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Thermodynamic picture of the glassy state gained from exactly solvable models

Th. M. Nieuwenhuizen
Department of Physics and Astronomy, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlan

~Received 8 July 1998!

A picture for thermodynamics of the glassy state was introduced recently by us@Phys. Rev. Lett.79, 1317
~1997!; 80, 5580~1998!#. It starts by assuming that one extra parameter, the effective temperature, is needed
to describe the glassy state. This approach connects responses of macroscopic observables to a field change
with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized, nonequilibrium
way. Similar universal relations do not hold between energy fluctuations and the specific heat. In the present
paper, the underlying arguments are discussed in greater length. The main part of the paper involves details of
the exact dynamical solution of two simple models introduced recently: uncoupled harmonic oscillators subject
to parallel Monte Carlo dynamics, and independent spherical spins in a random field with such dynamics. At
low temperature, the relaxation time of both models diverges as an Arrhenius law, which causes glassy
behavior in typical situations. In the glassy regime, we are able to verify the above-mentioned relations for the
thermodynamics of the glassy state. In the course of the analysis, it is argued that stretched exponential
behavior is not a fundamental property of the glassy state, though it may be useful for fitting in a limited
parameter regime.

PACS number~s!: 05.70.Ln
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I. INTRODUCTION

Thermodynamics is an old but very powerful subject.
applies to a wide variety of systems ranging from ideal ga
to crystals and black holes. Important contributions to
development were made by Carnot, Clausius, Kelvin, a
Boltzmann. Equilibrium thermodynamics, better call
‘‘thermostatics,’’ is a well understood subject, and appli
every day in many fields of science. The work of Gib
showed its tremendous generality via its relation to statist
physics~i.e., partition sums!. We shall explain, however, tha
precisely this success has been a barrier in the way of
systems of our interest, namely glasses.

Nonequilibrium thermodynamics for systems close
equilibrium was worked out in the first half of this centur
Typical applications are systems with heat flows, electri
currents, and chemical reactions. The basic assumption i
presence of local thermodynamical equilibrium, and the
sic task is to calculate the entropy production. Important c
tributions to this field were made by de Donder, Prigogi
de Groot, and Mazur.

Nonequilibrium thermodynamics for systems far fro
equilibrium has long been a field of confusion. A typic
application is window glass. Such a system is far from eq
librium: a cubic micron of glass is neither a crystal nor
ordinary undercooled liquid. It is an undercooled liquid th
in the glass-formation process, has fallen out of its o
metastable equilibrium. The glassy state is inherently a n
equilibrium state: a substance that is a glass in daily
~time scale of years! would behave as a liquid on geologic
time scales. If each 500 years a picture would be taken
window glass, then the movie composed of these pictu
would look very much like a movie of a soap film.

Until our recent works on this field, the general consen
reached after more than half a century of research was
thermodynamics does not work for glasses, because the
no equilibrium. Even before going into any detail, it is clea
PRE 611063-651X/2000/61~1!/267~26!/$15.00
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that this conclusion itself is confusing, becausethermody-
namics should also apply outside equilibrium. Inspired by
the success of Gibbsian theory, the whole nonequilibri
part of thermodynamics had been forgotten. The correct
mulation should of course have been thatequilibrium ther-
modynamics does not work for glasses, because there i
equilibrium, surely a less surprising and nonembarrass
statement.~This history shows once more how regretful it
that equilibrium thermodynamics did not become known u
der its most proper name, ‘‘thermostatics.’’!

The negative conclusion about the applicability of the
modynamics was mainly based on the failure to underst
the Ehrenfest relations and the Prigogine-Defay ratio.
should be kept in mind that, so far, the approaches lea
very much on equilibrium ideas. Well known examples a
the 1958 Gibbs-DiMarzio@1# and the 1965 Adam-Gibbs@2#
papers, while a 1981 paper by DiMarzio has the title ‘‘eq
librium theory of glasses’’ and a subsection ‘‘an equilibriu
theory of glasses is absolutely necessary’’@3#. In our opinion
such approaches are not applicable, due to the inherent
equilibrium character of the glassy state. In the course of
present work, we shall encounter many instances where s
approaches indeed fail to describe the physics. Notice, h
ever, that this immediately rules out by far the most d
cussed model glass, namely the Gibbs-DiMarzio theory@1#,
as a viable model for a realistic glass. For instance, it wo
predict the original Ehrenfest relations to be always satisfi
in contrast with experiments to be discussed.

In our view the current lack of a thermodynamic descr
tion is quite unsatisfactory, since so many decades in t
are involved, ranging from the microscopic subpicoseco
regime to, for silicate-rich glasses, almost the age of the s
system, thus covering more than 25 decades. Naively
expect that each decade has its own dynamics, basically
dependent of the other ones. We shall find support for
point in the models that we shall investigate below.

Near the glass transition, a glass-forming liquid exhib
267 ©2000 The American Physical Society
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268 PRE 61TH. M. NIEUWENHUIZEN
smeared discontinuities in quantities such as the heat ca
ity, the expansivity, and the compressibility. This looks sim
lar to continuous phase transitions of the classical type,
with specific-heat exponenta50, even though the analog
is not perfect, because the smaller specific-heat value oc
below the glass transition. It was then investigated whet
the jumps satisfy the two Ehrenfest relations~the analogs for
second-order transitions of the Clausius-Clapeyron rela
of a first-order transition!. As reviewed recently@4#, it was
found that the first Ehrenfest relation, involving the jump
the compressibility, is always violated, while the second o
involving the jump in the specific heat, is usually satisfie
but not always. It has become fashionable to combine th
two relations by introducing the so-called Prigogine-Def
ratio P. For equilibrium transitions this quantity should b
equal to unity, and it was generally expected that it can
take values below unity. In glasses, typical values are sai
lie in the range 2,P,5, even though a very careful exper
ment on polystyrene led toP'1 @5#.

Our recent studies have radically changed the viewpo
We have realized that the first Ehrenfest relation is autom
cally satisfied, the only subtlety being its proper interpre
tion. We have also put forward that the Maxwell relation a
the second Ehrenfest relation are modified in the glassy s
due to lack of equilibrium@6#.

We have investigated the possibility that, within a y
unknown class of systems, the glassy state is describe
one extra state variable. This is basically the age of the
tem, or the cooling rate under which the glass has b
formed. We realized that in thermodynamics theeffective
temperature Te is a more useful extra parameter@7,10#.

This approach has led to a picture for thermodynam
relations between values of macroscopic observables@7,6#
Later it was extended to their fluctuations@10#. The picture
also incorporates the so-called fluctuation-dissipation r
tion ~FDR!, put forward in works by Sompolinsky@11#, Hor-
ner @12–13# and Cugliandolo and Kurchan@14#; for a re-
view, see@15#. This relation has become a central point
research on off-equilibrium systems. Our more general
proach shows that the effective temperature that occur
thermodynamics and the one that occurs in the fluctuat
dissipation relation are almost identical.

In the course of our work we gained insights from an
lytical results combined with educated guessing on
p-spin interaction spin glass. Some initial studies had
purpose to find the physical meaning of the nonequilibri
replica free energy in spin-glass models@16#. It has turned
out that replica theory provides the two-temperature o
equilibrium free energy that we shall discuss in a much m
general context@7#. The basic drawback of thep-spin model
is that dynamics is not solved in the activated regime. Fo
model of directed polymers in a correlated random poten
the situation is a little better, but so far it also lacks a co
plete solution in the activated regime@17#. Another model is
the backgammon model, for which the dynamics at zero fi
has been partly solved@18,19#. One could couple the system
to a particle bath, and the chemical potential would play
role of an external field. So far this case remains to
worked out.

More promising is a model of independent harmonic
cillators with parallel Monte Carlo dynamics, introduced r
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cently by Bonilla, Padilla, and Ritort@20#. For this model the
Hamiltonian and thus the statics is trivial. Nevertheless,
exactly solvable dynamics exhibits interesting glassy aspe
Since it has a too simple behavior in a field, we have rece
studied a related simple non-mean-field model with triv
statics and interesting dynamics, namely the parallel Mo
Carlo dynamics of independent spherical spins in a quenc
random field@10#. We expect that both models lie in th
same class as the lattice-gas models with kinetic constra
of Kurchan, Peliti, and Sellitto@21,22#. The latter model,
however, cannot be solved analytically.

In this work we shall give details underlying the pictu
proposed in Ref.@10#. In Sec. II, we shall recall this picture
In Sec. III, we shall derive dynamical equations for averag
correlations, and responses in a model of uncoupled
monic oscillators subject to Monte Carlo dynamics, intr
duced in Ref.@20#. In Sec. IV, we analyze these equations
the nonequilibrium low-temperature regime. In Sec. V, w
analyze the closely related model of uncoupled spher
spins, introduced in@10#. We close with a discussion an
summary.

II. THERMODYNAMIC PICTURE FOR A SYSTEM
DESCRIBED BY AN EFFECTIVE TEMPERATURE

A state that slowly relaxes to equilibrium is characteriz
by t, the elapsed time, sometimes called ‘‘age’’ or ‘‘waitin
time.’’ For glassy systems this is of special relevance. F
experiments on spin glasses it is known that nontrivial co
ing or heating trajectories can be described by an effec
age@23#. Yet we do not wish to discuss spin glasses in t
work. They have an infinity of long time scales, or infinit
order replica symmetry breaking. Their phase transition
continuous, and involves power laws.

We shall restrict our treatment to systems with one
verging time scale, having, in the mean-field limit, one st
of replica symmetry breaking. They are systems with fir
order-type phase transitions, with discontinuous order
rameter, though usually there is no latent heat. However,
same approach applies to true first-order glassy transit
that do have a latent heat. This occurs, for instance, in
transition from low-density amorphous ice to high-dens
amorphous ice@24,25#. Theoretically such behavior occurs i
spin glasses in a transverse field, see, e.g.,@26–29#.

We shall consider glassy transitions for liquids as well
for random magnets. The results map onto each other
interchanging volumeV, pressurep, compressibility k5
2] ln V/]p, and expansivitya5] ln V/]T, by magnetization
M, field H, susceptibilityx5(1/N)]M /]H, and ‘‘magnetiz-
ability’’ a5(21/N)]M /]T, respectively.

The picture to be investigated in this work starts by d
scribing a nonequilibrium state characterized by three par
eters, namelyT,H and theeffective temperature Te(t). As
we shall see below,Te(t) enters naturally in the dynamica
solution of the problem. For a set of smoothly related cool
experimentsTi(t) at different fieldsHi , one may express the
effective temperature as a continuous function:Te,i(t)
→Te(T,H). This sets a surface in (T,Te ,H) space, which
becomes multivalued if one first cools and then heats.
covering the whole space one needs to do very many exp
ments, e.g., at different fields and at different cooli
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rates. The results should agree with findings from hea
experiments and aging experiments. Thermodynam
amounts to giving differential relations between observab
at nearby points in this space.

For thermodynamics of glassy systems in the absenc
currents, all previous results can be summarized by expr
ing the change in heat as@6,7#

d– Q5T dSep1Te dI, ~2.1!

whereSep is the entropy of the fast or equilibrium process
(b processes! andI the configurational entropy of the slow
or ‘‘configurational’’ processes (a processes!. This object is
also known as information entropy or complexity. BothSep

andI are state functions in the sense that they depend oT,
Te , and onH or p. In particular, they are defined for anyTe ,
and, within the present framework of one effective para
eter, they do not depend on the path along which this va
was reached.

Notice that our separation in Eq.~2.1! goes according to
time scales. In the common use of the word, the configu
tional entropySc is the entropy of the glass minus the e
tropy of the vibrational modes of the crystal@1#. For poly-
mers, in particular, it still includes short-distanc
rearrangements, which is a relatively fast mode. For
Gibbs-DiMarzio model it was confirmed numerically thatSc

indeed does not vanish at any temperature, thus violating
Adam-Gibbs relationt; exp(const/Sc) between time scale
and configurational entropy@8#. Our I, on the other hand
only contains the slow components; the fast ones are
posed to be in equilibrium, and are counted inSep. The
properly formulated Adam-Gibbs relation should only re
to slow quantities, so it should readt; exp(const/I). Its
applicability remains an open issue. In a certain model g
with nontrivial fast and slow modes that has a Kauzma
transition it is actually satisfied@9#.

In the presence of currents Eq.~2.1! would becomed– Q
<T dSep1Te dI. This decomposition is based on a syste
consisting of two parts, with a slow exchange of heat
tween them, thus having two time scales. A well known c
is a cup of coffee at temperatureTe in a room at temperature
T. In that caseI is the entropy of the cup and the coffee,Sep
the entropy of the air and matter in the room, andQ the heat
of the combined system. To mention one case, cooling of

coffee in an isolated room will be described byd– Q50 and
Te dI52T dSep,0.

It is both surprising and satisfactory that a glass can
described by the same general law. If also an effective p

sure or field would be needed, thend– Q is expected to keep

the same form, butd– W would change from its standar
value 2p dV for liquids, or 2M dH for magnets. In the
latter case it would become2M1 dH2M2 dHe , whereHe
is the effective field, andM1 and M2 add up toM. Such a
complication could be needed in a larger class of system
would make the picture technically a bit more difficult, an
is the subject of current research.
g
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A. First and second law

For a glass-forming liquid the first lawdU5d– Q1d– W
becomes

dU5T dSep1Te dI2p dV. ~2.2!

One can define the generalized free enthalpy

G5U2TSep2TeI1pV ~2.3!

that satisfies

dG52SepdT2I dTe1V dp. ~2.4!

The total entropy is

S5Sep1I. ~2.5!

„We should stress that the total entropy is not equal toSep
1TeI/T; there are many reasons why this unsymmetric fo
is incorrect. Let us mention that if the probability distributio
decomposes into fast and slow processes asP(fast, slow)
5P(fastu slow)P(slow), then the standard expressionS5
2tr P ln P leads to Eq.~2.5! with

Sep5trslow P ~slow!@2trfastP~ fastu slow!ln P~ fastu slow!#,

just the entropy of the fast processes, averaged over the
ones, andI52trslow P(slow)lnP(slow), just the entropy of
the slow processes.…

The second law requiresd– Q<T dS, so

~Te2T!dI<0. ~2.6!

Since Te5Te(T,p), and both entropies are functions ofT,
Te , andp, the expression~2.1! yields a specific heat

Cp5
]~U1pV!

]T U
p

5TS ]Sep

]T U
Te ,p

1
]Sep

]Te
U

T,p

]Te

]T U
p

1TeS ]I
]T U

Te ,p

1
]I
]Te

U
T,p

]Te

]T U
p
D . ~2.7!

In the glass-transition region it holds thatTe'T. Since the
derivatives ofSep and I are smooth functions, all factors
except]TTe , are basically constant. This leads to

Cp5C11C2

]Te

]T U
p

. ~2.8!

Precisely this form has been assumed half a century ag
Tool @30# as a starting point for the study of caloric behavi
in the glass-formation region, and has often been used for
explanation of experiments@31,32#. It is thus a direct conse
quence of Eq.~2.1!. Let us mention that Tool uses the ter
‘‘fictive temperature’’ forTe .

For magnetic systems the first law brings

dU5T dSep1Te dI2M dH. ~2.9!
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One can define the free energy

F5U2TSep2TeI ~2.10!

that satisfies

dF52SepdT2I dTe2M dH. ~2.11!

B. Modified Maxwell relation

For a smooth sequence of cooling procedures of a gla
liquid, Eq. ~2.2! implies a modified Maxwell relation be
tween macroscopic observables such asU(t,p)→U(T,p)
5U„T,Te(T,p),p… and V. This solely occurs sinceTe is a
nontrivial function ofT,p for the smooth set of experimen
under consideration.

The consistency relation]2G/]T ]p5]2G/] p]T yields

2
]Sep

]p U
T

2
]I
]pU

T

]Te

]T U
p

5
]V

]TU
p

2
]I
]T U

p

]Te

]p U
T

. ~2.12!

Notice that difference relations such as Eq.~2.9!, and the
Legendre transformation that leads to Eq.~2.11!, do not in-
voke the functional dependenceTe(T,p), since they hold for
any functional dependence, and even in the absence o
However, it does become relevant when dividing these eq
tions bydT or dp, as was done to derive Eq.~2.12!.

Equation~2.2! implies

T
]Sep

]p U
T

5
]U

]pU
T

2Te

]I
]p U

T

1p
]V

]pU
T

. ~2.13!

Eliminating ]Sep/]p leads to

]U

]p U
T

1p
]V

]pU
T

1T
]V

]T U
p

5T
]I
]TU

p

]Te

]p U
T

2T
]I
]pU

T

]Te

]T U
p

1Te

]I
]pU

T

.

~2.14!

This is the modified Maxwell relation between observab
U andV. In equilibrium Te5T, so the right-hand side van
ishes, and the standard form is recovered.

Similarly, one finds for a glassy magnet

]U

]H U
T

1M2T
]M

]T U
H

5Te

]I
]HU

T

1TS ]Te

]H U
T

]I
]TU

H

2
]Te

]T U
H

]I
]HU

T
D .

~2.15!

C. Modified Clausius-Clapeyron relation

Let us consider a first-order transition between two gla
phasesA and B. An example could be the transition from
low-density-amorphous ice to high-density-amorphous
@24#. For the standard Clausius-Clapeyron relation one u
that the free enthalpyG is continuous along the first-orde
phase-transition linepg(T). SinceTeÞT, it is actually not
sy

it.
a-

s

y

e
es

obvious thatG should still be continuous there. The so f
always confirmed fact that in mean-field models repl
theory brings the relevant physical free energy leads us
expect that the generalized free enthalpy~2.3! is indeed con-
tinuous.

Let us consider a first-order transition between phaseA
andB, which have their ownTe , Sep, andI. Let us denote
the discontinuities in observablesO of the two states as

DO„T,pg~T!…[OA2OB . ~2.16!

Taking O5G and differentiatingDG50, one gets

FDV2DS ]Te

]p U
T
D G dpg

dT
5DSep1DS ]Te

]T U
p

ID . ~2.17!

Sep can be eliminated by means of Eq.~2.3!. Using again that
DG50, this yields

DV
dpg

dT
5

DU1pgDV

T
1DS dTe

dT
I2

Te

T
ID , ~2.18!

where d/dT5]/]T1(dpc /dT)]/]p is the ‘‘total’’ deriva-
tive, i.e., the derivative along the transition line. This is t
modified Clausius-Clapeyron relation. It would be very i
teresting to test this relation for ice. For that substan
Mishima and Stanley@25# have presented a thermodynam
construction of the free enthalpy or Gibbs potentialG. It is,
however, based on equilibrium ideas and does not invo
the effective temperature in the amorphous phases. In
ticular, it assumes the validity of the original Clausiu
Clapeyron relation. We feel that the results are not the ph
cally relevant ones, and that the analysis should be red
within our nonequilibrium thermodynamic framework.

When phaseA is an equilibrium undercooled liquid, an
phaseB is a glass, it holds thatTe5T in phaseA, and itsI
terms will cancel from Eq.~2.18!, so this relation reduces to

DV
dpg

dT
5

DU1pDV

T
1S Te

T
2

dTe

dT DI, ~2.19!

whereTe andI are properties of the glassy phaseB. Notice
that Eq.~7! of Ref. @6# contains a misprint in the prefacto
of I.

For standard glass-forming liquids, there are no disco
nuities in U and V. It then holds that along the glass
transition lineTe„T,pg(T)…5T, implying dTe /dT51, which
indeed removes theI terms from the last two relations.

D. Ehrenfest relations and Prigogine-Defay ratio

In the glass-transition region a glass-forming liquid exh
its smeared jumps in the specific heatCp , the expansivitya,
and the compressibilityk. If one forgets about the smearing
one may consider them as true discontinuities, yielding
analogy with continuous phase transitions of the class
type.

Following Ehrenfest, one may take the derivative
DV„T,pg(T)…50. Using the definitions ofa and k, given
above, the result for a glass-forming liquid may be written
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Da5Dk
dpg

dT
~2.20!

while for a glassy magnet

Da5Dx
dHg

dT
. ~2.21!

The conclusion drawn from half a century of research
glass-forming liquids is that this relation is never satisfi
@31,33,34,4#. This has greatly hindered progress on a therm
dynamical approach. However, from a theoretical viewpo
it is hard to imagine that something could go wrong wh
just taking a derivative. We have pointed out that this re
tion is indeed satisfied automatically@6#, but it is important
to say what is meant byk in the glassy state.

Let us make an analogy with spin glasses. In mean-fi
theory they have infinite-order replica symmetry breakin
From the early measurements of Canella and Mydosh@35#
on AuFe it is known that the susceptibility depends logari
mically on the frequency, and therefore on the time sc
The short-time value, called zero-field-cooled~ZFC! suscep-
tibility, is a lower bound, while the long-time value, calle
field-cooled~FC! susceptibility, is an upper bound. Let u
use the term ‘‘glassy magnets’’ for spin glasses with one s
of replica symmetry breaking. They are relevant for compa
son with glass-forming liquids. For them the situation
worse, as the ZFC value is discontinuous immediately be
Tg . „At H50 one hasxZFC5b(12qEA), while xFC5b@1
2(12x1)qEA# matchesxPM5b at x151.… This occurs since
giving the system more time to react on the field will lead
a much larger response, and it explains why already dire
below the glass transition different measurements yield
ferent values fork. These notions are displayed in Fig. 1.

FIG. 1. Schematic plot of the field-cooled~FC! and zero-field-
cooled ~ZFC! susceptibility in realistic spin glasses and in glas
magnets, as a function of temperature, in arbitrary units. In real
spin glasses the infinite time or field-cooled susceptibility is lar
than the short time or zero-field-cooled susceptibility. In magne
analogs of realistic glasses, the short time susceptibility even h
smeared discontinuity at the glass transition. In glass-forming
uids the same happens for the compressibility.
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Previous claims about the violation of the first Ehrenfe
relation can be traced back to the equilibrium thermodyna
cal idea that there is one idealk, to be inserted in Eq.~2.20!.
Indeed, investigators usually considered cooling cur
V(T,pi) at a set of pressurespi to determineDa and
dpg /dT. ~An alternative route, often followed in polyme
physics, and leading to a very similar problem, is to chan
p at many constant values ofT; thenk depends strongly on
the rate of change ofp.! However,Dk was always deter-
mined in another way, often from measurements of the sp
of sound, or by making more complicated pressure steps@5#.
In equilibrium such alternative determinations would yie
the same outcome. In glasses this is not the case: the spe
sound is a short-time process, and additional pressure s
modify the glassy state. Therefore, alternative procedures
not allowed, and only the cooling curvesV(T,pi) should be
used. They constitute a liquid surfaceVliquid(T,p) and a glass
surfaceVglass(T,p) in (T,p,V) space. These surfaces inte
sect, and the first Ehrenfest relation is no more than a m
ematical identity about the intersection line of these surfac
It is therefore automatically satisfied@6#. The most careful
data we came across were collected by Rehage and Oel
atactic polystyrene@5#. In Fig. 2 we present those data in
3D plot, underlining our point of view.

After submitting the original version of this paper, w
realized that McKenna has stressed that in experiments
glasses the isothermal compressibility differs from the i
choral compressibility@36#. He also concludes that alterna
tive experiments are not allowed, and that the first Ehren
relation indeed is merely a tautology.

The second Ehrenfest relation derives from differentiat
DU„T,pg(T)…50. The obtained relation will also be satis
fied automatically. However, one then eliminates]U/]p by
means of the Maxwell relation. In equilibrium this woul
yield

ic
r
c

a
-

FIG. 2. Data of the glass transition for cooling atactic polys
rene at rate 18 K/h, scanned from the paper of Rehage and
~1976!: specific volumeV (cm3/g) versus temperatureT ~K! at vari-
ous pressuresp ~kbar!. As confirmed by a polynomial fit, the data i
the liquid essentially lie on a smooth surface, and so do the da
the glass. The first Ehrenfest relation describes no more than
intersection of these surfaces, and is therefore automatically s
fied. The values for the compressibility derived in this manner w
generally differ from results obtained via other procedures.
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DCp

TgV
5Da

dpg

dT
. ~2.22!

We have already discussed that outside equilibrium it
modified, see Eq.~2.14!. We thus obtain instead

DCp

TgV
5Da

dpg

dT
1

1

V S 12
]Te

]T U
p
D dI
dT

5Da
dpg

dT
1

1

V S 12
]Te

]T U
p
D S ]I

]T U
p

1
dpg

dT

]I
]pU

T
D ,

~2.23!

wheredI/dT is the ‘‘total’’ derivative of the configurationa
entropy along the glass-transition line. The last term is n
and vanishes only at equilibrium. For magnets one gets

DC

NT
5Da

dHg

dT
1

1

N S 12
]Te

]T U
H
D S ]I

]T U
H

1
dHg

dT

]I
]HU

T
D .

~2.24!

Along the glassy transition line, the equalityTe„T,Hg(T)…
5T implies

dTe

dT
5

]Te

]T U
H

1
]Te

]H U
T

dHg

dT
51. ~2.25!

Combining the two original Ehrenfest relations, one m
eliminate the slope of the transition line. This leads us
consider the so-called Prigogine-Defay ratio,

P5
DCpDk

TV~Da!2
. ~2.26!

For equilibrium transitions it should be equal to unity. A
suming that at the glass transition a number of unspeci
parameters undergo a phase transition, Davies and J
showed thatP>1 @31#, while DiMarzio showed that in tha
case the correct value isP51 @37#. In glasses typical ex-
perimental values are reported in the range 2,P,5. It was
therefore generally expected thatP>1 is a strict inequality.

We have pointed out, however, that as the first Ehren
relation is satisfied but the second is not, it holds that

P5
DCp

TVDa~dpg /dT!
511

1

VDa S 12
]Te

]T U
p
D dI
dp

.

~2.27!

Depending on the set of experiments to be chosen,dpg /dT
can be small or large, andP can also be below unity. Rehag
and Oels foundP51.09'1 atp51 kbar, using a short-time
value for k @5#. Reanalyzing their data we find from Eq
~2.27!, where the physically relevantk has been inserted,
value P50.77, which is, surprisingly enough, below uni
@6#.

The definition ~2.26! of P looks like a combination of
equilibrium quantities. This is misleading, however, sin
kglassdepends sensitively on how the experiment is done.
conclude that the commonly accepted inequalityP>1 is
based on equilibrium assumptions. Our theoretical argum
s

w
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and the Rehage-Oels data show that such ideas are inco
In particular this rules out the Gibbs-DiMarzio model as
principally correct model for the glassy state. It is an eq
librium model, and as such it will, e.g., lead toP51, in
contradiction to experiments.

E. Fluctuation formula

The basic result of statistical physics is that it relates fl
tuations in macroscopic variables to response of their a
ages to changes in external field or temperature. We h
wondered whether such relations generalize to the gla
state. We have found arguments in favor of such a possib
both from the fluctuation-dissipation relation and by exac
solving the dynamics of model systems@10#. Susceptibilities
appear to have a nontrivial decomposition, which looks v
general. Here we give arguments leading to it.

Later we shall consider models where two fieldsHa (a
51,2) are present, and two magnetizationsMa (a51,2). In
cooling experiments at fixed fieldH5(H1 ,H2), it holds that
Ma5Ma„T(t),Te(t,H),H…. For thermodynamics one elimi
nates time to expressTe(t,H)→Te(T,H), implying Ma
5Ma„T,Te(T,H),H…. One may then expect three terms:

xab[
1

N

]Ma

]Hb
U

T

5xab
fluct~ t !1xab

loss~ t !1xab
conf~ t !. ~2.28!

The first two are defined by

xab
fluct~ t !1xab

loss~ t !5
1

N

]Ma

]Hb
U

T,Te

. ~2.29!

To calculate them separately, we switch from a cooling
periment to an aging experiment at the consideredT, Te , and
H, by keeping, in Gedanken,T fixed from then on. The sys
tem will continue to age, expressed byTe5Te(t;T,H). We
may then use the equality

]Ma

]Hb
U

T,t

5
]Ma

]Hb
U

T,Te

1
]Ma

]Te
U

T,H

]Te

]Hb
U

T,t

. ~2.30!

We have conjectured@10# that the left-hand side may b
written as the sum of fluctuation terms for fast and slo
processes,

xab
fluct~ t !5

1

N

]Ma

]Hb
U

T,t

5
^dMa~ t !dMb~ t !& fast

NT~ t !
1

^dMa~ t !dMb~ t !&slow

NTe~ t !
.

~2.31!

The first term is just the standard equilibrium expression
the fast equilibrium processes. Notice that slow proces
enter with their own temperature, the effective temperatu
This decomposition is confirmed by use of the fluctuatio
dissipation relation in the form to be discussed below. Co
bination of Eqs.~2.29!, ~2.30!, and~2.31! yields
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xab
loss~ t !52

1

N

]Ma

]Te
U

T,H

]Te

]Hb
U

T,t

. ~2.32!

The fluctuation terms are instantaneous, and thus the s
for aging and cooling. The loss term is a correction, rela
to an aging experiment. It measures the decrease of fluc
tions below the glass transition, which will be small in th
models to be discussed later on.

In the models to be considered below, dynamics in
glassy phase is essentially independent of the actualT, leav-
ing almost no difference between cooling and aging. Thi
due to the simplicity of the model.

SinceTeÞT, there occurs in Eq.~2.28! also a new con-
figurational term

xab
conf5

1

N

]Ma

]Te
U

T,H

]Te

]Hb
U

T

. ~2.33!

It originates from the difference in the system’s structure
cooling experiments at nearby fields. For glass-forming
uids such a term occurs in the compressibility. Its existe
was anticipated in some earlier works. Goldstein@33# points
out thatVglassdepends stronger on the pressure of format
pform than on the one remaining after partial release of pr
sure,pfinal . Jäckle @34# then assumes that for infinitely slow
cooling pform is the only additional system parameter, a
argues that DkT→Dk5DkT1] ln V/]pform5Da dTg /dp
and that this impliesP5DkT /Dk.1. He thus also consid
ers one extra system variable, and also argues the exist
of a configurational term. We do not wish to restrict to ad
batically slow cooling, and we do not agree with his conc
sion onP. Notice that our approach allows, in principle,
find the configurational term~2.33! for typical cooling pro-
cedures from construction ofV(T,Te ,p) in full ( T,Te ,p)
space.

From the analysis to be given below, we find no reas
why such universal quasiequilibrium relations could a
hold between the specific heat and the energy fluctuation
the models of the present paper the energy fluctuations
smaller by one order of magnitude, and model-depend
The absence of such a general relation allowed us to a
the very same two-temperature approach to black ho
without obtaining a contradiction with their negative speci
heat@38#.

F. Fluctuation-dissipation relation

Nowadays quite a lot of attention is paid to th
fluctuation-dissipation relation in the aging regime of glas
systems. It was first put forward in works by Sompolins
@11#, Horner@12,13#, and then by Cugliandolo and Kurcha
@14#. This relation has become a central point in research
off-equilibrium systems; for a review, see@15#.

Our formulation is that in the aging regime there holds
following relation between the cross correlationCab(t,t8)
5^Oa(t)Ob(t8)&2^Oa(t)&^Ob(t8)& of macroscopic observ
ables Oa(t) and Ob(t8), and the responseGab(t,t8)
5d^Oa(t)&/dHb(t8) of Oa(t) to a short, small field chang
applied at an earlier timet8:
me
d
a-

e

is

r
-
e

n
s-

nce
-
-

n

In
re
t.
ly
s,

y

n

e

]Cab~ t,t8!

]t8
5T̃e~ t8!Gab~ t,t8! ~2.34!

with T̃e(t) being the effective temperature for the FDR
while in the equilibrium or short-time regime,T replacesT̃e .
This relation has been confirmed numerically, e.g., for a s
sphere glass@42#. It is remarkable that theT̃e is a function of
one of the times only. However, one should keep in m
thatC andG typically have at8/t scaling, whileT̃e typically
is a smooth function of lnt, a variable that basically equal
ln t8.

One expects thatT̃e(t) is close to the ‘‘thermodynamic’’
effective temperatureTe(t). Let us show how this come
about.

The two fluctuation terms in Eq.~2.31! are consistent with
Eq. ~2.34!. To prove this, let us neglect switching effects~see
Sec. III D! and use the definition

1

N

]Ma

]Hb
U

T,t

5E
0

t

Gab~ t,t8!dt8. ~2.35!

We split the integral up in the regions (t2tb ,t) and (0,t
2tb), wheretb is the time after which the fast orb pro-
cesses have died out. Their contribution has the equilibr
form, while in the second interval we may insert Eq.~2.34!,
which yields

1

N

]Ma

]Hb
U

T,t

5
^dMa~ t !dMb~ t !& fast

NT~ t !

1E
0

t2tb
dt8

1

T̃e~ t8!

]Cab~ t,t8!

]t8
. ~2.36!

We perform a partial integration, and can neglect the valu
the lower boundaryt50. In the remaining term we insert
factor 15] t8Cab(t,t8)/] t8Cab(t,t8). We can then do anothe
partial integral, and we could, in principle, repeat this pr
cess. All terms att2tb share a common factor, namely th
plateau value ofCab(t,t8),

Cab
plateau~ t ![Cab~ t,t2tb!5

^dMa~ t !dMb~ t2tb!&slow

N
,

~2.37!

which also enters the relation

1

N
^dMa~ t !dMb~ t !& fast5Cab~ t,t !2Cab

plateau~ t !. ~2.38!

As a result, we derive from Eq.~2.34! our ansatz~2.31! with
a factor

1

Te~ t !
5

1

T̃e~ t !
1

] tT̃e~ t !

T̃e
2~ t !

Cab~ t,t8!

] t8Cab~ t,t8!
U

t85t2tb

1•••.

~2.39!

This may be inverted, to yield
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T̃e~ t !5Te~ t !1Ṫe~ t !S ] ln Cab~ t,t8!

]t8
U

t85t2tb

D 21

1•••.

~2.40!

It is clear that the effective temperaturesTe and T̃e are not
identical. However, in the models to be analyzed later on,
shall find that the difference is small.

Notice that the ratio] t8C(t,t8)/G(t,t8)5T̃e(t8) is al-
lowed to depend on timet8. The situation with constan
Te (5T/x, with x the break point of the Parisi function! is
well known from mean-field spin glasses, but we shall n
find such a constantTe in the models to be studied. In@15# it
is reviewed that in mean-field spin glasses the fluctuati
dissipation parameterX(t,t8)[TG(t,t8)/] t8C(t,t8) simpli-
fies to X(t,t8)[X̂„C(t,t8),t8…5X̂(0,t8)→const. As our
Te(t8) will depend logarithmically on time, thet8 depen-
dence of ourX̂(0,t8)5T/Te(t8) cannot be neglected. We ca
therefore conclude that such a time independence is an
fact of the mean-field approximation. This supports our e
lier conclusion that only at exponential time scales; exp(N)
the dynamics of the mean-field spin glass is related to tha
realistic systems@7#. In the numerical evaluation of th
‘‘fluctuation-dissipation ratio’’ T/Te one should therefore
keep in mind the realistic possibility of a slow time depe
dence ofTe .

G. Time-scale arguments

Consider a simple system that has only one type of p
cess (a process!, which falls out of equilibrium at some low
T. When it ages a timet at T50 it will have achieved a state
with effective temperatureTe , which can be estimated b
equating time with the equilibrium time scale. Let us defi
T̄e by

t5teq~ T̄e!. ~2.41!

We shall check in the models to be studied below that
leading order in lnt, it holds that T̄e5Te . ~The first
nonleading-order turns out to be nonuniversal, since it
ready depends on numerical prefactors ofteq.) This equality
also is found in cooling trajectories, when the system is w
inside the glassy regime. It says that the system basically
forgotten its history, and ages on its own, without cari
about the actual temperature. We feel that this is cause
the fact that dynamics in each new time decade is basic
independent of the previous decade.

In less trivial systems, for instance those having a Vog
Tammann-Fulcher law, the time scale may have parame
that depend on the actual temperature, implyingteq
5t(T,Te). We then expect that, to leading order,Te follows
by equating this expression with timet.

In many systems one finds at8/t scaling in the aging
regime of two-time quantities. There is a handwaving ar
ment to explain that

C~ t,t8!'CS t2t8

teq„Te~ t8!…
D 'CS t2t8

t8
D 5CS t

t8
D

~2.42!
e
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showing indeed the familiart/t8 scaling. In the models to be
studied below we shall find logarithmic scaling correction
They become strong at lowT, and change theAt8/t decay at
T.0 to a t8/t decay atT50. So this argument might appl
only to a subset of systems that fall within the scope of o
approach.

H. Results for simple systems that become glassy nearT50

In the remainder of this paper we shall consider tw
simple systems having only one type of process (a process!,
which fall out of equilibrium at some lowT. Then the effec-
tive temperatureTe(t) is expected to show up in the follow
ing deviations from the equilibrium situation:~i! matching
the internal energy:U(t,H)5Ueq„Te(t),H…; ~ii ! matching
the magnetization:M (t,H)5Meq„Te(t),H…; ~iii ! from the
configurational entropy viadU5TedI2MdH; ~iv! match-
ing time with the equilibrium time scale:t;teq„Te(t)…;
~v! via the fluctuation formula:xfluct5be(t)^dM2(t)&; ~vi!
from the fluctuation-dissipation relation:]C(t,t8)/]t8
5T̃e(t8)G(t,t8). Even though these relations are not all i
dependent, it is pretty clear that the whole glassy dynamic
strongly governed by one parameter: the effective temp
ture.

III. MONTE CARLO DYNAMICS OF UNCOUPLED
HARMONIC OSCILLATORS

Bonilla, Padilla, and Ritort have recently considered
exactly solvable model with slow dynamics@20#. It showed
interesting, glassy behavior at low temperatures. In this s
tion we present many details and further results for t
model. This will also be a pedagogical step for the analy
of the spin model of Sec. V.

After including an external field, the Hamiltonian reads

H5
1

2
K(

i
xi

22H(
i

xi[
1

2
KM22HM1 , ~3.1!

where

Mk5Nmk5(
i

xi
k ~k51,2!. ~3.2!

We introduce the shifted energy

E5N« 5H1N
H2

2K
. ~3.3!

In a Monte Carlo step with parallel updates one replacesxi

→xi85xi1r i /AN, defining Mk85((xi1r i /AN)k. The ther-
mal noise variablesr i are independent Gaussian rando
variables with average zero and varianceD2. For a parallel
update of allxi , this leads to the noise-averaged transiti
probability from a state with (M1 ,M2) to states with
(M18 ,M28)5(M11y1 ,M21y2),
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P~y1 ,y2uM1 ,M2!5S )
i
E

2`

` dri

A2pD2
e2r i

2/2D2D
3d~M182M12y1!d~M282M22y2!

5
1

4pD2Am22m1
2

3expF2
y1

2

2D2
2

~y22D222y1m1!2

8D2~m22m1
2!

G
[p~y1 ,y2um1 ,m2!, ~3.4!

where we took the convention that probabilities involvi
extensive parameters are written with capitals, while th
that involve intensive parameters are written in lower ca
To derive this result, thed functions have been written in
plane-wave representation, and the limitN→` has been
taken. Settingy15y, we introduce the variablex by

x5
K

2
y22Hy1 , y25

2

K
~x1Hy!. ~3.5!

A Monte Carlo move implies a changeE85E1x. The tran-
sition probability may be decomposed as

P~y,y2uM1 ,M2!dy dy25P~x,yuE,M1!dx dy

5p~xu« !p~yux,« ,m1!dx dy

~3.6!

with conditional probabilities

p~xu« !5
1

A2pDx

expS 2
~x2x0!2

2Dx
D , ~3.7!

p~yux,« ,m1!5
1

A2pDy

expS 2
~y2y0!2

2Dy
D , ~3.8!

having parameters

x05
D2K

2
, Dx5D2~K2m222HKm11H2!52KD2« ,

~3.9!

y05
2~KD222x!~Km12H !

2~K2m222HKm11H2!
5

KD222x

4«
m1 ,

Dy5
D2K2~m22m1

2!

K2m222HKm11H2
5D2S 12

Km1
2

2« D , ~3.10!

where we defined the deviations from equilibrium,

«5
1

2
K~m22m1

21m1
2!, m15

H

K
2m1 . ~3.11!

We shall frequently encounter the energy scale
e
e.

A5
D2K

8
. ~3.12!

In one Monte Carlo step the probability ofE evolves as
@20#

PS E8,t1
1

ND
5E dE P~E,t !E dx pS xU E

ND
3$W~bx!d~E82E2x!1@12W~bx!#d~E82E!%

5P~E8,t !1E dE P~E,t !E dx

3pS xU E

NDW~bx!@d~E82E2x!2d~E82E!#, ~3.13!

whereW(bx)51 for x,0 andW(bx)5e2bx for x.0 is
the Metropolis acceptance rate. The second term descr
the rejected moves. Notice that the energy aspects are i
pendent of the fieldH, for the physical reason thatH merely
causes a shift of the equilibrium position, but not inE
5(K/2)( i(xi2H/K)2. This is due to the simplicity of the
model.

If one also keeps track of the magnetization, one has

PS E8,M 8,t1
1

ND5P~E8,M 8,t !1E dE dM P~E,M ,t !

3E dx dy P~x,yuE,M !W~bx!

3@d~E82E2x!d~M 82M2y!

2d~E82E!d~M 82M !#, ~3.14!

which, of course, is consistent with P(E,t)
5*dM P(E,M ,t).

A. Evolution of average observables

We can now calculate the evolution of physical obse
ables. One derives from Eq.~3.13! that

K ES t1
1

ND L 5E dE8 dM8 E8PS E8,M 8,t1
1

ND
5^E~ t !&1E dE dx W~bx!P~E,t !xpS xU E

ND ,

~3.15!

where ^E(t)& arises from the term withoutW(bx). In the
thermodynamic limit ~i.e., for large N), P(E,t) will be
sharply peaked around̂E(t)&, so one obtains a closed equ
tion for the scaled average« (t)5^E(t)&/N @20#,

d« ~ t !

dt
5E dx W~bx!xp„xu« ~ t !…. ~3.16!
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This simplifying property is due to the lack of interactio
between the oscillators.

In the same way we proceed for the evolution of the m
netization,

K M S t1
1

ND L
5^M ~ t !&1E dE dM dx dy W~bx!P~E,M ,t !y

3pS xU E

ND pS yUx,
E

N
,
M

N D . ~3.17!

Here, and everywhere in the sequel, they integrals are
Gaussian, and can be carried out analytically. This makes
problem with a field hardly more complicated than witho
We obtain

dm~ t !

dt
5E dx W~bx! y0 p„xu« ~ t !…52S m~ t !2

H

K D f ~ t !,

~3.18!

where

f ~ t !52E
2`

`

dx W~bx!
]y0

]m
p„xu« ~ t !…

5E
2`

`

dx W~bx!
4A2x

2« ~ t !
p„xu« ~ t !…. ~3.19!

B. Fluctuations

The evolution of bilinear forms is a bit more involved. L
us consider the energy fluctuations. One has

K E2S t1
1

ND L 5^E2~ t !&1E dE dx W~bx!P~E,t !

3~2xE1x2!pS xU E

ND . ~3.20!

Using Eq.~3.15! this may be written as

K E2S t1
1

ND L 2^E2~ t !&22^E~ t !&

3F K ES t1
1

ND L 2^E~ t !&G
5E dE dxW~bx!P~E,t !pS xU E

ND ~2xdE1x2!,

~3.21!

where dE5E2^E(t)&. Expanding p(xuE/N) around E
5^E(t)& one obtains for largeN,

d

dt

^dE2&
N

5E dx W~bx!S ^dE2&
N

2x
]

]«
1x2D p~xu« !.

~3.22!
-

he
.

In the same way one derives for the evolution equation
fluctuations inM,

d

dt

^dM2&
N

5E dx dy W~bx!S ^dM2&
N

2y
]

]m

1
^dEdM &

N
2y

]

]«
1y2D p~xu« !p~yux,« ,m!.

~3.23!

They integral is Gaussian, and can be carried out. The re
reads

d

dt

^dM2&
N

5E dx W~bx!S ^dM2&
N

]

]m
2y0

1
^dEdM &

N

]

]«
2y01y0

21DyD p~xu« !,

~3.24!

while for the cross correlations

d

dt

^dEdM &
N

5E dx dyW~bx!F ^dM2&
N

x
]

]m

1
^dEdM &

N S x
]

]«
1y

]

]mD
1

^dE2&
N

y
]

]«
1xyGp~xu« !p~yux,« ,m!

5E dx W~bx!F ^dEdM &
N S x

]

]«
1

]

]m
y0D

1
^dE2&

N

]

]«
y01xy0Gp~xu« !. ~3.25!

Recalling thatM5M1 and the definition~3.2! of M2, and
adopting the definition of correlators to be given in E
~3.32!, we may also cast these results in the form

d

dt
Cab~ t,t !5E dx W~bx!H ȳaȳb1DyS 2

H1

H2
D a1b22

1 (
c51

2
]

]mc
@ ȳaCcb~ t,t !1 ȳbCca~ t,t !#J

3p~xum1 ,m2!, ~3.26!

where a,b51,2, H15H, H252K/2, and, in the presen
model,p(xum1 ,m2)5p(xu« ), with « defined in Eq.~3.11!.
Furthermore,

ȳ15y0 , ȳ252
x1H1y0

H2
. ~3.27!

SincedE5(K/2)dM22HdM152(cHcdMc , previous re-
sults are recovered from these relations.
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C. Correlation and response functions

One can also consider the evolution of two-time quan
ties. The correlation and response functions for magnet
tion and energy are defined as

Cmm~ t,t8!5
1

N
^dM ~ t !dM ~ t8!&,

Gmm~ t,t8!5
1

N

d^M ~ t !&

dH~ t8!
, ~3.28!

C« m~ t,t8!5
1

N
^dE~ t !dM ~ t8!&, G« m~ t,t8!5

1

N

d^E~ t !&

dH~ t8!
,

~3.29!

Cm« ~ t,t8!5
1

N
^dM ~ t !dE~ t8!&,

Gm« ~ t,t8!5
T~ t8!

N

d^M ~ t !&

dT~ t8!
, ~3.30!

C« « ~ t,t8!5
1

N
^dE~ t !dE~ t8!&,
n
a

-
a-

G« « ~ t,t8!5
T~ t8!

N

d^E~ t !&

dT~ t8!
. ~3.31!

In Eq. ~3.2! we have introduced the macroscopic observab
M15M andM2. The related correlators and responses a

Cab~ t,t8!5
1

N
^dMa~ t !dMb~ t8!&,

Gab~ t,t8!5
1

N

d^Ma~ t !&

dHb~ t8!
~a,b51,2!. ~3.32!

They code the same information, but will be more useful
some stages.Cmm is just another notation forC11,
while C« m5(K/2)C212HC11 and C« « 5(K2/4)C22
2(HK/2)(C121C21)1H2C11. Similar relations hold for
the G’s: G« m5(K/2)G212HG11, Gm« 52(K/2)G12
2HG11, and G« « 5(4/K2)G221(HK/2)G122(HK/2)G12
1H2G11, where we used thatG12(t,t8)52G21(t,t8).

To derive the evolution of the correlations, one consid
K M S t1
1

ND M ~ t8!L [E dE8 dM8 dE1 dM1 PS E8,M 8,t1
1

N
;E1 ,M1 ,t8D M 8M1

5^M ~ t !M ~ t8!&1E dE dM dE1 dM1 dx dy W~bx!P~E,M ,t;E1 ,M1 ,t8!P~x,yuE,M !yM1 .

~3.33!
n

Subtracting^M @ t1(1/N)#2M (t)&^M (t8)& and expand-
ing P(x,yuE,M ), this yields the evolution equation forCmm.
The y integral can again be performed. In similar ways o
proceeds for the other correlation functions. One finally h

]

]t
Cmm~ t,t8!5E dx W~bx!S Cmm~ t,t8!

]

]m

1C« m~ t,t8!
]

]« D y0p~xu« !, ~3.34!

]

]t
C« m~ t,t8!5E dx W~bx!xC« m~ t,t8!

]

]«
p~xu« !,

~3.35!

]

]t
Cm« ~ t,t8!5E dx W~bx!S Cm« ~ t,t8!

]

]m

1C« « ~ t,t8!
]

]« D y0p~xu« !, ~3.36!
e
s

]

]t
C« « ~ t,t8!5E dx W~bx!x

]

]«
p~xu« !C« « ~ t,t8!.

~3.37!

Their equal-time values follow from the above fluctuatio
formulas.

The equivalent formulation is

]

]t
Cab~ t,t8!5(

c
Ccb~ t,t8!

]

]mc

3E dx W~bx!ȳap~xum1 ,m2!. ~3.38!

D. Response functions

The energy-energy response functionG« « (t,t8), defined
in Eq. ~3.31!, takes the form
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G« « ~ t,t8!5
2b

N E dE dE1 dx1 E

3FPS E,tUE11x1 ,t81
1

ND
2PS E,tUE1 ,t81

1

ND G]W~bx1!

dt ]b

3pS x1U E1

N D P~E1 ,t8!. ~3.39!

For our parallel Monte Carlo updates it holds thatdt
51/N. Both terms satisfy the same evolution equation, i
plying

]

]t
G« « ~ t,t8!52g~ t !G« « ~ t,t8! ~3.40!

with

g~ t !52E dx W~bx!x
]

]«
p~xu« !. ~3.41!

Since in the oscillator model the energy evolves indep
dently of H, it is obvious thatG« m50 at all times. The
relation G« m52(cHcGc1 then implies G21(t,t8)5
2(H1 /H2)G11(t,t8). In the spherical spin model, to be in
troduced later, this argument does not hold.

From the evolution~3.18! of m(t) one gets immediately
that Gmm andGm« satisfy

]

]t
Gmm~ t,t8!52 f ~ t !Gmm~ t,t8!,

]

]t
Gm« ~ t,t8!52 f ~ t !Gm« ~ t,t8!. ~3.42!

The equivalent formulation is

]

]t
Gab~ t,t8!5(

c
Gcb~ t,t8!

]

]mc

3E dx W~bx!ȳap~xum1 ,m2!. ~3.43!

The derivation of equal-time responses is a bit tedio
Let us takea5b51 and change the field fromH to H
1DH(k) at the time stepst1k/N (k51, . . . ,n). It holds
that

K M1S t1
k11

N D L 2 K M1S t1
k

ND L
5E dy1 dy2 dM1 dM2 W~bdEk!y1p~y1 ,y2uM1 ,M2!

3pS M1 ,M2 ,t1
k

ND , ~3.44!

where
-

-

s.

dEk5
K

2
y22@H1DH~k!#~M11y1!

1@H1DH~k21!#M1 ~k51, . . . ,n!. ~3.45!

Generalizing to all four cases, we have a response,

Gab~ t1,t ![ lim
N→`

1

Dt

]^ma~ t1Dt !&
]DHb

[ lim
N→`

K maS t1
n11

N D L 2 idem@DH~k!50#

dt(
k

DH~k!

5Gab
main~ t1,t !1Gab

switch~ t1,t ! ~3.46!

where we used thatdt51/N and Dt5n/N. The main term
arises from theya terms in Eq.~3.45!,

Gab
main~ t1,t !52bE dy1 dy2 W8~bx!yaybp~y1 ,y2um1 ,m2!

52bE dx W8~bx!F ȳaȳb1S 2
H1

H2
D a1b22

DyG
3p~xum1 ,m2! ~a,b51,2!, ~3.47!

where W8(bx)52 exp(2bx) for x.0 and zero forx,0.
The contribution for switching on and off comes from th
Ma@DHa(k)2DHa(k21)# terms,

Gab
switch~ t1,t !5b

d

dt Hmb~ t !E dy1 dy2 W8~bx!

3yap„y1 ,y2um1~ t !,m2~ t !…J . ~3.48!

It does not depend on the precise switching procedure,
neither does it not vanish for adiabatic procedures. In
models this term will have contributions proportional
ṁ1,2;1/t, so in the large-t domain it is much smaller than
the terms of our interest. We shall neglect it from now o
We should point out, however, that the responsesGm« and
G« « do not involve such switching terms. This is related
the nature of the Monte-Carlo dynamics.

For the responses with respect to an instantaneous
perature pulse, one has

Gm« ~ t1,t !52bE dx W8~bx!xy0p~xu« !, ~3.49!

G« « ~ t1,t !52bE dx W8~bx!x2p~xu« !. ~3.50!

The relation withGab is exactly as for theC’s, see below Eq.
~3.32!, as these two quantities do not suffer from switchi
effects.
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IV. GLASSY DYNAMICS OF THE OSCILLATOR MODEL

We are considering a system with one mode. In view
the equilibrium relation«eq5T/2 we may introduce the ef
fective temperatureTe by

Te~ t ![2« ~ t !. ~4.1!

The dynamics of the oscillator model simplifies in th
region T!A5KD2/8. Technically this occurs since for«
!A or Te!A we can approximate in the expression

p~xu« !5
1

4ApATe

expS 2beA1
bex

2 DexpS 2
~bex!2

16beA
D
~4.2!

the last Gaussian factor by 12x2/16ATe , leaving only ex-
ponential integrals. We shall investigate the dynamics in
region, and look for relations satisfied by observables.

A. Equilibrium regime

In equilibrium one has« 5T/2, m5H/K. Then there
holds the detailed balance

W~bx!p~xu« !5W~2bx!p~2xu« ! ~4.3!

assuring that«̇50 in Eq. ~3.16!. For Eq.~3.22! this implies

^dE2&5
1

2
NT2 ~4.4!

in accordance with the equilibrium relationdU/dT
5b2^dH 2&. The relation~3.24! amounts to

^dM2&5
NT

K
. ~4.5!

This is also expected, since only the diagonali 5 j terms in
^dM2&5( i j ^dxi dxj& contribute at equilibrium, showing tha
K^dM2&/2 will indeed reduce toNT/2, the equilibrium value
of E. Finally, Eq. ~3.25! shows that the cross correlatio
^dE dM & vanishes.

The evolution equation~3.16! for the energy can be ex
pressed in the notation of Ref.@20#,

d« ~ t !

dt
52S 2«~ t !2

T

2D f ~ t !12A erfc„a~ t !…, ~4.6!

whereA5KD2/8, a(t)5AA/2«(t), f (t) was defined in Eq.
~3.19!, and

erfc~a!5
2

Ap
E

a

`

dx e2x2
~4.7!

'
e2a2

aAp
S 12

1

2a2
1

3

4a4D ~a@1!. ~4.8!

We can look at relaxation close to equilibrium, whe
aeq5AbA. We set« 5T/21d« . Equation~3.16! becomes
to linear order
f

is

dd «

dt
52deS 8bA~2bA11!erfc~AbA!

216bAAbA

p
e2bAD[2

de

teq
(« )

. ~4.9!

WhenT!A, the equilibrium time scale becomes, due to t
expansion~4.7!,

teq
(« )'ApbA

64
ebA. ~4.10!

The latter also follows from Eq.~3.16! by performing thex
integral, after neglecting the exp(2x2/2Dx) factor ofp(xu« ).

From Eq.~3.18! it is clear that the magnetization relaxe
to its equilibrium valuemeq5H/K at time scale

teq
(m)5

1

f ~`!
5

2T

A
teq

(« ) . ~4.11!

The important fact for us is that both time scales have
Arrhenius behavior;exp(A/T) at low T. This implies that
the oscillators, subject to parallel Monte Carlo dynamics, c
easily fall out of equilibrium at low enoughT, and thus ex-
hibit interesting glassy behavior.

B. Cooling procedures and the glassy transition

Equation~3.16! simplifies in the regimeTe!A. Indeed, as
x2;Te

2!Dx58ATe , we can neglect the Gaussian fact
exp(2x2/2Dx) of p(xu« ) in Eq. ~4.2!. We thus obtain

Ṫe52
2Te

2

ApATe
S 12

T2

~2Te2T!2D e2beA. ~4.12!

The conditionTe.T/2 is typically satisfied, sinceTe.T in
cooling and aging experiments, andTe→T in heating the
glass.

Using Eq.~4.10!, we can write this forTe close toT in the
universal form

Ṫe5
T2Te

teq~Te!
. ~4.13!

We can now introduce the inverse functionteq
21(t); in our

case~4.10! it reads to leading orderteq
21(t)5A/ ln t. Let us

then consider a nonlinear cooling process of the form@10#

T~ t !5~12R!Tg1Rteq
21~ t !'~12R!Tg1R

A

ln t
.

~4.14!

It involves two parameters: the glassy transition tempera
Tg and the dimensionless cooling speedR. A nonlinear cool-
ing experiment of this form could be performed in any sy
tem with a quickly diverging equilibrium time scale.

We first show that a glassy transition occurs around ti
scaletg5expbgA, where one hasT(t)'Tg . The time scale
during which the system basically remains at temperaturT
is
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tcooling5
T~ t !

uṪ~ t !u
;t. ~4.15!

Its ratio to the equilibrium time scale is

tcooling„T~ t !…

teq„T~ t !…
;S tg

t D R21

. ~4.16!

We can discriminate three cases.~a! WhenR.1, then fort
!tg there is equilibrium at the instantaneous temperat
T(t). For t.tg the instantanous equilibration timeteq is
larger than the cooling time scaletcooling, and the system
becomes glassy.~b! For 0,R,1, this process describe
cooling in a glassy state so slowly that equilibrium is reach
around timetg . ~c! Finally, for R,0 it describes heating in
the glassy state, and equilibrium is reached around timetg .

Equation~4.14! implies that

Ṫ5
R

teq8 @Tg2~Tg2T!/R#
. ~4.17!

This allows us to combine Eqs.~4.13! and ~4.17! into the
time-independent form

]Te

]T U
H

5
T2Te

R

teq8 @Tg2~Tg2T!/R#

teq~Te!
. ~4.18!

For T2Tg@Tg
2/A one has the equilibrium valueTe5T, with

exponentially small corrections. Well below the glass tran
tion T2Tg!2Tg

2/A one hasTe5Tg2(Tg2T)/R. Due to
Eq. ~4.10! this implies that teq(Te); expbeA;t, so Te
'A/ ln t. As we shall see in the next section, this is the sa
behavior as occurs for aging atT50. We may conclude tha
the system then basically has forgotten its cooling histo
and just ages as at any low enough temperature. Similar
havior was found by Godre`che and Luck in the backgammo
model @19#.

We may go to dimensionless variables by setting

T5Tg1
Tg

2

A
x, Te5Tg1

Tg
2

A
y, ~4.19!

and obtain

dy

dx
5

y2x

R
ey2x/R. ~4.20!

This equation is probably universal. Indeed, it is a sm
excercise to check that the very same equation follows fr
Eq. ~4.18! whenteq has a Vogel-Tammann-Fulcher-type la
teq;exp@Ag(T2T0)

2g#, and a glass transition occurs in a na
row range around someTg with Tg2T0!A.

Equation~4.20! can be solved analytically for large neg
tive and large positivex. Let us introduce

w5S 1

R
21D x. ~4.21!

For large negativew one sets

y5x2 ln z~v !, v5ew5e2(R21)x/R, ~4.22!
e

d

i-

e

,
e-

ll
m

to obtain

~R21!v2z8~v !1 ln z~v !1Rvz~v !50. ~4.23!

By series expansion one finds

z512Rv1
R

2
~5R22!v22

R

3
~29R2227R16!v3

1
R

24
~1181R321812R21900R2144!v4

2
R

5
~1529R423345R312690R22940R1120!v5

1••• . ~4.24!

This implies for the specific-heat factor an exponential a
proach to equilibrium,

]Te

]T U
H

5
dy

dx

52
ln z~v !

Rvz~v !
511~R21!

3S 2v12~2R21!v22
3

2
~5R22!~3R22!v3

1
4

3
~4R23!~29R2227R16!v4D1••• . ~4.25!

When R.1 or R,0, this applies for large positivex. If 0
,R,1, it applies for large negativex.

For large positivew one sets

s5
1

w
52

R

~R21!x
~4.26!

and

y52
1

~R21!s
1 ln s2 ln u~s! ~4.27!

yielding

u~s!511s ln s2s ln u~s!2~R21!su~s!1~R21!s2u8~s!.
~4.28!

By iteration one finds an expansion in powers ofs and L
5 ln s,

u~s!511~L2R11!s1~2R222L!s2

1S 28R1
11

2
13L1

1

2
L222LR1

5

2
R2D s3

1S 2
57

2
R21

16

3
R3145R118LR12L2R25LR2

2
1

3
L32

7

2
L2214L2

131

6 D s4, ~4.29!
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This implies for the specific-heat factor an algebraic a
proach to the value 1/R, with logarithms in the subleading
terms

]Te

]T U
H

5
11sL2s ln u~s!

Ru~s!

5
1

R
1

R21

R S s1~R2L22!s21~R222RL27R

1L21715L!s31~2R3235R226R2L146RL

192R16L2R252L217L226122L3!
s4

2 D
1••• . ~4.30!

When R.1 or R,0 this applies for large negativex. If 0
,R,1 it applies for large positivex. It is trivial to see that
both Eqs.~4.25! and ~4.30! go the correct value]Te /]T
51 in the equilibrium limitR→1. In that limit the system
will remain in equilibrium, because the cooling procedure
very slow.

In Figs. 3–6 we present the universal line shapes for
specific-heat factordTe /dT52c for several values ofR.
They exhibit the features known from experiments.

The analysis of this section thus shows that cooling
systems with an Arrhenius law leads to glassy behavior q
similar to that expected for realistic glasses.

C. Aging in the glassy regime

Suppose we quench the system at timet50 from an equi-
librium state at temperatureTquench!A to a lower tempera-
tureT. As opposed to the preceding section, we now assu
that after the quench the system is far from equilibrium~viz.
Tquench2T@Tquench

2 /A). Then Eq.~4.13! may be written as

d~ebeA!

~12r 2!AbeA
5

2

Ap
dt, ~4.31!

FIG. 3. Specific-heat factor]Te /]T as a function of reduced
temperature in nonlinear cooling experiments with different sp
parameterR. The asymptotic values are 1 to the right and 1/R to the
left.
-

s

e

n
te

e

where we use the short hand

r 5
T

2Te2T
. ~4.32!

Its integral is

ebeA

~12r 2!AbeA
5

2

Ap
~ t1t0!, ~4.33!

where t0 follows by inserting at t50 the value Te
5Tquench. This result may be written as

beA2
1

2
ln beA5 ln

t1t0

t0
, t05

Ap

2~12r 2!
. ~4.34!

For large t one has to leading orderTe5A/ ln t, while the
initial condition gives a small correction of ordert0 /t
;exp(2beA); it may thus be neglected fort.10t0. This says

d
FIG. 4. Specific-heat factor]Te /]T as a function of reduced

temperature in nonlinear heating experiments with different sp
parameterR.

FIG. 5. Specific-heat factor]Te /]T as a function of reduced
temperature in a nonlinear cooling experiment withR52 and in a
nonlinear heating experiment withR522. Dashed lines are as
ymptotes from Eqs.~4.25! and ~4.30!.
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the initial condition is washed out, and is the basis for o
interpretation that each decade is practically independen
the previous one. Likewise, the effect of a finiteT is very
small, and to leading order one could setT50. This says that
in the glassy regime the energy essentially evolves as if
system had been quenched toT50. Only near the return to
equilibrium does theT-dependent factor in Eq.~4.34! bring a
vanishing argument in the logarithm, from which nontrivi
behavior results, as discussed in Sec. IV B.

To leading order one may invert Eq.~4.34! to obtain

Te~ t !'
A

ln
t

t0
1

1

2
ln ln

t

t0

. ~4.35!

In practice this need not be a good approximation since 1t
is usually not very small. For our purposes~leading-order
expansion in powers ofTe) this is equivalent toA/( ln t
11

2 ln ln t), and actually even toA/ ln t. It is a simple excer-
cise to check that one has

teq
(« )~Te!'S 12

T2

~2Te2T!2D 2t

Ap
;t ~4.36!

proving our general assertion that in the aging regime
effective temperature also follows by equating the equi
rium time scale tot.

In the aging regime Eq.~3.19! becomes

f 52AbeA

2
e2beA~11r !S 12

Ter
2

2A D
5

1

~12r !t
5

2Te2T

2~Te2T!t
. ~4.37!

Let us define its integral as

FIG. 6. Specific-heat factor]Te /]T as a function of reduced
temperature in a nonlinear cooling experiment withR53, and for a
nonlinear heating experiment withR523. The ‘‘universal’’ curve
is from previous theory. In the ‘‘real model’’ the origina
differentio-integral equations have been used, andR has changed
from R53 to R523 after reachingT50.045A.
r
of

e

e
-

h~ t !5const3 expE
0

t

dt8 f ~ t8!. ~4.38!

Using d ln h/d« 5 f / «̇, we obtain

h~ t !5S 12
Tbe

2 D ~beA!3/2ebeA/2

~12Tbe!
bA/215/4

. ~4.39!

For T.0 this behaves asAt, with logarithmic corrections.
At T50 the resulting asymptotic scalingh(t);t(ln t)2 dif-
fers from the resulth;tAln t reported by@20#. However,
their Fig. 2 already show a deviation between the data
their asymptotic formula, which becomes increasingly wo
in the asymptotic limit. We were informed by Hennes th
the present expressions~4.39! and~4.34! give for t8>100 an
almost perfect agreement with the numerical solution of
integro-differential equations@39#.

For later use, we mention the results

g52e2beAAbeA

p S 12r 21
Te

2A
r 2~11r !~113r ! D

~4.40!

and

h̃~ t !5const3 expE
0

t

dt8 g~ t8!5~beA!3/2
~12Tbe/2!2

12Tbe
ebeA.

~4.41!

Due to Eq.~3.18!, the magnetization relaxes as

m~ t !5
H

K
1S m~ t0!2

H

K D h~ t0!

h~ t !
. ~4.42!

In the regime of large times and smallTe;1/ln t, the devia-
tion m(t) from H/K is exponentially small inTe . As com-
pared to the power law that occurs in the energy~recall that
« 5Te/2), this can be neglected. This says that the magn
zation quickly goes to its quasistationary value.

D. Correlations

Bonilla et al. considered the on-site correlation functio
^xi(t)xi(t8)& @20#. At nonzero field it would become
^dxi(t)dxi(t8)&, with dxi5xi2^xi&(t). However, the corre-
lation function related to thermodynamics is the global c
relator Cmm(t,t8)5( i , j^dxi(t)dxj (t8)&, defined in Eq.
~3.28!. Its equal-time value is found from Eq.~3.24!. We
shall now study its two-time structure.

Let us introduce

^x&5

E dx W~bx!xp~xu« !

E dx W~bx!p~xu« !

'24Te

Te2T

2Te2T

522Te~12r !, ~4.43!
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where the explicit result holds forTe and T much smaller
thanA. After dividing by Eq.~3.16!, we may write Eq.~3.24!
as

2^x&
Ċmm~ t,t !

Ṫe~ t !
5

Cmm~ t,t !

Te~ t !
~2^x&2KD2!1D2, ~4.44!

where we used that̂dEdM & is exponentially small inTe .
The dominant behavior follows by neglecting the^x&;Te
terms. However, they can be fully taken into account, as
solution to this equation reads

Cmm~ t,t !5
Te~ t !

K
. ~4.45!

Corrections are exponentially small inTe . This result even
holds whenT, occurring in ^x&, depends on time. It also
allows a simple check: The resultK^dM2&/2'E5NTe/2 is
in accordance with the expectation of Bonillaet al. @20# that
off-diagonal termŝ dxi dxj& with iÞ j are subleading.

Solving Eq. ~3.34! for t8Þt, we can neglect theC« m
term, since it is exponentially small inTe . This yields

Cmm~ t,t8!5
Te~ t8!

K

h~ t8!

h~ t !
, ~4.46!

whereh(t) was defined in Eq.~4.39!.

1. Stretched exponential fitting and arguments
against doing that

In the study of glasses, where often at best two order
magnitude ofC can be determined, it is commonly assum
that there occurs a stretched exponential decay,

Cmm~ t,t8!5a~ t8!exp„2~ t/t!g
…. ~4.47!

It is often stated that such stretched exponential decay is
of the basic properties of the glassy state.

In our case we would need that

h~ t !5 exp„2d1~ t/t!g
… ~4.48!

for some set of parametersd, t, g, or, equivalently, that
ln@d1 ln h(t)# is linear in lnt with slope g. In view of the
exact expression, this is certainly not an exact descript
Let us, however, look at the plot ford50 in Fig. 7.

It is seen that ln lnh(t)5g ln t2g ln t can be a reasonabl
approximation in a not-too-wide large-time windowtmin,t
,tmax. In agreement with the usual findings, the effecti
exponentg will decrease withT, and be bounded by th
finite T50 value. Notice, however, that it will also depen
on the time window where the fit is made.

In the stretched exponential fitting procedure there is
more adjustable parameter, namely the overall prefa
exp(2d). In Fig. 8 we takeT50.0025A and give plots of
ln(d1 ln h) versus lnt for variousd. In intervals where this
curve is flat,h is well described by a stretched exponent
~4.48!.

This information can be used to obtainC(t,t8)
;h(t8)/h(t). To exaggerate what happens, we take a v
simple linear fit to the data of Fig. 8: we consider the inter
e

of

ne

n.

e
or

l

y
l

10< ln t<20 and make, for a given value ofd, a linear in-
terpolation through the data points at lnt510 and lnt520.
Taking t85 exp(10) we plot in Fig. 9 the fits to ln@h(t8)/h(t)#
for the casesd510, d5100, and compare with the exac
result h(t8)/h(t) from Eq. ~4.39!. By our construction, the
results agree at lnt510 and 20. It is seen that in all cases t
fits are reasonable with regard to the scale presented in
figure, and that increasingd improves the overall fit.

The free fitting parameterd is not present in reality. It
occurs if one overlooks thath(t)/h(t8) should be fitted as
function of two parameters, namely botht and t8. Indeed, at
one givent8 one is free to choosed; however, emposing the
asymmetry t→t8 would bring d→(t8/t)g. This reduced

FIG. 7. The decay of the correlation function can be describ
by a stretched exponential in a time window where the data
ln ln h are linear in lnt. The stretching exponent then equals t
slope in this figure, and will depend onT and on the chosen time
window. From left to right,T/A50.1, 0.075, 0.05, 0.025, 0. Th
bending of the lines on the left~having a relatively largeT) indi-
cates that equilibrium is approached at the considered time sca

FIG. 8. Log-log plots of the functiond1 ln h(t) at T50.0025A
for variousd. h is well described by a stretched exponentialh(t)
; exp@2d1(t/t)g# in an interval where one of the plotted lines
straight. Then the slope yieldsg and the offset2g ln t.
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freedom would decrease the overall accuracy of the fit
practice this is typically not done, partly because of the la
of data curvesC(t,t8) at enought8 values. Nevertheless
whenever fitting of stretched exponentials is attempted,
stress to make a two-parameter fit ofC(t,t8).

In our opinion the present fitting procedures merely s
that stretched exponential fits can too often be made, with
yielding too much insight. The standard statement t
stretched exponential decay is one of the basic propertie
the glassy state should, in our view, be taken with cauti
What really happens is a slow decay, of which too few ord
of magnitude are known to draw firm conclusions on th
analytical form. It seems needless to say that in experim
the tails of the correlations have large relative errors, wh
in our opinion, make the problem quite insensitive
stretched exponential or many other fitting procedures.

We feel that the situation even becomes worse if s
fitting is applied for showing the presence of critical beha
ior near a supposed critical temperature in the glass, a
sometimes done.

E. Fluctuation-dissipation relations

We now consider aging dynamics at fixedT!A. Neglect-
ing all y0 contributions, we find from Eq.~3.46! the equal-
time valueGmm(t,t)5 f (t)/K. This result is exact forH50
@20#. Its two-time form follows from Eq.~3.42!,

Gmm~ t,t8!5
f ~ t8!

K

h~ t8!

h~ t !
. ~4.49!

We can now consider the fluctuation-dissipation relation.
define the effective temperatureT̃e by

] t8Cmm~ t,t8!

Gmm~ t,t8!
5T̃e~ t8!. ~4.50!

FIG. 9. Log-log plot of stretched exponential fits to the ra
h(t8)/h(t) at fixed t85 exp(10) andT50.0025A. Upper line: by
taking a linear interpolation between the points lnt510 and lnt
520 for the cased510 of the preceding figure. Middle line: th
same ford5100. Lower line: exact result.
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By direct evaluation of the left-hand side, we find from E
~4.46!, using Eqs.~4.12! and ~4.37!,

T̃e~ t !5Te~ t !1
Ṫe~ t !

f ~ t !
5Te2

Te
2

A

2~Te2T!

2Te2T
1OS Te

3

A2D .

~4.51!

Due to Eq.~3.34! this agrees with the general result~2.40!,
which assures consistency with single-time expressions.
the second term is smaller by a factorTe /A with respect to
Te , we thus see that to leading order the same effec
temperature occurs as in the energy and the time scale.~The
same happens when the local correlator is considered@20#.!
Notice, however, that the leading correction is nonunivers
as it depends on the model parameterA. When equilibrium is
approached,Te→T, and the correct limitT̃e5T is repro-
duced.

Let us now look at the energy fluctuations. To leadi
order we may neglectd^dE2&/dt in Eq. ~3.22!. This brings

1

N
^dE2&5C« « ~ t,t !5

2Te
2^x2&

4A^x&
'

Te
3~ t !

A

11r 3

12r 2
.

~4.52!

This result shows various points. First, even atr 5T50 it is
one order of magnitude smaller than what one would ant
pate from the equilibrium expressionC« « 5T2/2. Only in the
glass-transition regionTe2T;(12r )T;T2/A is the equi-
librium scalingC« « ;T2 recovered. We conclude that the
is a complicated, nonuniversalT dependence in the whol
aging regimeT,Te . The possibility of a model-independen
generalization outside equilibrium of the relationdU/dT
5b2^dE2& will be discussed in the Discussion.

For different times we find from Eqs.~3.37! and ~4.41!
that

C« « ~ t,t8!5
Te

3~ t8!

A

11r 3~ t8!

12r 2~ t8!

h̃~ t8!

h̃~ t !
. ~4.53!

Likewise, the Green’s function follows from Eqs.~3.50! and
~3.40! as

G« « ~ t,t8!5
h̃~ t8!

h̃~ t !
S 2Te

2r 2~11r !e2beA

ApATe
D ~ t8!. ~4.54!

To leading order this yields the fluctuation-dissipation re
tion

] t8C« « ~ t,t8!

G« « ~ t,t8!
5Te

(« « )~ t8!, ~4.55!

where thet dependence again has dropped out. The quan

Te
(« « )~ t !5

Te~ t !@11r 3~ t !#

r 2~ t !@11r ~ t !#
5

Te~4Te
226TeT13T2!

T2

~4.56!

is also an effective temperature that also has the correct l
when Te→T. Unlike Te itself, it has no obvious model
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independent interpretation. We feel that this is due to the
that it relates to subleading quantities.

For the fluctuations~4.45! in M the nonuniversal terms ar
exponentially small inTe . This shows that for the fluctua
tions in M5M1 a quasiuniversal behavior takes place.
C« m is negligible, theM1M2 cross fluctuations are als
simple,

C12~ t,t8!5
2HTe~ t8!h~ t8!

K2h~ t !
, ~4.57!

plus exponentially small corrections inTe , or power law in
1/t. The M2 correlations and responses have the form

C22~ t,t8!5
4H2

K2
C11~ t,t8!1

4

K2
C« « ~ t,t8!,

G22~ t,t8!5
4H2

K2
G11~ t,t8!1

4

K2
G« « ~ t,t8!. ~4.58!

In both expressions the first term is two orders of magnitu
in Te larger. On top of that, the second term decays fa
(;t8/t versusAt8/t) wheneverT is nonzero. It thus holds
that in all four cases@10#

] t8Cab~ t,t8!

Gab~ t,t8!
5T̃e~ t8! ~a,b51,2!. ~4.59!

This simple result suggests that in general the fields co
also stand for a chemical potential, a pressure, or a quen
randomly directed forcing strength.

F. Nonequilibrium thermodynamics

We now wish to view previous results in the thermod
namic framework of Sec. II.

Since there is only one type of process, which is by d
nition slow, the entropy of the equilibrium processesSep van-
ishes. For such cases the configurational entropy can be
rived simply. It is defined by the degeneracy of states w
energyU, and given by the microcanonical partition sum

eI5E Dxd@H~x!2U#5E
2 i`

i` db̃

2p i
eb̃UE Dx e2b̃H(x),

~4.60!

whereDx5P i dxi is the integration measure. By the sadd
point method one obtains

I5max
T̃

b̃@U2Feq~ T̃!#5Seq~Te!, ~4.61!

where we used that forU5Ueq(Te) the minimum is assumed
at T̃5Te . This result holds generally in simple systems w
only one time scale that diverges nearT50. Here we have

I5Seq~Te!5
N

2 S ln
Te

K
11D . ~4.62!
ct
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Since dU5N dTe/22(NH/K)dH, it is now clear that the
formulation ~2.9! of the first law is satisfied in the presen
nonequilibrium state. AsSep50, the free energy reads

F5U2TeI ~4.63!

and it satisfies the relations~2.11!.
As m15H/K is temperature-independent, the modifi

Maxwell relation reduces to the standard one: in Eq.~2.15!
the terms proportional toT vanish, and the other terms fo
low already from Eq.~2.9! with Sep50. Neither is it inter-
esting to investigate the first Ehrenfest relation~2.21!: It
holds trivially, as one hasa50, x51/K, implying Da
5Dx50. Notice, however, that the present results alrea
require that the second Ehrenfest relation~2.22! is modified
outside equilibrium@6#. Indeed, from Sec. IV B we have
DC5N(R21)/(2R)Þ0, while Da50. Equation~2.24! is
nevertheless satisfied, since]Te /]T51/R and dI/dT
5]I/]T5N/(2Tg).

The fluctuation formula~2.31! is also satisfied. To show
this explicitly, let us takea5b51. Since there are no fas
processes, the first term vanishes. The same holds for
third term, sincem5H/K leads to]m/]Te50. Due to Eq.
~4.45! the second term equals (NTe /K)/(NTe)51/K, which
is the desired result. We can also check it by integrating
the instantaneous field pulses, as was done more genera
the argument starting with Eq.~2.35!. The same conclusion
hold for the other three cases. We have already mentio
that the fluctuation-dissipation relation~2.34! is satisfied
with T̃e given in Eq. ~4.51!, and that the apparent specifi
heatCH5N(]Te /]T)/2 has no simple connection with th
energy fluctuations~4.52!.

In all situations considered we have seen thatTe;A/ ln t
is to leading order in agreement with the time-scale relat
teq(Te);t. We have also seen that the correlation functi
has the scalingh(t8)/h(t), with, at finiteT, h(t);At times a
function of lnt. In theT→0 limit they become so strong tha
they replace theh(t);At scaling byh5t3function(lnt).

In conclusion, the proposed picture applies to the h
monic oscillator model, even though a few aspects are q
trivial. In the next section we shall consider a model
spherical spins, which has a richer behavior when chang
field, and in regard to the Ehrenfest relations.

V. MONTE CARLO DYNAMICS OF FREE SPHERICAL
SPINS IN A RANDOM FIELD

The previous model had the drawback that the effect o
field was rather trivial. It was therefore of no great interest
check the first Ehrenfest relation: it is satisfied in a triv
way, havingDa5Dx50.

We have therefore considered a closely related mo
containing free spherical spins in the presence of a rand
external field, which does not share these drawbacks@10#.
Also in this very simple model Monte Carlo dynamics can
solved exactly and leads to glassy behavior. In fact, the
namics just maps to leading order onto that of the oscilla
model of the preceding section.

The Hamiltonian contains two parts, a ‘‘self-interaction
term involving fieldsG i and a coupling to an external fiel
H,
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H52(
i 51

N

G iSi2H(
i 51

N

Si . ~5.1!

The model is solvable for any set of quenched random fie
G i that have average zero and varianceG2. To simplify the
discussion, we make the additional~but technically un-
needed! assumption thatG i56G, implying that at each spin
position there is a quenched random unit vectorG i /G, along
which the spins wish to point for large pinning fieldG. This
limitation allows the exact gauge transformationSi
→G iSi /G, which interchanges the role ofH andG. Without
the additional assumption, this interchange would also ex
this is due to the spherical nature of the spins.

In terms of the ‘‘staggered’’ magnetizationMs
[(1/G)( iG iSi one simply hasH52GMs2HM . When de-
fining H15H, H25G, M15M , M25Ms , we may also
write this as

H52 (
c51

2

HcMc . ~5.2!

The spins are spherical, which means that they can tak
real values compatible with

(
i

Si
25N. ~5.3!

In equilibrium the system has a free energy,

Feq

N
5

T

2
ln bm2

K2

2m
2

m

2
, ~5.4!

where

K5AG21H2 ~5.5!

and with chemical potentialm fixed by optimization, imply-
ing

m5AK21
1

4
T21

1

2
T. ~5.6!

This yields for the internal energy, the magnetization, and
the entropy

1

N
Ueq52

K2

m
52AK21

1

4
T21

1

2
T'2K1

1

2
T2

T2

8K
,

~5.7!

1

N
Meq5

H

m
'

H

K
2

HT

2K2
1

HT2

8K3
, ~5.8!

1

N
Seq5

1

2
ln

T

m
1

1

2
'

1

2
ln

T

K
1

1

2
. ~5.9!

The approximations hold for lowT.

A. Monte Carlo dynamics

As for the oscillators, one makes parallel Monte Ca
movesSi→Si85Si1r i /AN, with ther i independently drawn
s

t;

all

r

from a Gaussian with average zero and varianceD2. Next
one makes a global rescaling of the length of the spins
reinforce the spherical constraint. This leads to the final
date per time step,

Si85Si1
r i

AN
2Si(

j
S r jSj

NAN
1

r j
2

2N2D 1••• . ~5.10!

This conserves the constraint~5.3!. It implies for the change
in the energy and in the total magnetizationM5( iSi ,

H82H5(
i

H 2
~G i1H !r i

AN
2H r iSi

NAN
2H

r i
2

2N2J ,

M 82M5(
i

H r i

AN
2M

r iSi

NAN
2M

r i
2

2N2J . ~5.11!

Introducing the new variables

« 5K1
H
N

, m5
M

N
,

m15meq~« !2m52m1
H

K
2

H

K2
« , ~5.12!

which are small near equilibrium, this leads to movesH8
5H1x, M 85M1y with Gaussian transition probabilitie
of the type~3.6! and ~3.7!, having parameters

x05
1

2
D2~K2« !, Dx5D2« ~2K2« !, ~5.13!

y052
H

K2
x1m1

D2K222Kx12x«

2« ~2K2« !
,

Dy5D2S G2

K2
2

K2m1
2

« ~2K2« !D , ~5.14!

where

K5AG21H2. ~5.15!

In particular at small« the model of spherical spins in
random external field leads to a problem very similar to t
of the uncoupled, identical oscillators in a steady field. T
previous general formulas for variances, correlation, and
sponse functions remain valid here.

B. Glassy transition and the Ehrenfest relations

The evolution for« again satisfies Eq.~3.16!, with the
new expressions forx0 andDx . We can again introduceTe
by equatingU52K1« 5UEq(Te), so that

Te5
~2K2« !«

K2«
'2« S 11

«

2K D ,

« 5K1
Te

2
2AK21

Te
2

4
'

Te

2
2

Te
2

8K
. ~5.16!
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We also define

A5
D2K

8
, B5

D2

8
~K2« !. ~5.17!

p(xu« ) takes the form~4.2! with A→B. For Te!B one can
again approximate it by an exponential. This yields the eq
librium time scale

teq
(« )5

AK21T2/42T/2

AK21T2/4
ApbB

64
ebB. ~5.18!

For a nonlinear cooling process of the form~4.14!, the re-
sults of Sec. IV B apply immediately. We consider cooli
sequences withR.1, where the system goes from a par
magnet to a glassy state in a region around someTg!B.
Below the glassy transition one has an apparent specific

C5C2

]Te

]T U
H

. ~5.19!

This is of the general form~2.8!, with backgroundC150,
since there are no fast processes in the present mod
holds that

c25
C2

N
5

1

2
2

Te

4AK21Te
2/4

'
1

2
2

Te

4K
. ~5.20!

The same universal line shapes of the oscillator model t
occur here, with nontrivial prefactorc2. Between the right
and left sides of the glassy transition region there is a dif
enceDC5Nc2(121/R).

Further on it will become clear thatm(t)2meq(Te) re-
mains zero upon cooling at fixed fieldH. Therefore, one has

m5meq~Te!5
H

K
2

H

K2
« 5

H

K2 SAK21
Te

2

4
2

Te

2
D .

~5.21!

This yields a magnetizability

a5
H

2K2 S 12
Te

A4K21Te
2D dTe

dT
~5.22!

and, sinceK25G21H2, a susceptibilityx5x11 of the form
~2.28!, with

xfluct5
G21Te

2/41wTe/2

w~w1Te/2!2
'

G2

K3
2

~G22H2!Te

2K4
,

~5.23!

wherew5AK21Te
2/4, and

xconf52
H

w~2w1Te!

]Te

]H
'2

H

2K2 S 12
Te

2K D ]Te

]H
.

~5.24!

Around the glassy transition there occur smeared disc
tinuities in the apparent specific heat, magnetizability, a
susceptibility,
i-

-

at

It

s

r-

n-
d

Dc5c2S 12
]Te

]T U
H
D , ~5.25!

Da5
H

K2
c2S 12

]Te

]T U
H
D , ~5.26!

Dx5
H

K2
c2

]Te

]H U
T

. ~5.27!

These results and Eq.~2.25! allow us to verify the first
Ehrenfest relation~2.21!.

From the identityI5Seq(Te) and the expression~5.9! we
obtain

]I
]Te

U
T,H

5
C2

Te
,

]I
]HU

T,Te

52
HC2

K2
. ~5.28!

We can now consider the modified second Ehrenfest rela
~2.24!. Due to Eqs.~5.25! and ~5.26! it takes the form

c2

Tg
S 12

]Te

]T U
H
D

5
Hc2

K2 S 12
]Te

]T U
H
D dHg

dT
1S 12

]Te

]T U
H
D

3S c2

Tg

]Te

]T U
H

2
Hc2

K2

dHg

dT
1

c2

Tg

]Te

]H U
T

dHg

dT D .

~5.29!

After dividing out the common factor 12]Te /]T and elimi-
nating the remaining]Te /]T by use of the relation~2.25!, it
is seen that terms with and withoutdHg /dT cancel sepa-
rately. This implies that the modified second Ehrenfest re
tion is satisfied for any value of that parameter, as was to
expected.

Using Eq. ~2.27! and the relation Tg'A/ ln tg , the
Prigogine-Defay ratio can now be expressed as

P5
DC

TNDa

dTg

dH
5

K2

HTg

dTg

dH
512

K2

H ln tg

d ln tg

dH
.

~5.30!

Contrary to what was long believed, the conditionP,1 is
easily met. Indeed, in the case in whichR is fixed, we may
still choose the glassy transition lineTg(H), or, equivalently,
the glassy transition time scaletg(H). Values P,1 thus
occur whendtg /dH.0, so in half of the sets of smoothl
related cooling sequences. This analysis confirms our gen
argument that the Prigogine-Defay ratio can take any va
between zero and infinity, and perhaps even negative val

C. Aging regime and its thermodynamics

For temperatures in the aging regime we have, very an
gous to Eq.~4.31!,
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d~ebeB!

dt
5

2K2

~K2« !2
ABTe

p
~12r 2!, ~5.31!

where we again use the short handr 5T/(2Te2T). To lead-
ing order this relation even reduces to Eq.~4.31!, the only
change being exp(beA)→ exp(beB)' exp(beA1A/2K).
Therefore, to leading orderTe again follows from Eq.~4.34!,
with A→A1ATe/2K.

Let us stress that we do not consider the regimeD@1,
where a nonuniversal regime 1! ln t!D2 would occur. This
is the subject of a recent work on a related model with f
and slow processes, in which a Kauzmann transition occ
@9#.

In the next subsection it is made clear thatm15meq2m is
exponentially small inTe . Therefore, the magnetization ver
closely follows its quasiequilibrium value set byTe .

We can now check the thermodynamics. It holds that

U5NS 2K1
Te

2
2

Te
2

8K D , ~5.32!

M5NS H

K
2

HTe

2K2
1

HTe
2

8K2 D , ~5.33!

I5NS 1

2
ln

Te

K
1

1

2
2

Te

4K D . ~5.34!

The first law ~2.9! with Sep50 reduces todU5Te dI
2M dH. At constantH it holds because one has replac
T→Te in energy and entropy. Then one can take the diff
ence between aging experiments at two nearbyH ’s. The re-
lation remains valid becauseM is essentially equal to its
quasiequilibrium valueMeq(Te ,H).

In the modified Maxwell relation~2.15! the terms without
explicit factor T cancel because of the first law~2.9! with
Sep50. The terms with explicit factorT cancel separately
because of the quasiequilibrium relation]I/]HuT,Te

5

2]M /]TeuT,H that follows from Eq.~2.11!. Such a pairwise
cancellation would, of course, not occur in less simple m
els. Indeed, in a glassy model with directed polymers@17#
the modified Maxwell is also satisfied, but in a nontrivi
manner@6#.

D. Changing the external field and the need
for an effective field

If also fieldH is changed in time, then we have to be mo
careful. The Monte Carlo dynamics now leads to

ṁa5E dx W~b x̃!ȳap~xu« !, ~5.35!

where, again,m15m, m25ms , andx̃5x2Ḣm. We shall be
interested in cases with logarithmically slowH, implying Ḣ

;1/t, wherex̃'x.
From the definitions~5.12! we derive for the evolution of

« andm1
t
rs

-

-

«̇5ḢS H

K
2mD1E dx W~b x̃!xp~xu« !

5ḢS H

K2
« 1m1D 1E dx W~b x̃!xp~xu« !, ~5.36!

ṁ152ḢF2
G2

K3
1«

G22H2

K4
1S H

K
2mD H

K2G2 f m1

'Ḣ
G2

K3
2 f m1 . ~5.37!

So far we considered cooling at constant field. Then
~4.39! says thatm1(t)5m1(t0)h(t0)/h(t) decays as a powe
law, namely 1/At for T.0 and 1/t whenT50. Both behav-
iors are exponentially small inTe , and much smaller than
subleading powers ofTe that were neglected already. So
the accuracy considered we can setM (t,H) equal to
Meq(Te ,H).

When the field is slowly changed in the course of tim
the leading behavior ofm1 is

m15
ḢG2

K3f
. ~5.38!

As long asum1u!HTe /K2, the main change ofM (t) is still
expressed byMeq„Te(t),H(t)…. Sincef ;(11r )/t, this con-
dition can be written as

U ]H

] ln tU! HKTe~11r !

G2
→U ]H

]Te
U! AHK~11r !

G2Te

.

~5.39!

This condition is reasonable, and easily satisified nearTe
50.

When condition~5.38! is not fulfilled, it is not possible to
describeU(t) andM (t) by Te(t) alone. One needs a secon
effective variable, namely the effective fieldHe(t)5H(t)
1dHe(t). SettingKe5AG21He

2, we then have from quasi
equilibrium formulas at (Te ,He)

u52Ke1
Te

2
'2K2

H

K
dHe1

Te

2
, ~5.40!

m5
He

Ke
S 12

Te

2Ke
D'

H

K
1

G2

K3
dHe2

H

2K2
Te . ~5.41!

From the definitions~5.12! we can make the identifications

« 5
Te

2
2

H

K
dHe , m152

G22H2

K3
dHe , ~5.42!

or their inversion

Te52« 2
2HK2

G22H2
m1 , dHe52

K3

G22H2
m1 .

~5.43!
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One can now consider any class of fields that change lo
rithmically slowly in time. After solving the dynamics,Te
andHe follow. One can then also study fluctuations and t
fluctuation-dissipation relation for this more general ca
and look for universal behaviors. This matter is the subjec
current research@9#, which falls outside the scope of th
present paper.

E. Fluctuations and fluctuation-dissipation relation

The energy fluctuations still follow from Eq.~3.22!, and
depend onH only throughK. They are, to leading order
again given by Eq.~4.52!,

1

N
^dH 2&5C« « ~ t,t !5

Te
3~ t !

A

11r 3

12r 2
. ~5.44!

This allows us to solve the cross fluctuations from Eq.~3.25!,

C« m~ t,t !52
HTe

3~ t !

AK2

11r 3

~12r !~22r !
. ~5.45!

Finally, up to corrections of orderTe
2 , the M fluctuations

satisfy an equation very similar to Eq.~4.44!. This yields

Cmm~ t,t !5
G2Te~ t !

K3 S 12
Te

2K D1O~Te
3!, ~5.46!

where we notice that terms of relative orderTe /A have can-
celed on both sides of the equality sign. Considering
fluctuations inM15M , M25Ms , we have

Cab~ t,t !5S 2H

G D a1b22 G2Te~ t !

K3 S 12
Te

2K D1O~Te
3!.

~5.47!

The difference with the oscillator model of the precedi
section is which all four terms (a,b51,2) now have correc-
tions of relative orderTe

2/A2, which will be neglected from
now on. They decay slower than the terms we keep, but
are not interested in the model-dependent very-long-time
gime, where they dominate.

The time dependence of theCmm(t,t8) follows from Eq.
~3.34!. In the interesting, not-very-asymptotic regime t
term C« m can be neglected. This implies finally that

Cab~ t,t8!5Cab~ t8,t8!
h~ t8!

h~ t !
, ~5.48!

which involves h(t) defined as in Eq.~4.39!, with, very
analogous to Eq.~3.19!,

f ~ t !5E
2`

`

dx W~bx!
4A2x~12« /K !

2« ~ t !~12« /~2K !
p„xu« ~ t !…

58Ap~0u« !~11r !S 11
Te

2K
2

r 2Te

2A D . ~5.49!

The equal-time correlators take the value
a-

e
,
f

e

e
e-

Gab~ t1,t !5
8A

K3 S 2H

G D a1b22

p~0u« !S 12
r 2Te

2A D .

~5.50!

Both Cab(t,t8) and Gab(t,t8) have a time dependenc
h(t)/h(t8). The fluctuation-dissipation relation~2.34! again
holds with the same effective temperature~4.51! as in the
oscillator model,

T̃e~ t !5Te~ t !1
Ṫe~ t !

f ~ t !
5Te2

Te
2

A

2~Te2T!

2Te2T
. ~5.51!

In deriving this result we noticed that terms of relative ord
Te /K, as appearing in Eq.~5.47!, have canceled. We ca
now redo the consistency check of Eq.~2.35! and verify that,
up to relative orderTe

2 ,

E
0

t

dt8 Gmm~ t,t8!5beCmm~ t,t !5
G2

K3 S 12
Te

2K D .

~5.52!

Using thatTe'D2K/(8 ln t), we also find

]Te

]H U
T,t

5
D2H

8K ln t
5

HTe

K2
. ~5.53!

As mentioned before, this is one order of magnitude sma
than Eq. ~5.52!. The relation ~5.33! now implies
]m/]TeuT,H52H/2K2, so that Eq.~2.31! becomes

xmm
fluct501

G2

K3 S 12
Te

2K D2S 2
H

2K2D HTe

K2
. ~5.54!

In view of the prediction~5.23!, this is the desired answer t
the considered order.

Also the energy correlation and response function are
sentially the same as in the oscillator model. This implies
particular the fluctuation-dissipation relation for energy flu
tuations of the nonuniversal form~4.55! and ~4.56!.

Notice that when there are no random fields,G50→K
5H, the energy and the magnetization are proportiona
each other, viz.,E52HM . For comparison with realistic
glassy systems, the model becomes too poor. The above
mula for the magnetization ceases to hold whenG,Te . For
G→0 one finds the magnetization correlations from the
ergy correlations. One then finds the relations~4.55! and
~4.56! both for energy and magnetization.

VI. DISCUSSION

In this paper we consider the question of whether
glass transition can be phrased in a thermodynamic fra
work. In a series of letters we have given already seve
arguments in favor of this possibility@7,6,10#. The present,
admittedly long, paper is meant to explain enough details
this approach to make the picture and its various steps
assumptions transparent. We do this by working out in de
two simple models, which, in our feeling, are closer to real
than mean field spin glasses. We have pointed out there
a minimal thermodynamic description needs one more
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rameter to describe the situation, which could be the ag
the glass or the cooling rate at which it was formed. We h
discussed that for thermodynamics a more useful variab
the effective or fictive temperatureTe , introduced half a cen-
tury ago by Tool@30#. In this paper we notice that the bas
result for the change of heat in a glassy system,

d– Q<T dSep1Te dI, ~6.1!

immediately leads to a specific heatCp5C11C2 ]Te /]T,
which was Tool’s starting point for the analysis in the gla
formation region. In Sec. IV A we continue along his lin
by studying in detail a certain nonlinear cooling traject, p
posed recently by us in Ref.@10#. This cooling scheme is
applicable to any glass-forming substance and expecte
give universal scaling curves of]Te /]T in the glass-
formation region, independent of the material consider
provided that the glass-transition region is narrow. It wou
be most interesting to test this idea on a realistic gla
forming liquid. One should first determine, once and for a
the equilibrium time scaleteq(T) and then do glass exper
ments of the type~4.14! within the considered range. It con
tains two parameters: the glass-formation temperatureTg ,
where the cooling time scale becomes comparable to
equilibration time scale, and a ‘‘speed’’ parameterR. The
resulting form for]Te /]T lies, after rescaling the width, o
a universal scaling curve, which only depends onR.

We have worked out here the situation where the effec
temperature shows up as an extra variable, though in p
ciple it might be needed to consider as many effective
rameters as there are macroscopic observables. We ha
ready briefly considered the Ising chain with Glaub
dynamics. In that model the nonequilibrium energy at z
field can be described by introducing the effective tempe
ture. Its definition then coincides by equating theteq(Te)
with t. The behavior at nonzero field appears to be nonu
versal @7#. More or less the same happens in the backga
mon model, for which the dynamics at zero field has be
partly solved@18,19#. One could couple the system to a pa
ticle bath, and the chemical potential would play the role
an external field. So far this case remains to be worked
We have, therefore, focused on very simple, exactly solva
models, namely the Bonilla-Padilla-Ritort model of Mon
Carlo dynamics of uncoupled harmonic oscillators@20# and
our recent model of Monte Carlo dynamics of uncoup
spherical spins in a random field@10#. At low temperature
both models have an Arrhenius law for the equilibrium tim
scale. Upon cooling from high temperatures, they will soo
or later fall out of equilibrium. Though it may come as
surprise to some readers, we have shown that these ove
plified models with their unrealistic dynamics still share
their off-equilibrium phase universal properties of realis
glasses and models for glasses.

A description with only the effective temperature appli
whenever the volume of the glass-forming liquid~or the
magnetization of the glassy magnet! is close to its quasiequi
librium value set by the effective temperature obtained fr
fitting the energy. If this condition is fulfilled, the old objec
tions against a thermodynamic description of the gla
phase can be inspected in detail. We have stressed tha
most fundamental paradox, namely violation of the fi
of
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Ehrenfest relation, is merely based on the misleading exp
tation that there is one ideal value for the compressibil
This notion has arisen from equilibrium considerations
the glassy state. They do not apply by definition, and h
hindered progress until our recent works in this field. Inde
from the knowledge of spin glasses, or from the solution
the present models~wherexZFC50), we know that the com-
pressibility or the susceptibility can take a broad range
values immediately below the glassy transition. This me
that no alternative determination is allowed, removing imm
diately the whole paradox: though half a century of resea
led to the general belief that the first Ehrenfest relation
always violated, it is actually satisfied automatically@6#. This
point is underlined in Fig. 1, where we present a 3D plot
data for the glass transition in atactic polystyrene, collec
in careful experiments by Rehage and Oels@5#. Though these
authors claim that the first Ehrenfest relation is violated, a
then continue to investigate a modified version, we expl
that it is satisfied.

We have also pointed out that for glass-forming liqui
the Maxwell relation between]U/]p and ]V/]T is modi-
fied, which is not so surprising in view of the fact that equ
librium is not reached. The second Ehrenfest relation is t
also modified, since it relies on the Maxwell relation. Th
fact implies that the Prigogine-Defay ratio can indeed
different from unity. We should recall that Davies and Jon
@31# showed thatP>1, while DiMarzio found that a deepe
analysis of their equations leads toP51 @37#. Both ap-
proaches, however, are based on the assumption that a
glass transition an unspecified number of order parame
freezes in, an assumption that was often made in the 19
and 1970s. Such assumptions are invalid, however. W
happens at the glass transition is that certain slow modes
out of equilibrium, but on longer scales they may reach eq
librium again, even though other modes may then have fa
out of equilibrium. The upshot of this is that the Prigogin
Defay ratio can be different from unity. In contradiction
the standard belief, it can also be less than unity. We h
pointed out before@6# that this already occurs in experimen
on atactic polystyrene@5#, though this was long not recog
nized.

It has been the important contribution of statistical phy
ics to relate temporal fluctuations in macroscopic obse
ables to their averages, the most known relation beingC
5b2^dH2&. It is natural to investigate whether such relatio
have some universal-looking generalization in simple mod
for glasses. We have found that this is indeed the case
fluctuations in observables coupled to external fields@10#;
see Sec. II E. These equations have been guessed with a
on results from present models, in combination with so
standard arguments on the short-time contributions.

Our progress was initially hindered by the fact that suc
general formula appears not to hold for energy fluctuatio
For the ferromagnetic Ising chain aging atT50 from a ran-
dom initial condition, we already realized which at zero fie
the energy defines an effective temperatureTe52J ln 4pt,
that coincides, to leading order, with the one following fro
equating the time scale with time, viz.,teq(Te)5t @7#. The
energy correlations can be calculated from the Derri
Zeitak spatial correlation function for the nonmeeting of tw
random walkers on a line. Indeed, the Ising chain is map
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to random walking of interfaces by settingsi 21/2si 11/251
22r i with r i51 if an interface is present ati, and zero
otherwise. It follows thatU/N5J(2112r), wherer51/j
is the average density of interfaces, withj5A4pt
[ exp(2be J) the correlation length. It holds that

1

N
^dU2&54J2~r2r2!18J2(

i .0
~Ci ,02r2!, ~6.2!

whereCi j 5^r ir j&5C(r i j ) is the correlation function, given
by Eq.~59! with q52 in a paper by Derrida and Zeitak@40#,

C~r !5r2S 12e22z2
12ze2z2E

z

`

e2u2
duD , ~6.3!

wherez5Aprr . One thus finds

1

N
^dU2&54J2r~322A2!. ~6.4!

This differs from the naively expected quasiequilibrium r
sult Te

2dU/dTe54J2r by a numerical prefactor 322A2
50.171 572 88. We were informed by Luck that in the bac
gammon model a similar phenomenon occurs: the ene
correlations are a factor 2 smaller than naively expected@41#.
In the models of the present work the energy fluctuations
even smaller by an order of magnitude inTe /A. These ex-
plicit examples show that there cannot exist a simple qu
universal formula relating energy fluctuations with the sp
cific heat. The underlying reason here is that in the ene
the leading fluctuations from different terms already canc
leaving model-dependent, subleading effects only.

After completion of the original manuscript, Leuzzi ver
fied that both in the harmonic-oscillator model and in t
spherical spin model there holds the following relation b
tween the specific heat and the energy fluctuations:

]U

]T U
H

5
1

T Te
(« « ) ^dH 2&2

]U

]Te
U

H,T

3S dTe

]T U
H,t

21D 1
]U

]Te
U

H,T
S dTe

]T U
H

21D ,

~6.5!

whereTe
(« « ) is given by Eq.~4.56! for both models. The first

two terms on the right-hand side cancel, and so do, of cou
the61 terms. In analogy with Eq.~2.28!, we could interpret
this relation asC5Cfluct1Closs1Cconf, but the factor 1/T in
the first term could imply that this attempted generalizat
is special to our present oscillator and spin models, a
already expressed by the fact thatTe

(« « )ÞTe . It was also
-

-
y

re

i-
-
y
l,

-

e,

n
is

realized that for the cross derivatives]U/]H and ]M /]T
similar relations either do not occur or are much more co
plicated. The same holds for the fluctuation-dissipation re
tions connected to these two quantities.

Nevertheless, fluctuations in observables that couple
global external fields appear to behave in a universal way
least to leading and dominant subleading order. These fl
tuations are interrelated with the off-equilibrium fluctuatio
dissipation relation~FDR!. Originally observed by Sompo
linsky @11#, Horner @11,12,13# and then extended by
Cugliandolo and Kurchan@14#, this has become a popula
test for glassiness of model systems@42,21,22,43#. For the
models considered, the effective temperature showing u
the FDR is essentially the same as the one occurring in t
modynamics.

The absence of a universal relation between energy fl
tuations and the specific heat is very welcome for gravitat
systems, which often have a negative specific heat. We
deed showed that the present approach can immediatel
applied to phrase the laws of black-hole dynamics in a n
equilibrium thermodynamic framework@38#. The role of
bath temperature is played by the cosmic backgound t
perature, that of the effective temperature by the Hawk
temperature, that of the configurational entropy by Bek
stein’s black hole entropy, while the short-time proces
have no sizeable entropy. These ingredients bring a v
close analogy with the picture discussed here, and are
even disturbed by the fact that the specific heat has
‘‘wrong’’ sign. Let us mention, however, that negative sp
cific heats are in no way limited to gravitation: they al
occur in the present, extensive solid-state models, when
heats up the system in the glassy phase, as expressed b
negative values ofdTe /dT52C in Figs. 3–6.

Our picture for thermodynamics of the glassy state th
connects macroscopic observables via the first and sec
law, and relates their derivatives with respect to exter
fields with their fluctuations, thereby embedding the FD
effective temperature in a larger thermodynamic framewo
It is expected to be valid for a yet unknown class of glas
systems. Let us close this discussion by mentioning that v
recently numerical data in the glassy phase of a bin
Lennard-Jones system were interpreted in terms of an ef
tive temperature, which dominates the~short-time! vibra-
tional properties, in full agreement with the picture propos
above@44#.
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