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The present work is devoted to the evolution of random solutions of the unforced Burgers and KPZ
equations ind dimensions in the limit of vanishing viscosity. We consider a cellular model and as initial
condition assign a value for the velocity potential chosen independently within each cell. We show that the
asymptotic behavior of the turbulence at large times is determined by the tail of the initial potential probability
distribution function. Three classes of initial distribution leading to self-similar evolution are identified:
distributions with a power-law tailb) compactly supported potentidk) stretched exponential tails. In class
(c) we find that the mean potenti@lhean height of the surfagpéncreases logarithmically with time and the
“turbulence energy”E(t) =(v3(x,t))={((V#(x,1))?) (mean square gradient of the surfackecays ag !
times a logarithmic correction. In class@s and(b) we find that the changes in the mean potential and energy
have a power-law time dependence, naméyt)«t~P where the indexp lies in the interval 2>p>(2
—d)/2. In class(c) the roughness of the surface, measured by its mean-square gradient, may either decrease or
increase with time. We discuss also the influence of finite viscosity and long range correlation on the late stage
evolution of the Burgers turbulence.

PACS numbdis): 47.27.Gs, 02.50.Ey

I. INTRODUCTION Navier-Stokes equations are as interesting as the similarities
[7] and this is also true for the multidimensional Burgers
The multidimensional Burgers equation equation(l).

The three-dimensional form of E@l) has been used to

ﬂﬂL(V' Vv)= vAv & model the formation of the large scale structure of the Uni-
at ’ verse when pressure is negligible, that is, during the nonlin-
ear stage of the gravitational instability arising from random
is a generalization of the well-known Burgers equation initial perturbations[8—11]. Other problems leading to the
multidimensional Burgers equation, or variants of it, include
dv dv 9v surface growth under sputter deposition and flame front mo-
v V@- @ tion [12]. In such instances, the potential corresponds to

the shape of the front's surface, and the equation for the

The nonlinear diffusion equatiof), which was originally velocity poteptialw is identical to the KP.Z.(Kardar, Parisi,
introduced by J. Burgers in 1939 as a model of hydrody-2hang equation[12-14. For the deposition problem=
namical turbulencél,?], was later shown to describe a va- — ¥ # is the gradient of the surface. The roughness of the
riety of nonlinear wave phenomena arising in the theory ofsurface, measured by its mean-square gradiéit)
wave propagation, acoustics, plasma physsee, e.g., Ref. ={((V#(x,1))?=(v?(x,t)), may either decrease or increase
[3-5)). with time. Nevertheless we will use the expression “turbu-
The Burgers equatiof?) describes two principal effects lence energy” for this value oE(t). With external random
inherent in any turbulendeé]: the nonlinear redistribution of forces the Burgers and KPZ equations describe phenomena
energy over the spectrum and the action of viscosity insuch as turbulence without pressure, disordered systems, di-
small-scale regions. Although external forces are not presemected polymers, et¢12,15-18.
in Eq. (2), the one-dimensional Burgers equation does de- Here we will consider the evolution of the velocity field
scribe the decay of turbulence, i.e., the nonlinear transforma#(r,t) and potentiali(r,t) as given by the noiseless multi-
tion of the random initial fielcb o(x). The Burgers equation dimensional Burgers and KPZ equations. In this case the
shares a number of properties with the Navier-Stokes equavolution of the fields is fully determined by the statistical
tion, namely, the same type of nonlinearity, of invarianceproperties of the initial field/q(r), which is assumed to be
groups, of the energy-dissipation relation, of the existence gpotentialvy(r)= —V ¢,(r). Our main attention will be given
a multidimensional version, etc. However, Burgers equatiorio the case of vanishing viscosity{-0), when the dissipa-
is integrable and therefore is not sensitively dependent otive effects are important only in the vicinity of shocks.
initial conditions. The differences between the Burgers and It is known that the asymptotic behavidr— ) of Bur-
gers turbulence strongly depends on the behavior of the
structure function of the initial potentiadl,(p)=<[ o(r
*Permanent address. +p)—¢(r)1?) at large distancef?,5]. If the structure func-
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tiond,(p) increases as a power law in space then the initial V(x,t)=—V(xt). 3
potential field is Brownian, or fractional Brownian motion,

and some scaling may be usgt|5,11,19. In this case the The velocity potentiaks(x,t) satisfies the following nonlin-
turbulence is self-similar. The evolution of the external scaleear equation:

L(t) of the self-similar solution in time is determined by the

spatial behavior ofl ,(p) at large distances. Very recently a 1 )

complete solution of the one-dimensional Burgers equation, = E(V‘m +rvAy. (4)
with initial Gaussian white noise distributed data in the in-

viscid limit, has been obtaing@0]. This equation is the same as the KPZ equafib®14,

If the structure function of the potential is boundedpat \hich is usually written in terms of the variable=\ 1.
—, then scaling arguments no longer work. Ki@i] has  The parameten has the dimensions of length divided by
proposed using, for the one-dimensional Burgers turbulencgime and is the local velocity of the surface growth. Hence-
a discrete cellular model of the initial conditions with inde- forth h has the dimensionality of length and is the measure of
pendent distribution of potential in different cells. He hasgnape of the surface. Using the Hopf-Cole transformaifon
shown that the energy decaystas with a logarithmic cor-  —|ny [31,34], one can reduce Ed4) to a linear diffusion
rection when the probability dlstrlbl_Jtlon_of the potential in equation. We are mainly interested here by solutions in the
each cell has a stretched exponential taéxp(—HF). Later |imit 0. Use of Laplace’s method then leads to the fol-

it was shown[22—24 that for an initial continuous Gaussian |owing “maximum representation” for the potential and ve-
field all of the statistical characteristics of one-dimensionalqgity fields in the limit of vanishing viscosit{31,5,11:

Burgers turbulence become self-similar and the energy de-

cays ag~ Y/(Int)2. Several models of the evolution of Bur- P(x,t)=maxd(x,y,t), (5)
gers turbulence with an initial perturbation of non-Gaussian y
type have also been proposéRef. [14], and references
therein,[25-28,3(). It has been shown that the law of en- (x—y)?
ergy decay strongly depends on the statistical properties of DXy, ) =doly) — Tot ©®
the initial field with homogeneous potential.
It is known that in the limit of vanishing viscosity the X—y(X,t)
solution of Burgers’ equation is reduced to searching for the v(x,t)= . (7)

absolute maximum of some function of the initial potential t

[31]. Consequently, the statistical properties of Burgers’ turjgre Wo(y) is the initial potential andig(x) = — V ¢(X). In

bulence are determined by the behavior of the probabilityEq_ (7) y(x,t) is the Lagrangian coordinate where the func-

distribution of the initial potential. One of the important re- tion ®(x,y,t) achieves its global or absolute maximum for a
sults of the classical theory of extrema is that there are Onbéiven co'or,dinate< and timet

three universal classes of “extreme value distributions” of
the sequence of independent and identically distributed rans, |1, smoother function than the initial potentigth(y).

dom variableg32]. This result was used in Ref33] for Consequently, the absolute maximumdgx,y,t) coincides

dealing with the_ problgm of the equilibrium of low- with one of the local maxima ofy(y). The Lagrangian co-
temperature physics of disordered systems and partly for thSrdinatey(x t) then becomes a discontinuous functiorxof
one-dimensional decaying Burgers turbulence. One of ou :

i . ; . onstant within a cell, but jumping at the boundafiggl1].
tmhalr} '[.?STS IS th.ShO\;v thfr‘]t' (;ndt_he dls_,cretle é:ellular Togel %n each cell fluid particles move away from the small region
€ Initial condition for thed-cimensional BUrgers trbu- o . the cell centey, . The velocity fieldv(x,t) has discon-

lence, there are also three classes of universal self-simil

evolution of the velocity and potential fields. Hnuities (shocks and the potential fields(x,t) has gradient

The paper is oraanized as follows. In Sec. 1l we formulatediscontinuities(cusp$ at the cell boundaries; these shock
pap ) ) ; surfaces or walls form a connected structure. Inside the cells

our p“’b'e”ﬁ and list some ele_mentary results about the B.urﬁ'he velocity and potential fieldsurface shapehave a uni-
gers equation. We also consider the evolution of potenti

and velocity fields for a simple kind of perturbation in indi_aVersaI self-similar structure.

At large times the paraboloid peak in E@) defines a

vidual cells at the initial stage. In Sec. Ill we derive the X— Vi
general expression for the energy and probability distribution V(Xx,t)= ray (8
functions of the potential and vector velocity fields. In Sec.
IV we show that three types of initial condition lead to 2
asymptotic self-similar behavior of Burgers’ turbulence. Sec. t)= _ (XY 9
) ) . P(X,1) = ho(Yi) T 9
V presents concluding remarks. We also discuss the influ- t
ence of finite viscosity and long range correlation on the late o _
stage evolution of Burgers’ turbulence. The longitudinal component of the velocity vectefx,t)
consists of a sequence of sawtooth pulses with random posi-
Il. DESCRIPTION OF THE BASIC MODEL tions of the shocks and “zeros,” just as in one dimension.

The transverse components consist of sequences of rectangu-
lar pulses with random amplitudes and random positions of

We will discuss the initial-value problem for the unforced the shocks. Wall motion results in continuous change of cell
Burgers equatiofl), and consider only the potential solution shape with cells swallowing their neighbors and thereby in-
of this equation, namely, ducing growth of the external scalgt) of the Burgers tur-

A. Basic equations and local self-similarity
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bulence. At large times the behavior of the turbulence will be  Moreover it easy to show that in the multidimensional
determined by the statistical properties of the initial potentialBurgers equation the energy does not conserve in the limit of
and, moreover, by the statistical properties of local maximavanishing viscosity even at the initial stage of evolution,

Po(Yi)- when the velocity field does not have shocks. Let us consider
the evolution of the continuos velocity field having only a
B. The cellular model and initial stage of evolution radial component (x,t)=v(r,t). In the limit of vanishing

viscosity we have the implicit solution of Burgers equation
v=vo(r —uvt). Substitute this solution into E¢14) and re-
place the Eulerian coordinate by Lagrangian coordinate

We consider the cellular model of the initial conditions, in
which we assume that spaclice is divided into identical cells
each having a voluméV=Lg, whereL, is the length of the . _ ; ;
cell andd is the spatial dimension. We assign an initial valueghrergnytUO(y)' we have the following expression for the
for the potential which is chosen independently within each
cell. The same approach was used in R2f] in order to 22 o
find the probability distributions of the amplitudes and ve- E(t)= T(d2) va(Y)[y+tve(y)]e?
locities of shocks for the one-dimensional Burgers turbu- 0 (16)
lence and in Refd5,8] for multidimensional Burgers turbu-
lence in the case where the initial potentiatitea stretched From Eq.(16) we see that the enerdg(t) of continuous

exponential tail. In the “shot-noise model[25] it is as-  field conserves only in the one-dimensional cage:1). In
sumed that the initial potential is a sum of potentials of “unit particular ford=2 we have from Eq(16)

nonhomogeneities” with random amplitudes and scales and
with a Poisson ensemble for the position. c ., A (= 4

First we consider the evolution of the velocity and poten- E(t)=2'n'j0 vo(y)ydy+t?fo vo(y)dy.  (17)
tial fields of the “unit nonhomogeneities” inside the cells
assuming that there is no interaction between cells. We asfhys for the positive perturbation of the initial velocity the
sume for Slmp|ICIty that inside each cell the initial pOtentiaI energy(mean-square gradient of the Surmﬁmreases with

1+t

dvo(y)
—ay ) dy.

and velocity are isotropic and time, and for the negative perturbation of the velocity the
_ 22 energy decreases with time. This effect takes place due to the
Po(X)=ho(1—x%/15),  [X|<lo, (100 relatively more significant contribution into mean-square
radient of the surface the regions with large distances
Vo(X)=VOX/|0, |X|<|0, V0=21/10/|0, (11) (916) 9 9

The asymptotic behavior of the potential and velocity
fields is determined only by the positions and values of the
maximum of the initial potential in the cell&), (9). For
relatively large time Y,t>1,) the velocity inside the cells
has the universal behavior

where (X) =0,vo(X) =0 when|x|>1, andV, is the ampli-
tude of the velocity at the bordéx|=1,. From the solution
(6), (7) we have for the velocity field

VOO =V x| <xe, (12
lo(1+Vot/lo) ’ VOGO =Xt XS Xe= (2461 M2 (18

wherex, is the position of the shock surface The position of the shock surface and the energy of the

Xs=1o(1+Vot/1) 2= (12+2¢0t) 2 (13  field

d+2)/2.(d—2)/2
In the one-dimensional case this solution is a well kndwn E(t)~ gl "2/30@2) (19
wave|[3].

The energy of the velocity field is given by are determined only by the value of the initial potential

maximum . It is easy to show that this asymptotic behav-
2792 rxg ior takes place for the arbitrary initial localized perturbations
T2 o v2r97tdr, (14  with the potential maximumy,.

Let us assumel(;>1,) and that the maximum value in

E(t)=J' v2(x,t)d9%=

and from Eqs(12),(13) it follows that the “ith” cell is iq; . The interaction between cells begins
when the shock surfaces of neighboring cells come in con-
279229 tact, i.e., when|xs;|+|xsj|=Lo. At rather large time the
E(t)=Eq(1+Vt/l) @27 Efm, border between the cells becomes a hyperplane, moving with

(15 ~ constant velocity| o — ol /lyi—y;| away from the cell
with a larger value of the unital potentigd]. When the po-

whereI'(z) is a gamma function. From E¢15) we see that tential maximum in all of the cells is the same, i.e., when
for d=1 the energ)E(t) decreases with time, fa=2 E(t) o=, then at large times the hypersurfaces between
is constant, and fod=3 E(t) increases with time. It is pos- neighboring cells are immobile and the velocitfx,t) and
sible to show thaE(t) may increase with time whed=3 potentialy(x,t) fields have stationary periodic structure. The
even if the viscosity coefficient is finite. The increase of gradient of the velocity field decreasestas, which means
the energy in the multidimensional Burgers equatiorcon-  that the energy densitig(t) =(v?) decreases according to
trast withd=1) is the result of this equation not having a 25
conservation form. E(t)~Lo/t" (20
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For a random distribution of the potential maximupg; Lo. On this scale the initial potential field is homogeneous.
we have the permanent absorption of cells with low values ofFormally we can introduce a random uniform distribution of
the potential so that the external scale of the turbulér{¢g  cell positions)
increases with time. The mean energy evolution strongly de- The asymptotic behavior of the probability distribution
pends on the statistical properties of the maximum potentialunction of absolute maximum of a large number of random
distribution. The energy decay is slower than for the periodiqquantities is determined by the asymptotic properties of their
structure(20). The interaction between cells changes also theeumulative distribution function at large values. We assume
law (19). Moreover, ford=3, due to the interaction between that in each cell the cumulative probability function of the
cells the increase of ener@(t) Eq.(19) may change to ato initial potential ¢o(y) is the same and can be represented in
a decrease. It will be shown later that asymptotic&t) the following form:
ot~ P with p lyings in the interval 2>p>(2—d)/2.

Prol( ¢p<H)=F(H)=1—-f(H). (25

IIl. ENERGY EVOLUTION AND PROBABILITY
DISTRIBUTIONS OF THE TURBULENCE
AND THE INTERFACE

The cumulative probability distribution function fab [Eq.
(6)] in theith cell is

2
We assume that the initial random potentigly) is sta- N1 Uy — Yi
tistically homogeneous. Then, from Eg) it follows that the FitF)=1=fi(H), fi(H)=fl H+ 2t)° (26)
turbulence energy is determined by the time derivative of the
mean potential Herey, is the coordinate of thih cell. Due to the indepen-
dence of the initial potential in different cells we can deter-
) o (X)) mine the cumulative distribution functiop as
E()=(V ) =([Vhx D) =2——"—. (2]
N _ | Prol(y<H)=Q(H,0)=II Fi(H)
LetP,(H,t) denote the probability density ¢f at timet and
let Q,(H,t) denote the cumulative probability to have
<H, given by =1 [1-f;(H)]. (27)
H
Qu(H,t)= f P,(A1)dA. (22 From Eq.(26) we see thaf;(H) decreases with the distance

Iyl
) . We will consider the limit whert becomes large, so that
The mean value of the potenti@l) (i.e., mean value of the the number of factors in Eq27) becomes significant. This
height of the surfageat timet is then expressible as means that the absolute maximumdafis reached for rather
large H, so in each cell we havg(H)<1, thus 1-f;(H)

()= fﬂcHP (H.t)dH 23 =exd —f;(H)], and we can rewrite Eq27) in the form
= J(H, )
Q(H,t)=e NHD, (29)
Thus we can find the mean energy of the turbulence if we h
know the probability distribution functio® ,(H,t), where where
P,(H,t)dH is the probability that the absolute maximum of 2
d(x,y,t) (6) lies in the intervaH,H +dH for all y. N(H,t)=> fi(H)=>, flH+ i _ (29)
The functionP , ,(H,y;x,t) is the joint probability distri- ’ ! i 2t

bution function(PDF) of  andy and Pwdedy is the the

probability that the absolute maximum df(x,y,t) lies in At large t when the difference betweef) in neighboring
the intervalH,H+dH in the volume elemend®y. By inte-  cells is small, we can replace the summation in &§) by
grating theP,,,(H,y;x,t) over H we obtain the PDF of the an a volume integral:

Lagrangian coordinatg:

ddy. (30)

1 y?
+ o N(H’t):_dff H+2_t

For largeH the events for whicly; is greater thamd are rare

which permits one to find the probability distribution func- and they have a Poisson distribution. Thug Eq. (28) is a
tion of the velocity field(7). mean number of events whef>H.

Since the initial potential is homogeneous we will con- From (28,30 we have two equivalent expressions for the
sider the poink=0 and no longer include in the parameter mean potential:
of the probability distribution function. In the “cellular” J
model we assume that the space is divided up into elemen- N NHoag_ [T _e
tary cells of volumedV= Lg. We consider the late stage of (= fﬂc H JH e N dH= fo H(®,0e""do,
evolution when the external scalg€t) is much greater than (3D
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whereH(0,t) is a solution of the equation Cumbel classes, of asymptotic behavior for the probability
distribution function of the large sequence of random quan-
N(H,t)=0. (32 tities [32,33. In this section we will show that these three

types of initial condition lead to three types of asymptotic

Formally we can integrate in EG31) over the infinite inter- self-similar behavior of the Burgers turbulence.

val of H since the probability oH being negative is negli-
gibly small whent is large.

In order to find the probability distribution function of the
velocity we first of all need to find the joint probability dis- Let us now assume that the cumulative probability distri-
tribution of value and the coordinate of the absolute maxi-bution function of the initial potential25) has a power law
mum of ®. The probability that the absolute maximum is in tail
theith cell, with a value in the interval,H+dH, is

A. Distributions with a power-law tail: Frechet class

Y
Prol(ye Aj,He[H,H+dH]) f(H)=<W*) : (37)
:_ifj(H)H [1-f,(H)]. (33 In the integral(30) for N(H,t) we can integrate over the
oH ] radiusr =|y| and obtain

Here the product over all cells with# | is the probability 2742 (4 \ ¥ e pd-lgy
that outside thgth cell all local maxima are less thath N(H,t)= m(ﬁ) j - (39

With the same assumption as before we can find the joint (di2) 0 (1 r_)

probability distribution coordinate and value of the absolute 2Ht

maximum. At larget we have o )
This integral converges when>d/2, and gives the

Py(y,t)=P(ye A,-)/LS (34) asymptotic distribution of the potentigl when the probabil-

ity distribution function of the initial potential decays suffi-

and after integration ovel we have the following expres- ciently rapidly. Replacing the variabkeby r = (2tH)¥?x al-

sion for the probability distribution function of the absolute lows us to writeN(H,t) as a power-law function of

maximum coordinate

HI td/2

N(H,t): _—_Cdr

Lg H(Zy d)/2

2

1 (+= 4 Y2\
=— — Z_ e~ N(H.1)
Py(y.t) Lg fﬁw aHf(H+2t e dH. (35

d+1)/2_dI2 o,y yd-1
Integration by parts leads to Cd=2( e J X dx (39
r(d2) Jo(1+x3r
2 y? ~N(H.1)
Py(y,t):Fwa H+ 5 oge  dH where C4 depends ord as well asy. Thus we have the

self-similar cumulative functiori28) of the potentialheight

2 of the surfacgis given by

0
1 Y7\ e
_L_gfo f(H(@)Jrze 0. (36)

H.\@y=d)2) ¢ \d2
Q(H)=ex;{ - W*) (t—) : (40)
HereH(®) is a solution of Eq(32). Using Eq.(30) it is easy n
to see that the norm d?y(y,t) is unity. , Here we introduce,, as a nonlinear time of evolution
In the theory of the absolute maximum of random se-
guenceq 32] the large parameter of the theoryNé — the L2
number of “points” in a sequence. In our case we consider tnl:—oz/d' (41)
formally an infinite number of points, but owing to the para- H, Cj

bolic form used in Eq(29) the effective number of cells is S
finite and increases with time. We stress again that expredt follows from Eq. (40) that the probability distribution

sions(30), (36) are valid only wherL (t)>L,. function of potential is self-similar with the amplitude scale
H(t):
IV. THREE TYPES OF SELF-SIMILARITY t \d(@2y=d)
FOR BURGERS TURBULENCE H (t)=H, (t_l) (42
n

In a previous section we derived expressions for the prob-

ability distribution function of the potentiak(x,t) (28), (30) The time evolution of the velocity variano@l) is deter-
and for the mean potenti&B1) which determines the energy mined by the time derivative of the mean potentil). It is
evolution of the turbulenc&1). We also derived the form of easy to see from Eq40) that the expression for the mean
the probability distribution function for the absolute maxi- potential converges ify>d/2+ 1, and in this case the mean
mum coordinatg35) which coincides with the form of the value ()~Hg(t). For y<d the mean potentia{ ) in-
velocity probability distribution functiori7). It is known that  creases faster in time then the local height of the surface
there are three types, known as the Frechet, Weibull, andihich grows proportionallt\. The superlinear increase of
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mean potential is possible while the KPZ equatidn de- o e 940

scribes the evolution of shapg(x,t) ~h(x,t)=H(x,t) —t\ Ws(z):Af - (47)
of the surface and the normal growing of the surface is ex- 0 1 2
cluded a for this equatiofl2—-14. @2y-d

From Eq.(21) the velocity variancéturbulence energyis

given by A is normalization coefficient depending drand y. In (46)
L(t) is the external scale of turbulence and

_2(y—d)

oK) _Hs
et S e s T (2Cy) (tH, )" [t
aa 2y—d L(t)= LI@r=a) ~Lo

yl(2y—d)

E(t)=2 48

nl
We stress here that for this expression to be validhust

satisfy y> y,=d/2+ 1. From Eq.(43) we see that wher
lies in the interval

The distribution(47) decays~z? at small distances and
by the power law at large distancé¥(z)=A/z2”. From this
we see again that the mean energy is finite wheny,,

d =d/2+1, which is also the condition that the mean energy
—+1<y<d, (44)  in separate cell$19) E(t)~[H@*22f"(H)dH be finite.
2 Note that the mean initial energyl5) E(0)=(Eq)/LJ

. . . N _ ~[H2f"(H)dH is finite if y>2 for all value ofd.
the velocity variance increases with time. Thus the velocity / (H) 4

variance increases only if the spatial dimenstsatisfies

d=3. Ford=3 we have the same results as the “shot-noise

model” of the initial perturbatiof25]. On the left hand side Let us now assume that the initial potential is bounded by

of the inequality(44), if y=d/2+¢,(e<1) we have for the some valueH,, [¢o(y)<H,, in all cells] and that the cumu-

indexp in Eq. (43 lative probability distribution function has a power law be-
havior in the neighborhood of the maximum, i.e.,

B. Compactly supported potential: Weibull class

2—d+2¢
P @5

f(H)=(H“ﬁ|_ )a, H<Hy, (49)

This means thata) whend=1 the energy always decays 5nq is zero forH>H,,. By the same procedure as above
with p=1/2, (b) whend=2 the variance decays very Slowly (see Sec. IV A it follows that the cumulative probability

with p=e, (c) whend=3 the variance increases wii= gisiribution function of potential has the for(@8) with
—1/2, and(d) whend>1 thenp=(2-d)/2.

This behavior of critical index has a simple explanation if (Hy— H)@atd2ppyd2
we consider the velocity field evolution in an elementary cell N(H,t)= e ds
at the stage before the interaction with other cells takes place 0 '
(Sec. Il B. It follows from Eg.(19) that the energye(t) of o(d+1)/2_di2 +q
an elementary volume varies aB(t)~ y{d+2/4(d=2)2 Cd:Wf rd=1(1—r2)adr (50)
0

When the power index of potential probability distribution

function is close to the critical valugc, then probability and is self-similar for arbitrary dimensiahand power index

distribution function of the initial potential has a relatively The mean potential tends to the maxim accordin
slow decay and the general evolution of the turbulence varis: P LY 9

ance is determined by the cell with very high amplitude. It ist0 the power law
easy to see that at the critical point the time dependence of
the mean varianc@l5) is the same as the time dependence of
the energy of an initial cel{19).

As vy increases the interaction between the elementar
cells begins to play a more and more important role. Whe
y=d and (d>2) the increase of variandg(t) will switch to
a decrease with time. Wheysd the variance will decay as
t~! which is close to the law for the stretched exponential

(#)=Hu=CH, (ty /) Cer, (51)

Herec is a positive numerical coefficient, angl is the non-
¥near timet,, (41), where the constar@, is determined by
he expressior50).

From Eq.(5)) it follows that the energy always decreases
according to the power law

type of initial potential(see Sec. IV € L) 2(a+d)
It is easy to show from Eq36) that the probability dis- E(t)=27~t_p, = outd (52
tribution function of the coordinate of the absolute maximum
of the potential is also self-similar, i.e., It follows from Egs. (36),(49),(50) that the PDF of the
absolute maximum coordinatg is self-similar [Eq. (46)]
1 y with the spatial scalé (t)
W(y)= ———Ws L_t)) (46)
LYt) ( L(t)NLO(t/tn|)al(2a+d). (53)

whereWs(z) is the dimensionless form of probability distri- The general result for the length scale evolution for systems
bution function in the Weibull class has actually been noted in E2g] (al-



PRE 61 UNIVERSALITY CLASSES FOR SELF-SIMILARITY @ . .. 2601

though not explicitly derived It is easy to see that the en- P=(L,/Lp)% whereLp is the typical distance between cells
ergy (43),(52) and the external scal@d), (53) of the turbu-  when the initial potential is equal td, andL, is the size of
lence are described by the same expressions for a distributiadhe cells. It is easy to see that in this case the universal
having a power-law tail and for a compactly supported dis-behavior of energy decali(t)~t 2 is due to the fact that

tribution if we seta=— vy in Eq. (49) (y<0). after some intermediate stage we have “frozen” turbulence.
The form of the distribution of the absolute maximum This means that the spatial structure of the velocity will not
coordinate is now defined by the integral change in time and only the amplitude of the velocity will
decay likeAL/t, whereAL is the random distance between
Al 2/(2a+d) _ 52yapn—0 two cells with equal initial potential, i.e. H;=H ,=Hy). In
WS(Z)_AL*(Z)(G z)%e"dd, the cased=1 the velocity will be a sequence lof the lings
= (x—x;)/t with the immobile shocks at{, ; — x;)/2, where
0, (z)=22*"14, (54)  x; is the position of the point wherg¢;=H,, . This case was

considered in Ref§26,27] but with some other assumptions
It can be seen that this distribution decays exponentially aand with other tools. In arbitrary dimensiahthe energy
largez decays ad.2/t?, and the probability distribution function of
et d-2a) the Lagrangian coordinate and velocity will have the station-
Wy(z)~e z¢ “ (55 ary formW(z)=Ae 2" with the scaleL~Lp~L P~ . For
d=2 this distribution has a Gaussian form. In conclusion we

b Ilt IS mfterestlng to cgmpare thtede\./qltlljtllon (t)f I?_UIge;i ttl?]r'note that this asymptotic “frozen” behavior for bounded ini-
ulence for a compactly supported initial potential wi Ctial perturbation of potential takes place for arbitrarywhen
evolution of turbulence for a Gaussian initial potential hav-d

ing scaling properties with dimensidm such that &=h>
—1[30]. For values oh that satisfy this condition the initial
potential correlation function has a singularity at the origin.
In Ref. [30] a special class of random solution of the one-
dimensional Burgers equation was constructed. For this so- Let us now assume that the cumulative probability distri-
lution the self-similar behavior is true at all times and notbution function of the initial potentia(25) has a stretched
just asymptotically. Such scaling behavior corresponds to thexponential tail
characteristic length. (t)~tY?~"  Comparing this result
with Eq. (53) we see that forr=—1/h anda>1 the evolu- f(H)=(H/Hp)“exd — (H/H,)*]. (57)
tion of turbulence with a compactly supported initial poten-
tial tends asymptotically to the self-similar solution de-
scribed in Ref[30].

From Eq.(52) we see that when probability distribution
function of initial potential decays very rapidlyy(~ ) the
mean energy decays #&s! just as it does for the stretched

—5 00,

C. Stretched exponential tail of the initial potential:
Gumbel class

For initial conditions of this type of the distribution potential
is localized in a narrow regiodH near the mean valud
>H, . In the integral(30) overy we can take into account
only the quadratic term in the exponent and obtain the fol-
lowing expression:

exponential type of initial potential. The special case where g 1412
. . ; . - H\% 2=wtH
a=1 is equivalent to the uniform behavior of the probability N(H,t)= _) i N G WL (59)
distribution function for the initial potential oved <H,,, Hp ,BHB‘ng
that is to sayW(H)=—af(H)/gH=H_". In this case the _ _ _ .
energy E(t)~t21+d/@+d) \which is equivalent to the Let us introduce the dimensionless potentigo that
asymptotic law for the uniform distribution of the initial po-
tential [28]. z
.. . = + —
The limit «—0 when the energy decays &s? in all H=H.ho| 1 hgﬂ ' (59

dimensiond is also interesting. In this case the probability
distribution function of the coordinateénd of the velocity = where hy is a solution of the transcendental equation
has the universal forivy(z) ~exp(—2) for all z It easy to  N(H,ho)=1:
see that fora—0 the integral scale of the turbulence does
. . . . d/2
not increase with time. The case @f-0 has a simple ex- h(2a+d(1-p))/2 t e =1
planation if we rewrite the cumulative probability distribu- 0 to o
tion function for the initial potential corresponding in the

form d t\UB
f(H)=PE(Hy—H), n
Heret,, is the nonlinear time
af(H)
W(H):_a—H:P5(H_HM) (56) . Lg i 2ald (61)
" 2mH, | H,

HereE(2z) is the unit function$(z) is the delta function, and
P is the probability that in some cells the potential amplitudeThe variablez in Eq. (59) has a universal double-exponential
is exactly equal tdH,, . This probability may by rewritten as distribution att>t,,
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F(z)=e‘efz. (62) is localized in a narrow region near the mean value. For the
Weibull class a PDF of potential exists for>d/2 and the
When t>t,, the distribution of the potentiay is concen- mean value ofy is finite for y>d/2+ 1. The mean square
trated in the narrow regionH/Ho~hy#~[dInt/ty] *near ~gradient of the surface (turbulence energy E(t)
the mean valugH)=H, hy~(Int)?. From Eq.(21) we  =([V#(x,1)])=(v*(x,t)) has the power-law dependence
have the following expression for the energy of turbulence:E(t)<t™?,p=2(y—d)/(2y—d) in caseda and(b) and de-
cays according ta~*(Int)*"A# in case(c). For relatively
slow decay of the initial probability distribution of potential
1+d/2<y<d and dimension of the spack>2 the energy
E(t) increases with time.
From Eq.(63) we see that the energy decays according to the We show that the PDF of the velocity is self-similar with
universal lawE(t)~t~* with some logarithmic correction: the scalel (t)/t, whereL(t) is the external scale of the tur-
the decay is faster if3>1 [tail of probability distribution bulence. In case®@) and(b) the external scale of turbulence
function f(H) decays faster then the exponential Jaand  increases according to the pure power lawt)=t™ ,m
slower if B<<1. It must be stressed also that the law of decay=y/(2y—d) while in case (c) it increases likeL(t)
does not depend on the dimension of the space and so is the2(Int)#~Y4_One can see that for fast decaying initial
same as in one dimensi¢a1]. distributions of potential|(y|— ) in classega) and(b) the
The probability distribution function of absolute maxi- law of external scale increase and the law of energy decay
mum coordinatey and the velocityv (7) are Gaussian and tends to the corresponding laws of the Gumbel class. In the

dhg 2H, (d/2)"#

E(t)=2H, —== % (Int/t,) P (63

the variance of each component is given by special case— — 0 [class(b)] we have the “frozen” turbu-
lence which means that the structures of the potential and
9 5. tHy t velocity fields conserve(t) = const and the amplitude of the
(yh)=Lt)= ﬁhﬁ—1~ (Int/t )(371)/;;’ velocity increases as *. We note that for the compactly
0 n supported potential this “frozen” behavior takes place for
<Ui2>: L2/t2. (64) arbitrary y whend—oe.

We now discuss what influence finite viscosity has on the

The two-point probability distributions of the velocity and aSymptotic behavior of the Burgers turbulence at large times.
correlation functions were found in Ré5,8] for the special ~ For large initial Reynolds number (ke 1) we still have the
case=2. The shape of the two-point probability distribu- cellul_ar_ structure of the turb_ulence at relat|vely_ large times.
tion function of the longitudinal component is the same inFor finite Renolds number it will be characterized by two
the space of different dimensions, and coincides with thécales, namely the external scal@) and inner scal& the
analogous PDF of the one-dimensional Burgers turbulencéatter being a typical width of the shock surfe@&. Owing
The transverse velocity components, unlike the longitudinafO Viscosity the inner scale increases&svt/L. However
ones, are statistically independent in different cells and havéue to the increase di(t) the relative width of the shock
a Gaussian probability distribution inside them. These resultd(t)/L(t)~ »t/L*(t)~Re *(t) may either decrease or in-
may be extrapolated to the arbitrary stretched exponentigirease with time. Here we write the Reynolds number as

tail of the initial potential. Re(t) =V(t)L(t)/v=L?(t)/vt, since the local slope of the
velocity is 1t and the maximum velocity is of ordér(t)/t.
V. CONCLUDING REMARKS It is easy to see that for classé and (b) we have a

power law for the Reynolds number, namely, Be{t',r

The present work has considered the evolution of random=d/(2y—d). Thus for the Frechet clasytd/2) the Rey-
solutions of the unforced Burgers and equationd ofimen-  nolds number increases with time and hence even when the
sions in the limit of vanishing viscosity. The main statistical viscosity is finite we have the strong nonlinear stage of evo-
assumption is the independence of the initial velocity potentution at large times. For the Weibull clasg<€0) the Rey-
tial ¢ in different cells. nolds number decreases with time and at large times the

We show that the asymptotic behavior of the turbulence agvolution of the turbulence will be determined only by the
large times is determined by the tail of cumulative initial linear diffusion. This is shown in Ref28] for the case of a
potential probability distribution functioff(H)=1—f(H).  uniform distribution of the initial potential. In Ref28] it
We show that three classes of initial distribution lead to thewas stressed that although one finds a universal power law
self-similar evolution of the turbulence at large times. In thegrowth for the energy decaffor a system with a bounded
theory of extremes these limiting distributions are known asand flat initial distributiol, the velocity-velocity correlation
(a) Frechet class whef(H)=H™7; (b) Weibull class when function has a more complicated form, and theredssimple
f(H) < (Hma—H) ?,7<0; and(c) Gumbel class whefi(H) dynamical scaling in the systeim the “nonlinear regime.”
xexp(—HP). One can find in Ref{32] more general condi- For the Gumbel clagsf (H) «<exp(—H#)] the Reynolds num-
tions which are necessary and sufficient for the probabilityber Re¢) = (Int)*~#/£. Thus we may expect that f@r<1 we
distribution functionf(H) to belong to each of three types. have conservation of the cellular structure at large times. For

We show that the mean potentiedhean height of the g>1 the nonlinear evolution is only an intermediate
surface increases with time in cas¢a),(b) according to the asymptotic which changes at large times to linear decay.
power law({y)cAt",r=d/(2y—d) (A<O for y<0) while  This effect is considered in Ref5,25 in the case of a
in case(c) it increases logarithmically according ta/) Gaussian initial perturbation.
«(Int)Y2. For the Gumbel class the distribution of potential  Let us now move to the case when the initial potential is
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long-range correlated or nonhomogeneous. We consider firgreater then the size of the cell. Thus, the discrete model of
one-dimensional turbulence, assuming that the initial velocthe initial conditions considered in the present paper is equal
ity is homogeneous with a spectruiy (k) ~ ?|k|™ at small  to the uncorrelated potential with=2. Here we show that
wave number&k and falling off quickly at large wave num- the laws of evolution of the external scadlét) (48),(53),(64)
bers. For the spectrum of potential we hag,(k) and the energ¥(t) (43),(52),(63) are very sensitive to the
~ a?|k|""2. For a Gaussian velocity it is shown in REB5]  tail of the PDF of the initial potential. For the stretched ex-
that there are three regions ofwith different behavior of ponential tail(i.e., the Gumbel clagshe leading term for the
turbulence. When-1<n<1 the long-time evolution of the evolution of the external scale i€’>. Thus we can expect
spectrum is self-similar and the external scale of turbulencéhat in multidimensional turbulence the long-range correla-
increases ak(t) x(at)™ m=2/(3+n) and is determined by tion of the potential for 22d<n<2 does not play an impor-
the “amplitude” of the large scale componeat When 1  tant role for the evolution of the external scale and energy
<n<?2 the spectrum has three scaling regions: firstk|&  and we have only one critical index This is shown in Refs.
region at very smalk with a time-independent constant, as-[24,35 for the one-dimensional case with a Gaussian poten-
sociated with long-correlated regions in physical space, sedial. Whenn=2—d the universal index of the power law
ond, ak? region at intermediate wave numbers which is re-dependence of (t) continuously transforms frorm=2/(2
lated to the self-similarly evolving “inner region” in +n+d),(n<2-—d) to the indexm=1/2 for the leading term
physical space and, finally, the usikal? region, associated in the region wheren>2—d. In this case we have also the
to the shocks. The growth of the external scale is now detersame critical indexai=2—d for the energy. In the interval
mined by two integrals of the initial spectrum andt) 2—d<n<2 we have conservation of the velocity spectrum
«tY2(Int)"Y4 Switching wave number from thig|" to the  E,(k)=|k|" at very small wave numbers. But this small re-
k? region tends to zero faster than the energy wave numbagion is not significant for the energy of the turbulence and
~1/L(t) and asymptotically we have the self-similar evolu- asymptotically the spectrum of the velocity tends to the self-
tion of the spectrum. Fon>2, long-time evolution is also similar evolution.
self-similar andL(t)ct¥4(Int)"Y4 Thus for a Gaussian per-  We have a much more nontrivial situation when the po-
turbation we have one critical index for the behavior of tential distribution has a with power-law tdiFrechet clags
external scale and energy. Whes 1 the index of the power or when it is a compactly supported potentideibull
law dependence of(t) continuously transforms fronm  class. Forn<2—d we find, using the scaling properties of
=2/(3+n),(n<1) to them=1/2 index of the leading term solution (6), that the external scale increases két)
in the regionn>1. ~(at)™,m=2/(2+n+d). Thus the evolution ot (t) and
Let us assume that for the multidimensional Burgers turthe energyE(t)~L2(t)/t> do not depend on the PDF of the
bulence the initial potential is isotropic and has a power-lawinitial potential. For the uncorrelated potentink=2 the
dependence at small wave numbers, i@(k)~a2|k|”‘2. power indexes laws of the scale evolutiom= y/(2y—d)
The variance of the potential is determined Ky?)  and energy evolutiorpp=2(y—d)/(2y—d) depend ony.
~f°0°E¢,,(k)kd*1dk and is finite whenn>2-d. For 2—d The case of a homogeneous continuous potential with a
<n<-d its structure function is d,(x)=([¢o(x)  Power index 2-d<n<2 is equal to the existence of long-
— ¢O(o)]2>~|x|2—“—d_ Using the rescaling of the structure range correlation of the the potential amplitudes in cells. We
function in Eq.(6) we see that the external scale increases asan expect that in the region-2<n<2 the long-range
L(t)~(at)™ m=2/(2+n+d) [5,11]. This law does not de- correlation of potential influences the energy decay.
pend on the PDF of the initial potential. Introducing the Rey-
nolds nu2r11ber directly through the Hopf-Co!e solyti[ﬂsﬂ ACKNOWLEDGMENTS
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