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Contactless viscosity measurement by oscillations of gas-levitated drops
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A recently demonstrated aerodynamic levitation technique is used to perform contactless viscosity measure-
ments. Classical models dealing with free oscillations of droplets without gravity cannot correctly describe the
correspondence between damping coefficient and viscosity. An energetic approach taking into account the
shape of the drop, and the velocity field of the liquid inside the drop, is introduced, leading to good agreement
between experimental measurements and known viscosities of glycerol-water mixtures. Nonlinear effects are
also investigated and experimental results are compared with the theory of anharmonic oscillations.

PACS numbgs): 47.27.Wg, 47.55.Dz, 47.20.Gv, 47.80«

[. INTRODUCTION cillating drop of volumeV, radiusR, surface energy, den-
sity p, and viscosityu, in the absence of gravity. For the
The gas-levitated droplet technique has been developed imode/’, he obtained
order to perform contactless processing and to improve the

homogeneity of glas§l,2]. More recently, it has been ex- f,=\/(/—1)(/+2)ol(3pmV), (1.2
ploited to perform contactless measurement of physical prop-
erties of liquids (such as surface tension and viscosity Af,=(/=1)(2/+ 1) ul(2mpR?).

[3-5]). To study the solidification process of alloys, the ab-
sence of contact, which is a major source of heterogeneous Very few systematic experiments exist on the variation of
nucleation, allowsn situ measurements of bulk viscosity and the oscillating modes under gravity with respect to volume or
surface tension. nature of the liquid 3,4]. With the magnetic levitation tech-
Compared with the magnetic levitation technique, whichnique, the effects of the magnetic and gravitational fields on
has been used to perform contactless measurement of surfage oscillation frequencies have been calculdts®] allow-
tension[6,7], viscosity in microgravity8], density, and en- ing an accurate surface tension measurerf&it. However,
thalpy [9], the gas-film-levitation technique is suitable for no explanation has been proposed for the effect of the gravi-
insulating liquid materials. Moreover, dissipation measure+ational field on the width of the resonance peak. In the
ments, even in a liquid metal drop, will hit the viscosity present paper, the effect of gravity and gas flux on the equi-
parameter directly instead of a combination of viscosity andibrium shape is evaluated. The influence of the droplet
Joule dissipation due to eddy curref®. In order to mea- shape on the resonance frequency is investigated, taking into
sure surface energy and viscosity of liquids, one can studgccount the real shape of the droplet instead of the ellipsoidal
droplet oscillations. The response of the droplet triggered bypproximation used in Ref4]. An energetic approach leads
a given frequency exhibits a resonance. In earth’s gravitato the interpretation of the viscous dissipation. For large ex-
tional field, the position of the resonance peak is governed bygitation amplitude, nonlinear effects, theoretically predicted
surface energyrestoring forcg and density(inertial effec),  in Ref. [10], are also investigated. Systematic experiments
whereas the width of this peak is related to the dissipativevith droplets of varying volume and viscosity are performed
terms, namely, the viscosity of the liquid. In this paper, weand the results are compared with these simple analytical
focus our attention on the determination of viscosity of anmodels.
oscillating droplet in an external gravitational field. We
stress the fact that what we are discussing here is the defor-
mation amplification of our droplet under vibrational excita-
tion of the setup. As mentioned in our previous pajdd], The apparatus is schematically depicted in Fig. 1, and
this is evocative of a Faraday instability. described in detail in Ref4]. A liquid droplet stands on a
Lamb[11] (see also Refl12]) gave the resonance mode gas layer coming through a pressurized porous membrane
frequenciesf, and resonance peak widthf, for a free os-  (diffusen. Only the/ =2 mode(oscillation between probate
and oblate shapgdas been studied because of its relative
high oscillation amplitude.
*Electronic address: Michel.Perez@gpm2.inpg.fr The drop is excited through an electromagnetic vibrator
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FIG. 1. Width of the resonance peak of a 30% glycerol droplet

as a function of the volume: experimeiitioty and theory from Eg.
(1.9 (line).

providing vertical oscillation to the systefdiffuser-drop.
Frequency and amplitude of the excitation are adjustable in
wide range(from 1 to 100 Hz for the frequency and 0 to
100 wm for the amplitudg A video system allows drop
profile measurements with an accuracy of &n. Scanning

in frequency gives the resonance peak. Temperature is mea-

sured by means of a thermocouple inserted in the diffuser.
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FIG. 2. Resonance peak of a gas-levitated droplet for (aw
and high(b) excitation amplitudes. Note the hysteretic behavior
present in(b).

2 0 1

frequency/c) the resonance peak width, afdj the effect of

excitation amplitude on the peak shape.
a

IV. EQUILIBRIUM SHAPE OF THE LEVITATED
DROPLET

A. Laplace equation

In order to understand the parameters influencing the

In this work, experimental measurements have been pefsq jijibrium shape, a comparison is made between the theo-

formed at room temperature (288 K) on drops of water-
glycerol mixtures with various fractions of glycer@rom
20% to 85%. The physical parameters for water and glyc-
erol are listed in Table I. The volume of the drop varies from
V=10 ul to V=100 ul. Some experiments were per-
formed on calibrated silicon oil £=10.1 mPas, p
=900 kg/n?, 0=0.017 J/M at 298 K provided by
Brookfield Ltd.

Ill. EXPERIMENTAL RESULTS

The width of the resonance peak was measured at half

height. Its variation with the droplet volume is shown in Fig.
1. Equation(1.1) with no gravity effects is unable to describe
the results. As demonstrated [i4], gravity effects on the

retical shape of a sessile drop with a 180° contact angle and
photography of the real shape.

The shape of a sessile drop with 180° contact angle de-
pends only on the surface tension the densityp of the
liquid, and the gravityg. At each point of the surface, the
Laplace equation has to be satisfied. Due to the revolution
symmetry axis, the Laplace equation is equivalenidee
Ref. [14])

do

sind pg 2
ds

X

4.9

e

0 is the angle defined in Fig. 3,is the curvilinear coor-
dinate,r . is the radius of curvature at the top of the drep,
is the horizontal coordinate, arflis the vertical coordinate.

drop shape have to be taken into account, because the radigfie profile of the sessile drop is calculated by solving Eq.

of the droplet is close to the capillary length for water-
glycerol (.=+ao/pg=2.5 mm,g being the gravity accel-
eration).

(4.1) numerically at each point of the droplet surface and
adjustingr . to obtain the correct volume.
In Fig. 4, it can be observed that the real shape of the

A typical resonance peak is plotted in Fig. 2 for two dif- eyitated drop is almost exactly fitted by the shape of a 180°
ferent amplitudes of excitation. The small amplitude peak is;ontact angle sessile drop. The first consequence is that the
symmetrical and _accuratel_y f!tted by a smple V'ScoelaS“(‘equilibrium shape of the drop depends only on the ratio
model. However, if the excitation amplltude'ls too large, thep_g/(r and is barely perturbed by the experimental conditions
resonance peak starts to be distorted, leading to a hystere_,-%sas flux, diffuser. The second consequence is the possibil-

in the amplitude-frequency diagram. This phenomenon ISty of measuring the ratipg/o and deducing the surface
characteristic of nonlinear effects associated with anharmo-

nicity. These first results underline the need for theoretical

X
approach better adapted to gas-film-levitated drop concern-
ing (a) the nonspherical equilibrium shage) the resonance 0./ ds
TABLE |. Physical properties of water and glycerol at 298 K. z

Viscosity Surface energy Density

(mPa 3 dm? (kgm3) (a) (b)
Water 1 0.073 1000 FIG. 3. Geometrical definition for the profile descripti¢gee
Glycerol 1700 0.063 1273 Sec. IV): (a) profile solution of Laplace equatiditq. (4.1)] and(b)

profile described with the Archimedean 4. (4.2)].
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X (mm) FIG. 5. Comparison of the experimental results for the reso-

nance frequency with the estimation from variational approaches
using ellipsoidal(- - -), or Archimedean shapeds—). The solution
piven by Eq.(1.1) is shown for comparison.

FIG. 4. Comparison between the experimental profifex(X),
the profile solution of Laplace equatidgray line, and the profile
resulting from the variational approach using archimedian spira
(black line.

ag
Z(a) =z, ][ X(@) — X(ap)]?rab[sina+ a cosa]da
tension, just by fitting the calculated profile with the real fo [2(e) = zmlix(a) = x(ao)] [ |
profile, which is much more accurate than measuring a

sessile drop contact angle. =0. (4.5

The energy minimum corresponds to a stable equilibrium
position atb=b.4. The same strongly asymmetric profile as
Although it is difficult to find an analytical solution of Eq. in Ref.[4] is observed. For a given volume and a liquid of
(4.1), a numerical solution is not quite satisfactory. However,known density and surface tension, the valueogf can be
it seems that a flattened Archimedean arc could describe agalculated, leading to the determination of the equilibrium
curately the profile of the levitating drop. The equation ofdroplet profile. Figure 4 compares the experimental profile,

B. Variational approach with an Archimedean spiral arc

such a profile would be the exact profile derived from the Laplace equation, and the
profile determined with the variational approach. The reason-
X(a)=aa cosa, ably good agreement validates the variational approach.
(4.2
Z(a)=baasina. V. RESONANCE FREQUENCY APPROXIMATION:
COMPARISON BETWEEN THE REAL
Parametem describes the size and paramebethe flat- AND THE ELLIPSOIDAL SHAPE
tening of the shapex varies from 0 toa (corresponding to , o ,
the top of the drop wherdz/dx=0) (see Fig. 3. If a andb Once the energetic profile is determined, the resonance

are properly chosen, the Archimedean arc can fit the red[€dUency is given by the stiffness of the energy curve, i.e.,
profile. At that point,a and b have no physical meaning, the second'derllvatlve @&. In th_e case of an ellipsoidal shape

which is not satisfactory. One would like to have an estimal4}: the derivation parameter is obvious: the center of gravity
tion of these parameters as a function of the drop propertigROSition. With such a geometry, this point corresponds to the
o, p, g, andV. The variational approach of Rg#] devel- ~ Center of symmetry. The surface forces and the volume
oped with an ellipsoidal profile can be used with the morel0rces can be assumed to be applied at that unique point.

realistic profile described by E@4.2). The volume is given HOWeVer, in the case of a nonsymmetric shape, such as the
by one induced by gravity, this reduction to a single resulting

force applied at the center of gravity is no longer possible.

ag Nevertheless, the resulting force is along the vertical axis.

sz [X(a)—X(ap)]?mab[sina+ a cosa]da. The dynamics of the system will be approximated by the
0 dynamics of a specific point along tlzeaxis whose position

(4.3 between the two poles of the droplet will be chosen in order

. to get the closest fit between calculated and experimental

V is kept constant so that the droplet shape depends onlyequencies. The aim of the present simplified model is to

on one parameter, chosen here toth&he total energy of predict the influence of the volume on the characteristics of
the system at rest can be calculated as the sum of gravitghe resonance.

tional potential and surface energy: Figure 5 shows the resonance frequency as a function of
the droplet volume. Assuming either an ellipsoidal shape or
E=0S+pVQz,. (4.4 an approximation with Archimedean spirals leads to identical

results since the two curves are close and parallel. On this
Z., is the droplet center of mass, which is the solution ofbasis, the droplet shape will be described as ellipsoidal in the
the equation remaining part of this paper.
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VI. VISCOSITY APPROXIMATION: AN ENERGETIC x 10
APPROACH g o Experiments

The width of the resonance peak is associated with the§ - - Equation (1.1)
dissipation processes occurring within the vibrating droplet. &
The dissipated power will be described first in a purely phe- § ’:E — Calculation : Eq. (6.5)
nomenological manner using a viscoelastic mogk). A o=
more direct interpretation will be given thanks to an approxi- f
mate solution of the Navier-Stokes equation for the fluid _g
flow in the droplet(B). 3

R
A. The viscoelastic model 10 100

For amplitude small enough to stay in the linear domain, Volume (ul)

the vibrating droplet can be modeled by the classical vis- £ g comparison of the experimental results for the width of
coelastic harmonic oscillator, whose motion is governed byhe resonance peak with the estimation from variational approaches
using ellipsoidal shapes. The solution given by EqQl) is shown

.. . F .
R+ 2\Ry+ 0§R,=1 coswt. (6.)  for comparison(— — ).
o This equation relates the width of the resonance peak to the
This gives viscosity u of the liquid.
B For the limiting case of small oscillations around a spheri-
Rp=Rp, T AR, codwt+¢), 62 ¢y position R, =R), this equation differs from Eq(1.1)
only by a coefficient 5/3, which is quite reasonable consid-
AR — F ering the simplicity of our approach. Thus, as gravity
" 2m wom' droplet volume increases, viscosity should be interpolated

from Eq.(1.1) to Eq.(6.5).

whereR,, is the polar radius of the ellipsoidj the mass of

the systemh=mAf, the dissipation coefficienyy=2f, C. Discussion
the resonance angular frequenE&ythe amplitude of the ex-
?'tat'o'; fotrr(]:e, wlthe g_ngule;r fre%e.ncy.otf tge egc_ltalt:\:o? and calculated\ f, as a function of the volume for a cali-
orce, Ry, the polar ra_ us at equil r|_um_|n ro uc_e NR€L brated silicon oil drop, whose viscosity is 10.1 mPa s. This
[4], andAR, the amplitude of the oscillations. This assump-result underlines the necessity to take into account the flat-
tion is supported by the excellent correlation between aRened shape of the drop. The displacement field is not the

Figure 6 shows a good agreement between the measured

experimental resonance peak and E2) for small ampli-  same for a spherical and an oblate oscillating drop, and thus
tudes of excitationgsee Fig. 2 the relation between peak width and viscosity is also differ-
The dissipated viscous powét, at the resonance fre- gnt.
quency is given bysee Ref[16]) To validate our setup for viscosity measurements, experi-
S ments were performed on drops of water-glycerol with vari-
(P,)=MXwiARy. (6.3 ous fractions of glyceroffrom 20% to 85%. For each drop,
the viscosity calculated by E@6.5 [with the value opr0
B. The velocity field into the oscillating droplet resulting from the minimization of the energgee Ref[4])

The displacement field of the liquid will be calculated ?nd tZef mea\:,lurﬂnent dﬁé] ::S com;;aged IW'th ﬁata Iex—

when the droplet’s north pole oscillates around its equilib-lr?f{‘c;[je :jort'r;]t € ||er_atur{a_1t . |gureth |fsp at\_yst ? cla cu- |

rium position at the resonance frequeney. Between an ated an € real viscosily versus the fraction of glycerol.
The good correlation between calculated and real viscosity

oblate and a prolate positioR, varies fromR, —AR, to ) .
i ) o shows that contactless viscosity measurements can be per-
Rp, T AR, . A mathematical transformation that will expand ¢,-meq with this setup with an accuracy of about 20%.

theZ axis and contract th¥ andY axes is introduced to give
the displacement field. The viscous dissipated power is then VII. NONLINEAR EEFECTS
derived from the Navier-Stokes equations yielding
In order to explain the distortion of the resonance peak

3, ARg introduced in Sec. lli(see Fig. 2, let us start with a geo-
(Py)= E'U“wOV_R2 : (6.4 metrical consideration: an oblate ellipsoid has its maximum
Po total curvature along the equator whereas a prolate ellipsoid

) - ) . concentrates the maximum curvature at the two poles. The
(The detailed calculation is in the Appendixombining  gplate drop stores more surface energy than the prolate one.

Eq. (6.4 and Eq.(6.3) yields the viscosity: This is confirmed by the asymmetric profile of the potential
) energy curve calculated in the variational approach in Sec.
p="TR2 pAf,. 65 v o
3 Po As mentioned in Refl4], we stress that the energy depen-
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FIG. 8. Frequency-amplitude diagram for different excitation
force F. With increasing excitation the peak becomes more and
more distorted and finally hysteretic behavior appears.

0.001
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. amplitudeAR,, one can simultaneously assume a nonlinear
Glycerol Fraction p

expression such as E¢7.1) for the response and a linear
FIG. 7. Viscosity of a 50| water-glycerol droplet at various relation between the fordé and the amplitude. The effec-
fractions of glycerol, analyzed using the viscoelastic mdds.  tive stiffness of the droplet is given ng. Therefore, one

(6.5] compared with data from the literatu(Ref. [15]). can write

dence on polar-radius coordinates is not symmetrical around F=M w(z)a. (7.4)
its minimum: this means that the drop behaves as a spring - o . _
easier to expand than to compre@s terms of the polar The critical forceF . and excitation amplitude. at which

radiug. The viscoelastic model can then be modified by in-this hysteresis appears are given(Ref. [16])
troducing anharmonic terms. The relation between the force

F and the deformatiol\R,, of such a spring would be - 320w5M2\3 s 3°
Fe= 38 5a? and ac= 38 5a2
F=wjMAR,+aMAR2+BMAR?, (7.1 33| — 3\3wl|— -
8wy 123 8wy 123

M being the mass of the system,the dissipation coeffi-
cient, wy the resonance angular frequené&ythe amplitude _ _ (7.9
of the excitation force, and: and 8 the second and third In the experiments, the frequenayand the amplitude are

order anharmonicity coefficients. The corresponding equathe control parameters.
tion of motion is The eigenfrequencw,, calculated using the variational

approach agrees with the measured value given by the posi-
tion of the pea4]. The coefficientsx and 8 are estimated
from the anharmonicity of the energy profile. Note that the
deformed resonance peak is bent toward negative frequency
This is the anharmonic oscillator equation treated by Lanshifts. As mentioned in Ref10], this corresponds to a nega-
dau and Lifshitz in Ref[16]. An expansion to third order in tive third order anharmonic coefficiest in accordance with
€= w— wy gives the relation between the forced oscillationthe energy profile. The critical amplitude above which hys-
frequencyw and amplitudeAR,: teresis appears is related to the dissipation coeffickent
=7Af, through Eq.(7.5). The dissipation coefficient is re-

L F
Ry+Rp2\+ 0GR, + aRp+ SRy =17 coswt. (7.2

. \/ F 2_)\2+ 38 5a° AR? lated to the viscosity of the droplet through 6.5 derived
= Vl2MawoA R, 8wy 1203 P from the energetic approach of Sec. VI.
0 (7.3 Abovea., a hysteresis defined as a frequency band with

three possible solutiongsee Fig. 8 can be observed. A
The first term is the classical harmonic oscillator equatough estimate for the hysteresis in frequency can be given
tion. The nonlinear effect is given by the last term of this

equation, which is negligible for small amplitude of excita- 1

tion. But asF (or AR,) increases, the peak is shifted and g'g — Calculation from Eq, (7.3)

then distorted, leading to the appearance of hysteresis when Forl o Experiment

ARy (w) exhibits three values for a given. In Fig. 8, it can - 06 | P

be observed that when frequencies are scanned upward, the § o5 |

system follows the resonance curve until poktangular % 04 |

frequencyws, ), Where it has no other possibility than to £ 03 —%*

jump to pointB. In contrast, for a downward scanning, be- 02 + "%‘

tweenB andC, the system usually stays on the upper branch 0'(1) I ‘ ‘ ‘ ‘

up to pointC (angular frequency;,) and then falls down 1 15 2 25 3 a5 4

from C to D. The amplitude of hysteresis is set to be the
difference between the angular frequenciesAatnd D:
Wsyp™ Winf - FIG. 9. Hysteresis in the frequency-amplitude diagram as a

Since the amplitude of the excitation oscillations im- function of the excitation amplitude: comparison between experi-
posed at the south pole is much smaller than the resonanegents and theoretical values.

Excitation amplitude (um)
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FIG. 10. Distorted resonance peak: comparison between experi- F|G. 12. An example of distorted resonance peak close to the

ments and Eq(7.3). critical excitation amplitude: comparison between experiments and
theory from Eq.(7.3).

by the distance betwed€D] and[BA] on Fig. 8. In Fig. 9,
the experimental hysteresis is plotted versus the excitatiofihis is likely to be describable, again, in terms of anhar-
amplitude. For relatively low amplitudes, the estimate is inmonic oscillations, but with different dynamical parameters
good agreement with experiments. But for amplitudes largetM,wq,, B, etc). If we consider that the main change is in
than 2.5 um, the hysteresis is less important than predictedv,, then Eq.(7.5) indicates that, increases whem, de-
by this simple model. In Fig. 10, the experimental hysteresisreases, in agreement with Fig. 11.
curve is compared with the theoretical one given by Eg. Finally, Fig. 12 shows a comparison between experimen-
(7.3). The agreement is strikingly good. However, the jumptal and theoretical hysteresis curves just above the critical
from the upper branch to the lower branch, when scanningmplitudea.. It shows that the present theory with no ad-
downward in frequency, occurs well before the ultimate limitjustable parameters describes correctly both the harmonic
of the three valued domain. This is the origin of the discrep-and the anharmonic effects.
ancy exhibited in Fig. 9.

The dependence on viscosity of the critical amplitude VIIl. CONCLUSION
a. above which hysteresis occufsr equivalently of the o ' o
critical excitation forceF,) is shown in Fig. 11. For low The main difference between the gas-film-levitation ex-

viscosity dropletgless than 5 mPa)sthe experimental criti- Perimental conditions and the theory of free oscillation pre-
cal amplitude is very accurately described by Ef5). For ~ sented in the Introduction is the experimentally observed
viscosities larger than 5 mPa s, hysteresis is observed only 8onspherical shape of the droplet at equilibrium. An
much larger excitation amplitude. This transition also corre-Archimedean arc can accurately represent the real shape, and
sponds to an overall instability of the droplet position: theleads to results similar to an ellipsoid of revolution concern-
drop starts to bounce like a ball. Qualitatively, this can being the resonance frequency. Thus, an ellipsoidal approxima-

understood as follows: when the excitation amplituale tion can be used to model the dynamic of the droplet.
reaches a valu@* (of the order 4 um, Fig. 1) a new A relation between the viscosity and the width of the mea-

composite mode is excited. For viscosities larger tharfured resonance peak has been derived. It takes into account
~5 mPa s, this will occur before reaching the threstmld  Poth shape and boundary conditions and can lead to accurate
for the “pure” deformation modga,=\%? Eq. (7.5 or the  contactless measurement of dynamic viscosity of liquids
solid curve in Fig. 11 In our view, this new mode com- from 2 mPa s to 150 mPa s.

prises two coupled components: deformation and bouncing. The asymmetric profile of the energy curves points to the
nonlinear character of the oscillations due to anharmonicity.

”0 A detailed description of the nonlinearity has been proposed

_ — Galculation from Eq, (7.5) to ex_plain quantitatively the distortion of the peak _for high

E o Experiments % % amplitudes ar_ld the occurrence of_ hysteretic be_hawor._ _

P e The experimental setup described and validated in this

3 paper can be a tool to measure surface tension and viscosity

E:. 10 | ﬁ accurately. Contactless viscosity measurements could be use-

< : ful to study the rheology of materials in the semisolid state

E 5 \ ) without perturbing the dynamics of crystallizatiéno con-

g a* N tainen. Suspensions could also be studied without the clas-

M”"/T/ sical boundary layer problems that frequently appear in Cou-
0 0 0605 0.01 ette rheometryno container and therefore no heterogeneous
Viscosity (Pa s) nucleation; for a recent preliminary report, see R&f]).
FIG. 11. The viscosity dependence of the critical excitation am- ACKNOWLEDGMENTS

plitude: comparison between theory from EF.5 and experi-
ments. Dashed line stands fa*, where new composite mode  The authors want to thank the DEM/SPCM/LPSI from
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1-JA
APPENDIX: CALCULATION OF THE VISCOUS vx(t)=xw codwt) T A
DISSIPATED POWER
The viscous dissipated power is calculated by writing the (1) =yw cog wt) 1-VA (A3)
velocity field inside the droplet, which itself is evaluated vyl)=yw coswb) - JA'
from the displacement field.
If Mp(Xp,Yp ,zp)_ is a point of the prolate shape, -1
Mo(Xo.Yo.Zo), @ point of the oblate shape, aMi(x,y,z), a V(1) =2zw cog wt)AJr 1
point of the equilibrium shape, to ensure volume conserva-
tion, we have The divergence of the velocity field is not strictly zero as
o ip expected for a noncompressible fluid, but is negligible com-
Xp=XoA % pared to any of its components. The viscous dissipated

R +AR power can be derived from the Navier-Stokes equatieas,
Po P for instance, Ref[12]):

Vo=Y,A Y2 with A= ————, (A1)
p— Yo Rp,~ AR,

27T/wolu

P )= ﬂl)i Jv 2
(P.)= L

Wi
Ao axi) dvdt  (Ad)

Zp,=ZoA.

The displacement field resulting from the oscillation be-giving
tween the prolate and the oblate position is

27l wg Ay )2 dvy 2 é’vz 2
Xo+Xo Xo—Xo |  1-\A (Po=or f zv[(zﬁ ) " dt
X(t)y=—%—+ Sin(wt) =X+ x sin( wt) ,
2 2 1+ A (A5)
Votye yom 1A For small oscillations ARp/RpO<<1), a first order
y(t) = p2 o, p sm(wt) y+ysm(wt) power expansion iM\R,/R, gives for the viscous dissi-
VA pated power
(A2
+ A-1 (P,y= ARZ (AB6)
Z,t2, Z,— 2, -
p"%  “p “o v ,uwo .
=£ 2 + : 2
Z(t) 5 5 sin(wt)=2z zsm(cut)A+1 Rpé
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