and the most unstable eigenvector was
used resolution results in the inversion of a 283836 taken as the initial state to follow up the nonlinear develop-
matrix. ment of the tearing mode in two spatial dimensions.

aUZ &U3 &bz ab3
R L T
1 1 1 1
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FIG. 2. Maximum real parts of the eigenvalue spectruniLys t
resulting from the stability analysis of the quiescent basic state for . o )
a=0.1andL,=2 at Ha= M =S=70. Ly=27/ks is the wavelength FIG. 3. Temporal behavior of the specific kinetaotted ling,

of the perturbation in the, direction (stability was tested for each Magnetic(dashed ling and total(solid line) energies for the non-
wave numbeks separately The dotted line marks the maximum linéar two-dimensional development of the tearing mode for Ha

growth rate of the most unstable 2D mode;€0) for the same =S=M=66.3, a=0.1, andL,=4. The inset shows additionally
parameters. the corresponding development for H&=M =67.

magnetic island structure with a chain ¥fand O points,
After several hundred Alfve times 7, convergence to a fluid motion in the form of convectionlike cells or rolls, and
stationary state was observed. This state is of course linear filamentation of the original current sheet. Bgronly the
stable with respect to two-dimensional perturbations. It ismost inner part of the sheet is shown to highlight the fila-
also clear that the development to the time-asymptotic statg®entation despite of the dominad§. Two wavelengths in
is decellerated the closer to the critical valuta.], -4 the the x, direction are seen, corresponding to the fact that

Hartmann number is taken. This was indicated first by the=4 and the critical perturbation has wavelength 2.
convergence of the maximum eigenvalue to zero. Namely, _ N _ _
due to the marginal stability with respect to translations in B. 3D secondary instability of the 2D time-asymptotic states

thex, direction, one eigenvalue of the time-asymptotic state  once the 2D time-asymptotic states close to the bifurca-
has to vanish. For this real eigenvalig we had, for in-  tion point were calculated with sufficient accuracy, their lin-
stance,\g=—5x10"* for t=700 and H&66.21, o= ear stability with respect to 3D perturbations couid be inves-
—5x10"* for t=500 and Ha66.3 (and \¢=—2X10""  tjgated. Though the stability boundary of the quiescent basic
for t=800 and Ha 66.3), but alread\o=—2x10"° for  gate is determined by the Hartmann number, the bifurcating
t=500 and Ha 67 (and \o=—10"° for t=800 and Ha states may depend @andM separately. We have restricted
=67). The time development of run 1 became extremelyoyrselves, however, to cases with H&=M. The two-
slow. This run close tgHa.], -, was performed in order to  dimensional states were extrapolated to three dimensions by
make it as sure as possible that secondary bifurcations close
to the primary bifurcation point were not overlooked. Since
the time-asymptotic solutions for He66.21, 66.3, and 67
are all of the same type, the solutions simulated for Ha
=66.3 and Ha67 are likely to belong to a branch originat- 3
ing in the primary bifurcation. In Fig. 3 the time develop-
ments of the specific kinetic enerdy,=(1/2V)[\v2dV,
the specific magnetic ener@, .= (1/2V) fyb?dV, and their
sum, the total energl,, are plotted for runs 2 and@un 3
only shown in the inset Nearly perfect steady states are
reached for both Hartmann numbers at later stages. For Ha
=67 energies are practically constant in timeaB800. The
amplitude of the eigenvectors is not determined by the sta-
bility analysis. For Has 67 thus two energetically different
initial conditions were considered and were found to relax o tlll
toward the same asymptotic state, one from energetically be- 00 05
low and the other from energetically above the asymptotic * *i i
energy(in the first case, not shown in the figure, the energies £ 4. Magnetic field lines(left), velocity stream lines
increase as functions of time and then become almost cofmiqdie), and contour lines of the current density componast
stang. (right) for Ha=67, a=0.1, andL,=4 att=800. Solid (dashed

In Fig. 4 the asymptotic state is shown for H&=M velocity stream lines correspond to clockwigmunterclockwise
=67. Field lines ofB, stream lines of, and contour lines of motion. Only the inner part of the current sheet is shown for the
the current density componedy are drawn. One observes a current density contour plot to highlight the filamentationJgf

Xe
fav]
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continuing them constantly in the; direction, and the sta- 0.05 : : ' ' '
bility analysis was performed for the resulting 3D systems.
Since the equilibria were invariant in tixg direction, stabil- 0.041 * Ha=66.3, By=0 ]
; AN A Ha=67.0, B3=0
ity could be tested for each wave numitgrseparately. Tak- . W
ing into account just one wave numb&g=F 27/L3, in the < 003+ 4 i 1
X3 direction, the aspect ratio or pinch heidhf was varied. E : AAA
We also added constant magnetic shear comporght® = 002k : AAAAA i
the saturated 2D states. This could be done since such con- g ' : Bhnn
stant field components do not influence a 2D solution: The : v
contribution ofB§ to the Lorentz forcelX B in Eq. (1) van- - 0.01F 4 o " |
ishes since botll and the added magnetic field are in the ¥W PRI
direction, and its contribution to the terMX (vXB) in Eq. 0.00 lefoose— . . .
(2) vanishes as a consequence of the incompressibility con- 1 10 20 30
dition V-v=0 [in the incompressible case one hés (v Ly
XB)=(B-V)v—(v-V)B]. o 0.04 [T T T—T— T
The motivation for adding &3 is that in many applica- % Ha=66.3, Ly;=10
tions externally generated magnetic fields are present in ad- Y A Ha=67.0, Ly=4
dition to the self-consistently supported ones. In the solar 0037y | DHa=67.0, L=10
A
atmosphere, for instance, current sheets may form when re- E Y
gions of obliquely directed magnetic field are brought to- 5 oo
gether and will then in general have a sheetwise field com- & 002r A g 1
ponent. In magnetic fusion devices such as the tokamak o '
toroidal magnetic fields, which correspond to sheetwise g B
fields in plane geometry, are externally applied to stabilize 0.01r ]
the confined plasma. fxy OO
Results of the stability calculations for HaVl = S=66.3 0.00 '

and Ha=M = S=67 are shown in Fig. 5 where the maximum
real part of the eigenvalue spectrum is plotted against the
varying parameterd; and B_§ In the case ofB_gzo the
two-dimensional saturated states are always unstable, namely fig, 5. Maximum real parts of the eigenvalue spectrum versus
to three-dimensional disturbances with a sufficiently Iarge\_3 (upper pandl and BS (lower panel for a=0.1 andL,=4 at

wavelength in the; direction(see upper panel in Fig)5 different Hartmann numbers HalwaysS=M). Ly=27/k; is the
At the stability th_r_eshold alway_s two identical real eigen- wavelength of the perturbation in the direction (stability was
values become positive. The multiplicity two results from thetested for each wave numbles separately

symmetry of the system with respect to reflections in the

planes x;=const, due to which the linearly independentstate for Ha=66.3 be unstable to a 3D perturbation with
modes with wave numbers ks and —ks, respectively, be-  wavelength 7 in thex; direction? The wave numbés, of
come simultaneously unstabihe periodic boundary condi- gych a 3D perturbation can take on the valuegw/4,
tions, which allow the decomposition into Fourier modes, areh=1273 . . . (since we have chosen the fixed aspect ratio
also needed heyg¢18]. The secondary instability to three- | . 4) Squire’s theorem connects the 3D perturbation to a
dimensional perturbations is always suppressed by a SUﬁb_D perturbation with wave numbeﬁzz[k§+(2w/7)2]l’2
cientlﬁ strong ,ﬁﬁldr?g (see Iolwer panel in I;ig.)SThis IS in ; I\gllhiCh is simultaneously unstable or stable at the Hartmann
accordance with the general expectation that a magnetic fie — ~ . _ . .
impedes motions with gradients in the direction of the ﬁeldnumber Hzr(l.<2/k2)66.3. \_N'tr_]_l_(,z_zwm’ "?" W'th the
due to the tension associated with the lines of force. smallest possiblék,|, one finds Ha 57.6, which is below

The closer to the critical vaIuEl—|ac]L2=4 the Hartmann the critical value Hg=64.57 (see Fig. 1 That is to say, a

number is, the larger is the minimum wavelength of the un-3D mode withk,=2/4 (andky=2/7) cannot be an un-

stable perturbations in the third dimensi@see upper panel stable perturbat|or.1 to the quiescent basic Sta.tf,a* 66a3.

in Fig. 5). Now the Squire theorem does not exclude that 3DFOr the next possiblé, value, 2 27/4, one has Ha63.7,
perturbationgo the quiescent basic stasee unstable imme- Still below the critical value Ha For all higherk; values the
diately above the critical Hartmann number, provided theirwavelength 2r/k, lies clearly below the unstable wave-
wavelengths 2r/ks are sufficiently largésee the Appendjx  length domainsee Fig. 1 for Ha.<Ha<66.3.

One might suspect, therefore, that the unstable 3D perturba- Figures 6 and 7 show an unstable 3D eigenstate to the
tions to the 2D time-asymptotic tearing-mode state are alstime-asymptotic 2D state with=0.1 andL,=4 at Ha=67
unstable perturbations with respect to the basic state at thgvhich is shown in Fig. # The fields are shown in Fig. 6 in
same Hartmann number. This is not the case, however: Cotihe x,-X5 plane to underline qualitatively new structures in
sider, for example, the curve for H&66.3 in Fig. 5(maxi-  the third dimension. As in Fig. 4, two wavelengths of the
mum growth rate over wavelength of the perturbation in theperturbation inx, are shown. The 2D equilibrium is mixed
Xz direction. ForL;=27/k;=7 one observes 3D instability with the 3D perturbation in the ratio 50% equilibrium to 50%
of the 2D time-asymptotic state. Can the quiescent basiperturbation. In the perturbed state velocity and magnetic
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FIG. 8. Temporal behavior of the specific kinetic, magnetic, and
total energies for the nonlinear development of the three-
dimensional system foc,=L;=4, B5=B5=0, and Ha&67. The
time t, was 2900.

growth rates of the secondary instability with those of the
primary one at the same Hartmann numbers. The growth rate
of the most unstable 2D tearing modiose with wave-
length 2 for Ha=66.3 is 8.8<10 4, the corresponding
growth rate for Ha= 67 is 7.5< 10" 3. A comparison with the
upper panel in Fig. 5 shows that the secondary instability

andx,=0.4 (lower row) are shown. Dotted contour lines indicate 9rOWS approximately five times as fast as the primary one.

negativeB,, solid lines positive ones. The time-asymptotic 2D stateT_hiS agrees with resu_lts of Dahlbueg _al. [15,16. However,
is mixed with the 3D perturbation in the ratio 50% equilibrium to Since all our calculations were restricted3@nd M values

50% perturbation.

field have components in the direction and all structures,

close to the primary bifurcation point, where the growth rates
of all primary or secondary modes go through zero or are
still negative, they do not allow yet a characterization of the

including the current filaments, are modulated in this direc-S€condary mode as ideal or nonideal; saturation of the

tion.

growth rate may occur for larges and M.

Previous analyses of secondary instabilities of the sheet

pinch[15,16, as well as analyses of similar instabilities in
hydrodynamic shear flowjd.9], have indicated that these in-

C. 3D time asymptotics
Finally, full three-dimensional simulations were per-

stabilities are ideal, i.e., their growth rates independent ofgrmed to follow the unstable modes in their nonlinear evo-
dissipation. It appears interesting, therefore, to compare thgtion, The resistivity gradients made the simulations again

FIG. 7. Isosurfacef]|=5.45 for the same data set as in Fig. 6.

The maximum value ofJ| is 9.77.

extremely time expensive. The calculations were thus re-
stricted to the casé;=L,=4, B5=B5=0, and Ha67.
The asymptotic 2D state was extrapolated constantly into the
third dimension and was mixed with the most unstable 3D
eigenstate giving the initial condition. The first phase of the
full three-dimensional simulation was done with a lower
spectral resolution, namely, 3,6up to the timety=2900. In
Fig. 8, the temporal behavior of the specific energies after
this initial growth phase for the next 900 time units is shown
which was calculated with the highest resolution as given in
Table I. The energies still oscillate slightly, but with a de-
creasing amplitude, indicating convergence to a three-
dimensional steady state of the sheet pinch configuration.
Furthermore, the solution is characterized by a clear and
apparently time-independent spatial structure. In the right
panel of Fig. 9 corresponding level surfacegwfare shown
att=550. We found the same shape of the level surface of
|v|] at t=900. Additionally, the same level surfaces are
shown for the 2D time-asymptotic state with otherwise the
same parameters in the left panel of Fig. 9. The comparison
indicates that there is some relation between the two solu-
tions — the isosurfaces df/| in the 3D case are obtained
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in accordance with the general expectation that a magnetic
field impedes motions with gradients in the direction of the
field and has been noted befdio].

(3) Full three-dimensional simulations were performed to
follow the unstable 3D modes in their nonlinear evolution.
The solution seems to converge to a 3D steady state. Al-
though velocity and magnetic field have now components in
the invariant direction of the 2D state and all structures are
modulated in this direction, there is still some resemblance to
the 2D tearing mode state. This suggests, but does not prove,
that the unstable 3D perturbations to the 2D state do not
drive the system to a completely different region in phase
space. 2D and 3D solutions might originate simultaneously
in the primary bifurcation of the basic equilibrium.

Since our calculations were made very close to the pri-
mary bifurcation point, we suppose that the steady 2D
tearing-mode state is unstable from the beginning and that

Cthere is a direct transition of the system from the quiescent
basic state to three-dimensional attractors. This is true if the

) o ) 2D state is not stabilized by an external magnetic field along
from those in the 2D case by a modulation in thedirec- s jnyariant direction. Furthermore, a sufficiently smiay

tion. This suggests, but does not prove, that the unstable 3Dq res stability of the 2D state in a certain Hartmann num-

perturbations to the time-asymptotic 2D state do not drive,e jnterval above the critical valusince the unstable 3D

the system to a completely different solution existing SOMenertyurbations, whose wavelength must exceed some thresh-

where in phase space, but that 2D and 3D solutions originatg,q value, are then not admittecFinally, the aspect ratib,
simultaneously in the primary bifurcation of the quiescentyq the magnetic Prandtl numbBr = v/ 7,=S/M might
m

basic state. influence the bifurcation scenario, possibly in such a way
that in some parameter ranges the 2D tearing-mode solution
IV. SUMMARY AND OUTLOOK bifurcates stably from the basic state.

We have numerically studied the primary and secondar)a. Secqndalry instatzjilitri]es | thgt s#ccezq priman;. t\;]vo-
bifurcations of an electrically driven plane sheet pinch withdimensional ones and that lead to three dimensionality have

stress-free boundaries. The profile of the electrical condud2€€N considered as an important step in the transition from
Iz?gmnar to turbulent states in linearly unstable nonconducting
electric current largely about the midplane of the sheet an hear rows[ﬁQ—le]. FoCr the cafsle ‘.)f linearly stabled sr;]ear
thus to allow instability of the quiescent basic state at som owsS (eg., t € plane ogette owit was sugges_te t _at
critical Hartmann number. Our results can be summarized agonllnear stationary and linearly unstable three-dimensional
follows states, which develop already below the onset threshold of

(1) The most unstable perturbations to the basic state arréjrbulence[22,23], can form a chaotic repellor in phase

two-dimensional tearing modes. If the whole problem is re_space[24]. Such a repellor can cause the transient turbulent

stricted to two spatial dimensions, also the bifurcating time-St&t€s above the onset threshold. There is some analogy of

asymptotic state is of the tearing-mode type, namely, a Stfe magnetohydrodynamic pinch to shear flows, and Dahl-

tionary solution characterized by a magnetic island structur@U'd €t al. [15,18 have presented numerical evidence that
with a chain ofX and O points, fluid motion in the form of the secondary instability of two-dimensional quasiequilibria

convectionlike rolls, and a filamentation of the original cur- of the tgarmg—mod_e type can lead to. turbulence in a plane
rent sheet. We have calculated this state with precision foph€€t Pinch. In their calculations the pinch was not driven by

the aspect ratid,=4 and Hartmann numbers close to the an external electric fieldnor mechanically drivenand the
2 t.electrical conductivity was assumed to be spatially uniform.

critical one. In contrast to the stability boundary the bifurcal h he pinch al q istively that i
ing solutions may depend on the two Reynolds-like numberén such a case the pinch aiways decays resistively, that Is,
gelocny and magnetic field tend to zero &s». By our

of the problem separately. We have restricted ourselves to~" S , ; oL
M =S:pHa. P y choice of the resistivity profile and the applied electric field

(2) The bifurcating steady (time-asymptoti¢ two- we could calculate exact time asymptotic, in particular

dimensional state was tested for stability with respect toStealdthtateS and dCOU|d d_corrob_orat:a the_ result dOf Dahlburg
three-dimensional perturbations. It proved to be unstable gtal tt>l at saLurated_ two- _|me|nS|ona gee}nng-rrvl\;) 3.3tates at:e
3D perturbations with a sufficiently large wavelength in theUnsStable to three-dimensional perturbations. We did not ob-

third direction. At the stability threshold always two identical S€TV€ & transition to a turbule;ncellke state yet. Irregula_lr be-
real eigenvalues become posititiee., there are two purely hawor may be expected to_ arise through subsequent_ bifurca-
growing unstable eigenmodesVe also added constant ex- tions when the Reynolds-like numbers are further raised.
ternal magnetic field components along the invariant direc-
tion to the 2D tearing-mode equilibrium. If these components
are sufficiently strong, they suppress the secondary instabil- J.S. wishes to acknowledge many fruitful discussions with
ity with respect to three-dimensional perturbations, which isArmin Schmiegel.

FIG. 9. Isosurfacedv|=0.03 and|v|=0.016 for the time-
asymptotic 2D statéleft) and for the self-consistent 3D statetat
=550(right). The values of the parameters &rge=Lz;=4 (L3 only
needed in the 3D cageB5=B5=0, and Ha=67. The maximum
and minimum values dfv| are 0.0384 and 0.0017, respectively, in
the 2D casdleft) and 0.0311 and 0.0, respectively, in the 3D cas
(right).
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APPENDIX: INSTABILITY OF THE QUIESCENT BASIC >[kac], outside the unstablé, interval at the Hartmann
STATE AND SQUIRE’'S THEOREM IN THE CASE number[HaC]Lz), (i) immediately above{HaC],_z also un-
OF AFINITE ASPECT RATIO L, stable 3D modes are possikler at least not forbidden by
Squire’s theorem states that for increasing HartmanrSquire’s theorem (iii) a finite aspect ratidz (however
number two-dimensional perturbations to the quiescent basiarge) ensures that in a finite Hartmann number interval close
state become unstable first. Specifically: For each thredo the onset of instability only purely two-dimensional eigen-
dimensional eigenmode with wave numbees, ks, and modes are unstableee also Fig. 2 where the pinch is stable
growth ratex at Hartmann number Ha, there exists a two-with respect to 3D modes fdr;<6).
dimensionali.e., x5 invarian) eigenmode with wave number

ko= (k3+k3)¥? and growth ratex = (k,/k,)\ at Hartmann b. Subcase b>1 2c=2m/kzc

number Hae (k, /K,)Ha [9]. More involved is the situation fok,>L,.. Then it can-
not be excluded generally that 3D modes become unstable
1. Casel ,= = first, and in principal each individual situation has to be

I th bil bl . idered he infini tested separately. One can distinguish between the cases
the stability problem Is considered on the infinite [k2c]L2>k2c and[k2c]L2<k2cv of which the first one is sim-

X5-X3 plane, i.e., with all wave numbeks andk; allowed, ler. In both ial licati ise f the fact
for increasing Ha one or several two-dimensional moded '€+ IN DOIN cases special complications arise from the tac

with a critical wave numbek,,. (and the corresponding criti- that ?’D modes W'th wave numbeks smaller thar k],

cal wavelength_,.=2m/k,.) become unstable at a critical that is to say, withky=n-2m/L,<[Kyc] ,=Nno-27/L; (N,

Hartmann number Hawhere all three-dimensional modes ny denoting integer numbérsan come into play.

are still stable. Above Hathe critical valuek,, broadens to In the case offkyc] ,>Kz: these 3D modeswith k;

an unstablek, interval. The latter means, however, that smaller thar ko], ) are the only 3D modes that could be-

three-dimensional modes could be unstable |mmed|atelxOme unstable at a Hartmann number less theia,],

above Ha. Namely, consider a 3D eigenmode with wave h he f 4e b bié th 2

numbersk, ks and growth rate. at some Hartmann number (Where the first 2D mode becomes unstabié they re-
mained stable, the situation is similar to that in Appendix 2 a.

Ha=Ha.+¢€, €>0. If k, is chosen from the interior of the ) !
tablek. int | at Ha. therk,— 2 2 1212 | ithi The 3D modes withkk,<k,. must remain stable close to the
unstablek; interval at Ha, therk,=( 3)"" lies within - set of 2D instability, however, [fHa ], does not exceed

the unstablek, interval at the Hartmann number Ha Ha, t00 much(and[sz],_ does not dlffer too much from

=(k,/k,)Ha, where Ha<Ha<Ha,+ e, if only |ks| is cho-
se(n ZSUf'ZfI)CIent;,)\// small. é'?ms doeast ncE>t Imear?/ )|/e§|tlhat the 2D kac), such that(i) [k has to be larger than some positive

1/2
mode to which the 3D mode is connected is unstable, sinciréshold value in - order thak, = (kK3+k3)™? (with k,
there are in general also stable 2D eigenmodes with the sanie* 27/L2, N<np) can come into the unstable interval

close to the onset of instabilitisince there is a finite gap
wave numbek,. But if the associated 2D mode is ur]Stm‘q’le'bet\Neen the unstable, interval and the largest admissible

, if the real part o =(k;/kp)\ is positive, this implies | that is smaller thatk,,) and(ii) as a consequence of this

that also Re{)>0. The possibility of unstable three- 7= “Ha= (k, /k,)Ha must be smaller than Half this is the case
dimensional eigenmodes close to the critical Hartmann num-

ber is excluded by the Squire theorem, howeverl jfis and, furthermore[sz],_ >K,., the situation is the same as
finite, i.e., if there is a positive lower bouritiowever smajl ~ for Lo=<2/kpc. _

to the modulus of the wave numbley. In that case there isa 1 he numerical example of this paper belongs to the cat-
finite Hartmann number interval above Hahere all un-  €90ry just discussed: finite, Lo>2m/kae, [KaclL,>Kze,

stable eigensolutions are purely two dimensional. and close to the onset of instability no unstable 3D modes
with k2<[k2C],_2. We foundk,.=2.67, corresponding to a
2. Casel, finite critical wavelength oL ,.=2.35, and Hg=64.57. The criti-

Fixing L, to a finite value complicates the problem, since @l values for the fixed aspect ratlo,=4 are [Kacl, -4
only a set of discrete values is admitted for. If not just =, corresponding to a critical wavelength pf,c] -4
Lo=n-2m/k,c, with n denoting a positive integer number, =2, and[Ha].,—,=66.20784(see also Fig. )1 Loosely
that is, if kyc is not just an admissibli,, instability to 2D gpeaking, an unstable 3D mode has to fit now between Ha
modes will set in at some Hartmann numbeta;], , above and[Ha], -4 with its critical Hartmann number Hat can

Ha; and for a wave numbeikyc], , different fromkac. only have the wave numbés = 27/4= /2, since otherwise
ko= (K5+k3)*>[ka], (e, the associated 2D mode

a. Subcase b==L,.=2m/k, ot ; ) . -
would be stablg This implies, in order to have instability

In the caseL,<L, for all k, holdsk,=k,. and conse-
quently the smallest admissible, becomes unstable first, Ko=[(m/2)%+ k§]1’2> Koo=2.67 (A1)
ie., [sz],_ 2m/L,=k,.. It is easily seen that as in the
case oﬂ_z—oo (i) directly at the onset of instability only 2D @nd, consequently,
modes can be unstablsince modes wittk,=0 cannot be
unstablg10] and the Squire theorem thus would connect any Ha= 1€ [Hac]L2—4< [Hac]L2—4_38 9, (A2

unstable 3D mode to a 2D mode with wave numiaer 2
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which lies below Ha. 3D modes withk,= /2 cannot be
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lized by an upper bound to the aspect ratig as discussed

unstable even for Hartmann numbers significantly abovén the preceding subsections of this appendix. We found the

[Hac],_2:4. 3D modes withk,= [kZC],_2:4, on the other hand,
can be unstable immediately abq\}eac]L2= 4 and are stabi-

conditionL3<<1000 to be sufficient to stabilize all 3D modes
at Ha=66.208 (>[Ha.],-4=66.20784).
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