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Passive scalar transport in a random flow with a finite renewal time: Mean-field equations
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A mean-field equation for a passive scalar~e.g., for a mean number density of particles! in a random velocity
field ~incompressible and compressible! with a finite constant renewal time is derived. The finite renewal time
of a random velocity field results in the appearance of high-order spatial derivatives in the mean-field equation
for a passive scalar. We considered three models of a random velocity field:~i! a velocity field with a small
renewal time;~ii ! the Gaussian approximation for Lagrangian trajectories; and~iii ! a small inhomogeneity of
the velocity and mean passive scalar fields. For a small renewal time we recovered results obtained using the
d-function-correlated in time random velocity field. The finite renewal time and compressibility of the velocity
field can cause a depletion of turbulent diffusion and a modification of an effective drift velocity. For a
compressible velocity field the form of the mean-field equation for a passive scalar depends on the details of
the velocity field, i.e., the universality is lost. For an incompressible velocity field the universality exists in
spite of the finite renewal time. Results by Saffman@J. Fluid Mech.8, 273 ~1960!# for the effect of molecular
diffusivity in turbulent diffusion are generalized for the case of a compressible and anisotropic random velocity
field. The obtained results may be of relevance in some atmospheric phenomena~e.g., atmospheric aerosols
and smog formation!.

PACS number~s!: 47.27.Qb, 47.40.2x
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I. INTRODUCTION

Turbulent transport of passive scalar~e.g., the number
density of particles! in a fluid flow was studied in a large
number of publications~see, e.g., Refs.@1–6#!. The equation
for a passive scalarn(t,r ), advected by an incompressib
velocity field v, is given by

]n

]t
1~v•“ !n5DDn, ~1!

whereD is the coefficient of molecular diffusion. Averagin
this equation over a turbulent velocity field, Taylor@1# de-
rived a mean-field equation for a passive scalarN5^n&,

]N

]t
1~V̄•“ !N5DTDN, ~2!

whereV̄5^v& is the mean fluid velocity,DT.^(dx)2&/t is
the coefficient of turbulent diffusion, and̂(dx)2& is a mean-
square displacement or dispersion of infinitesimal fluid p
ticles from their original positions for a correlation timet of
a turbulent velocity field. The mean-field equation~2! was
used in a large number of applications, e.g., to study a
bulent transport in atmosphere and ocean, in astrophy
and in industrial applications.

However, a range of validity and applicability and rigo
ous justification of Eq.~2! still remain a subject of research
In particular, it is not clear why the mean-field equation fo
passive scalar does not contain high-order spatial derivati
What is the role of the molecular diffusion? Note that Tay
in his derivation of Eq.~2! ~see Ref.@1#! neglected the mo-
PRE 611063-651X/2000/61~3!/2617~9!/$15.00
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lecular diffusion. It was found by Saffman@7# that there are
small and subtle interactions between turbulent diffusion a
molecular diffusion for the mean concentration field. In t
first approximation the two processes are additive, but a
more detailed level of description the local smoothing
molecular diffusion acts to reduce the total dispersion.

Later, using different approximate approaches like clos
procedures~see e.g., Refs.@2,5#! the mean-field equation fo
a passive scalar was derived. However, all these method
not use an exact solution of Eq.~1! for a derivation of the
mean-field equation. This shortcoming was overcome us
the d-function-correlated in time velocity field approxima
tion @8# for incompressible~see e.g., Refs.@3,4#! and com-
pressible~see e.g., Refs.@9,10#! flows. An exact solution of
Eq. ~1! in the form of the Feynman-Kac formula was used
this approach. Notably, the derived mean-field equation fo
passive scalar comprises an additional mean effective
velocity. The latter is associated either with the compressi
ity of a low-Mach-number compressible fluid flow or wit
particle inertia@9,10#. The mean-field equation for a passiv
scalar derived for thed-function-correlated in time incom
pressible velocity field is in agreement with that derived
other methods. However, it is not clear to what extent it
possible to extrapolate the results obtained using
d-function-correlated in time velocity field approximation
the velocity field with a finite correlation time. Note tha
different methods of the derivation of the mean-field equ
tion yield quantitatively different turbulent transport coef
cients~see, e.g., Refs.@11,12#!.

In the present study we consider a random velocity fi
with a finite renewal time. We derived a mean-field equat
for a passive scalar advected by a random incompress
2617 ©2000 The American Physical Society
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2618 PRE 61ELPERIN, KLEEORIN, ROGACHEVSKII, AND SOKOLOFF
and compressible velocity fields. We showed that the me
field equation has a more complicated form than the me
field equation~2!. In particular, the finite renewal time of th
random velocity field results in the appearance of high-or
spatial derivatives in the mean-field equation for a pass
scalar. The criterion of validity of thed-function-correlated
in time velocity field approximation is found. In all know
limiting cases the derived equation recovers previously
tained results for turbulent diffusion.

Note that in Ref.@13# an exact solution of Eq.~1! in the
form of path integrals was used for calculating a coeffici
of turbulent diffusion for incompressible homogeneous a
isotropic fluid flow. In the present paper we used the ot
form of an exact solution for the passive scalar equation
compressible anisotropic fluid flow. In addition, a case
inhomogeneous velocity field is also analyzed. Our res
are in agreement with those obtained in Ref.@13#.

II. GOVERNING EQUATIONS

The number densityn(t,r ) of small particles advected b
a turbulent compressible fluid flow is given by

]n

]t
1“•~nv!5DDn, ~3!

wherev is a random velocity field of the particles which the
acquire in a turbulent fluid velocity field. Note that“•v
Þ0, which is due to either the compressibility of the fluid
to particle inertia~see, e.g., Refs.@9,10,14–16#!. Equation
~3! corresponds to the conservation of the total number
particles.

The goal of the present study is to derive a mean-fi
equation for a passive scalar advected by a random velo
field with a finite renewal time. The procedure of the deriv
tion of this equation is as follows.

~a! We use an exact solution of Eq.~3! in the form of a
functional integral for an arbitrary velocity field, taking int
account a small yet finite molecular diffusion. This fun
tional integral implies an averaging over random Brown
motions of a particle.

~b! The form of the exact solution used in the prese
paper allows us to separate the averaging over both a ran
Brownian motions of a particle and a random velocity fie

~c! The final result by means of a change of variables
rewritten in a form which at zero molecular diffusion (D
50) contains only the Lagrangian displacement of a fl
particles. This allows us to recover a classical result by T
lor for the coefficient of turbulent diffusion.

~d! The derived mean-field equation for a passive sca
generally is an integrodifferential equation. However, wh
the characteristic scale of variation of the mean passive
lar field is much larger than the correlation length of a ra
dom velocity field, the mean-field equation~2! for passive
scalar field for incompressible flow@or Eq. ~4! in @9# for
compressible flow# is recovered.

Now we use an exact solution of the Cauchy problem
Eq. ~3! with an initial conditionn(t5s,x)5n(s,x) in the
form

n~ t,x!5M z$J~ t,s,z!G̃~ t,s,z!n„s,z~ t,s!…% ~4!
n-
n-
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~see Appendix A!, where

G̃~ t,s,z!5expF2E
s

t

b„s,z~ t,s!…dsG , ~5!

J~ t,s,z!5expF2~2D !21/2E
0

t2s

v„t2h,z~ t,h!…•dw~h!

2~4D !21E
0

t2s

v2
„t2h,z~ t,h!…dhG , ~6!

z~ t,s!5x1~2D !1/2@w~ t !2w~s!#, ~7!

andw(t) is a Wiener process,M z$•% denotes the mathemat
cal expectation over the Wiener pathsz, andb5“•v. The
first integral*0

t2sv„t2h,z(t,h)…•dw(h) in Eq. ~6! is the Ito
stochastic integral~see, e.g., Ref.@17#!. Solution~4! was first
found in Ref.@18# for a passive vector~magnetic field! which
is determined by the induction equation in an incompress
fluid flow. Equations~4!–~6! generalize the solution obtaine
in Ref. @18# for a passive scalar advected by a compress
random velocity field. Note that there is a singularity in E
~6! at D→0. However, this singularity in the final result ca
be eliminated by a change of variables@see Eq.~18! below#.
The path-integral representation for the effective diffusi
function of a passive scalar field forb50 was suggested by
Drummond in Ref.@13#.

We compare solution~4! with that determined by the
Feynman-Kac formula:

n~ t,x!5M j$G„t,s,j~ t,s!…n„s,j~ t,s!…%, ~8!

G~ t,s,j!5expF2E
s

t

b„s,j~ t,s!…dsG , ~9!

whereM j$•% denotes the mathematical expectation over
Wiener pathsj(t,s):

j~ t,s!5x2E
0

t2s

v@ t2s,j~ t,s!#ds1~2D !1/2w~ t2s!.

~10!

Equation~10! describes a set of random trajectories whi
pass through the pointx at timet. The Wiener process in Eq
~10! describes the molecular diffusion~i.e., it describes the
Brownian motion; see, e.g., Refs.@3,4#!. Equation ~8! al-
lowed us to derive equations for the mean passive scalar
and its higher moments for ad-function-correlated in time
random velocity field~see, e.g., Refs.@9,10,15,16#!.

The main difference between solutions~4! and ~8! is as
follows. The functionn„s,j(t,s)… in Eq. ~8! explicitly de-
pends on the random velocity fieldv via the Wiener pathj,
while the functionn„s,z(t,s)… in Eq. ~4! is independent of
the velocityv. It is difficult to use the Feynman-Kac formul
~8! for a derivation of equations for the mean passive sca
field and its higher moments in a random velocity field w
a finite renewal time. Trajectories in the Feynman-Kac f
mula ~8! are determined by both a random velocity field a
Brownian motion. On the other hand, trajectories in Eq.~4!
are determined only by Brownian motion. As follows fro
the Cameron-Martin-Girsanov theorem, the transformat
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from Eq. ~8! to Eq. ~4! can be considered as a change
variablesj→z in the integral~8! ~see, e.g., Ref.@19#!.

Due to the Markovian property of the Wiener proce
solution ~4! can be rewritten in the form

n~ t,x!5E$S~ t,s,x,Y!n~s,Y!%5E Q~ t,s,x,y!n~s,y!dy,

~11!

where

Q~ t,s,x,y!5„4pD~ t2s!…3/2expS 2
~y2x!2

4D~ t2s! DS~ t,s,x,y!,

~12!

S~ t,s,x,y!5M m$J~ t,s,m!G̃~ t,s,m!%, ~13!

andM m$•% is the path integral taken over the set of Wien
trajectoriesm which connect points (t,x) and (s,y). The
mathematical expectationE$•% in Eq. ~11! denotes the aver
aging over the set of random pointsY which have a Gaussia
statistics~see, e.g., Ref.@20#!. Here we used the following
property of the averaging over the Wiener process:

E$M m$•%%5M z$•%. ~14!

III. PASSIVE SCALAR IN A RANDOM VELOCITY FIELD

Consider a random velocity field with a finite consta
renewal time. Assume that in the interva
. . . (2t,0#;(0,t#;(t,2t#; . . . the velocity fields are statis
tically independent and have the same statistics. This imp
that the velocity field loses memory at the prescribed insta
t5kt, wherek50,61,62, . . . . This velocity field cannot
be considered as a stationary velocity field for small tim
;t; however, it behaves like a stationary field fort@t.

In Eq. ~11! we specify instantst5(m11)t and s5mt.
Note that the fieldsn(mt,y) and Q„(m11)t,mt,x,y… are
statistically independent because the fieldn(mt,y) is deter-
mined in the time interval (2`,mt#, whereas the function
Q„(m11)t,mt,x,y… is defined on the interval„mt,(m
11)t…. Due to a renewal, the velocity field as well as
functionalsn(mt,y) and Q„(m11)t,mt,x,y… in these two
time intervals are statistically independent. Averaging E
~11! over the random velocity field yields the equation f
the mean passive scalar field,

N„~m11!t,x…5~2p!23E P~t,x,y!N~mt,y!dy, ~15!

whereN(t,x)5^n(t,x)& is the mean passive scalar field, th
angular bracketŝ•& denote the ensemble average over
random velocity field, and

P~t,x,y!5~2p!3^Q„~m11!t,mt,x,y…&. ~16!

The functionP(t,x,y) is independent ofm because all time
intervals . . . (2t,0#;(0,t#;(t,2t#; . . . are statistically
equivalent.

In the case of a homogeneous random velocity fi
P(t,x,y)5P(t,y2x). In k space, we obtain

N„~m11!t,k…5P~t,2k!N~mt,k!, ~17!
f

,

r

t
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ts
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e

d

P~t,2k!5M j$^exp~ ik•j(t)!G~ t,s,j!&% ~18!

~see Appendix B!, where j(t)5j„(m11)t,s…2j(mt,s)
52*mt

(m11)tv@ t2s,j(t,s)#ds1(2D)1/2w(t), and we used
Feynman-Kac formula~8!. Note that Eqs.~17! and ~18! are
valid also forD50.

In the case of inhomogeneous random velocity field, E
~17! and ~18! in r space are given by

N„~m11!t,x…5P~t,x,i“ !N~mt,x!, ~19!

P~t,x,i“ !5M j$^G„t,j~x!…exp@j(t)~x!•“#&% ~20!

~see Appendix B!, where “5]/]x and the operator
exp@j(t)(x)•(]/]x)# is determined by

exp@j(t)~x!•“#511j(t)~x!•“1~1/2!!@j(t)~x!•“#21•••

~21!

1~1/m! !@j(t)~x!•“#m1•••, ~22!

where the operator“ acts only on the functionN(mt,x).
Equations~17! and ~19! for the mean number density o
particles are generally integral equations. In order to
these equations we need to specify the explicit form of
operatorP(t,x,i“) ~see Sec. IV!.

IV. MEAN PASSIVE SCALAR FIELD EQUATION

In this section we consider three types of a random vel
ity field for which an explicit form of the functionP can be
found.

A. Random velocity field with a small renewal time

In the model of a velocity field with a small renewal tim
we expand the functionsj(t,s) andG(t,j) in a Taylor series
of small renewal timet ~see Appendix C!. Using Eqs.~20!,
~22!, and~C6!, we obtain

P~t,x,i“ !512tVeff•“1tDmn¹m¹n1•••, ~23!

where

Dmn5~2t!21M j$^Gjm
(t)jn

(t)&%, ~24!

Veff5t21M j$^Gj(t)&%, ~25!

and we considered a statistically homogeneous random
locity field with ^v&50 and^b&50. Thus an equation for the
mean passive scalar field is given by

]N

]t
1~Veff•“ !N5Dmn¹m¹nN, ~26!

where

Dmn5Ddmn1~1/2!^vmvn&t2~1/2!^bvmvn&t
21~Dt2/6!

3~D f mn1¹p¹nf mp1¹p¹mf np!r 501O~t3!, ~27!

Veff52~1/2!^vb&t1~D/3!^~¹pv!~¹pb!&t21~1/2!

3^b~v•“ !v&t2, ~28!
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wherevm are the components of the vectorv in a Cartesian
system of coordinates,f mn5^vm(t,x)vn(t,y)&, r5y2x, “

5]/]r , and we used Eqs.~C4!–~C6!. Note that for incom-
pressible velocity field (b5“•v50) the effective velocity
Veff vanishes and the diffusion tensorDmn is given by

Dmn5Ddmn1~1/2!^vmvn&t1~Dt2/6!~D f mn!r 501O~t3!.
~29!

The third term in Eq.~29! describes interactions betwee
turbulent diffusion and molecular diffusion for the mea
concentration field. This result was predicted by Saffman@7#
for an isotropic and incompressible random velocity field.
order to compare Eq.~29! with the result obtained by Saff
man@7#, we consider an isotropic and homogeneous rand
velocity field. The two point correlation function for the ve
locity field is given by

f i j ~r !5~u0
2/3!$@F~r !1Fc~r !#d i j 1~rF 8/2!Pi j ~r !

1rF c8r i j %, ~30!

whereF85dF/dr, Pi j (r )5d i j 2r i j , andr i j 5r i r j /r 2. Here-
afterr is the dimensionless distance which is measured in
units of the integral length scalel 0, andF(r ) andFc(r ) are
the incompressible and compressible components of the
relation function for the velocity field, i.e.,̂ (“•v)2&
525t0

22(Fc8/r ) r 50, and ^(“3v)2&525t0
22(F8/r ) r 50 and

t05 l 0 /u0. Using an identity

S ] f i j

]r m]r n
D

r 50

5~1/6t0
2!$d i j dmn@~4F812Fc8!/r # r 50

1~d imd jn1d ind jm!@~2Fc82F8!/r # r 50%,

we obtain

Dmn5dmn$D1~1/2!tu0
22~Dt2/18!

3@^~“•v!2&1^~“3v!2&#1O~t3!%. ~31!

The last termDs52(Dt2/18)^(“3v)2& in Eq. ~31! coin-
cides with that obtained by Saffman@7# ~see also Ref.@13#!.
Compressibility of a random velocity field causes an ad
tional contribution to the diffusion tensorDmn . Note that the
last term in Eq.~27! generalizes the result by Saffman@7# to
the case of compressible and anisotropic random velo
field.

Since in a homogeneous random flow“^vmvn&50 and
¹pVeff50, Eq. ~26! reduces to the conservation law for th
total number of particles. For inhomogeneous random ve
ity field Eqs.~C4!–~C6! yield

]N

]t
1¹m~VeffN2Dmn¹nN!50. ~32!

Equation ~32! coincides with that derived for the
d-function-correlated in time random velocity field@9,10# af-
ter the changet→2tc , where tc is the correlation time.
Note that in the derivation of the mean-field equations for
d-function-correlated in time random velocity field model w
assumed that the values^tcvb& and^tcvmvn& do not vanish.
m

e

r-

i-

ty

c-

e

B. Random velocity field with Gaussian statistics
for the Lagrangian trajectories

We assume here that the Lagrangian trajectoriesj(t) and
the random functionj(t)G„(m11)t,mt,j… have Gaussian
statistics at the some instantsmt of the renewal. This mode
allows us to derive the equation for mean passive scalar fi
in a closed form. For a homogeneous random velocity fi
we assume that

M j$^j(t)&%50, ~33!

M j$^jm
(t)jn

(t)&%52tWdmn , ~34!

M j$^jm
(t)G&%52tVm , ~35!

M j$^G&%51. ~36!

Equation~33! implies that there is no a mean drift, and E
~36! implies the conservation of the total number of partic
~see Appendix D!. An equation for the mean passive sca
field in the model for the random velocity field with Gaus
ian statistics for the Lagrangian trajectories is given by

]N/]t5L̂N~ t,x!, ~37!

L̂5WD1t21ln~12tV•“ ! ~38!

~see Appendix D!. For smalltV the operatorL̂ can be ex-
panded in a series

L̂52V•“1~Wd i j 2tViVj /2!¹ i¹ j1•••. ~39!

For an inhomogeneous random velocity field, the operatoL̂
is given by

L̂5¹mW¹m1t21ln@12t“•~V••• !# ~40!

~see Appendix D!, where M j$^hmhn&%52tWdmn , and
M j$^hmg&%52tVm , and M j$^j(t)&%5tU, and G5Ḡ1g,
andj5 j̄1h, andḠ5M j$^G&%5exp(at), andj̄5M j$^j&%,
andM j$^g&%50, andM j$^h&%50. Note that“ in Eqs.~37!
and ~40! is applied to both fieldsV and N. Equations~37!
and ~40! imply the conservation law for the total number
particles whenU5“W anda5t21ln(12t“•V). In the case
of a homogeneous random velocity field, Eq.~40! coincides
with Eq. ~38!. The drift velocityV is caused by the effect o
compressibility.

C. Weakly inhomogeneous random velocity field

We present the operatorP(t,x,i“) in the following form:

P~t,x,i“ !5exp@2t~“•V(eff)!1t~¹mDmn2Vn
(eff)!¹n

1tDmn¹m¹n1•••#. ~41!

Equation~41! implies the conservation law for the total num
ber of particles. On the other hand, Eq.~20! yields
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P~t,x,i“ !5M j$^G„t,j~x!…exp@j(t)~x!•“#&%

5M j$^G~t,j!

3@11jm
(t)¹m1~1/2!jm

(t)jn
(t)¹m¹n1•••#&%

5Ḡ~12tVm¹m1tWmn¹m¹n1••• !, ~42!

where V52t21Gj(t)/Ḡ, Wmn5(2t)21Gjm
(t)jn

(t)/Ḡ, and

F̄5M j$^F&%, andḠ5exp@2t“•V(eff)#. An equation for the
mean passive scalar field in the model for the weakly in
mogeneous random velocity field is given by Eq.~32!, where
the effective velocityV(eff) and the tensorDmn are deter-
mined by means of Eqs.~41! and ~42!, i.e.,

Vn
(eff)5Vn1¹mDmn , ~43!

Dmn5Wmn2tVmVn /2. ~44!

It is seen from Eq.~44! that compressibility and finite re
newal time of the random velocity field cause a depletion
turbulent diffusion. These equations for small molecular d
fusion and incompressible fluid flow~in which V50) coin-
cide with those derived by Taylor@1#.

V. DISCUSSION

In the present paper we derived the mean-field equa
for a passive scalar~e.g., for a mean number density of pa
ticles! advected by a random incompressible and compr
ible velocity field with a finite renewal time. Generally, th
mean-field equation is an integral equation. We used th
models of a random velocity field:~i! a velocity field with a
small renewal time;~ii ! Gaussian approximation for La
grangian trajectories;~iii ! a small inhomogeneity of the ve
locity and mean passive scalar fields. For these model
explicit form of the mean-field equation for a passive sca
is found. The finite renewal time of the random velocity fie
results in the appearance of higher than second-order sp
derivatives in the mean-field equation.

The finite renewal time and compressibility of the velo
ity field result in a decrease of turbulent diffusion and
modification of an effective drift velocity. For a compres
ible velocity field the form of the mean-field equation for
passive scalar depends on details of the velocity field mo
i.e., universality is lost. In particular, in the model of th
random velocity field with a small inhomogeneity of the v
locity and mean passive scalar fields, the mean-field equa
for a passive scalar cannot be written as an equation of
vective diffusion@Eq. ~32!#, because the effective drift ve
locity and gradient of the turbulent diffusion are not sep
rated. On the other hand, in the model of a random velo
field in the Gaussian approximation for Lagrangian trajec
ries, they are separated. For an incompressible velocity
the universality exists in spite of the finite renewal time. F
a small renewal time we recovered results obtained usin
model with thed-function-correlated in time velocity field
The criterion of the applicability of the approximation of th
d-function-correlated in time velocity field is given b
t“•(V(eff)N)/N!1. This implies that the approximation o
thed-function-correlated in time velocity field is valid eithe
-
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n
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-
y
-
ld
r
a

for a weak inhomogeneity of the random velocity and me
passive scalar fields or a weak compressibility of the eff
tive drift velocity V(eff).

The obtained results may be of relevance in some at
spheric phenomena~e.g., atmospheric aerosols, cloud form
tion, and smog formation! and turbulent industrial flows. We
considered a random velocity field with“•vÞ0, which is
due to, e.g., particle inertia~see, e.g., Refs.@9,14,16#!. The
velocity of particlesv depends on the velocity of the su
rounding fluid, and it can be determined from the equation
motion for a particle. This equation represents a balance
particle inertia with the fluid drag force produced by th
motion of the particle relative to the surrounding fluid a
gravity force. A solution of the equation of motion for sma
particles with rp@r yields v5u1W2tp$]u/]t1@(u
1W)•“#u%1O(tp

2), where u is the velocity of the sur-
rounding fluid,W5tpg is the terminal fall velocity,g is the
acceleration due to gravity,tp is the characteristic time o
coupling between the particle and atmospheric fluid~Stokes
time!, rp is the material density of particles, andr is the
density of the fluid. For instance, for spherical particles
radiusa* the Stokes time istp5mp /(6pa* rn), wheremp
is the particle mass andn is the kinematic viscosity. The
velocity field of particles is compressible, i.e.,“•vÞ0. In-
deed, the equation for the velocity of particles and t
Navier-Stokes equation for atmospheric fluid yield“•v
5tpDPf /r1O(tp

2), wherePf is atmospheric fluid pressur
and we neglected small“•u. The degree of compressibility
s5^(“•v)2&/^(“3v)2& of inertial particles velocity field is
given bys512 Re(tp/t0)

2, where Re is the Reynolds num
ber.

The inertia of particles results in that particles inside t
turbulent eddy are carried out to the boundary regions
tween the eddies by inertial forces. On the other hand,
inertia effect causes“•v}tpDPfÞ0. In addition, for large
Peclet numbers“•v}2dn/dt @see Eq. ~3!#. Therefore,
dn/dt}2tpDPf . This means that in regions whereDPf
,0 there is an accumulation of inertial particles~i.e.,
dn/dt.0). Similarly, there is an outflow of inertial particle
from the regions withDPf.0. When there is a large-scal
inhomogeneity of the temperature of the turbulent flow, t
mean heat flux̂uu&Þ0. Therefore, fluctuations of both tem
peratureu and velocityu of fluid are correlated. Fluctuation
of temperature cause fluctuations of pressure of fluid,
vice versa. The pressure fluctuations result in fluctuation
the number density of inertial particles. Indeed, an incre
~decrease! of the pressure of atmospheric fluid is accomp
nied by an accumulation~outflow! of the particles. There-
fore, the direction of mean flux of particles coincides wi
that of heat flux, i.e.,̂ vn&}^uu&}2“T, whereT5^Tf& is
the mean temperature of an atmospheric fluid with the ch
acteristic valueT* , andTf5T1u. Therefore, the mean flux
of the inertial particles is directed to the minimum of th
mean temperature and the inertial particles are accumul
in this region, e.g., in the vicinity of the temperature inve
sion layer~for details see Refs.@9,16#!.

The equation for the mean number density of partic
N5^n& has the form of Eq.~32! after the changeVeff
→Veff1W, where

Dmn5DT@dmn2~3/2!~Veff /u0!2emen#, ~45!

Veff;2~1/2!t^v~“•v!&;2WLP ln~Re!~“T!/T,
~46!
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whereLP5u“Pf /Pf u21, Re5 l 0u0 /n is the Reynolds num-
ber, andem is the unit vector in the direction opposite to th
gravity g. Equation~46! was derived in Refs.@9,16#. The last
term in Eq.~45! describes a depletion of the turbulent diff
sion coefficient due to the finite correlation time of a rando
velocity field. The effective velocityVeff of particles deter-
mines a turbulent contribution to particle velocity due to bo
the effect of inertia and the mean temperature gradient.
ratio uVeff /Wu is of the order of

uVeff /Wu;~LP /LT!~dT/T* !ln Re

~for details, see Refs.@9,16#!, wheredT is the temperature
difference in the scaleLT , andT* is the characteristic tem
perature. Using the characteristic parameters of the at
spheric turbulent boundary layer~see, e.g., Refs.@21,22#!—
the maximum scale of turbulent flowl 0;103–104 cm, the
velocity in the scalel 0, u0;30–100 cm/s, and the Reynold
number Re;106–107—we estimate the ratiouVeff /Wu and
the depletion of the turbulent diffusion coefficient. For pa
ticles with material densityrp;1 –2 g/cm3 and radiusa*
530 mm, the ratiouVeff /Wu'0.9 for the temperature grad
ent 1 K/200 m, whereW;1022a

*
2 cm/s, anda* is mea-

sured in micrones. For these parameters the coefficien
turbulent diffusion in the vertical direction can be deplet
by 25% due to the finite correlation time of a turbulent v
locity field. The latter result is in compliance with the know
anisotropy of the coefficient of turbulent diffusion in the a
mosphere~see, e.g., Ref.@23#!. Thus two competitive mecha
nisms of particle transport, i.e., the mixing by the decrea
turbulent diffusion and accumulation of particles due to
effective velocity act simultaneously together with the effe
of gravitational settling of particles.
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APPENDIX A: SOLUTION OF EQ. „3…

Here we show that Eq.~4! is a solution of Eq.~3!. We
calculate

]n/]t5$@n~ t1Dt,x!2n~ t,x!#/Dt%Dt→0 . ~A1!

We considern(t,x) as an initial condition for solution~4! for
the fieldn(t1Dt,x). If the total fieldn(t,x) is specified at an
instantt, then we can determine the total fieldn(t1Dt,x) at
a near instantt1Dt by means of substitutionst→t1Dt and
s→t in Eq. ~4!. The result is given by

n~ t1Dt,x!5M z$J~ t1Dt,t,z!G̃~ t1Dt,t,z!n„t,z~Dt !…%,
~A2!

where
e

o-

-

of

-

d
e
t

li

s

ch

J~ t1Dt,t,z!5expF2~2D !21/2E
0

Dt

vp~ t1Dt2h,z!dwp~h!

2~4D !21E
0

Dt

v2~ t1Dt2h,z!dhG , ~A3!

G̃~ t1Dt,t,z!5expF2E
t

t1Dt

b~s,z!dsG , ~A4!

wherevp andwp are the components of the vectorsv andw,
respectively, in a Cartesian system of coordinates,z(t2 ,t1)
5x1A2D@w(t22t1)#. Now we expand the expansions o
the functionsJ(t1Dt,t,z) andG̃(t1Dt,t,z) in a Taylor se-
ries for smallDt:

J512~ I (1)1I (2)!1~1/2!~ I (1)1I (2)!21•••,

G512I (3)1~1/2!~ I (3)!21•••,

where I (1)5(2D)21/2*0
Dtvp(t1Dt2h,z)dwp(h), I (2)

5(4D)21*0
Dtv2(t1Dt2h,z)dh, andI (3)5* t

t1Dtb(s,z)ds.
The integralsI (1), I (2), andI (3) can be evaluated by means
the ‘‘mean value’’ theorem. This yields I (1)

5(2D)21/2vpwp(Dt), I (2)5(4D)21v2Dt, and I (3)5bDt,
where the functionsvp , v2, andb are calculated at the in
stants which are inside the interval (t,t1Dt). Thus the ex-
pansions of the functionsJ(t1Dt,t,z) andG̃(t1Dt,t,z) in a
Taylor series are given by

J~ t1Dt,t,z!512~2D !21/2vpwp1~4D !21vpv jwpwj

2~4D !21v2Dt1O„~Dt !3/2
…, ~A5!

G̃~ t1Dt,t,z!512bDt1O„~Dt !2
…. ~A6!

Here we took into account the definition of the Wiener pr
cessM $wm(t)wn(t)%5tdmn . This implies thatuwu;t1/2.

Now we expand the functionsn„t,z(Dt)… in a Taylor se-
ries in the vicinity of the pointx:

n„t,z~Dt !…5n~ t,x!1~¹pn!~z2x!p

1~1/2!~¹p¹sn!~z2x!p~z2x!s1•••, ~A7!

wherez(Dt)2x5A2Dw(Dt). Using the definition ofz(Dt),
we obtain

n„t,z~Dt !…5n~ t,x!1~2D !1/2wp~¹pn!1Dwpws~¹p¹sn!

1O„~Dt !3/2
…. ~A8!

Combination of Eqs.~A2!, ~A5!, ~A6!, and ~A8!, and aver-
aging over the Wiener pathsz, yield the expression for the
passive scalar fieldn(t1Dt,x). Using Eq.~A1! we obtain
Eq. ~3!. Thus it is shown that for smallDt Eq. ~4! is the
solution of Eq. ~3! with the initial condition n(t5s,x)
5n(s,x). Now we use the following property of the functio
J(t,s,z):

J„t,s,z~ t,s!…5J„t,s8,z~ t,s8!…J„s8,s,z~s8,s!… ~A9!
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@see Eq.~6!#. This property allows us to calculate the righ
hand side of Eq.~A1! and to show that the above proof
valid for an arbitrary timet.

APPENDIX B: HOMOGENEOUS AND INHOMOGENEOUS
RANDOM VELOCITY FIELDS. DERIVATION OF

EQS. „18…, „19…, AND „20…

The Fourier transformation of Eq.~15! yields

N„~m11!t,k…5P~t,2k!N~mt,k!, ~B1!

P~t,2k!5~2p!23E P~t,z!exp~ ik•z!dz, ~B2!

where z5y2x. Note that a particular solution@Eq. ~11!#,
averaged over the ensemble of random velocity fields w
the initial conditionN(s,z)5(2p)23exp(ik•z), coincides in
form with integral ~B2!. Now we use Eqs.~11!–~14! to
evaluate integral~B2!:

P~t,2k!5E$^S„~m11!t,mt,x,x1z…

3exp@ iA2Dk•w~ t2s!#&%

5E$M m$^J~ t,s,m!G̃~ t,s,m!exp@ iA2Dk•w#&%%

5M z$^J~ t,s,z!G̃~ t,s,z!exp@ iA2Dk•w#&%.
~B3!

Note that Eq.~B3! can be obtained directly from the solutio
given by Eq. ~4! with the initial condition n(s,z)
5exp(ik•z) at x50. Now we rewrite equation for the func
tion P(t,2k) using the Feynman-Kac formula~8!. This
yields Eq.~18!. The solutionn„(m11)t,k… also can be re-
written using the Feynman-Kac formula:

n„~m11!t,x…5E exp~ ik•x!

3M j$exp~ ik•j(t)!G~t,j!n~mt,k!%dk.

~B4!

Note that Eqs.~B1!, ~B2!, ~18!, and ~B4! are also valid for
D50.

In the case of inhomogeneous random velocity field
make a change of variables (x,y)→(x,y5z1x) in Eqs.~15!,
and use thatP(t,x,y)5P(t,x,z1x)[P(t,x,z). The Fourier
transformation in Eq.~15! yields

N„~m11!t,x…5~2p!23E E P~t,x,k!

3exp~ ik•z!dkE N~mt,q!

3exp@ iq•~z1x!#dqdz.

Sinced(k1q)5(2p)23*exp@i(k1q)•z#dz, we obtain that

N„~m11!t,x…5E P~t,x,2q!N~mt,q!exp~ iq•x!dq.

~B5!
h

e

In Eq. ~B5! we expand the functionP(t,x,2q) in Taylor
series atq50, and after Fourier transformation we arrive
an equation

N„~m11!t,x…5P~t,x,i“ !N~mt,x!.

Using Eq.~18!, we obtain

P~t,x,2q!5M j$^exp@ i j(t)~x!•q#G„t,j~x!…&%,

P~t,x,i“ !5M j$^G„t,j~x!…exp@j(t)~x!•“#&%.

Thus we obtained Eqs.~19! and ~20!.

APPENDIX C: RANDOM VELOCITY FIELD WITH A
SMALL RENEWAL TIME. DERIVATION OF EQ. „26…

We expand the velocity fieldv(s,j) in a Taylor series in
the vicinity of the pointx for small renewal timet,

v~s,j!5v~ t,x!1~¹pv!~j2x!p

1~1/2!~¹p¹nv!~j2x!p~j2x!n1•••, ~C1!

where

j~ t2 ,t1!2x52E
0

t22t1
v~ ts ,js!ds1A2Dw~ t22t1!,

~C2!

wherets5t22s andjs5j(t2 ,ts). Using the iteration proce-
dure we obtain the expansion of the velocity fieldv(s,j) in
a Taylor series in the vicinity of the pointx for small renewal
time t,

v~s,j!5v~ t,x!1~¹pv!FA2Dwp2vps

2A2D~¹pv l !E
0

s

wlds8G1~1/2!~¹p¹nv!

3@2Dwpwn2A2Ds~vpwn1vnwp!#1O~s2!,

~C3!

and similarly for the functionb(s,j). Thus the expansions in
a Taylor series of the functionsj (t), * t

t1tb(s,js)ds, and
G(t,j) in the vicinity of the pointx for small renewal timet
are given by

jm
(t)5A2Dwm2vm~ t,x!t2A2D~¹pvm!E

0

t

wpds

1
1

2
vp~¹pvm!t22~¹p¹nvm!FDE

0

t

wpwnds

2~1/2!A2DS vpE
0

t

swnds1vnE
0

t

swpds D G
1A2D~¹pvm!~¹ lvp!E

0

tS E
0

s

wldsD ds1O~t3!,

~C4!
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E
t

t1t

b~s,js!ds5b~ t,x!t2~1/2!~vp¹p!bt2

1A2D~¹pb!E
0

t

wpds

1D~¹p¹nb!E
0

t

wpwnds1O~t5/2!,

~C5!

G~t,j!512b~ t,x!t1~1/2!¹p~vpb!t2

2A2D~¹pb!E
0

t

wpds2D~¹p¹nb!E
0

t

wpwnds

1O~t5/2!. ~C6!

We will take into account that for a homogeneous rand
flow, ¹ j^vpb&50.

APPENDIX D: RANDOM VELOCITY FIELD WITH
GAUSSIAN STATISTICS FOR THE LAGRANGIAN

TRAJECTORIES. DERIVATION OF EQS. „37… AND „40…

Equation~36! implies the conservation of the total num
ber of particles. Indeed, fork50, Eq. ~17! yields P(t,k
50)51, because N(mt,k50)5(2p)23*N(mt,x)dx
5const. On the other hand, Eq.~18! for k50 yields
M j$^G&%5P(t,k50)51. Equations ~18! and ~33!–~36!
yield

P~t,2k!5~12 i tk•V!exp~2tk2W!. ~D1!

In derivation of Eq.~D1!, we used the identities

E$exp~ah!%5exp~a2s2/2!, ~D2!

S ]

]l
exp~c1lg! D

l50

5g exp~c!, ~D3!

where h is a Gaussian random variable with zero me
value, and the dispersions2. Using Eq.~D1! we rewrite Eq.
~17! in r space:

N„~m11!t,x…5~12tV•“ !exp~tWD!N~mt,x!.
~D4!

Introducing the operatorL̂5WD1t21ln(12tV•“), we ob-
tain

N„~m11!t,x…5exp~tL̂ !N~mt,x!. ~D5!

Note that Eq.~D5! can be presented in the form of a diffe
ential equation~37!. In order to do this we will use the iden
tity
n

N„~m11!t,x…5exp~t]/]t !N~mt,x!, ~D6!

which follows from the Taylor expansion

f ~ t1t!5 (
m51

` S t
]

]t D
mf ~ t !

m!
5expS t

]

]t D f ~ t !.

Comparing Eqs.~D6! and ~D5!, we obtain

expS t
]

]t DN~mt,x!5exp~tL̂ !N~mt,x!.

For the sake of simplicity we assume that operatorL̂ has a
complete set of eigenfunctions. Expanding the funct
N(mt,x) in a series of the eigenfunctions, we obtain E
~37!.

For an inhomogeneous random velocity field, Eqs.~33!–
~36! are modified:

M j$^j(t)&%5tU, ~D7!

M j$^hmhn&%52tWdmn , ~D8!

M j$^hmg&%52tVm , ~D9!

Ḡ5M j$^G&%5exp~at!, ~D10!

whereG5Ḡ1g, j(t)5 j̄1h, j̄5M j$^j(t)&%, and M j$^g&%
50, andM j$^h&%50, and we represented the functionsG
andj as a sum of the mean value and fluctuations. Equati
~D7!–~D10! contain four functions (U,V,W, and a), and
two of them are independent. Therefore we have to find t
additional equations for these two parameters. To this p
pose we use that the mean-field equation for number den
of particles implies the conservation law for the total numb
of particles. We also use that

P~t,x,2q!5exp@ i t~U•q!#@exp~at!M j$^exp~ i h•q!&%

1M j$^g exp~ i h•q!&%#. ~D11!

By means of identities~D2! and~D3!, we rewrite Eq.~D11!
in r space,

P~t,x,i“ !5@exp~at!2t~V•“ !#exp@t~U•“ !1tWD#,
~D12!

where the operators“ and D act only on the functionN.
Therefore, the operatorL̂ for Eq. ~D5! for an inhomogeneous
random velocity field is given by Eq.~40!. Equation~37!
implies the conservation law for the total number of partic
whenU5“W anda5t21ln(12t“•V).
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