PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Passive scalar transport in a random flow with a finite renewal time: Mean-field equations
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A mean-field equation for a passive scdkg., for a mean number density of partiglesa random velocity
field (incompressible and compressibieith a finite constant renewal time is derived. The finite renewal time
of a random velocity field results in the appearance of high-order spatial derivatives in the mean-field equation
for a passive scalar. We considered three models of a random velocity(fjeddvelocity field with a small
renewal timej(ii) the Gaussian approximation for Lagrangian trajectories;(@nda small inhomogeneity of
the velocity and mean passive scalar fields. For a small renewal time we recovered results obtained using the
S-function-correlated in time random velocity field. The finite renewal time and compressibility of the velocity
field can cause a depletion of turbulent diffusion and a modification of an effective drift velocity. For a
compressible velocity field the form of the mean-field equation for a passive scalar depends on the details of
the velocity field, i.e., the universality is lost. For an incompressible velocity field the universality exists in
spite of the finite renewal time. Results by SaffrjdnFluid Mech.8, 273(1960] for the effect of molecular
diffusivity in turbulent diffusion are generalized for the case of a compressible and anisotropic random velocity
field. The obtained results may be of relevance in some atmospheric phen@agnatmospheric aerosols
and smog formation

PACS numbes): 47.27.Qb, 47.40-x

I. INTRODUCTION lecular diffusion. It was found by Saffmdm] that there are
small and subtle interactions between turbulent diffusion and
Turbulent transport of passive scal@.g., the number molecular diffusion for the mean concentration field. In the
density of particlesin a fluid flow was studied in a large first approximation the two processes are additive, but at a
number of publicationgsee, e.g., Ref$1-6]). The equation more detailed level of description the local smoothing by
for a passive scalan(t,r), advected by an incompressible molecular diffusion acts to reduce the total dispersion.

velocity fieldv, is given by Later, using different approximate approaches like closure
proceduregsee e.g., Ref§2,5]) the mean-field equation for
on +(v-V)n=DAn 1 @ passive scalar was derived. However, all these methods do
ot ' not use an exact solution of E¢l) for a derivation of the

_ o o ~ mean-field equation. This shortcoming was overcome using
whereD is the coefficient of molecular diffusion. Averaging the s-function-correlated in time velocity field approxima-
this equation over a turbulent Ve|OC|ty field, TayIEir] de- tion [8] for incompressimdsee e.g., Ref§3,4]) and com-

rived a mean-field equation for a passive scalar(n), pressible(see e.g., Refd9,10)) flows. An exact solution of
Eq. (1) in the form of the Feynman-Kac formula was used in
ﬁ +(V-V)N= D-AN, ) this a_lpproach. Notably, the deriveq _mean-field equatipn for_a
at passive scalar comprises an additional mean effective drift

. velocity. The latter is associated either with the compressibil-
whereV=(v) is the mean fluid velocityD;=((x)?)/7is ity of a low-Mach-number compressible fluid flow or with
the coefficient of turbulent diffusion, an@éx)?) is a mean-  particle inertia[9,10]. The mean-field equation for a passive
square displacement or dispersion of infinitesimal fluid parscalar derived for theS-function-correlated in time incom-
ticles from their original positions for a correlation timeof ~ pressible velocity field is in agreement with that derived by
a turbulent velocity field. The mean-field equati(®) was  other methods. However, it is not clear to what extent it is
used in a large number of applications, e.g., to study a turpossible to extrapolate the results obtained using the
bulent transport in atmosphere and ocean, in astrophysics:function-correlated in time velocity field approximation to
and in industrial applications. the velocity field with a finite correlation time. Note that

However, a range of validity and applicability and rigor- different methods of the derivation of the mean-field equa-
ous justification of Eq(2) still remain a subject of research. tion yield quantitatively different turbulent transport coeffi-
In particular, it is not clear why the mean-field equation for acients(see, e.g., Ref§11,12).
passive scalar does not contain high-order spatial derivatives. In the present study we consider a random velocity field
What is the role of the molecular diffusion? Note that Taylorwith a finite renewal time. We derived a mean-field equation
in his derivation of Eq(2) (see Ref[1]) neglected the mo- for a passive scalar advected by a random incompressible
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and compressible velocity fields. We showed that the meansee Appendix A where
field equation has a more complicated form than the mean-
field equation(2). In particular, the finite renewal time of the
random velocity field results in the appearance of high-order
spatial derivatives in the mean-field equation for a passive
scalar. The criterion of validity of thé-function-correlated t-s

in time velocity field approximation is found. In all known J(tyS@:eXF{ _(ZD)71/2f0 v(t—n,4(t, 7)) dw(7)
limiting cases the derived equation recovers previously ob-

_ t
G(t,S,§)=eX[{—Jsb((r,g(t,a))d(r , (5)

tained results for turbulent diffusion. (v,

Note that in Ref[13] an exact solution of Eq(1) in the —(4D) fo VA(t=n,4(t,7)d 7|, (6)
form of path integrals was used for calculating a coefficient
of turbulent diffusion for incompressible homogeneous and §(t,s)=x+(2D)1/2[w(t)—w(s)], @

isotropic fluid flow. In the present paper we used the other

form of an exact solution for the passive scalar equation folngyy(t) is a Wiener proces$d -} denotes the mathemati-
compressible anisotropic fluid flow. In addition, a case Of¢q| expectation over the Wiener pattisandb=V -v. The
inho.mogeneous vel_ocity field is glso _analyzed. Our resultgj st integralff{sv(t— 7.4t 7))-dw(7) in Eq. (6) is the Ito
are in agreement with those obtained in R&g]. stochastic integrasee, e.g., Ref17]). Solution(4) was first
found in Ref[18] for a passive vectdimagnetic field which
Il. GOVERNING EQUATIONS is determined by the induction equation in an incompressible
fluid flow. Equationg4)—(6) generalize the solution obtained
in Ref.[18] for a passive scalar advected by a compressible
random velocity field. Note that there is a singularity in Eq.
an (6) atD—0. However, this singularity in the final result can
—+V-(nv)=DAn, (3)  be eliminated by a change of variablege Eq(18) below]. -
ot The path-integral representation for the effective diffusion
function of a passive scalar field for=0 was suggested by
wherev is a random velocity field of the particles which they prummond in Ref[13].
acquire in a turbulent fluid Velocity field. Note th3-v We compare So|uti0r(4) with that determined by the
#0, which is due to either the compressibility of the fluid or Feynman-Kac formula:
to particle inertia(see, e.g., Refd.9,10,14—18). Equation

The number densitp(t,r) of small particles advected by
a turbulent compressible fluid flow is given by

(3) corresponds to the conservation of the total number of n(t,x)= M§{G(t,s,g(t,s))n(s,g(t,s))}, (8
particles.

The goal of the present study is to derive a mean-field _ t
equation for a passive scalar advected by a random velocity G(ts,§)=exp - Sb(g’g(t’a))da ' ©
field with a finite renewal time. The procedure of the deriva-
tion of this equation is as follows. whereM -} denotes the mathematical expectation over the

(@ We use an exact solution of E(B) in the form of @ wiener pathsi(t,s):
functional integral for an arbitrary velocity field, taking into
account a small yet finite molecular diffusion. This func- t=s N
tional integral implies an averaging over random Brownian &(t,s)=x— fo V[t—o,&t,0)]do+ (2D)Yaw(t—s).
motions of a particle. (10)
(b) The form of the exact solution used in the present
paper allows us to separate the averaging over both a randopyuation(10) describes a set of random trajectories which
Brownian motions of a particle and a random velocity field. pass through the pointat timet. The Wiener process in Eq.
(c) The final result by means of a change of variables iS10) describes the molecular diffusidie., it describes the
rewritten in a form which at zero molecular diffusio® (  Brownian motion; see, e.g., Refg3,4]). Equation(8) al-
=0) contains only the Lagrangian displacement of a fluidiowed us to derive equations for the mean passive scalar field
particles. This allows us to recover a classical result by Tayand its higher moments for &-function-correlated in time
lor for the coefficient of turbulent diffusion. random velocity fieldsee, e.g., Ref$9,10,15,16).
(d) The derived mean-field equation for a passive scalar The main difference between solutiot® and (8) is as
generally is an integrodifferential equation. However, whenfollows. The functionn(s, £(t,s)) in Eq. (8) explicitly de-
the characteristic scale of variation of the mean passive scgends on the random velocity fieldvia the Wiener patlZ,
lar field is much larger than the correlation length of a ran-while the functionn(s,(t,s)) in Eq. (4) is independent of
dom velocity field, the mean-field equatid@) for passive  the velocityv. It is difficult to use the Feynman-Kac formula
scalar field for incompressible flolor Eq. (4) in [9] for  (8) for a derivation of equations for the mean passive scalar
compressible flowis recovered. field and its higher moments in a random velocity field with
Now we use an exact solution of the Cauchy problem fora finite renewal time. Trajectories in the Feynman-Kac for-
Eq. (3) with an initial conditionn(t=s,x)=n(s,x) in the  mula(8) are determined by both a random velocity field and
form Brownian motion. On the other hand, trajectories in Et.
_ are determined only by Brownian motion. As follows from
n(t,x)=MAJ(t,s,0)G(t,s,&)n(s,{(t,9))} (4) the Cameron-Martin-Girsanov theorem, the transformation
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from Eq. (8) to Eq. (4) can be considered as a change of P(T,—k)=M§{<exp(ik-§(T))G(t,s,§)>} (18
variablesé— ¢ in the integral(8) (see, e.g., Ref.19]).

Due to the Markovian property of the Wiener process,(see Appendix B where &7=&(m+1)7,s)— &mr,s)
solution (4) can be rewritten in the form =— D7 t— o, &(t,0) Jdo+ (2D) ¥w(7), and we used

Feynman-Kac formul#8). Note that Eqs(17) and (18) are

t x)=E{S(t,s,X,Y Y= t s.X, y)dy, valid also forD=0.
n(t.x)=E{S(t,s,xY)n(s )} jQ( sxyin(s.y)dy In the case of inhomogeneous random velocity field, Egs.

(1) (17) and(18) in r space are given by

where N((m+1)7,x)=P(7,x,i V)N(m7,x), (19
_v\2
Q(t,s,x,y)=(4wD(t—s))3’2exp( - Ag(t—i)s)> S(t,5,%,Y), P(7,%,iV)=MJ(G(r,&x)exd £7(x)- V])} (20
(12 (see Appendix B where V=4/dx and the operator
~ exgd &7(x) - (d/x)] is determined by
S(t,s,xy) =M {JI(t,s,m)G(t,s,m)}, (13 ) ) ) ,

7 . = . . | 7 . e
andM -} is the path integral taken over the set of Wiener eXLE7(x) V1= 1+ 700 V+ (1/2)[£709- V] +(21)
trajectoriesu which connect pointst(x) and (s,y). The
mathematical expectatidg{-} in Eq. (11) denotes the aver- +(UmD[E(x)- V] + - -, (22)

aging over the set of random pointswhich have a Gaussian
statistics(see, e.g., Ref.20]). Here we used the following where the operatoW acts only on the functioiN(mr,x).

property of the averaging over the Wiener process: Equations(17) and (19) for the mean number density of
particles are generally integral equations. In order to use
EM{-H=M{-}. (14 these equations we need to specify the explicit form of the

operatorP(7,x,i V) (see Sec. IV.
IIl. PASSIVE SCALAR IN A RANDOM VELOCITY FIELD

Consider a random velocity field with a finite constant V. MEAN PASSIVE SCALAR FIELD EQUATION

renewal time. Assume that in the intervals |n this section we consider three types of a random veloc-
.. (=7,0L;(0,7];(7,27]; . .. the velocity fields are statis- ity field for which an explicit form of the functiof® can be
tically independent and have the same statistics. This impliepund.

that the velocity field loses memory at the prescribed instants

t=kr, wherek=0,£1,%2,.... This velocity field cannot A. Random velocity field with a small renewal time
be considered as a stationary velocity field for small times o ) )
~7; however, it behaves like a stationary field tor r. In the model of a velocity field with a small renewal time

In Eq. (11) we specify instant$=(m+1)7 ands=mr. W€ expand the fun_ction‘;‘(t,s) andG(q_-,g) in a_Taonr series
Note that the fieldsi(mr,y) and Q((m+1)7,mr,x,y) are of small renewal tlmer_(see Appendix € Using Eqgs.(20),
statistically independent because the fieldnr,y) is deter-  (22), and(C6), we obtain
mined in the time interval { «,m7], whereas the function .

Q((m+1)7,mr,x,y) is defined on the intervalms,(m PIrXiIV)=1= Ve V4 DmnV Vot o0 (23
+1)7). Due to a renewal, the velocity field as well as its \yhere
functionalsn(mr,y) and Q((m+1)7,mr,x,y) in these two

time intervals are statistically independent. Averaging Eq. Dimn=(27) "M A(GER M, (24)
(11) over the random velocity field yields the equation for
the mean passive scalar field, Ver=7 M g{(Gg(T))}, (25)

- -3 and we considered a statistically homogeneous random ve-
N((m+1)7.%)=(2m) j P(rxy)N(mry)dy, (19 locity field with {v)=0 and(b)=0. Thus an equation for the

) ] i mean passive scalar field is given by
whereN(t,x) =(n(t,x)) is the mean passive scalar field, the

angular bracketg-) denote the ensemble average over the N
random velocity field, and =t T Ver VIN=DnpVin VN, (26)

P(7,x,y)=(2m)*Q((m+1)7,m7,X,y)). 16 \here

The functionP(7,X,y) is independent o because all time D =D St (1/2)(v ) 7— (1/2)(bw mvn>7'2+(D7'2/6)

intervals ...(—70];(0,7];(7,27]; ... are statistically

equivalent. ><(Afmn""vanfmp"'Vmefnp)r:O"'O( 7'3)1 (27)
In the case of a homogeneous random velocity field

P(7,x,y)=P(7,y—X). In k space, we obtain Ver=—(1/2)(vb) 7+ (DI3){(V V)(V ;b)) 7°+(1/2)

N((m+1)7,k)=P(r,—K)N(mr k), 17 x{b(v-V)v)7?, (28)
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wherev ,, are the components of the vectoin a Cartesian B. Random velocity field with Gaussian statistics
system of coordinated,;,,= (v m(t,X)v,(t,y)), r=y—x%, V for the Lagrangian trajectories

=g/dr, and we used EqgC4)—(C6). Note that for incom-
pressible velocity field {=V -v=0) the effective velocity
V¢ vanishes and the diffusion tensby,, is given by

We assume here that the Lagrangian trajectofi@sand
the random function”G((m+1)r,mr,£&) have Gaussian
statistics at the some instamtsr of the renewal. This model
allows us to derive the equation for mean passive scalar field
in a closed form. For a homogeneous random velocity field
we assume that

Din=D 8mnt (1/2){v v n) 7+ (D 72/6) (Af mp) o+ O( 7).
(29

The third term in Eq.(29) describes interactions between M\ —
turbulent diffusion and molecular diffusion for the mean M§{<§( N=0 (33
concentration field. This result was predicted by Saffrfi@n

for an isotropic and incompressible random velocity field. In M (D ED) =27Wop,, (34
order to compare Eq29) with the result obtained by Saff-
man[7], we consider an isotropic and homogeneous random M (&G} =— 7V, (35
velocity field. The two point correlation function for the ve-
locity field is given by M (G)}=1. (36)

Fij (1) = (Ue/ LR () +Fe(r) 19 + (rF'/2)Py (r) Equation(33) implies that there is no a mean drift, and Eq.

+rE{r ) (30) (36) implies the conservation of the total number of particles
(see Appendix D An equation for the mean passive scalar
whereF’ =dF/dr, Pjj(r)=¢8;—r;;, andr;; =rifj/r2- Here- field in the model for the random velocity field with Gauss-
afterr is the dimensionless distance which is measured in théan statistics for the Lagrangian trajectories is given by
units of the integral length scalg, andF(r) andF.(r) are
the incompressible and compressible components of the cor- AN/at=LN(t,x), (37)
relation function for the velocity field, i.e.{(V-v)?)
=—57152(FLIr);—o, and((V XV)?)= —5752(F'/r),_, and

. Ay
To=1g/Ug. Using an identity L=WA+7"In(1=7V-V) (38)
i 5 , (see Appendix R For small7V the operatoi. can be ex-
Irare =(1/679){8ij O (4F"+2F)/1 ], -0 panded in a series
m¥in/r=o
+(SimBint SinSim)[(2FL—F )], Zo}, L=—V-V+(Ws§;—V\V;/2)VV;+---. (39
we obtain For an inhomogeneous random velocity field, the operator
e b
D= Sl D+ (1/2) U2 — (D 72/18) 'S given by
X[{(V-V)D+{(VXVA)]+0()}. (3D L=V WV +7 n[1—7V-(V---)] (40)

The last termDs=— (D 7/18)((V X V)?) in Eq. (31) coin-  (see Appendix [ where M (7m7n)} =27 W, and
cides with 'tha}t obtained by Saffm@?_i] (s_ee also Ref.13)). M (7)) = — 7V, and M§{<§(7—)>}: U, andG=G+g,
Compressibility of a random velocity field causes an addi- = — i —
tional contribution to the diffusion tens@,,. Note thatthe ~2Nd&=&+ 7, andG=M4(G)}=exp(a7), and&=M (&)},
last term in Eq(27) generalizes the result by Saffmff to andM £(g)}=0, andM {(#)} =0. Note thatV in Egs.(37)
the case of compressible and anisotropic random velocitfind (40) is applied to both field8/ and N. Equations(37)
field. and_(40) imply the conservation Ilaw for the total number of
Since in a homogeneous random fl&Wv,w,)=0 and Particles wherd=VWanda=r7""In(1-7V-V). In the case
V. V.«=0, Eq.(26) reduces to the conservation law for the of a homogeneous random velocity field, E40) coincides
pyef= = =419 ¢ - ith Eq. (38). The drift velocityV i d by the effect of
total number of particles. For inhomogeneous random velocWith Ed. (38). The drift velocityV is caused by the effect o

ity field Eqgs.(C4)—(C6) yield compressibility.

ﬁ VY (VgN=Dy VN)=0. (32) C. Weakly inhomogeneous random velocity field
at We present the operat®( 7,x,i V) in the following form:

Equation (32) coincides with that derived for the P(r,xiV)=exd —7(V-VEN) + 7V D, Vgeff))vn
S-function-correlated in time random velocity figld, 10] af-

ter the changer—27., where 7. is the correlation time. T DM ViVnt -1 (41)
Note that in the derivation of the mean-field equations for the

S-function-correlated in time random velocity field model we Equation(41) implies the conservation law for the total num-
assumed that the valués.vb) and(r.vw,) do not vanish. ber of particles. On the other hand, EB0) yields
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P(7,%,1V)=M(G(7,£x)exd £7(x)- V])} for a weak inhomogeneity of the random velocity and mean
passive scalar fields or a weak compressibility of the effec-
=M{(G(,&) tive drift velocity V(¢™.
The obtained results may be of relevance in some atmo-
X[1+ DV + (12 DV Vo + - - 1)) spheric phenomen@.g., atmospheric aerosols, cloud forma-
tion, and smog formatiorand turbulent industrial flows. We
= G(1— 7V, Vot PWo VoVt - - ), (42) considered a random velocity field wifi-v+0, which is

due to, e.g., particle inertiésee, e.g., Ref49,14,16). The
_ N~ _ NE I velocity of particlesv depends on the velocity of the sur-
where V=—r 1G_E IG, Wnp=(27)"'GEE7IG, and rounding fluid, and it can be determined from the equation of
F=MZ(F)}, andG=exg —7V-V(M]. An equation for the motion for a particle. This equation represents a balance of
mean passive scalar field in the model for the weakly inhoparticle inertia with the fluid drag force produced by the
mogeneous random velocity field is given by E8R), where  motion of the particle relative to the surrounding fluid and
the effective velocityV(*™ and the tensob,,, are deter- gravity force. A solution of the equation of motion for small

mined by means of Eq$41) and (42), i.e., particles with p8>p yields v=u+W—rp{du/dt+[(u
+W)-V]u}+0O(rp), whereu is the velocity of the sur-

VED =V, +V.Dmn, (43)  rounding fluid,W= 7,g is the terminal fall velocityg is the
acceleration due to gravitys, is the characteristic time of

Dn=Win— ViV, /2. (44)  coupling between the particle and atmospheric fi@tbkes

time), p, is the material density of particles, apdis the

It is seen from Eq(44) that compressibility and finite re- density of the fluid. For instance, for spherical particles of
newal time of the random velocity field cause a depletion ofradiusa, the Stokes time is,=m,/(67a, pv), wherem,
turbulent diffusion. These equations for small molecular dif-Is the particle mass and is the kinematic viscosity. The
fusion and incompressible fluid flovin which V=0) coin-  Vvelocity field of particles is compressible, i.&/v#0. In-
cide with those derived by Tayldd]. deed, the equation for the velocity of particles and the
Navier-Stokes equation for atmospheric fluid yieWd-v
=T7pA Pf/p+O(r,23), whereP; is atmospheric fluid pressure
and we neglected sma¥l - u. The degree of compressibility

In the present paper we derived the mean-field equatior=((V-V)*/((VXv)?) of inertial particles velocity field is
for a passive scalae.g., for a mean number density of par- given by o=12 Ref;/7)’, where Re is the Reynolds num-
ticles) advected by a random incompressible and compres@er- ) ) ) ) ) o
ible velocity field with a finite renewal time. Generally, the  1N€ inertia of particles results in that particles inside the
mean-field equation is an integral equation. We used thre@”bmem eddy_are ca_rrled_ out to the boundary regions be-
models of a random velocity fieldi) a velocity field with a tween the eddies by inertial forces. On th.e. other hand, the
small renewal time:(ii) Gaussian approximation for La- :Qertlla effeCtbcaUVSGV'xoan}ﬁPf#O. IE adg|t|or#hf0r Ifarge
grangian trajectoriedjii) a small inhomogeneity of the ve- ﬁlcdi ElimAgrs T\rﬁ; me?an; Eﬁgf in qré( igﬁs Wﬁ;egpre,
locity and mean passive scalar fields. For these models a 0 therepis ;n accumulation of inert?al particleﬁsef
explicit form of the mean-field equation for a passive scalard Y

. - : o n/dt>0). Similarly, there is an outflow of inertial particles
is found. The finite renewal time of the random velocity fleldfer the regions withAP,;>0. When there is a large-scale

resglts.m th_e appearance of h|gher_ than second-order Spat'if?lhomogeneity of the temperature of the turbulent flow, the
derivatives in the mean-field equation. mean heat fluxu6)#0. Therefore, fluctuations of both tem-

_ The finite renewal time and compressibility of the veloc- heratures and velocityu of fluid are correlated. Fluctuations
ity field result in a decrease of turbulent diffusion and anf temperature cause fluctuations of pressure of fluid, and
modification of an effective drift velocity. For a compress- yjce versa. The pressure fluctuations result in fluctuations of
ible velocity field the form of the mean-field equation for a the number density of inertial particles. Indeed, an increase
passive scalar depends on details of the velocity field modeldecreaseof the pressure of atmospheric fluid is accompa-
i.e., universality is lost. In particular, in the model of the nied by an accumulatiofoutflow) of the particles. There-
random velocity field with a small inhomogeneity of the ve- fore, the direction of mean flux of particles coincides with
locity and mean passive scalar fields, the mean-field equatiothat of heat flux, i.e.{vn)ec(uf)xc—VT, whereT=(T;) is

for a passive scalar cannot be written as an equation of corthe mean temperature of an atmospheric fluid with the char-
vective diffusion[Eq. (32)], because the effective drift ve- acteristic valuel, , andT;=T+ 6. Therefore, the mean flux
locity and gradient of the turbulent diffusion are not sepa-of the inertial particles is directed to the minimum of the
rated. On the other hand, in the model of a random velocitynean temperature and the inertial particles are accumulated
field in the Gaussian approximation for Lagrangian trajectodn this region, e.g., in the vicinity of the temperature inver-
ries, they are separated. For an incompressible velocity fielion layer(for details see Ref49,16]). . .

the universality exists in spite of the finite renewal time. For  The equation for the mean number density of particles
a small renewal time we recovered results obtained using ¥=(n) has the form of Eq.32) after the changeVe
model with thes-function-correlated in time velocity field. — Ver+W, where

The criFerion of the applica}bility of thg approximati(_)n of the D =Dl 8mn— (3/2) (Ve Ug) €], (45)
S-function-correlated in time velocity field is given by

V- (VCEMN)/N<1. This implies that the approximation of Vi~ — (12) (V(V -V))~ — WA p In(Re)(VT)/T,

the é-function-correlated in time velocity field is valid either (46)

V. DISCUSSION
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whereAp=|VP;/P;| "1, Re=lquq/v is the Reynolds num- At

ber, ande, is the unit vector in the direction opposite to the J(HALL@:GXF{ —(ZD)_MJ0 vp(t+At—1,0)dw,(7)
gravity g. Equation(46) was derived in Ref49,16]. The last

term in Eq.(45) describes a depletion of the turbulent diffu- At

sion coefficient due to the finite correlation time of a random —(4D)_1J0 VA(t+At— U.g)dﬂ}, (A3)
velocity field. The effective velocity o of particles deter-
mines a turbulent contribution to particle velocity due to both

the_ effect of ir_lertia and the mean temperature gradient. The (~3(t+At,t,§)=eX[{ _ Jt+Atb(U,§)dU ' (A4)
ratio |V ¢x/W| is of the order of t
|Veit/W|~(Ap/A7)(STIT, )INRe wherev , andw,, are the components of the vecterandw,

respectively, in a Cartesian system of coordinaf§s,,t,)
(for details, see Refd9,16]), where ST is the temperature =x+ 2D[w(t,—t;)]. Now we expand the expansions of
difference in the scald r, andT, is the characteristic tem- the functionsJ(t+At,t,¢) andG(t+At,t,0) in a Taylor se-
perature. Using the characteristic parameters of the atmgies for smallAt:
spheric turbulent boundary layésee, e.g., Ref§21,22)—

the maximum scale of turbulent flolg~10°~10* cm, the I=1—(1W+1@)+ (12 (1D +1@)24 ...
velocity in the scaléy, ug~30—100 cm/s, and the Reynolds

number Re-10°P-10—we estimate the rati¢V;/W| and G=1-1®+ (12 (1) 2+ ...,

the depletion of the turbulent diffusion coefficient. For par-

ticles with material density,~1-2 g/cn? and radiusa, where I(1)=(2D)’1’2Iétvp(t+At— 7, dwy(7), 12

=30 um, the ratio|V/W|~0.9 for the temperature gradi- = (4D) " LfAN2(t+ At— 2,0d 7, andl = [ 3 (o ) do.

ent 1 K/200 m, whereW~10"?a; cm/s, anda, is mea- pq integrald ), 1, andl®) can be evaluated by means of

sured in micrones. For these parameters the coefficient fa  “mean value” theorem. This yields 1)

turbulg:nt diffusion in t_he vertlcal_dlre_ctlon can be depleted:(ZD)fl/zUpr(At), I(2)=(4D)’1v2At, and 1®=bAt,

by 25% due to the finite correlation time of a turbulent Ve-\uhere the functions . v2. andb are calculated at the in-
p! 1

locity field. The latter result is in compliance with the known stants which are inside the intervalt+ At). Thus the ex-

anisotropy of the coefficient of turbulent diffusion in the at- . . ~ .
mospherdsee, e.g., Ref23]). Thus two competitive mecha- pansions Qf the fun9t|on39(t+At,t,§) andG(t+Att.gina
d aylor series are given by

nisms of particle transport, i.e., the mixing by the decrease
turbulent diffusion and accumulation of particles due to the o _y 1
effective velocity act simultaneously together with the effect J(+ALLH=1-(2D) 2w, +(4D) To o wew

of gravitational settling of particles. —(4D) 1w2At+0O((A1)%?), (A5)
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APPENDIX A: SOLUTION OF EQ. (3)
where{(At) —x= \2Dw(At). Using the definition of(At),

Here we show that Eq4) is a solution of Eq(3). We " "=

calculate
n(t,&(At))=n(t,x)+(2D) Y, (V jn) + Dw,wg(V,Vn)
+0((A1)%?). (A8)

anfat={[n(t+At,x)—n(t,x)/Atha 0.  (AL)

We considen(t,x) as an initial condition for solutiofd) for

the fieldn(t+ At,x). If the total fieldn(t,x) is specified atan Combination of Eqs(A2), (A5), (A6), and(A8), and aver-
instantt, then we can determine the total fiedft+At,x) at  aging over the Wiener path yield the expression for the
a near instant+ At by means of substitutiorts—t+At and  passive scalar fiela(t+ At,x). Using Eq.(Al) we obtain

s—t in Eq. (4). The result is given by Eg. (3). Thus it is shown that for smalt Eq. (4) is the
5 solution of Eq. (3) with the initial condition n(t=s,x)
N(t+ALX) =MAJ(t+ AL, HG(t+ At ONn(L, L(A)}, =n(s,x). Now we use the following property of the function
(A2)  J(t,s,0):

where J(t,s,4(t,s))=3(t,s",&(t,8'))I(s",s,4(s",s)) (A9)
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[see Eq.6)]. This property allows us to calculate the right- In Eq. (B5) we expand the functio®(7,x,—q) in Taylor
hand side of Eq(A1) and to show that the above proof is series afg=0, and after Fourier transformation we arrive at

valid for an arbitrary time. an equation
APPENDIX B: HOMOGENEOUS AND INHOMOGENEOUS N((m+1)7x)=P(7,xiV)N(m7,x).
RANDOM VELOCITY FIELDS. DERIVATION OF . .
EQS. (18), (19), AND (20) Using Eq.(18), we obtain
The Fourier transformation of EL5) yields P(7.x,— ) =M (exdi £7(x) - q1G(,&x)},
N((m+1)7,k)=P(7,—k)N(m7,Kk), (B1) P(7,%,iV)=M (G (1,&x)exd £7(x)- V])}.

P(T,—k)=(27'r)_3f P(rzexpik-2dz.  (B2) Thus we obtained Eq$19) and (20).
APPENDIX C: RANDOM VELOCITY FIELD WITH A

where z=y—x. Note that a particular solutiofEq. (11)], SMALL RENEWAL TIME. DERIVATION OF EQ.  (26)

averaged over the ensemble of random velocity fields with
the initial conditionN(s,z) = (2) 3exp(k- 2), coincides in We expand the velocity field(o,§) in a Taylor series in
form with integral (B2). Now we use Eqs(11)—(14) to  the vicinity of the pointx for small renewal timer,

luate int B2):
evaluate integralB2) V(e — V(L) (V) (6,

P(7,—k)=E{{(S((m+ 1) 7,m7,X,X+2) L2V V) (X)Xt -+, (CD)

x exfi V2Dk-w(t—s)])}
where
=E{M {(JI(t,5,mT(t,s, wexi 2Dk - w])}} oty
E(to 1) —x= - fo V(ts, £)ds+ \2DW(tp~ty),

(B3) (€2

Note that Eq(B3) can be obtained directly from the solution Wherets=t,—s and &= &(t,,ts). Using the iteration proce-
given by Eq. (4) with the initial condition n(s,z) dure we obtain the expansion of the velocity figldr, &) in
=exp(k-2z) atx=0. Now we rewrite equation for the func- @ Taylor series in the vicinity of the poimtfor small renewal
tion P(r,—k) using the Feynman-Kac formuléB). This time 7,

yields EQ.(18). The solutionn((m+1)7,k) also can be re-

=M4(3(1,5,0)G(t,s,O)exdiV2Dk-w])}.

written using the Feynman-Kac formula: (0, &)= V(t,%) +(V,v) \/ﬁwp—vpo
n((m+1)7,x)= | explik-x) o
T f —Jﬁ(vpvl)J wida’ | +(1/2)(V,V,v)
X M dexp(ik- £7)G (7, &n(mr,k)}dk. °
(B4) X[2DW,Wy— 2D o(v Wi+ v,Wp) ]+ O(0?),

Note that Eqs(B1), (B2), (18), and(B4) are also valid for €3

D=0. , o and similarly for the functiomo( o, £). Thus the expansions in
In the case of inhomogeneous random velocity field we, Taylor series of the functiong” [ (o, £,)do, and

make a change of variable,§) — (x,y=2z+x) in EGs.(15), & & in the vicinity of the point for small renewal timer

and use thalP(7,x,y)=P(7,X,z+X)=P(7,x,2). The Fourier are given by

transformation in Eq(15) yields

(1 — _ _ !
N((m+1)7-,x)=(277)’3f j P(T,X,k) fm —\/ﬁwm Um(t,X)T \/ﬁ(vam)LWpda

1 T
Xexp(ik-z)ko N(mr,q) +Evp(vam)TZ—(Vanvm)[Dfowpwnda
X iq-(z+ . T T
exiliq- (z+x)]dqdz —(1/2)\/2D(Upj UWnda+vnf (erda'>
0 0

Since 8(k+q)=(27) 3fexdi(k+q) - z]dz, we obtain that
do+0(7°),

2D(Voor) (Vo) | | | wd
N((m+1)7-,x)=f P(7,x,—q)N(mr,q)exp(ig-x)dq. 2D (Vo) 'Up)J'o(jo was

(B5) (CH
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JHTb((r,fg)da':b(t,X)T—(1/2)(vpr)b7’2
t
+\2D(V ) JOTWpda'

+D(Vanb)fOTprndcr+ (752,
(CH
G(7,6)=1—b(t,x) 7+ (1/2)V y(v b) 72
—Jﬁ(vpb)fo Wpdo—D(Vanb)fo wpw,do

+0(7). (Co)

ELPERIN, KLEEORIN, ROGACHEVSKII, AND SOKOLOFF
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N((m+1)7,x)=exp 7d/ dt)N(mr,X), (D6)

which follows from the Taylor expansion

a\"™(t) p)
TE) W_ ex% Tﬁ) f(t)

Comparing Eqs(D6) and (D5), we obtain

©

f(t+7)= >,

m=1

exr{ T%) N(mr,x)=exp(7L)N(m7,X).

For the sake of simplicity we assume that operatdnas a
complete set of eigenfunctions. Expanding the function
N(mr,x) in a series of the eigenfunctions, we obtain Eg.

(37).

We will take into account that for a homogeneous random For an inhomogeneous random velocity field, E@S)—

flow, Vi{v,b)=0.

APPENDIX D: RANDOM VELOCITY FIELD WITH
GAUSSIAN STATISTICS FOR THE LAGRANGIAN
TRAJECTORIES. DERIVATION OF EQS. (37) AND (40

Equation(36) implies the conservation of the total num-

ber of particles. Indeed, fok=0, Eq. (17) yields P(r,k
=0)=1, because N(m7,k=0)=(27) 3/N(mrx)dx
=const. On the other hand, Eq18) for k=0 yields
Md(G)}=P(7,k=0)=1. Equations(18) and (33)—(36)
yield

P(7,—k)=(1—i7k-V)exp — 7k?W). (D1)
In derivation of Eq.(D1), we used the identities
E{explan)}=expa%0?/2), (D2)
d
—exp(c+)\Q) =gexpc), (D3)
2N \—0

where 7 is a Gaussian random variable with zero mean
value, and the dispersian’. Using Eq.(D1) we rewrite Eq.

(17) in r space:

N(m+21)7,x)=(1—7V-V)expg 7WA)N(m~,x).
(D4)

Introducing the operatdr = WA + 7~ n(1—7V- V), we ob-
tain

N((m+1)7,x)=exp(7L)N(m7,X). (D5)

(36) are modified:

MA(&7)}=7U, (D7)
ML Tmmn)} =27Wén, (D8)
M{7m@)}=— Vi, (D9)
G=MJ(G)}=exp(ar), (D10)

whereG=G+g, &7=¢&+7, £&=M(£7)}, andM {(g)}

=0, andM (7} =0, and we represented the functioBs
and¢ as a sum of the mean value and fluctuations. Equations
(D7)—(D10) contain four functions Y,V,W, and «), and

two of them are independent. Therefore we have to find two
additional equations for these two parameters. To this pur-
pose we use that the mean-field equation for number density
of particles implies the conservation law for the total number
of particles. We also use that

P(7,x,—q)=exfin(U-q)][exp(am)M {(expin-q))}
+M (g exp(in-))}]. (D11)

By means of identitie$D2) and(D3), we rewrite Eq.(D11)
in r space,

P(7,x,iV)=[expar)—7(V-V)]exd 7(U-V)+ 7WA],
(D12

where the operator¥ and A act only on the functiorN.

Therefore, the operatcﬁr for Eq. (D5) for an inhomogeneous

Note that Eq.(D5) can be presented in the form of a differ- random velocity field is given by Eq40). Equation(37)
ential equatior(37). In order to do this we will use the iden- implies the conservation law for the total number of particles

tity

whenU=VW anda=7"In(1-7V-V).
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