PHYSICAL REVIEW E VOLUME 61, NUMBER 1 JANUARY 2000

Thermodynamic picture of the glassy state gained from exactly solvable models
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A picture for thermodynamics of the glassy state was introduced recently [Bhys. Rev. Lett79, 1317
(1997; 80, 5580(1998]. It starts by assuming that one extra parameter, the effective temperature, is needed
to describe the glassy state. This approach connects responses of macroscopic observables to a field change
with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized, nonequilibrium
way. Similar universal relations do not hold between energy fluctuations and the specific heat. In the present
paper, the underlying arguments are discussed in greater length. The main part of the paper involves details of
the exact dynamical solution of two simple models introduced recently: uncoupled harmonic oscillators subject
to parallel Monte Carlo dynamics, and independent spherical spins in a random field with such dynamics. At
low temperature, the relaxation time of both models diverges as an Arrhenius law, which causes glassy
behavior in typical situations. In the glassy regime, we are able to verify the above-mentioned relations for the
thermodynamics of the glassy state. In the course of the analysis, it is argued that stretched exponential
behavior is not a fundamental property of the glassy state, though it may be useful for fitting in a limited
parameter regime.

PACS numbeg(s): 05.70.Ln

[. INTRODUCTION that this conclusion itself is confusing, becaukermody-
namics should also apply outside equilibriuinspired by
Thermodynamics is an old but very powerful subject. Itthe success of Gibbsian theory, the whole nonequilibrium
applies to a wide variety of systems ranging from ideal gasepart of thermodynamics had been forgotten. The correct for-
to crystals and black holes. Important contributions to itsmulation should of course have been tleguilibrium ther-
development were made by Carnot, Clausius, Kelvin, anadnodynamics does not work for glasses, because there is no
Boltzmann. Equilibrium thermodynamics, better calledequilibrium, surely a less surprising and nonembarrassing
“thermostatics,” is a well understood subject, and appliedstatement(This history shows once more how regretful it is
every day in many fields of science. The work of Gibbsthat equilibrium thermodynamics did not become known un-
showed its tremendous generality via its relation to statisticatler its most proper name, “thermostatick.”
physics(i.e., partition sums We shall explain, however, that The negative conclusion about the applicability of ther-
precisely this success has been a barrier in the way of theodynamics was mainly based on the failure to understand
systems of our interest, namely glasses. the Ehrenfest relations and the Prigogine-Defay ratio. It
Nonequilibrium thermodynamics for systems close toshould be kept in mind that, so far, the approaches leaned
equilibrium was worked out in the first half of this century. very much on equilibrium ideas. Well known examples are
Typical applications are systems with heat flows, electricathe 1958 Gibbs-DiMarzi$1] and the 1965 Adam-Gib4gg]
currents, and chemical reactions. The basic assumption is thmapers, while a 1981 paper by DiMarzio has the title “equi-
presence of local thermodynamical equilibrium, and the balibrium theory of glasses” and a subsection “an equilibrium
sic task is to calculate the entropy production. Important contheory of glasses is absolutely necessai§]: In our opinion
tributions to this field were made by de Donder, Prigogine,such approaches are not applicable, due to the inherent non-
de Groot, and Mazur. equilibrium character of the glassy state. In the course of the
Nonequilibrium thermodynamics for systems far from present work, we shall encounter many instances where such
equilibrium has long been a field of confusion. A typical approaches indeed fail to describe the physics. Notice, how-
application is window glass. Such a system is far from equiever, that this immediately rules out by far the most dis-
librium: a cubic micron of glass is neither a crystal nor ancussed model glass, namely the Gibbs-DiMarzio théaty
ordinary undercooled liquid. It is an undercooled liquid that,as a viable model for a realistic glass. For instance, it would
in the glass-formation process, has fallen out of its ownpredict the original Ehrenfest relations to be always satisfied,
metastable equilibrium. The glassy state is inherently a nonin contrast with experiments to be discussed.
equilibrium state: a substance that is a glass in daily life In our view the current lack of a thermodynamic descrip-
(time scale of yeayswould behave as a liquid on geological tion is quite unsatisfactory, since so many decades in time
time scales. If each 500 years a picture would be taken of are involved, ranging from the microscopic subpicosecond
window glass, then the movie composed of these picturesegime to, for silicate-rich glasses, almost the age of the solar
would look very much like a movie of a soap film. system, thus covering more than 25 decades. Naively we
Until our recent works on this field, the general consensugxpect that each decade has its own dynamics, basically in-
reached after more than half a century of research was thatependent of the other ones. We shall find support for this
thermodynamics does not work for glasses, because there ®int in the models that we shall investigate below.
no equilibrium Even before going into any detail, it is clear ~ Near the glass transition, a glass-forming liquid exhibits
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smeared discontinuities in quantities such as the heat capacently by Bonilla, Padilla, and Ritof20]. For this model the

ity, the expansivity, and the compressibility. This looks simi- Hamiltonian and thus the statics is trivial. Nevertheless, the
lar to continuous phase transitions of the classical type, i.egxactly solvable dynamics exhibits interesting glassy aspects.
with specific-heat exponent=0, even though the analogy Since it has a too simple behavior in a field, we have recently
is not perfect, because the smaller specific-heat value occupdudied a related simple non-mean-field model with trivial
below the glass transition. It was then investigated whethegtatics and interesting dynamics, namely the parallel Monte
the jumps satisfy the two Ehrenfest relatidtise analogs for ~Carlo dynamics of independent spherical spins in a quenched
second-order transitions of the Clausius-Clapeyron relatiof@dom field[10]. We expect that both models lie in the
of a first-order transition As reviewed recentlj4], it was ~ S&mMe class as the lattice-gas models with kinetic constraints

found that the first Ehrenfest relation, involving the jump in ©f Kurchan, Peliti, and Sellittd21,23. The latter model,

the compressibility, is always violated, while the second onefl0WeVer, cannot be solved analytically. .
In this work we shall give details underlying the picture

involving the jump in the specific heat, is usually satisfied, . oo

but not always. It has become fashionable to combine thes¥oPosed in Refl10]. In Sec. II, we shall recall this picture.
two relations by introducing the so-called Prigogine-Defa In Sec. i, we shall derive dyngmlcal equations for averages,
ratio I1. For equilibrium transitions this quantity should be Correlations, and responses in a model of uncoupled har-
equal to unity, and it was generally expected that it cannof’onic _oscnlators subject to Monte Carlo dynam|cs,_ Intro-
take values below unity. In glasses, typical values are said t§ced in Ref[20]. In Sec. IV, we analyze these equations in
lie in the range 2 T1<5, even though a very careful experi- the nonequilibrium low-temperature regime. In Sec. V, we
ment on polystyrene led t~1 [5]. an_alyze the close_ly related model qf unco_upled.sphencal

Our recent studies have radically changed the viewpointSPinS; introduced ii10]. We close with a discussion and
We have realized that the first Ehrenfest relation is automatiS!MMary-
cally satisfied, the only subtlety being its proper interpreta-
tion. We have also put forvyard that the_ Maxwell relationand || THERMODYNAMIC PICTURE FOR A SYSTEM
the second Ehrenfg_st _relatlon are modified in the glassy state, pescRIBED BY AN EFFECTIVE TEMPERATURE
due to lack of equilibriuni6].

We have investigated the possibility that, within a yet A state that slowly relaxes to equilibrium is characterized
unknown class of systems, the glassy state is described Wy t, the elapsed time, sometimes called “age” or “waiting
one extra state variable. This is basically the age of the sydime.” For glassy systems this is of special relevance. For
tem, or the cooling rate under which the glass has beegxperiments on spin glasses it is known that nontrivial cool-
formed. We realized that in thermodynamics tbféective ing or heating trajectories can be described by an effective
temperature T is a more useful extra parametér,10]. age[23]. Yet we do not wish to discuss spin glasses in this

This approach has led to a picture for thermodynamigvork. They have an infinity of long time scales, or infinite-
relations between values of macroscopic observafiigd  order replica symmetry breaking. Their phase transition is
Later it was extended to their fluctuatiofs0]. The picture  continuous, and involves power laws.
also incorporates the so-called fluctuation-dissipation rela- We shall restrict our treatment to systems with one di-
tion (FDR), put forward in works by Sompolinskyl 1], Hor- ~ verging time scale, having, in the mean-field limit, one step
ner [12—13 and Cugliandolo and Kurchafl4]; for a re-  of replica symmetry breaking. They are systems with first-
view, see[15]. This relation has become a central point in order-type phase transitions, with discontinuous order pa-
research on off-equilibrium systems. Our more general aprameter, though usually there is no latent heat. However, the
proach shows that the effective temperature that occurs iBame approach applies to true first-order glassy transitions
thermodynamics and the one that occurs in the fluctuationthat do have a latent heat. This occurs, for instance, in the
dissipation relation are almost identical. transition from low-density amorphous ice to high-density

In the course of our work we gained insights from ana-amorphous ic§24,25. Theoretically such behavior occurs in
lytical results combined with educated guessing on thespin glasses in a transverse field, see, ¢26+-29.
p-spin interaction spin glass. Some initial studies had the We shall consider glassy transitions for liquids as well as
purpose to find the physical meaning of the nonequilibriumfor random magnets. The results map onto each other by
replica free energy in spin-glass modgis). It has turned interchanging volumeV, pressurep, compressibility k=
out that replica theory provides the two-temperature off-—dInV/dp, and expansivityr=4J InV/JT, by magnetization
equilibrium free energy that we shall discuss in a much moréM, field H, susceptibilityy=(1/N)dM/JdH, and “magnetiz-
general context7]. The basic drawback of thespin model  ability” a=(—1/N)JdM/JT, respectively.
is that dynamics is not solved in the activated regime. For a The picture to be investigated in this work starts by de-
model of directed polymers in a correlated random potentiascribing a nonequilibrium state characterized by three param-
the situation is a little better, but so far it also lacks a com-eters, namelyl,H and theeffective temperature (t). As
plete solution in the activated regirfg7]. Another model is  we shall see belowT¢(t) enters naturally in the dynamical
the backgammon model, for which the dynamics at zero fieldolution of the problem. For a set of smoothly related cooling
has been partly solvgd 8,19. One could couple the system experimentsT;(t) at different fieldsH; , one may express the
to a particle bath, and the chemical potential would play theeffective temperature as a continuous functiofy;(t)
role of an external field. So far this case remains to be—T.(T,H). This sets a surface inT(T,,H) space, which
worked out. becomes multivalued if one first cools and then heats. For

More promising is a model of independent harmonic os-covering the whole space one needs to do very many experi-
cillators with parallel Monte Carlo dynamics, introduced re-ments, e.g., at different fields and at different cooling
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rates. The results should agree with findings from heating A. First and second law
experiments and aging experiments. Thermodynamics
amounts to giving differential relations between observable%e
at nearby points in this space.

For a glass-forming liquid the first lawU=d Q+d W
comes

For thermodynamics of glassy systems in the absence of dU=TdS+T.dZ—pdV. (2.2)
currents, all previous results can be summarized by express-
ing the change in heat 86,7] One can define the generalized free enthalpy
G=U-TS,; T ZI+pV (2.3
dQ=TdS§,+T.dZ, (2.2))  that satisfies
dG=—S,p,dT—-ZdTe+V dp. (2.9

whereS,, is the entropy of the fast or equilibrium processes
(B processesandZ the configurational entropy of the slow
or “configurational” processesd processes This object is S=Se+ 7. (2.5
also known as information entropy or complexity. B,
andZ are state functions in the sense that they depen®,on (We should stress that the total entropy is not equabdp
T, and onH or p. In particular, they are defined for afly,  + TeZ/T; there are many reasons why this unsymmetric form
and, within the present framework of one effective paramjs incorrect. Let us mention that if the prObablllty distribution
eter, they do not depend on the path along which this valuéeécomposes into fast and slow processes@ast, slow)
was reached. = P(fast slow)P(slow), then the standard expressi&s
Notice that our separation in E(R.1) goes according to — tf PInP leads to Eq(2.5 with
time scales. In the common use of the word, the configura-
tional entropyS; is the entropy of the glass minus the en-
tropy of the vibrational modes of the crysfdl]. For poly- just the entropy of the fast processes, averaged over the slow

mers, in particular, it still includes short-distance ones, andZ= —trg,, P(slow)InP(slow), just the entropy of
rearrangements, which is a relatively fast mode. For thehe slow processes.

The total entropy is

Sep= trgiow P (Slow)[ — tre,s P(fast slow)In P(fast slow)],

Gibbs-DiMarzio model it was confirmed numerically ttgt The second law requiresQ<T dS so
indeed does not vanish at any temperature, thus violating the
Adam-Gibbs relationr~ exp(const5;) between time scale (Te—T)dZ=O. (2.6

and configurational entropj8]. Our Z, on the other hand,
only contains the slow components; the fast ones are supince Te=Te(T,p), and both entropies are functions of
posed to be in equilibrium, and are countedSg,. The T, andp, the expressioii2.1) yields a specific heat
properly formulated Adam-Gibbs relation should only refer A(U+pV)

to slow quantities, so it should reack exp(constZ). Its Co=—
applicability remains an open issue. In a certain model glass JT
with nontrivial fast and slow modes that has a Kauzmann

I L dS, S aT
transition it is actually satisfiefP]. =T —=P e €
aT 0Te|. T
In the presence of currents E@.1) would becomed Q Te.P T.p p
<T dS§,+TcdZ. This decomposition is based on a system
Lot ; aT dT |  ITe
consisting of two parts, with a slow exchange of heat be- +To| = + 2.7
tween them, thus having two time scales. A well known case Iy o ITelrp 971,

is a cup of coffee at temperatufg in a room at temperature

T. In that cas€ is the entropy of the cup and the coffeg,  In the glass-transition region it holds thag~T. Since the
the entropy of the air and matter in the room, @ithe heat  derivatives ofS,, and Z are smooth functions, all factors,
of the combined system. To mention one case, cooling of thexceptd;T,, are basically constant. This leads to

coffee in an isolated room will be described &9 =0 and JT
TedZI=—-TdS§,<0. C.=Cq+C,—2
. .. . P 1 2 &T
It is both surprising and satisfactory that a glass can be
described by the same general law. If also an effective pres-

. . Precisely this form has been assumed half a century ago by
sure or field would be needed, therQ is expected to keep Tool [30] as a starting point for the study of caloric behavior

the same form, butf W would change from its standard in the glass-formation region, and has often been used for the
value —p dV for liquids, or —M dH for magnets. In the explanation of experimen{81,32. It is thus a direct conse-

latter case it would become M; dH—M;dH,, whereH.  quence of Eq(2.1). Let us mention that Tool uses the term
is the effective field, and; and M, add up toM. Such a  “fictive temperature” forT,.

complication could be needed in a larger class of systems. It For magnetic systems the first law brings
would make the picture technically a bit more difficult, and
is the subject of current research. dU=TdSy+T.dI—MdH. (2.9

(2.9
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One can define the free energy obvious thatG should still be continuous there. The so far
always confirmed fact that in mean-field models replica
F=U-TSy Tl (2.10 theory brings the relevant physical free energy leads us to
that satisfies ﬁ;}(ﬂgﬁtsthat the generalized free enthalpyy) is indeed con-
dF=—S,pdT—-ZdT,—M dH. (2.1 Let us consider a first-order transition between phases

andB, which have their ow, S;,, andZ. Let us denote
- . the discontinuities in observabl€sof the two states as
B. Modified Maxwell relation
For a smooth sequence of cooling procedures of a glassy AO(T,py(T))=04a~Og. (2.1

liquid, Eq. (2.2) implies a modified Maxwell relation be- _ . o

tween macroscopic observables suchlg,p)—U(T,p)  TakingO=G and differentiatingA G=0, one gets
=U(T,T¢(T,p),p) and V. This solely occurs sincé&, is a

J

nontrivial function ofT,p for the smooth set of experiments AV-A (9_Te
under consideration.

The consistency relatios?G/JT dp=9°G/ 3 pdT yields

dr,
daT

p

dTe
ZASep‘f'A T pI . (2.1

0Sey| 0T 9Ts| V|  aT| T Sepcan be eliminated by means of Eg.3). Using again that
_ - = == ——=| — (212  AG=0, this yields
p |; apTaT 0 &Tp an&pT
Notice that difference relations such as Eg8.9), and the A %:M A(EI— EI . (219
Legendre transformation that leads to E2.11), do not in- dT T dT T

voke the functional dependeng@g(T,p), since they hold for
any functional dependence, and even in the absence of Mvhered/dT=4d/dT+(dp./dT)d/dp is the “total” deriva-
However, it does become relevant when dividing these equdive, i.e., the derivative along the transition line. This is the
tions bydT or dp, as was done to derive ER.12). modified Clausius-Clapeyron relation. It would be very in-
Equation(2.2) implies teresting to test this relation for ice. For that substance
Mishima and Stanley25] have presented a thermodynamic
construction of the free enthalpy or Gibbs poten@allt is,
(2.13 however, based on equilibrium ideas and does not involve
the effective temperature in the amorphous phases. In par-
Eliminating S,/ Jp leads to ticular, it assumes the validity of the original Clausius-
Clapeyron relation. We feel that the results are not the physi-

Sep
ap

_&U
=

T(?I
G
T

N v
p_
T

T T

Ju Vv Vv cally relevant ones, and that the analysis should be redone
0| Papl tToT within our nonequilibrium thermodynamic framework.
T T P When phasé\ is an equilibrium undercooled liquid, and
JIL| 9T, T 9T I phaseB is a glass, it holds thal,=T in phaseA, and itsZ
| o= T2 =7 tTez| - terms will cancel from Eq(2.18), so this relation reduces to
(?TpapT (?pTo’!Tp p|;
(2.19 d AU+pAV (T, dT,
This is the modified Maxwell relation between observables
U andV. In equilibriumT,=T, so the right-hand side van- ] )
ishes, and the standard form is recovered. whereT, andZ are properties of the glassy phaeNotice
Similarly, one finds for a glassy magnet that Eq.(7) of Ref. [6] contains a misprint in the prefactor
' of 7.
2]V M For standard glass-forming liquids, there are no disconti-
H +M—Tﬁ nuities in U and V. It then holds that along the glass-
T H transition lineT¢(T,py(T))=T, implyingdT./dT=1, which
IL aTe| 9T aTe| 0T indeed removes thé terms from the last two relations.
:Te&_HT+T(0_H i )
(2.15 D. Ehrenfest relations and Prigogine-Defay ratio

In the glass-transition region a glass-forming liquid exhib-
its smeared jumps in the specific h€gf, the expansivityr,
and the compressibilitk. If one forgets about the smearing,
Let us consider a first-order transition between two glassyne may consider them as true discontinuities, yielding an
phasesA and B. An example could be the transition from analogy with continuous phase transitions of the classical
low-density-amorphous ice to high-density-amorphous icdype.
[24]. For the standard Clausius-Clapeyron relation one uses Following Ehrenfest, one may take the derivative of
that the free enthalpg is continuous along the first-order AV(T,py(T))=0. Using the definitions ofr and «, given
phase-transition lingy(T). SinceT.#T, it is actually not  above, the result for a glass-forming liquid may be written as

C. Modified Clausius-Clapeyron relation



PRE 61 THERMODYNAMIC PICTURE OF THE GLASSY STAE. .. 271
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B . . . . FIG. 2. Data of the glass transition for cooling atactic polysty-
0 0.5 1 L5 2 rene at rate 18 K/h, scanned from the paper of Rehage and Oels
. ) . (1976: specific volumeV (cn/g) versus temperatuie(K) at vari-

FIG. 1. Schematlc_ F.’I.Ot (.)f the fle_ld-co_ole{EC) and zero_-ﬂeld- ous pressures (kbar. As confirmed by a polynomial fit, the data in
cooled (ZFC) susceptibility in realistic spin glasses and in gIaSS’ythe liquid essentially lie on a smooth surface, and so do the data in

magnets, as a function of temperature, in arbitrary units. In realisti(fhe glass. The first Ehrenfest relation describes no more than the

spin glasses the infinite time or field-cooled susceptibility is Iargerintersection of these surfaces, and is therefore automatically satis-

thanl the sfhort I.t'r?e olr zero-fltﬁld-ct?olte? susceptlblll_tg/_i'tln magnhetlcﬁed_ The values for the compressibility derived in this manner will
analogs of realistic giasses, e short imé Susceptibiiity even E.isdaenerally differ from results obtained via other procedures.
smeared discontinuity at the glass transition. In glass-forming lig-

uids the same happens for the compressibility.

Previous claims about the violation of the first Ehrenfest
dp, relation can be traced back to the equilibrium thermodynami-
Aa:AKﬁ (220  cal idea that there is one idel to be inserted in Eq2.20).
Indeed, investigators usually considered cooling curves
V(T,p;) at a set of pressurep; to determineAa and
dpg/dT. (An alternative route, often followed in polymer
dH physics, and leading to a very similar problem, is to change
Aa:AXd_Tg' (2.21) p at many constant values @f then k depends strongly on
the rate of change of.) However,Ax was always deter-
mined in another way, often from measurements of the speed
The conclusion drawn from half a century of research onyf sound, or by making more complicated pressure t&ps
glass-forming liquids is that this relation is never satisfied, equilibrium such alternative determinations would yield
[31,33,34,4 This has greatly hindered progress on a thermoyhe same outcome. In glasses this is not the case: the speed of
dynamical approach. However, from a theoretical viewpointyy, g is 4 short-time process, and additional pressure steps

it is hard to imagine that something could go wrong when : :

) . - . . modify the glassy state. Therefore, alternative procedures are
just taking a derivative. We have pointed out that this rela- . ‘
tion is indeed satisfied automaticall§], but it is important not allowed, and only the cooling curvd4 T, p;) should be

to say what is meant by in the glassy state. used. They constitl_Jte a liquid surfadg,«(T,p) and a gl{:\ss

Let us make an analogy with spin glasses. In mean—fiel&urfacevg'asuf p) in (T.p,V) Space. _These surfaces inter-
theory they have infinite-order replica symmetry breaking.seCt'_a”d_ the flrst Ehrenfe;t relatloq is no more than a math-
From the early measurements of Canella and Myd@sh emaucal identity about Fhe mters_eqtlon line of these surfaces.
on AuFe it is known that the susceptibility depends Iogarith-'t is therefore automatically satisfid@]. The most careful
mically on the frequency, and therefore on the time scaledata we came across were collected by Rehage and Oels for
The short-time value, called zero-field-cook@FC) suscep- ~ atactic polystyreng5]. In Fig. 2 we present those data in a
tibility, is a lower bound, while the long-time value, called 3D plot, underlining our point of view.
field-cooled (FC) susceptibility, is an upper bound. Let us  After submitting the original version of this paper, we
use the term “glassy magnets” for spin glasses with one stepealized that McKenna has stressed that in experiments on
of replica symmetry breaking. They are relevant for compari-glasses the isothermal compressibility differs from the iso-
son with glass-forming liquids. For them the situation ischoral compressibility36]. He also concludes that alterna-
worse, as the ZFC value is discontinuous immediately beloviive experiments are not allowed, and that the first Ehrenfest
Ty. (At H=0 one hasyzec=B(1—dga), While xgc=p8[1 relation indeed is merely a tautology.
—(1—X4)qea] matchesypy= B atx;=1.) This occurs since The second Ehrenfest relation derives from differentiating
giving the system more time to react on the field will lead toAU(T,py(T))=0. The obtained relation will also be satis-
a much larger response, and it explains why already directlfied automatically. However, one then eliminatés/dp by
below the glass transition different measurements yield difmeans of the Maxwell relation. In equilibrium this would
ferent values forc. These notions are displayed in Fig. 1. yield

while for a glassy magnet
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AC, dpg and the Rehage-Oels data show that such ideas are incorrect.
W:Aad_T' (222 In particular this rules out the Gibbs-DiMarzio model as a
g principally correct model for the glassy state. It is an equi-
We have already discussed that outside equilibrium it idibrium model, and as such it will, e.g., lead 16=1, in
modified, see Eq(2.14). We thus obtain instead contradiction to experiments.
ﬁ:Aa%_,_ E( _ ’9_Te )d_I E. Fluctuation formula
TgV dT VvV dT| |dT . - _ .
p The basic result of statistical physics is that it relates fluc-
dp, 1 oT T dp, 97 tuations in macroscopic variables to response of their aver-
—Aa—+ —(1— — )(— + = = ) ages to changes in external field or temperature. We have
CLE T p T p dT apf; wondered whether such relations generalize to the glassy

(2.23 state. We have found arguments in favor of such a possibility
both from the fluctuation-dissipation relation and by exactly
wheredZ/dT is the “total” derivative of the configurational solving the dynamics of model systeffii®]. Susceptibilities
entropy along the glass-transition line. The last term is nevappear to have a nontrivial decomposition, which looks very
and vanishes only at equilibrium. For magnets one gets  general. Here we give arguments leading to it.
Later we shall consider models where two fieldg (a
Iz N dHy JT =1,2) are present, and two magnetizatidbhg (a=1,2). In
y)\dT |, dT dH|_ ' cooling experiments at fixed field = (Hq,H,), it holds that
(2.24) M,=M(T(t),Te(t,H),H). For thermodynamics one elimi-
nates time to expres3 (t,H)—Te(T,H), implying M,

Ac_A dH, 1 aTe
NT 29T Nt T

Along the glassy transition line, the equalify(T,Hy(T)) =M,(T,T4(T,H),H). One may then expect three terms:
=T implies
1 (9|\/|a fluct los! conf,
dTe dTe dTe ng XabEN IH, = Xab (t)+XabS(t)+Xab (t). (2.28
ar ot tam| ar b 229 T

- . . The first two are defined by
Combining the two original Ehrenfest relations, one may

eliminate the slope of the transition line. This leads us to

. . . . 1M
consider the so-called Prigogine-Defay ratio, Xglf)Ct(t)+Xf§S(t)= N aH: . (2.29
T,T
AC,Ak
=—. (2.26 ) .
TV(Aa)? To calculate them separately, we switch from a cooling ex-

periment to an aging experiment at the considdren,, and
For equilibrium transitions it should be equal to unity. As- H, by keeping, in Gedankef, fixed from then on. The sys-
suming that at the glass transition a number of unspecifiegem will continue to age, expressed By=Tq(t;T,H). We
parameters undergo a phase transition, Davies and Jonggay then use the equality
showed thafl=1 [31], while DiMarzio showed that in that

case the correct value =1 [37]. In glasses typical ex- M, M| M| T
perimental values are reported in the rangel2<5. It was IH ~H ’ + oT ‘ oA ‘ (2.30
therefore generally expected tHdt=1 is a strict inequality. BTt blT,T, elrn?bliTy
We have pointed out, however, that as the first Ehrenfest
relation is satisfied but the second is not, it holds that We have conjecturedl10] that the left-hand side may be
written as the sum of fluctuation terms for fast and slow
M= AC, 14 1 ( _‘9_Te )d_I processes,
TVAa(dpy/dT) VAa dT | |dp’
(2.27) et 1 Ma

Xab (t): N 0"H
Depending on the set of experiments to be chosgy/dT blrt
can be small or large, arldl can also be below unity. Rehage (M 4(1) SMp(1)hast  {SM4(1) SMp(1) Ysiow

and Oels foundI =1.09~=1 atp=1 kbar, using a short-time NT(D) + NT.(D)

value for « [5]. Reanalyzing their data we find from Eqg. €

(2.27), where the physically relevamnt has been inserted, a (2.31)
value II=0.77, which is, surprisingly enough, below unity

[6]. The first term is just the standard equilibrium expression for

The definition(2.26 of II looks like a combination of the fast equilibrium processes. Notice that slow processes
equilibrium quantities. This is misleading, however, sinceenter with their own temperature, the effective temperature.
Kgassdepends sensitively on how the experiment is done. W& his decomposition is confirmed by use of the fluctuation-
conclude that the commonly accepted inequality=1 is  dissipation relation in the form to be discussed below. Com-
based on equilibrium assumptions. Our theoretical argumentsination of Egs.(2.29, (2.30, and(2.3)) yields
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1 M,

aT
los _ = €
Xabs(t) N aT,

dHy

(2.32 9Can(t,t")

: =Te(t")Gap(t,t") (2.34
Tt at’

T,H

The fluctuation terms are instantaneous, and thus the sameéth Te(t) being the effective temperature for the FDR,

for aging and cooling. The loss term is a correction, relatedyhile in the equilibrium or short-time regim@,replacesT ..
to an aging experiment. It measures the decrease of fluctughjs relation has been confirmed numerically, e.g., for a soft

tions below the glass transition, which will be small in the sphere glasE42]. It is remarkable that th, is a function of

models to be discussed Iater_on. L one of the times only. However, one should keep in mind
In the models to be considered below, dynamics in the

glassy phase is essentially independent of the adiulglav- f[hatC andG typica_llly have a'/t ;caling, whilefl'_e typically
ing almost no difference between cooling and aging. This iﬁs a smooth function of Iy a variable that basically equals
due to the simplicity of the model. nt

SinceT.#T, there occurs in E¢2.29 also a new con- One expects thal(t) is close to the “thermodynamic”
figurational term effective temperaturd (t). Let us show how this comes
about.
1 oM JT The two fluctuation terms in E¢2.31) are consistent with
xoon=— 2 el (2.33  Eq.(2.34). To prove this, let us neglect switching effetsee
N dTe | IHpl; Sec. llID) and use the definition
- . . , 1M t
It originates from the difference in the system’s structure for —_"a :J Gp(t,t))dt’. (2.35
cooling experiments at nearby fields. For glass-forming lig- N dHy Tt J0

uids such a term occurs in the compressibility. Its existence
was anticipated in some earlier works. Golds{g8] points ~ We split the integral up in the regions 74,t) and (0t

out thatVyassdepends stronger on the pressure of formation— 7,), where 74 is the time after which the fast g8 pro-
Prorm than on the one remaining after partial release of preseesses have died out. Their contribution has the equilibrium
sure, Psinal- Jakle [34] then assumes that for infinitely slow form, while in the second interval we may insert £8.34),
cooling psom is the only additional system parameter, andwhich yields
argues that Akr—Ax=Axkr+3dINV/dpom=AadTy/dp

and that this impliedl=A«+/Ak>1. He thus also consid- 1 oM,
ers one extra system variable, and also argues the existence N JH,
of a configurational term. We do not wish to restrict to adia-

batically slow cooling, and we do not agree with his conclu- J't_TB 1 Cu(tt)

_<5M a(t) oM b(t)>fast
B NT(t)

Tt

sion onlII. Notice that our approach allows, in principle, to (2.39
find the configurational tern2.33 for typical cooling pro-

cedures from construction of(T,T.,p) in full (T,Te,p) o _
space. We perform a partial integration, and can neglect the value at

From the analysis to be given below, we find no reasorih€ lower boundary=0. In the remaining term we insert a
why such universal quasiequilibrium relations could alsof@ctor 1=dy Cap(t,t')/dp Cap(t,t'). We can then do another
hold between the specific heat and the energy fluctuations. Iartial integral, and we could, in principle, repeat this pro-
the models of the present paper the energy fluctuations af€Ss: All terms at— 7, share a common factor, namely the
smaller by one order of magnitude, and model-dependenPlateau value ofC,x(t,t'),

The absence of such a general relation allowed us to apply

the very same two-temperature approach to black holes, cPaea = (t,t— 7 )=<5Ma(t)5Mb(t—T;;)>s|ow
without obtaining a contradiction with their negative specific ab abth B N '
heat[38]. (2.37

0 To(t) ot

which also enters the relation
F. Fluctuation-dissipation relation
Nowadays quite a lot of attention is paid to the
fluctuation-dissipation relation in the aging regime of glassy
systems. It was first put forward in works by Sompolinsky
[11], Horner[12,13, and then by Cugliandolo and Kurchan As a result, we derive from E@2.34) our ansat£2.31) with
[14]. This relation has become a central point in research og factor
off-equilibrium systems; for a review, s¢&5].

1
7 (OMa(t) SM (1)) asi=Can(t,t) — CEE 1) (2.39

Our formulation is that in the aging regime there holds the 1 1 4Tot) Cay(tit)
following relation between the cross correlati@y(t,t") T "= = - +.-.
=(0,(1)Op(t")) —(O4(t) )(Ou(t")) of macroscopic observ- el Te(t)  Tet) auCa(tit)) g
ables O,4(t) and Oy(t’'), and the responses, (t,t') (2.39

= 8(0,4(t))/ SHp(t") of O4(t) to a short, small field change
applied at an earlier tim¢': This may be inverted, to yield
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aInCap(t,t')

!

studied below we shall find logarithmic scaling corrections.
They become strong at loW, and change thgt'/t decay at
(2.40 T>0to at'/t decay afT=0. So this argument might apply
only to a subset of systems that fall within the scope of our
It is clear that the effective temperaturés and T, are not  approach.
identical. However, in the models to be analyzed later on, we
shall find that the difference is small.

Notice that the ratiod, C(t,t')/G(t,t’')=T(t') is al- ) _ )
lowed to depend on timeé’. The situation with constant ~ In the remainder of this paper we shall consider two
Te (=T/x, with x the break point of the Parisi functipis ~ Simple systems having only one type of processpocess,
well known from mean-field spin glasses, but we shall notvhich fall out of equilibrium at some loW. Then the effec-
find such a constarf, in the models to be studied. [a5]it  tive temperaturd(t) is expected to show up in the follow-
is reviewed that in mean-field spin glasses the fluctuationing deviations from the equilibrium situatiorit) matching
dissipation parameteX(t,t')=TG(t,t')/d, C(t,t’) simpli-  the internal energyl(t,H)=U(T¢(t),H); (i) matching
fies to X(t,t')=X(C(t,t'),t')=X(0t')—const. As our the _magn_etlzatlonM(t,H)_zMeq(Te(t),H); (|.||)_ from the
Te(t") will depend logarithmically on time, the' depen- f:onf|gurat|opal entropy .Y'M.UZT?dI_MdH’ (i) match-
dence of ouX(0t’)=T/T(t') cannot be neglected. We can b t_|meh W]Icfh the eql;mbrlulm f}LIJE:Tt]e scaleg;ﬂ;eq(T?(t)),
therefore conclude that such a time independence is an art:i\—/) via the fluctuation formulax Be(1)( () V)

. o . rom the fluctuation-dissipation relation:9C(t,t")/at’
fact of the mean-field approximation. This supports our ear—_ﬁ_ NGt E houah th lati i
lier conclusion that only at exponential time scategxp(N) =T(t)G(t,t'). Even though these relations are not all in-

the dynamics of the mean-field spin glass is related to that dfEPENdent, itis pretty clear that the whole glassy dynamics is
realistic systemg7]. In the numerical evaluation of the SUONgly governed by one parameter: the effective tempera-

“fluctuation-dissipation ratio” T/T, one should therefore ture

keep in mind the realistic possibility of a slow time depen-
dence ofT,. [ll. MONTE CARLO DYNAMICS OF UNCOUPLED

HARMONIC OSCILLATORS

~ _ -1 showing indeed the familiar't’ scaling. In the models to be
Te(D)=Te(t)+Te(t) +
t’:tfrﬁ

H. Results for simple systems that become glassy ne@r=0

G. Time-scale arguments Bonilla, Padilla, and Ritort have recently considered an

Consider a simple system that has only one type of pro__exactly _solvable model with slow dynamig20]. It showgd
cess @ process which falls out of equilibrium at some low INteresting, glassy behavior at low temperatures. In this sec-
T. When it ages a timeat T=0 it will have achieved a state tion we present many details and_ further results for th'.s
with effective temperaturd,, which can be estimated by model. This will also be a pedagogical step for the analysis

equating time with the equilibrium time scale. Let us define®f (e spin model of Sec. V. o
?q by g . After including an external field, the Hamiltonian reads
e

t= 7o Te)- (2.41)

We shall check in the models to be studied below that, to
leading order in I, it holds that Te=T,. (The first
nonleading-order turns out to be nonuniversal, since it alwhere
ready depends on numerical prefactorsgf.) This equality
also is found in cooling trajectories, when the system is well
inside the glassy regime. It says that the system basically has M=Nm= x* (k=1,2) 3.2
forgotten its history, and ages on its own, without caring K K& T e '
about the actual temperature. We feel that this is caused by
the fact that dynamics in each new time decade is basicall¥v ) .
independent of the previous decade. e introduce the shifted energy

In less trivial systems, for instance those having a Vogel-
Tammann-Fulcher law, the time scale may have parameters H2
that depend on the actual temperature, implying, E=Ne =H+N—. (3.3
=7(T,T.). We then expect that, to leading ord&g, follows 2K
by equating this expression with tinte

In many systems one finds @/t scaling in the aging |, 5 Monte Carlo step with parallel updates one replages
regime of two.—tlme quantities. There is a handwaving argu'—>xi’=xi+ri/\/ﬁ, definingM|Q=E(xi+ri/\/N)". The ther-
ment to explain that mal noise variableg; are independent Gaussian random

1 1
H=§K2i x?—HEi Xi=5KM;—HMy, (3.1

, , variables with average zero and variank® For a parallel
C(t,t')~C —t - t—t _ i update of allx;, this leads to the noise-averaged transition
’ Ted Te(t")) t’ t’ probability from a state with N1;,M,) to states with

(242 (MilMé):(Ml_Fyl!MZ—i_yz)v
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2
P(y1,yoIMy,Mp) =[] : LE%E/ZAZ A= ax K- (3.12
S b oA 8
XS(Mi—=M1—y1)8(M;—Mjy—ys,) In one Monte Carlo step the probability & evolves as
[20]
1
T A2 — 1
AmA?my—m] P(E’,H— N
yi (Yo~ A%-2y;my)?
Xexg — 5~ > > E
2A 8A%(my—mj) =f dE P(E,t)f dx p| Xy

=p(y1,Y2lmy,my), (3.4

X{W(Bx)S(E' —E—x)+[1-W(BX)]6(E'—E)}
where we took the convention that probabilities involving
extensive parameters are written with capitals, while those
that involve intensive parameters are written in lower case.
To derive this result, thé functions have been written in a

=p(E’,t)+f dE P(E,t)f dx

plane-wave representation, and the limit-~ has been

taken. Setting/; =Yy, we introduce the variable by

K

2
X= §Y2_HY11 y2=R(x+Hy). (3.5

A Monte Carlo move implies a chand€ =E +x. The tran-
sition probability may be decomposed as

P(y,y2|M1,M,)dy dy,=P(x,y|E,M;)dx dy
=p(x|e)p(y|x,e ,my)dx dy

(3.6
with conditional probabilities
1 (X_Xo)z)
X|le )= exp — , 3.
P(x|e) 27A, 4 2A4 39
1 p( (y—yo)z)
X,e,My)= exp — , (3.8
having parameters
AzK 2?2 2 2
XOZT, AXZA (K m2_2HKm1+H )=2KA e,
(3.9
= (KA?—2x)(Kmy—H) KA?—2x
YO (Komy—2HKm + H?)  de MV
A%KZ(m,—m?) K w2
,= 2 1 :Az(l—ﬂ . (310
K?m,— 2HKmy+ H? 2e
where we defined the deviations from equilibrium,
2 2 H
8=§K(m2—m1+,u,1), M1=1c — My (3.11

We shall frequently encounter the energy scale

X

E
| W(BO[S(E' ~E~x)~ 8(E'~E)], (313

Xp

where W(Bx)=1 for x<0 andW(Bx)=e #* for x>0 is
the Metropolis acceptance rate. The second term describes
the rejected moves. Notice that the energy aspects are inde-
pendent of the fieldH, for the physical reason thét merely
causes a shift of the equilibrium position, but not
=(K/2)=Z(x;—H/K)?. This is due to the simplicity of the
model.

If one also keeps track of the magnetization, one has

1
PIE" M t+ <=

N =P(E’,M’,t)+JdEdMP(E,M,t)

XJ dx dy Rx,y|E,M)W(Bx)

X[S(E'—E—=X)6(M'—M —Yy)

—S(E'—E)8(M'—M)], (3.14

which, of course, is consistent with P(E,t)

= [dMP(E,M,1).

A. Evolution of average observables

We can now calculate the evolution of physical observ-
ables. One derives from E(3.13 that

1 p— ! ! ’ ( ’ ! 1
Et+N —dedM E'P|E"\M ’t+ﬁ
E
=(E(t)>+f dE de\(ﬂx)P(E,t)xp(x N)’
(3.19

where (E(t)) arises from the term withoutV(3x). In the
thermodynamic limit(i.e., for largeN), P(E,t) will be
sharply peaked around(t)), so one obtains a closed equa-
tion for the scaled average(t) =(E(t))/N [20],

de (t
Z(t ) =f dx W(Bx)xp(x|e (1)).

(3.1
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This simplifying property is due to the lack of interaction In the same way one derives for the evolution equation for

between the oscillators. fluctuations inM,
In the same way we proceed for the evolution of the mag-
netization, d (sM?) (M%) 9
1 o= | axaywen| ey
<M(t+ﬁ > (EM) 0,
TN Y5, Ty p(Xle)plylx.e ,m).
:<M(t)>+f dE dM dx dy WBX)P(E,M,t)y (3.23
E EM They integral is Gaussian, and can be carried out. The result
X pl x N)p(y XN W) (3.1  reads
2 2
Here, and everywhere in the sequel, theintegrals are £<5M ) J'd X W(Bx )(< >i 2y
Gaussian, and can be carried out analytically. This makes the dt N 0
problem with a field hardly more complicated than without.
We obtain <5E5M>
N 55 2Yot Yot Ay p(xle),
H
= f dx W(BX) Yo (s (1))= —(m(t)— R) f(v), (329
(3.18  while for the cross correlations
where d (5E5M>_j e (M)
. o at N ) A YW g
f(t =—J dx X) ——p(X|e (t
(== | dxWBx)—p(x|s (1)) <5E5M>< ; a)
+ +y—
» 4A—X N de
N Y 75 TXY|P(Xe)p(ylx.e ,m)
B. Fluctuations <5E5M> 9 9
The evolution of bilinear forms is a bit more involved. Let f dx W(Bx) X TamYo
us consider the energy fluctuations. One has
(SE%) o
1 TN 7 YotXYolp(x[e).  (3.29
E? t+ g =(EX( t))+j dE dx W Bx)P(E,t) €
Recalling thatM = M and the definitior{3.2) of M,, and
><(2xE+x2)p<x —) (3.20  adopting the definition of correlators to be given in Eq.
(3.32, we may also cast these results in the form

Using Eq.(3.15 this may be written as

d o H at+b—-2
1 acab(trt):J' dX\A/(BX)[yayb+Ay - H_)
<E2 t+ )> (E%(1))—2(E(1)) 2
1 +E [ya eb(LD) +YpCoealt, t)]]
X <E t+N > <E >}
X p(x|my,my), (3.26

E
— _ 2
_f ddeV\(ﬁx)P(E,t)p(x N (2x0B+x7), wherea,b=1,2, H;=H, H,=—K/2, and, in the present
(3.21) model, p(x|my,m,)=p(x|e ), with & defined in Eq.(3.11).
' Furthermore,
where SE=E—(E(t)). Expanding p(x|E/N) around E TH
= i — XTH1Yo
(E(t)) one obtains for largé\, Vi=Vo, Yo=- T (3.27)
d <5E2>_f g <6E2)2 I,
dat N X W(BX) N XEJFX P(x|e). Since SE=(K/2)6M,—H M = -3 .H.6M., previous re-

(3.22 sults are recovered from these relations.
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C. Correlation and response functions T(t)) 5(E(t))
One can also consider the evolution of two-time quanti- Geoe (L) =—5— STt
ties. The correlation and response functions for magnetiza-

tion and energy are defined as

(3.3)

In Eqg. (3.2 we have introduced the macroscopic observables
M,;=M andM,. The related correlators and responses are

cmmu,t'):%wM(t)aM(t')x

1
1 5<M(t)> Cap(t,t')= = (M (1) SMp(t"))
, 32 ab\t, N a b ’
C.m(t,t") 1<5E(t)6M(t’)> (t,t")= 1 XEW)
emlty =N ) am -
N N SH(t) ab(tt)_ M) (a,b=12. (3.32
(3.29 N SH,(t")
! 1 !
Che (1,17)= N<5M(t)5E(t ) They code the same information, but will be more useful at
some stages.C,,, is just another notation forC,q,
T(t') &M )> while C,,=(K/2)Cy—HC;; and C,,=(K?/4)C,,
G (t,t")=—— N (3.30 —(HK/2)(Cqp+ Cy) +H?Cy;. Similar relations hold for
sT(t) the G's: G,n,=(K/2)Gy,;—HGy;, G =—(K/2)Gy,
—HGy,, and G,, =(4/K?)Gy+ (HK/2)G,— (HK/2)Gy,
+H2G,;, where we used thab,(t,t')=—Gy(t,t).
Ceo (L) <5E(t)5E(t ) To derive the evolution of the correlations, one considers
1 1
<|v| t+ g M’ )>EfdE’dM’dEldMlP(E’,M’,tJrN;El,Ml,t’ M'M,

=(M(t)M(t’)>+j dE dM dE dM; dx dy W BX)P(E,M,t;E;,My,t")P(x,y|E,M)yM;..

(3.33
|
Subtracting{M[t+ (1/N)]-M(t)){M(t')) and expand- 9 9
ing P(x,y|E,M), this yields the evolution equation @, . 2 Cee (L) = f dx W(Bx)x-— P(X|e)C, (L,t").
They integral can again be performed. In similar ways one (3.37)
proceeds for the other correlation functions. One finally has
J " N Their equal-time values follow from the above fluctuation
g Cmn .8 )_f dXW('BX)(Cmm(t’t ) om formulas.

P The equivalent formulation is
+C8m(t!t,)£)y0p(x|8)! (334)

9 NS d
Jd N , J Ecab(t’t )_ = ch(t!t )(?mc
Ecsm(t,t )—f dx W(BX)XC, m(t,t )gp(x|s),

(339 X f dX W(BX)yap(x|my,m,). (3.39

d , _f g ( N
Ecms(tvt )_ XVV(BX) Cmg(tyt )%

D. Response functions

"9 The energy-energy response functién, (t,t"), defined
TG, (L )o"e )yop(xls ), (336 in Eg. (3.31), takes the form
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Gss(t,t')=_Wﬂf dE dE dx, E

X| P

1
E,t‘ E1+X1,t + N

1
— P( E,t‘El,t N

dtap

Ey

S |PELL).

X Pl Xq

For our parallel Monte Carlo updates it holds thdt
=1/N. Both terms satisfy the same evolution equation, im-

plying

aG ry — G !
E se(tvt )__g(t) ss(tat)
with

d
g(t)= —f dx VV(BX)Xgp(XIs ).

Since in the oscillator model the energy evolves indepen-
dently of H, it is obvious thatG,,,=0 at all times. The
relation G,,=—2.H.G.;; then implies Gyy(t,t")=
—(H1/H,)Gy4(t,t"). In the spherical spin model, to be in-

troduced later, this argument does not hold.

IW(BX1)

K
OB =5 Y2~ [H+AH(K](Mytyy)
+[H+AH(k=1)]M, (k=1,...n). (3.4H
Generalizing to all four cases, we have a response,

1 d(my(t+At))
+ =lm - - 77
Gan(t™ D= M Xt —5AH,

n

n+1

= |lim
N—e dt>, AH(k)
k
=Gt O+ G Y (3.46

where we used thadt=1/N and At=n/N. The main term
arises from they, terms in Eq.(3.45,

GIaMt*,t) = —Bf dy; dy, W (BX)YaYrP(Y1,Y2lmy,my)

o Hl at+b-2
yaYb+( - H_z)

.

Xp(x|m;,my) (a,b=1,2), (3.47

=—BJ dx W' (Bx)

From the evolution3.18 of m(t) one gets immediately where W' (8x) = — exp(—X) for x>0 and zero forx<0.

thatG,, andG,,, satisfy

d
7t Cmn(t.t) == F()Gmn(t,t"),

d
EGms(t-t ): _f(t)Gms(tvt )

The equivalent formulation is

&G , _2 G , Jd
= an(t,t’)= 4 cb(tit )ﬁ_mc

x [ dxwpypimg,m,). (343

The derivation of equal-time responses is a bit tedious
Let us takea=b=1 and change the field frorhl to H
+AH(k) at the time steps+k/N (k=1,... ). It holds

that

fw,

+_
tN

)

= f dy; dy, dM; dM, W(BSE,)y1p(Y1,Y2[M1,My)

k
M1 Mo t+ =

Xp N

where

The contribution for switching on and off comes from the
M AH.(K)—AH,(k—1)] terms,

. d
Gttt b Z,B&{ mb(t)J dy; dy, W' (Bx)

Xyap(yl,yzlml(t),mz(t))]. (3.48

It does not depend on the precise switching procedure, but
neither does it not vanish for adiabatic procedures. In our
models this term will have contributions proportional to
r'n112~ 1k, so in the larga-domain it is much smaller than
the terms of our interest. We shall neglect it from now on.
We should point out, however, that the responGgs and
G, . do not involve such switching terms. This is related to
the nature of the Monte-Carlo dynamics.

For the responses with respect to an instantaneous tem-
perature pulse, one has

G (1 == 8 [ dx W (BXxyGp(xe ), (3.49

Gee(t+-t):_BJ dx W (Bx)x*p(x|e ).  (3.50

The relation withG,, is exactly as for th€'s, see below Eq.
(3.32, as these two quantities do not suffer from switching
effects.
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IV. GLASSY DYNAMICS OF THE OSCILLATOR MODEL dse
I . . ——=—90€| 8BA(2BA+1)erfc(\/BA
We are considering a system with one mode. In view of dt 6( PA(2B JerfVaA)
the equilibrium relatiore,q=T/2 we may introduce the ef-
fective temperaturd, by B [BA sl _
168A\/——e == (4.9
To(t)=2¢ (t). 4.1 &q

The dynamics of the oscillator model simplifies in the WhenT<A, the equilibrium time scale becomes, due to the

region T<A=KA?/8. Technically this occurs since far expansion(4.7),
<A or T,<A we can approximate in the expression 7BA
, o)~/ TR (4.10
p(x|e )= ;ex;{ — BA+ @) ex;{ L )
ANTATe 2 1686A The latter also follows from Eq3.16 by performing thex

(4.2 integral, after neglecting the exp&?/2A,) factor of p(x| ).

. . From Eq.(3.18) it is clear that the magnetization relaxes
12 - . IS :
the last Gaussian factor by-1x“/16AT,, leaving only ex to its equilibrium valueme,=H/K at time scale

ponential integrals. We shall investigate the dynamics in this
region, and look for relations satisfied by observables. 1 2T
P p—— L)) (4.11)
€ f(o) A e '
A. Equilibrium regime

In equilibrium one hase =T/2, m=H/K. Then there The important fact for us is that both time scales have an

holds the detailed balance Arrhenius behavior-exp@/T) at low T. This implies that
the oscillators, subject to parallel Monte Carlo dynamics, can
W(Bx)p(x|e ) =W(—Bx)p(—x]e) (4.3 easily fall out of equilibrium at low enough, and thus ex-

) hibit interesting glassy behavior.
assuring that =0 in Eq. (3.16. For Eqg.(3.22 this implies

1 B. Cooling procedures and the glassy transition
(6E%) = §NT2 (4.9 Equation(3.16) simplifies in the regim@ ,<A. Indeed, as
x2~T§<AX=8ATe, we can neglect the Gaussian factor

in accordance with the equilibrium relatiodU/dT  exp(=x%/2A,) of p(x|e) in Eqg. (4.2). We thus obtain
= B%(5M?). The relation(3.24 amounts to

2 2
NT Te=- 2Te p— )e-ﬁeA. (4.12
(SM?)= - 4.5 VAT, (2T,—T)2

The conditionT.>T/2 is typically satisfied, sinc&.>T in
This is also expected, since only the diagoialj terms in cooling and aging experiments, afid—T in heating the
(8M?)=3;;(5x; Ox;) contribute at equilibrium, showing that glass.
K(sM 2>/2 will indeed reduce tdNT/2, the equilibrium value Using Eq.(4.10, we can write this fofT, close toT in the
of E. Finally, Eqg. (3.295 shows that the cross correlation universal form
(SE 8M) vanishes.

The evolution equatiori3.16 for the energy can be ex- . T-T,

pressed in the notation of R¢R0], Te:m- (4.13

de (1) =—<28(t)— I)f(t)+2A erfa(t)), (4.6 We can no'w introduce thg inverse ftljncti@ghl(t); in our

dt 2 case(4.10 it reads to leading order,; (t)=A/Int. Let us
then consider a nonlinear cooling process of the fpt@i
whereA=KA?/8, a(t)=JA/2s(t), f(t) was defined in Eq.
(3.19, and A
T(H)=(1-R)Ty+ Rrgql(t)%(l—R)Tg-}— Rm.

erfaa) = \/i_J’ dxe (4.7) (4.14
e It involves two parameters: the glassy transition temperature
o a? 1 3 T4 and the dimensionless cooling speg&dA nonlinear cool-
~ (1_ —+ =] (a>1). (4.8  ing experiment of this form could be performed in any sys-
aJm 2a% 4ot tem with a quickly diverging equilibrium time scale.
We first show that a glassy transition occurs around time
We can look at relaxation close to equilibrium, wheresca|etg:expﬁgA, where one ha3 (t)~T,. The time scale
Qeq™ JVBA. We sete =T/2+ 8e . Equation(3.16) becomes  during which the system basically remains at temperafure
to linear order is
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T(1) t w15 to obtain
Teooling™ —— L. .
()] (R—1)v%Z'(V)+ Inz(v)+Rvz(v)=0.  (4.23
Its ratio to the equilibrium time scale is By series expansion one finds
R-1
Teooind TD) ~(t—9 . (4.16 _ R 2 R 3
Teq(T(t)) t z=1—-Rv+ §(5R—2)V —§(29R —27R+6)v

We can discriminate three caséa. WhenR>1, then fort R
<ty there is equilibrium at the instantaneous temperature +ﬂ(118]R3—1812?2+ 900R— 144)v*
T(t). For t>tgy the instantanous equilibration time,, is

larger than the cooling time scalgjing, and the system R
becomes glassy(b) For 0<R<1, this process describes —§(1529?4—334ER3+2690?2—94(R+ 120v®
cooling in a glassy state so slowly that equilibrium is reached
around timet,. (c) Finally, for R<O it describes heating in —— (4.24)
the glassy state, and equilibrium is reached around tyne
Equation(4.14) implies that This implies for the specific-heat factor an exponential ap-
proach to equilibrium,
. R
! Ted To— (Tg—TIR] @10 i’ _dy
aT|, dx
This allows us to combine Eq$4.13 and (4.17) into the
time-independent form __Inz(v) _ 1+ (R-1)
Rvz(v)

i _T-Te Té({Tg—(Tg—T)/R]. w18
aT|, R Ted Te)

3
X| —v+2(2R—1)v2— E(SR—Z)(SR—Z)V?’

ForT—Tg>T§/A one has the equilibrium valug,=T, with

exponentially small corrections. Well below the glass transi- +
tion T—Ty<—T5/A one hasT,=T,—(Ty—T)/R. Due to

Eq. (4.10 this implies that 7o Te) ~ expBA~t, so T ] ] -
~A/Int. As we shall see in theeqrEe;t section',apt\his is the sameVhen R>1 or R<0, this applies for large positive. If 0
behavior as occurs for aging &t 0. We may conclude that <R<1, it applies for large negative

the system then basically has forgotten its cooling history, FOr large positivew one sets

and just ages as at any low enough temperature. Similar be-

havior was found by Godofie and Luck in the backgammon 1 R

(4R—3)(29R’>—27R+6)v*|+--- . (4.2

wl &

S=—=— —F— 4.2
model[19]. w (R—1)x (4.26
We may go to dimensionless variables by setting
> » and
T=Tota% Te=Tot 1Y, 419 = ————+Ins—Inu(s) .27
y= (R=D)s ns—Inu(s .
and obtain
yielding

dy _y=X , wr

— = e/ ¥R, (4.20 2y

dx R u(s)=1+slIns—sinu(s)—(R—1)su(s) +(R—1)s7u’(s).

(4.28
This equation is probably universal. Indeed, it is a small

excercise to check that the very same equation follows fronBy iteration one finds an expansion in powerssond A
Eq. (4.18 when 7., has a Vogel-Tammann-Fulcher-type law = Ins,
Teq~ EXHAY(T—Tg) 7], and a glass transition occurs in a nar-

row range around sonig, with Ty—To<A. u(s)=1+(A—R+1)s+(2R—2—A)s?
Equation(4.20 can be solved analytically for large nega- 11 1 5
tive and large positive.. Let us introduce +| -8R+ 4+ 3A+ —A2—2AR+ —RZ) s3
2 2 2
1
w=|=—1]|x. 4.2 57 16
(R ) @2 + —7R2+§R3+45R+18AR+2A2R—5AR2

For large negativev one sets 1 ~ 131
- §A3— EAZ— 14N ———

5 s?, (4.29

y=x—Inz(v), v=e¥=e (RTLXR (4.22
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dTo/dT
dTe/dT
[+
:

%10 6 © 4 2 o 02 - - 0 52
X=(T-TQATS X=(T-TAT2
FIG. 3. Specific-heat facto#T./dT as a function of reduced FIG. 4. Specific-heat facto#T,/dT as a function of reduced
temperature in nonlinear cooling experiments with different speedemperature in nonlinear heating experiments with different speed

parameteR. The asymptotic values are 1 to the right and id the parameteR.
left.

where we use the short hand
This implies for the specific-heat factor an algebraic ap-

proach to the value R, with logarithms in the subleading (= T (4.32
terms 2T .—T° '
dTy  1+sA—sInu(s) Its integral is
aT |, Ru(s) e 5
————=—=(t+ty), (4.33
1 R-1 _ 2
— 2+ [ s+ (R-A-2)s+ (RR-2RA-TR (A=rBA  Vm
where t, follows by inserting att=0 the value T,
+A%+7+5A)s%+ (2R3~ 35R?*—~ 6R*A + 46RA =Tquench This result may be written as
S4
2n_ _ 2_p1_9A3\ 1 t+1, \/;
+92R+6A“R—52A —17A°—61-2A )2 BeA—§|nBeA= In 7= ~. (434
To 2(1-r7)

+o (4.30
For larget one has to leading ordér,=A/Int, while the
WhenR>1 or R<0 this applies for large negative If O initial conditiqn gives a small correction of or_detblt
<R<1 it applies for large positive. It is trivial to see that ~&XP(~BA); it may thus be neglected for-10t,. This says
both Egs.(4.25 and (4.30 go the correct valueyT./dT
=1 in the equilibrium limitR— 1. In that limit the system
will remain in equilibrium, because the cooling procedure is
very slow.
In Figs. 3—6 we present the universal line shapes for the
specific-heat factodT,/dT=2c for several values oR.
They exhibit the features known from experiments.
The analysis of this section thus shows that cooling in's
systems with an Arrhenius law leads to glassy behavior quiteg’
similar to that expected for realistic glasses.

C. Aging in the glassy regime

Suppose we quench the system at time® from an equi-
librium state at temperaturgye,.<A to a lower tempera- .
tureT. As opposed to the preceding section, we now assume  >°,; 5 o
that after the quench the system is far from equilibriuia. x=(T-TgATE
Tquenci T TauenchA) - Then Eq.(4.13 may be written as

FIG. 5. Specific-heat facto#T./dT as a function of reduced
d(eﬁeA) 2 temperature in.a nonlingar coolir]g experiment th.Z and in a
(4.30 nonlinear heating experiment witR=—2. Dashed lines are as-

——=—=dt,
(1-r?) VBA \/; ymptotes from Eqs(4.25 and (4.30.
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h(t) =constx expftdt’ f(t'). (4.39
0

35 universal real model

Using d Inh/de = f/&, we obtain

. hio=| 1 Tﬁe (ﬁeA)B/ZeﬁeAQ 43
%@ (V= 2 (1_T’36)BA/2+5/4' (4.39
X For T>0 this behaves aslt, with logarithmic corrections.

At T=0 the resulting asymptotic scalirfy(t)~t(Int)? dif-
fers from the resulih~tyInt reported by[20]. However,
their Fig. 2 already show a deviation between the data and
“ . . . . . . their asymptotic formula, which becomes increasingly worse
0045 005 0055 006 0065 007 0075 008 in the asymptotic limit. We were informed by Hennes that
the present expressiof%.39 and(4.34) give fort’=100 an
FIG. 6. Specific-heat facto#T./JT as a function of reduced almost perfect agreement with the numerical solution of the
temperature in a nonlinear cooling experiment vith 3, and fora  integro-differential equationjs39].

05 Cooling/heating R=3, Tg=0.05

nonlinear heating experiment witR= — 3. The “universal” curve For later use, we mention the results

is from previous theory. In the “real model” the original

differentio-integral equations have been used, Bnldas changed BA T

from R=3 to R=—3 after reachingl =0.045A. g=2eﬁeA\/L( 1—r2+jr2(1+r)(1+3r)

(4.40

the initial condition is washed out, and is the basis for our

interpretation that each decade is practically independent of;,

the previous one. Likewise, the effect of a finifeis very

small, and to leading order one could 3et0. This says that _ t (1-TB2)?

in the glassy regime the energy essentially evolves as if th@(t) =constx expf dt’ g(t’):(BeA)s’/Z?eﬁeA-
system had been quenchedTie-0. Only near the return to 0 Pe

equilibrium does th@-dependent factor in E¢4.34) bring a (4.4
vanishing argument in the logarithm, from which nontrivial T
behavior results, as discussed in Sec. IV B. Due to Eq.(3.18, the magnetization relaxes as
To leading order one may invert E@.34) to obtain H H\ h(to)
A m(t)= K + ( m(tgy) — R) W (4.42
Te()~ ——m——. (4.39
¢ Ini+ Eln In— In the regime of large times and small~ 1/Int, the devia-
T9 2 To tion m(t) from H/K is exponentially small inT,. As com-

pared to the power law that occurs in the enefiggcall that
In practice this need not be a good approximation sincet1/Ine =T¢/2), this can be neglected. This says that the magneti-
is usually not very small. For our purposésading-order Zzation quickly goes to its quasistationary value.
expansion in powers of) this is equivalent toA/(Int
+3InInt), and actually even té\/Int. It is a simple excer- D. Correlations

cise to check that one has Bonilla et al. considered the on-site correlation function

) (X (t)x;(t")) [20]. At nonzero field it would become
T £~t (4.36 (8% (1) 8x;(t)), with 8x;=x;—({X;)(t). However, the corre-
(2T~ T)? \/; ' lation function related to thermodynamics is the global cor-

relator Cp(t,t") =32 j(dx(t)dx(t")), defined in Eg.
proving our general assertion that in the aging regime thé3-28. Its equal-time value is found from Eq3.24. We
effective temperature also follows by equating the equilib-Shall now study its two-time structure.
rium time scale td. Let us introduce
In the aging regime Eq.3.19 becomes

ré‘;><Te>~< 1-

2 | axwisxxpode)
o [P T) o=
f=2=e 7 (1+n)| 1- -1 fde\/(ﬁx)p(xIS)
1 2T~ T
1 _ZeT (4.37 ar e T
(1-n)t 2(T—Mit - 4Te2Te—T

Let us define its integral as =—2T(1-r), (4.43
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where the explicit result holds fof, and T much smaller

thanA. After dividing by Eq.(3.16), we may write Eq(3.24) 361  In(In(h))
as
: 341
Conm(t,1)  Crnft,1)
2(X) — = 2(x)—KA?)+A?, (4.4
(= T = (209 -KA%) A%, (444 |

where we used thatSESM) is exponentially small irl.
The dominant behavior follows by neglecting the)~T, 34
terms. However, they can be fully taken into account, as the
solution to this equation reads

2.8+
Te(t)
Con(t,t)= K (4.45 sl
Corrections are exponentially small in,. This result even ; ’ ; ; ,
holds whenT, occurring in(x), depends on time. It also 10 15 20 » 30
allows a simple check: The res{t(SM?2)/2~E=NT,/2 is FIG. 7. The decay of the correlation function can be described
in accordance with the expectation of Bonilaal.[20] that by a stretched exponential in a time window where the data for
off-diagonal termg éx; 6x;) with i #] are subleading. InInh are linear in Irt. The stretching exponent then equals the
Solving Eg. (3.39 for t'#t, we can neglect th&,,,,  slope in this figure, and will depend dhand on the chosen time
term, since it is exponentially small ifi,. This yields window. From left to right,T/A=0.1, 0.075, 0.05, 0.025, 0. The
bending of the lines on the lethaving a relatively largd’) indi-
T(t") h(t") cates that equilibrium is approached at the considered time scale.
Chn(t,t")= K W’ (4.4
10< Int<20 and make, for a given value df a linear in-
whereh(t) was defined in Eq(4.39. terpolation through the data points att#10 and Int=20.
Takingt’= exp(10) we plot in Fig. 9 the fits to [h(t")/h(t)]
1. Stretched exponential fitting and arguments for the cased=10, d=100, and compare with the exact
against doing that resulth(t’)/h(t) from Eq. (4.39. By our construction, the

In the study of glasses, where often at best two orders 0rf_esults agree at Ihle_and 20. It is seen that in all cases_the
magnitude ofC can be determined, it is commonly assumedfits are reasonable with regard to the scale presented in the

that there occurs a stretched exponential decay, figure, and that increasingjimproves the overall fit.
The free fitting parameted is not present in reality. It

Crm(t,t)=a(t ) exp(— (t/7)7). (4.47 occurs if one overlooks thdi(t)/h(t") should be fitted as

function oftwo parameters, namely bottandt’. Indeed, at

It is often stated that such stretched exponential decay is or@ne givent’ one is free to choosd; however, emposing the

of the basic properties of the glassy state. asymmetryt—t’ would bring d—(t'/7)”. This reduced
In our case we would need that

h(t)= exp(—d-+(t/7)?) (4.48 T=0.00234
In{d+In(h))

for some set of parameted; 7, 7y, or, equivalently, that 5 d=100
In[d+ Inh(t)] is linear in Int with slope y. In view of the ////’—/75'//
exact expression, this is certainly not an exact description. ////
Let us, however, look at the plot far=0 in Fig. 7. 0

It is seen that Inlin(t)=vyInt—yIn 7 can be a reasonable 25
approximation in a not-too-wide large-time winddy;,<t 4
<tmax- IN agreement with the usual findings, the effective /
exponenty will decrease withT, and be bounded by the 0
finite T=0 value. Notice, however, that it will also depend
on the time window where the fit is made.

In the stretched exponential fitting procedure there is one 3
more adjustable parameter, namely the overall prefactor
exp(—d). In Fig. 8 we takeT=0.002%A and give plots of In(t)
In(d+ Inh) versus Irt for variousd. In intervals where this
curve is flat,h is well described by a stretched exponential
(4.48. FIG. 8. Log-log plots of the function+In h(t) at T=0.002%

This information can be used to obtai€(t,t")  for variousd. his well described by a stretched exponentiét)
~h(t")/h(t). To exaggerate what happens, we take a very- exg—d-+(t/7)?] in an interval where one of the plotted lines is
simple linear fit to the data of Fig. 8: we consider the intervalstraight. Then the slope yields and the offset- y In 7.

10 15 20 25 30
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10 12 14 16 18 20 By direct evaluation of the left-hand side, we find from Eg.
Tog(®) (4.46), using Egs(4.12 and(4.37),

Te
A2

Te(t) _ T22(Te—T)
T ¢ A 2T—T

(4.51

Due to Eq.(3.34) this agrees with the general res(40),
which assures consistency with single-time expressions. As
the second term is smaller by a facfy/A with respect to
T., we thus see that to leading order the same effective
temperature occurs as in the energy and the time sCie.
same happens when the local correlator is considegz@ép)
Notice, however, that the leading correction is nonuniversal,
as it depends on the model paraméteWWhen equilibrium is
approachedT.—T, and the correct limiff,=T is repro-
duced.

Let us now look at the energy fluctuations. To leading
order we may negled(5E2)/dt in Eq. (3.22. This brings

Teo(H)=Te(t) +

-10r  log(h(t))-log(h(exp(10)))

FIG. 9. Log-log plot of stretched exponential fits to the ratio
h(t")/h(t) at fixedt’= exp(10) andT=0.002%A. Upper line: by
taking a linear interpolation between the pointg¢#10 and Int
=20 for the casal=10 of the preceding figure. Middle line: the 2, 0 3 3
same ford=100. Lower line: exact result. £<5E2>=C ()= — Te(X >~ To(t) 1+

N geny 4A({X) A 1—r2
freedom would decrease the overall accuracy of the fit. In (4.52
practice this is typically not done, partly because of the lack i i i o
of data curvesC(t,t’) at enought’ values. Nevertheless, This result shows various points. First, evemr atT=0 it is .
whenever fitting of stretched exponentials is attempted, w@"€ order of magnitude smaller than wha'; one would antici-
stress to make a two-parameter fit@ft,t'). pate from th(_a eqU|I|t_)r|um expressi@, , :'g /2._On|y in th(_a

In our opinion the present fitting procedures merely sayg!ass-transition regloﬁ;e—T~(1—r)T~T /A is the equi-
that stretched exponential fits can too often be made, withod{Prium scalingC, . ~T< recovered. We conclude that there
yielding too much insight. The standard statement thatS & complicated, nonuniversdl dependence in the whole
stretched exponential decay is one of the basic properties G9INd regimer <T.. The possibility of a model-independent
the glassy state should, in our view, be taken with cautiongenze""''225‘“0_n outside equilibrium of the relatiatU/dT
What really happens is a slow decay, of which too few orders= 8 (9E°) will be discussed in the Discussion.
of magnitude are known to draw firm conclusions on their ~For different times we find from Eqg3.37) and (4.41)
analytical form. It seems needless to say that in experiment@‘at
the tails of the correlations have large relative errors, which,
in our opinion, make the problem quite insensitive to C..(tt)=
stretched exponential or many other fitting procedures. gern

We feel that the situation even becomes worse if such
fitting is applied for showing the presence of critical behav-Likewise, the Green’s function follows from Eq®8.50 and
ior near a supposed critical temperature in the glass, as (8.40 as
sometimes done.

T3t 1+r3(t) h(t)
A 1-r2t) h(t)

(4.53

6. (L) h(t') 2T§r2(1+r)eBeA)( s
s (tt)== t'). (4.
E. Fluctuation-dissipation relations h(t) VAT,

We now consider aging dynamics at fixee<A. Neglect- To leading order this yields the fluctuation-dissipation rela-
ing all yy contributions, we find from Eq3.46 the equal- tion g y P

time valueG,(t,t)=f(t)/K. This result is exact foH=0

[20]. Its two-time form follows from Eq(3.42), 90 C. (1.t
t'eells
e —— =T, (4.55
. f(t) ht) G,.(tt) ¢ (t)
Gmm(t,t ):TW (449)
where thet dependence again has dropped out. The quantity
We can now consider the fluctuation-dissipation relation. We . TAO[1+r3(1)] To(4AT2—6T.T+3T2)
. : = ee t)= =
define the effective temperatuiig by e P2O[1+1(0)] T2 s
Mz-?e(tr)_ (4.50 s also an effective temperature that also has the correct limit

Gnm(t,t") when T,—T. Unlike T, itself, it has no obvious model-
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independent interpretation. We feel that this is due to the facBincedU=N dT./2— (NH/K)dH, it is now clear that the
that it relates to subleading quantities. formulation (2.9) of the first law is satisfied in the present

For the fluctuation$4.49 in M the nonuniversal terms are nonequilibrium state. AS.;=0, the free energy reads
exponentially small inT.. This shows that for the fluctua-

tions in M=M, a quasiuniversal behavior takes place. As F=U-TJZ (4.63
C.m is negligible, theM;M, cross fluctuations are also
simple, and it satisfies the relation2.11).
As m;=H/K is temperature-independent, the modified
2HT(t")h(t") Maxwell relation reduces to the standard one: in E419
Coltit")=——0—, (4.57  the terms proportional t@ vanish, and the other terms fol-

2
K=h() low already from Eq(2.9) with S;;=0. Neither is it inter-

esting to investigate the first Ehrenfest relati¢h2l): It
holds trivially, as one hasx=0, y=1/K, implying A«
=Ax=0. Notice, however, that the present results already
require that the second Ehrenfest relati@m®2 is modified
outside equilibrium[6]. Indeed, from Sec. IVB we have
AC=N(R—-1)/(2R)+#0, while Aa=0. Equation(2.24 is
nevertheless satisfied, sincéT./dT=1/R and dZ/dT
4H2 4 =971dT=N/(2Ty).
Golt,t')=—Gyy(t,t' )+ —G,, (t,t'). (459 The fluctuation formulg2.3)) is also satisfied. To show
K2 K? this explicitly, let us takea=b=1. Since there are no fast
processes, the first term vanishes. The same holds for the
In both expressions the first term is two orders of magnitudehird term, sincem=H/K leads todm/dT.=0. Due to Eq.
in T¢ larger. On top of that, the second term decays faste(4.45 the second term equal®{T./K)/(NT,) = 1/K, which
(~t'/t versusyt'/t) wheneverT is nonzero. It thus holds is the desired result. We can also check it by integrating up

plus exponentially small corrections i, or power law in
1k. The M, correlations and responses have the form

! 4H2 ! 4 !
C22(trt ):Fcll(tvt )+Pcsa(t1t )1

that in all four case$10] the instantaneous field pulses, as was done more generally in
the argument starting with EG2.35. The same conclusions
dpCan(tit") o hold for the other three cases. We have already mentioned
W=Te(t ) (a,b=1,2). (459  that the fluctuation-dissipation relatiof2.34) is satisfied

with T, given in Eq.(4.51), and that the apparent specific

This simple result suggests that in general the fields coul&ﬁgtgy'*;uﬁt(j;{féﬁggz)has no simple connection with the

also stand for a chemical potential, a pressure, or a quenched In all situations considered we have seen fiat A/lnt

randomly directed forcing strength. is to leading order in agreement with the time-scale relation
Te{ Te) ~t. We have also seen that the correlation function

F. Nonequilibrium thermodynamics has the scaling(t)/h(t), with, at finiteT, h(t)~ \t times a
We now wish to view previous results in the thermody- function of Int. In theT— 0 limit they become so strong that
namic framework of Sec. Il. they replace thé(t)~ t scaling byh=tx function(Int).

Since there is only one type of process, which is by defi- In conclusion, the proposed picture applies to the har-
nition slow, the entropy of the equilibrium proces§gsvan- ~ monic oscillator model, even though a few aspects are quite
ishes. For such cases the configurational entropy can be d#ivial. In the next section we shall consider a model of
rived simply. It is defined by the degeneracy of states withspherical spins, which has a richer behavior when changing
energyU, and given by the microcanonical partition sum  field, and in regard to the Ehrenfest relations.

ie dB - -
eI:f DX H(x)— U]= ' eﬁuf Dx e BH0, V. MONTE CARLO DYNAMICS OF FREE SPHERICAL
w2 SPINS IN A RANDOM FIELD

(4.60

The previous model had the drawback that the effect of a
field was rather trivial. It was therefore of no great interest to
check the first Ehrenfest relation: it is satisfied in a trivial
way, havingAa=A y=0.

~ ~ We have therefore considered a closely related model,
1= m~a>g8[u— Fed T)1=Sed Te). (4.6 containing free spherical spins in the presence of a random
T external field, which does not share these drawbatké
Also in this very simple model Monte Carlo dynamics can be
~ ) o . solved exactly and leads to glassy behavior. In fact, the dy-
atT=T,. This result holds generally in simple systems with hamics just maps to leading order onto that of the oscillator
only one time scale that diverges néla= 0. Here we have  ,odel of the preceding section.
The Hamiltonian contains two parts, a “self-interaction”
term involving fieldsI’; and a coupling to an external field
. (4.62 4

whereDx =11, dx; is the integration measure. By the saddle-
point method one obtains

where we used that fdJ = U T,) the minimum is assumed

N[ Te
I= Seq(Te): E In?+ 1
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from a Gaussian with average zero and varianée Next
——E FiSi—HE S . (5.2 one makes a global rescaling of the length of the spins, to
=1 =1 reinforce the spherical constraint. This leads to the final up-

The model is solvable for any set of quenched random fieldgate per time step,

I'; that have average zero and variadte To simplify the

discussion, we make the additionébut technically un- SE (
needegl assumption thaf';= =TI, implying that at each spin \/_

2

N\/— 2N2
position there is a quenched random unit vedtptl, along . ] o
which the spins wish to point for large pinning field This ~ This conserves the constraif&.3). It implies for the change

limitation allows the exact gauge transformatiog N the energy and in the total magnetizativh==;S;,

—TI';S /T, which interchanges the role éf andI". Without 2

the additional assumption, this interchange would also exist; H-H={ - (Ii+H)r PR S ri

this is due to the spherical nature of the spins. - JN N\/— 2N2 '
In terms of the *“staggered” magnetizationMg

+---. (5.10

=(11)2;T';S one simply hasg{=—-T"M;—HM. When de- s 2
fining Hy=H, H,=T, M;=M, M2—MS, we may also M= E |\/|—2 . (511
write this as \/_ N\/—
2 Introducing the new variables
H=-— H.M.. 5.2
2 HM, (5.2 » "
e =K+ N, m= N1
The spins are spherical, which means that they can take all
real values compatible with H H
,ulzmeq(s)—m=—m+R—ﬁs, (5.12

2 §f=N. (5.3
which are small near equilibrium, this leads to move&s

In equilibrium the system has a free energy, =H+Xx, M'=M+y with Gaussian transition probabilities

K2 of the type(3.6) and(3.7), having parameters

Feq M
—==InBu—5—-= (5.4 1
N2 2n 2 —SA%K=¢), A~=A%(2K-¢), (513
where
H AK?—2Kx+2xe
K=\TZ+H? (5. -
K Yor T X T M o K—e)
and with chemical potentigk fixed by optimization, imply-
ing r2 K242
] et S
11 Y sk
= K2+ ZT2+ ET (56)
where
This yields for the internal energy, the magnetization, and for — 2112
the entropy K=VIo4+H" (519
1 K2 1 1 1 T2 In particular at smalle the model of spherical spins in a
U= — — N K2 T2 ST~ — K 2T — random external field leads to a problem very similar to that
\ e 4 2 2 8K’ of the uncoupled, identical oscillators in a steady field. The
(5.7 previous general formulas for variances, correlation, and re-
sponse functions remain valid here.
1~ H H HT HT? g
N e 4 K ok2 * gK3’ 6.8 B. Glassy transition and the Ehrenfest relations
The evolution fore again satisfies Eq.3.16), with the
1 S EInT n 1 - EInI+ E (5.9 new expressions faxy andA,. We can again introducé,
N8 27, 2 2K 2 by equatingU = —K+& =Ugy(Te), so that
The approximations hold for low. - _(2K—-¢)e ool 14 €
K-  PlTT2K
A. Monte Carlo dynamics
i T T T, Ta
As for the oscillators, one makes parallel Monte Carlo e =K+ -°_ /K2y e 'e_ e (5.16

movesSiHSi’=Si+ri/\/N, with ther; independently drawn 2 4 2 8K
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We also define

AK A?
A= —, B=?(K—s).

s (5.17

p(x|e) takes the form(4.2) with A—B. For T,<B one can
again approximate it by an exponential. This yields the equi-

librium time scale

()_\/K2+T2/4 T2 /wﬁ o8
64 -

N 19

For a nonlinear cooling process of the fod14), the re-
sults of Sec. IV B apply immediately. We consider cooling
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dTe

Ac=c,| 1— &_T (5.29
A H ( T, ) (5.2

a=—0Cyl 1-—| |, .

K2 aT |,

A H T, (5.27

X=—Cot :

K2 “oH |,

These results and Ed2.25 allow us to verify the first
Ehrenfest relatiori2.21).
From the identityZ=S.{T.) and the expressiofs.9) we

sequences WitlR>1, where the system goes from a para-gpiain

magnet to a glassy state in a region around sdr

Below the glassy transition one has an apparent specific heat

JT
C=C,—

7T, (5.19

This is of the general forn2.8), with backgroundC;=0

A
&Te

C, oI

T T H L

HC2
= . (5.28

w2
TH K

We can now consider the modified second Ehrenfest relation
(2.24). Due to Eqs(5.25 and(5.26) it takes the form

since there are no fast processes in the present model. It

holds that C, ( iTe )
T\ & aT
C, 1 Te 1 Te (5.20 g H
Cr=— =g~ —————r s — .
N 2 247214 2 4K
AVKE+Tel4 _Hea( T |dHy (T
The same universal line shapes of the oscillator model thus - K2 dT aT |,
occur here, with nontrivial prefactar,. Between the right
and left sides of the glassy transition region there is a differ- C, dT¢ Hc, dHg €, 9T dHg
_ _ X|=—=| -—=F+= —_—

enceAC=Ncy(1-1/R). Ty T kK2 dT ' T, OH L dT

Further on it will become clear thah(t) —me(T,) re-

mains zero upon cooling at fixed field Therefore, one has

H H H /2 T T,
m= meq(T R—FS—KZ K+Z—?.

(5.21
This yields a magnetizability
_ H 1 Te dT. (5.22
e Vak?z+T12) dT '

and, sincek?=I"?+H?, a susceptibilityy= y1; of the form
(2.28), with

2, T2 2 (T?—RH2
e L T TelA+WT/2 T2 (I*—HT,

T WwT2? KE 2k¢
(5.23

wherew= K%+ T%/4, and
H &Te H Te\ dTe
k2| T 2K/ oH "
(5.29

Around the glassy transition there occur smeared discon-

(5.29

After dividing out the common factor-2dT./dT and elimi-
nating the remainingT./dT by use of the relatiof2.25), it
is seen that terms with and withodtH,/dT cancel sepa-
rately. This implies that the modified second Ehrenfest rela-
tion is satisfied for any value of that parameter, as was to be
expected.

Using Eq. (2.27 and the relationTy~A/Inty, the
Prigogine-Defay ratio can now be expressed as

AC dTy
" TNAa dH HT daH

K2 dT, K2 dintg
Hinty dH ~
(5.30

Contrary to what was long believed, the conditidr<1 is
easily met. Indeed, in the case in whiBhs fixed, we may

still choose the glassy transition lifig(H), or, equivalently,

the glassy transition time scalg(H). ValuesII<1 thus
occur whendty,/dH>0, so in half of the sets of smoothly
related cooling sequences. This analysis confirms our general
argument that the Prigogine-Defay ratio can take any value
between zero and infinity, and perhaps even negative values.

C. Aging regime and its thermodynamics

tinuities in the apparent specific heat, magnetizability, and For temperatures in the aging regime we have, very analo-

susceptibility,

gous to Eq.(4.31),
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d(efe)  2K?

/BT, )
dt _(K—S)Z ﬂ_(l_r )1

where we again use the short handT/(2T.—T). To lead-
ing order this relation even reduces to E4.31), the only
change being  expA)— exp(B.B)~ exp(BA+AI2K).
Therefore, to leading ordér, again follows from Eq(4.34),
with A—A+AT/2K.

Let us stress that we do not consider the regite1,
where a nonuniversal regime<lin t<A? would occur. This

(5.3)

is the subject of a recent work on a related model with fast
and slow processes, in which a Kauzmann transition occurs

[9].

In the next subsection it is made clear thgt=mgq—m is
exponentially small inT,. Therefore, the magnetization very
closely follows its quasiequilibrium value set By,.

We can now check the thermodynamics. It holds that

U=N| —K T T 5.3
- 2 8K’ (532
Mo H HTe+HT§) 5.33
K 2k2z gk?2/’ '
7=N 1|Te L T 5.3
=Nl 2272k ) (5.34

The first law (2.9) with S;,=0 reduces todU=T.dZ

—M dH. At constantH it holds because one has replaced
T—T, in energy and entropy. Then one can take the differ-

ence between aging experiments at two neatts, The re-
lation remains valid becausk is essentially equal to its
quasiequilibrium valueM ¢ Te ,H).

In the modified Maxwell relatiori2.15 the terms without
explicit factor T cancel because of the first la(2.9) with
Sep=0. The terms with explicit factoll cancel separately,
because of the quasiequilibrium reIatioaI/&Hthe:

—dM/dT | that follows from Eq.(2.11). Such a pairwise
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. . [H ~

g:H(R— +fdx\/\/(/3X)X|o(X|8)

[ H ~

=H| o+ +deW(BX)XP(X|8), (5.3
: .| T2 T2-HZ (H H
wi=—H —Fﬂ; < Flg—m @ —fu

T2

So far we considered cooling at constant field. Then Eq.
(4.39 says thatu4(t) = u1(tg)h(tp)/h(t) decays as a power
law, namely 1t for T>0 and 1f whenT=0. Both behav-
iors are exponentially small iff,, and much smaller than
subleading powers of . that were neglected already. So to
the accuracy considered we can 9dt(t,H) equal to
Mef(Te H).

When the field is slowly changed in the course of time,
the leading behavior o, is

HI'2

M1

As long as|uq|<HT./K?, the main change dfi(t) is still
expressed bl ¢((Te(t),H(t)). Sincef~(1+r)/t, this con-
dition can be written as

dH

dH | HKT(1+1)
e

AHK(1+r)
< ————.
alint| 2

27,

—

(5.39

This condition is reasonable, and easily satisified near
=0.

When condition(5.38 is not fulfilled, it is not possible to
describeU(t) andM(t) by T¢(t) alone. One needs a second
effective variable, namely the effective field(t)=H(t)

+ 8H(t). SettingK,= \T?+H2, we then have from quasi-

cancellation would, of course, not occur in less simple modequilibrium formulas at T ,He)

els. Indeed, in a glassy model with directed polymlerg]

the modified Maxwell is also satisfied, but in a nontrivial

manner{6].

D. Changing the external field and the need
for an effective field

If also fieldH is changed in time, then we have to be more

careful. The Monte Carlo dynamics now leads to

m,= f dx W(BX)yap(x|e ), (5.39

where, againm; =m, m,=m;, andx=x—Hm. We shall be
interested in cases with logarithmically slddy implying H
~1/t, wherex=~x.

From the definitiong5.12 we derive for the evolution of
e andu,

Te H Te
U:_Ke-f‘?%—K_R(SHe'F?, (5.40
—Hel Te +F26H T.. (5.4

TR K TR e T 540

From the definitiong5.12 we can make the identifications

T. H I2—H2
e =5~ oHe, MlZ_T5Hea (5.42
or their inversion
B 2HK? B K3
TE_ZS_FZ_HZ’Ml' 5HE__1_,2_H2M1'

(5.43
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rT,
_ T p(0|8)<1— ZA)'
andH, follow. One can then also study fluctuations and the
fluctuation-dissipation relation for this more general case, (5.50
and look for universal behaviors. This matter is the subject OEoth C
current research9], which falls outside the scope of the
present paper.

8A
rithmically slowly in time. After solving the dynamics, Gab(t*,t)=F

One can now consider any class of fields that change loga- ( )a+b—2

ap(t,t’) and G,u(t,t') have a time dependence
h(t)/h(t"). The fluctuation-dissipation relatiof2.34) again
holds with the same effective temperaty¥e51) as in the
oscillator model,

E. Fluctuations and fluctuation-dissipation relation

Te(t) Te 2(Te=T)

Te(t)=Te(t)+ f(t) :Te—KZTe—_T. (5.51)

The energy fluctuations still follow from Eq3.22, and
depend onH only throughK. They are, to leading order,
again given by Eq(4.52,

In deriving this result we noticed that terms of relative order
T3(t) 1413 T./K, as appearing in Eq5.47), have canceled. We can
A 1_ 2 (5.49 now redo the consistency check of Eg.35 and verify that,
up to relative ordef2,

1 2\ _ —
N<5H >_Css(t!t)_

This allows us to solve the cross fluctuations from 825, . r2 T
fodt’ Gmm(t,t’)=,89Cmm(t,t)=F( 1- ﬁ) :

HT3() 1413
(5.45 (5.52

AKZ (1-r)(2—r)’

Ca m(t,t) =

Using thatT,~A2K/(8 Int), we also find
Finally, up to corrections of ordef2, the M fluctuations

satisfy an equation very similar to EGt.44). This yields 9T A’H  HT,
, GH|. TBKInt Kz (653
C. ()= Tem(l Tel o), (546 "
mer(1,8) = K3 2K (Te), ' As mentioned before, this is one order of magnitude smaller

than Eg. (56.52. The relation (5.33 now implies

where we notice that terms of relative ordes/A have can-  dm/dTg|t 4= —H/2K?, so that Eq(2.31) becomes
celed on both sides of the equality sign. Considering the

fluctuations inM,;=M, M,=M,, we have flust_ 4 r? 1 Te| [ H|HTe (5.54
mreT ksl 2K oKk2) k2T
—H\a"P=2T2T (1) Te 3
Cap(tL)=| 5~ 3 1= 5] HO(Te). In view of the prediction(5.23), this is the desired answer to

(5.47) the considered order.
Also the energy correlation and response function are es-

The difference with the oscillator model of the precedingSentially the same as in the oscillator model. This implies in
section is which all four termsa(b=1,2) now have correc- particular the fluctuation-dissipation relation for energy fluc-
tions of relative ordei%/A2, which will be neglected from fuations of the nonuniversal for.595 and(4.56.

now on. They decay slower than the terms we keep, but we 'Notice that when there are no random fieldfs> 0—K

are not interested in the model-dependent very-long-time re= M, the energy and the magnetization are proportional to
gime, where they dominate. each other, viz.E=—HM. For comparison with realistic

The time dependence of t@,, (t,t') follows from Eq. glassy systems, the model becomes too poor. The above for-

(3.34. In the interesting, not-very-asymptotic regime the Mula for the magnetization ceases to hold wienT,. For
term C, ,, can be neglected. This implies finally that I'—0 one finds the magnetization correlations from the en-

ergy correlations. One then finds the relatiods55 and

h(t') (4.56) both for energy and magnetization.
Cab(t.t’)=Cab(t’,t’)W, (5.48
VI. DISCUSSION
which involves h(t) defined as in Eq(4.39, with, very In this paper we consider the question of whether the
analogous to Eq3.19, glass transition can be phrased in a thermodynamic frame-
work. In a series of letters we have given already several
f(t)= f” dx W Bx) 4A—x(1-¢/K) p(x|e (1)) arguments in favor of this possibility7,6,10. The present,

o 2e (1)(1—e/(2K) admittedly long, paper is meant to explain enough details of
TeT this approach to make the picture and its various steps and

_ e Mle assumptions transparent. We do this by working out in detail

=8AP(Ole)(1+ r)( 1+ 2K 2A ) (5.49 two simple models, which, in our feeling, are closer to reality

than mean field spin glasses. We have pointed out there that
The equal-time correlators take the value a minimal thermodynamic description needs one more pa-
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rameter to describe the situation, which could be the age dEhrenfest relation, is merely based on the misleading expec-
the glass or the cooling rate at which it was formed. We haveation that there is one ideal value for the compressibility.
discussed that for thermodynamics a more useful variable i$his notion has arisen from equilibrium considerations for
the effective or fictive temperatuiig,, introduced half a cen- the glassy state. They do not apply by definition, and have
tury ago by Tool[30]. In this paper we notice that the basic hindered progress until our recent works in this field. Indeed,

result for the change of heat in a glassy system, from the knowledge of spin glasses, or from the solution of
the present modelsvhereyzec=0), we know that the com-
dQ=TdS,+TedZ, (6.1 pressibility or the susceptibility can take a broad range of

values immediately below the glassy transition. This means

immediately leads to a specific he@,=C;+C,dT./dT, thatno alternative determination is allowed, removing imme-
which was Tool’s starting point for the analysis in the glass-diately the whole paradox: though half a century of research
formation region. In Sec. IV A we continue along his lines led to the general belief that the first Ehrenfest relation is
by studying in detail a certain nonlinear cooling traject, pro-always violated, it is actually satisfied automaticay. This
posed recently by us in Ref10]. This cooling scheme is point is underlined in Fig. 1, where we present a 3D plot of
applicable to any glass-forming substance and expected ata for the glass transition in atactic polystyrene, collected
give universal scaling curves ofT./dT in the glass- in careful experiments by Rehage and (éls Though these
formation region, independent of the material consideredauthors claim that the first Ehrenfest relation is violated, and
provided that the glass-transition region is narrow. It wouldthen continue to investigate a modified version, we explain
be most interesting to test this idea on a realistic glassthat it is satisfied.
forming liguid. One should first determine, once and for all, We have also pointed out that for glass-forming liquids
the equilibrium time scale(T) and then do glass experi- the Maxwell relation betwee@U/dp and dV/JT is modi-
ments of the type&4.14) within the considered range. It con- fied, which is not so surprising in view of the fact that equi-
tains two parameters: the glass-formation temperalyre  librium is not reached. The second Ehrenfest relation is then
where the cooling time scale becomes comparable to thalso modified, since it relies on the Maxwell relation. This
equilibration time scale, and a “speed” parameRrThe fact implies that the Prigogine-Defay ratio can indeed be
resulting form fordT./dT lies, after rescaling the width, on different from unity. We should recall that Davies and Jones
a universal scaling curve, which only dependskon [31] showed thall=1, while DiMarzio found that a deeper

We have worked out here the situation where the effective@nalysis of their equations leads fd=1 [37]. Both ap-
temperature shows up as an extra variable, though in prirproaches, however, are based on the assumption that at the
ciple it might be needed to consider as many effective paglass transition an unspecified number of order parameters
rameters as there are macroscopic observables. We had fieezes in, an assumption that was often made in the 1960s
ready briefly considered the Ising chain with Glauberand 1970s. Such assumptions are invalid, however. What
dynamics. In that model the nonequilibrium energy at zerchappens at the glass transition is that certain slow modes fall
field can be described by introducing the effective temperaeut of equilibrium, but on longer scales they may reach equi-
ture. Its definition then coincides by equating thg(T,) librium again, even though other modes may then have fallen
with t. The behavior at nonzero field appears to be nonunieut of equilibrium. The upshot of this is that the Prigogine-
versal[7]. More or less the same happens in the backgamBPefay ratio can be different from unity. In contradiction to
mon model, for which the dynamics at zero field has beerihe standard belief, it can also be less than unity. We have
partly solved[18,19. One could couple the system to a par- pointed out befor¢6] that this already occurs in experiments
ticle bath, and the chemical potential would play the role ofon atactic polystyreng5], though this was long not recog-
an external field. So far this case remains to be worked ounized.
We have, therefore, focused on very simple, exactly solvable It has been the important contribution of statistical phys-
models, namely the Bonilla-Padilla-Ritort model of Monte ics to relate temporal fluctuations in macroscopic observ-
Carlo dynamics of uncoupled harmonic oscillatp26] and  ables to their averages, the most known relation be&ng
our recent model of Monte Carlo dynamics of uncoupled= 8% 5H?). Itis natural to investigate whether such relations
spherical spins in a random fie[d0]. At low temperature have some universal-looking generalization in simple models
both models have an Arrhenius law for the equilibrium timefor glasses. We have found that this is indeed the case for
scale. Upon cooling from high temperatures, they will soonefluctuations in observables coupled to external fidltg];
or later fall out of equilibrium. Though it may come as a see Sec. Il E. These equations have been guessed with an eye
surprise to some readers, we have shown that these oversimn results from present models, in combination with some
plified models with their unrealistic dynamics still share in standard arguments on the short-time contributions.
their off-equilibrium phase universal properties of realistic ~ Our progress was initially hindered by the fact that such a
glasses and models for glasses. general formula appears not to hold for energy fluctuations.

A description with only the effective temperature appliesFor the ferromagnetic Ising chain agingTat0 from a ran-
whenever the volume of the glass-forming liquidr the  dom initial condition, we already realized which at zero field
magnetization of the glassy maghit close to its quasiequi- the energy defines an effective temperatlige= 2J In 47t,
librium value set by the effective temperature obtained fronthat coincides, to leading order, with the one following from
fitting the energy. If this condition is fulfilled, the old objec- equating the time scale with time, Vizz(Te) =t [7]. The
tions against a thermodynamic description of the glassenergy correlations can be calculated from the Derrida-
phase can be inspected in detail. We have stressed that tHeitak spatial correlation function for the nonmeeting of two
most fundamental paradox, namely violation of the firstrandom walkers on a line. Indeed, the Ising chain is mapped
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to random walking of interfaces by settirgy_,,,5;,,,=1  realized that for the cross derivativg&J/JH and IM/JT
—2p; with p;=1 if an interface is present at and zero Similar relations either do not occur or are much more com-
otherwise. It follows that)/N=J(—1+2p), wherep=1/¢ plicated. The same holds for the fluctuation-dissipation rela-

is the average density of interfaces, with= 4t tiorll\ls cont?]elcted t(f)l th:aset_two quant;cities. bles that o t
= exp(28.J) the correlation length. It holds that evertheless, liuctuations n observables that coupie to

global external fields appear to behave in a universal way, at
1 least to leading and dominant subleading order. These fluc-
—(8U?=43%(p—p?)+832D, (Cio—p?), (6.2 tuations are interrelated with the off-equilibrium fluctuation-
N i>0 dissipation relation FDR). Originally observed by Sompo-

) ) ) _ linsky [11], Horner [11,12,13 and then extended by
whereC;; =(pipj)=C(rjj) is the correlation function, given cygliandolo and Kurchafl4], this has become a popular
by Eq.(59) with =2 in a paper by Derrida and Zeit§#k0],  test for glassiness of model systefd,21,22 4% For the

models considered, the effective temperature showing up in
e\’ du) . (623 the FDR is essentially the same as the one occurring in ther-

3]

C(r)=p? 1-e 22+ 22e*22f

2 modynamics.
The absence of a universal relation between energy fluc-
wherez= \/7pr. One thus finds tuations and the specific heat is very welcome for gravitating

systems, which often have a negative specific heat. We in-
1 deed showed that the present approach can immediately be
N<5U2>=432P(3—2\/§)- (6.4  applied to phrase the laws of black-hole dynamics in a non-
equilibrium thermodynamic framework38]. The role of
bath temperature is played by the cosmic backgound tem-
perature, that of the effective temperature by the Hawking
temperature, that of the configurational entropy by Beken-

dol imil h th stein’s black hole entropy, while the short-time processes
gammon model a similar phenomenon occurs: the energijaye no sizeable entropy. These ingredients bring a very

correlations are a factor 2 smaller than naively expeptdl  cjose analogy with the picture discussed here, and are not
In the models of the present work the energy fluctuations ar@yen disturbed by the fact that the specific heat has the
even smaller by an order of magnitudeTp/A. These ex-  “wrong” sign. Let us mention, however, that negative spe-
plicit examples show that there cannot exist a simple quasiific heats are in no way limited to gravitation: they also
universal formula relating energy fluctuations with the spe-occur in the present, extensive solid-state models, when one
cific heat. The underlying reason here is that in the energyeats up the system in the glassy phase, as expressed by the
the leading fluctuations from different terms already cancelpegative values ofi T./dT=2C in Figs. 3—6.
leaving model-dependent, subleading effects only. Our picture for thermodynamics of the glassy state thus
After completion of the original manuscript, Leuzzi veri- connects macroscopic observables via the first and second
fied that both in the harmonic-oscillator model and in thelaw, and relates their derivatives with respect to external
spherical spin model there holds the following relation be-fields with their fluctuations, thereby embedding the FDR-

tween the specific heat and the energy fluctuations: effective temperature in a larger thermodynamic framework.
It is expected to be valid for a yet unknown class of glassy

This differs from the naively expected quasiequilibrium re-
sult T2dU/dT,=4J%p by a numerical prefactor 322
=0.17157288. We were informed by Luck that in the back-

U 1 U systems. Let us close this discussion by mentioning that very
—| =——(6H?)—— recently numerical data in the glassy phase of a binary
Ity T Té”) ITe H.T Lennard-Jones system were interpreted in terms of an effec-
tive temperature, which dominates tlighort-time vibra-
dT, Ju dT. tional properties, in full agreement with the picture proposed
X(ﬁ _1)+ﬁ (ﬁ - ) above[44].
H,t ey, H
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