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Universality classes for self-similarity of noiseless multidimensional Burgers turbulence
and interface growth

S. N. Gurbatov
Radiophysics Department, University of Nizhny Novgorod, 23 Gagarin Ave., 603600, Russia*

and CNRS UMR 6529, Observatoire de la Coˆte d’Azur, Laboratoire G.D. Cassini, B.P. 4229, 06304 Nice Cedex 4, France
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The present work is devoted to the evolution of random solutions of the unforced Burgers and KPZ
equations ind dimensions in the limit of vanishing viscosity. We consider a cellular model and as initial
condition assign a value for the velocity potential chosen independently within each cell. We show that the
asymptotic behavior of the turbulence at large times is determined by the tail of the initial potential probability
distribution function. Three classes of initial distribution leading to self-similar evolution are identified:~a!
distributions with a power-law tail,~b! compactly supported potential,~c! stretched exponential tails. In class
~c! we find that the mean potential~mean height of the surface! increases logarithmically with time and the
‘‘turbulence energy’’E(t)5^v2(x,t)&5^(“c(x,t))2& ~mean square gradient of the surface! decays ast21

times a logarithmic correction. In classes~a! and~b! we find that the changes in the mean potential and energy
have a power-law time dependence, namely,E(t)}t2p where the indexp lies in the interval 2.p.(2
2d)/2. In class~c! the roughness of the surface, measured by its mean-square gradient, may either decrease or
increase with time. We discuss also the influence of finite viscosity and long range correlation on the late stage
evolution of the Burgers turbulence.

PACS number~s!: 47.27.Gs, 02.50.Ey
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I. INTRODUCTION

The multidimensional Burgers equation

]v

]t
1~v•“v!5nDv, ~1!

is a generalization of the well-known Burgers equation

]v
]t

1v
]v
]x

5n
]2v

]x2
. ~2!

The nonlinear diffusion equation~2!, which was originally
introduced by J. Burgers in 1939 as a model of hydro
namical turbulence@1,2#, was later shown to describe a v
riety of nonlinear wave phenomena arising in the theory
wave propagation, acoustics, plasma physics~see, e.g., Ref.
@3–5#!.

The Burgers equation~2! describes two principal effect
inherent in any turbulence@6#: the nonlinear redistribution o
energy over the spectrum and the action of viscosity
small-scale regions. Although external forces are not pre
in Eq. ~2!, the one-dimensional Burgers equation does
scribe the decay of turbulence, i.e., the nonlinear transfor
tion of the random initial fieldv0(x). The Burgers equation
shares a number of properties with the Navier-Stokes eq
tion, namely, the same type of nonlinearity, of invarian
groups, of the energy-dissipation relation, of the existenc
a multidimensional version, etc. However, Burgers equat
is integrable and therefore is not sensitively dependent
initial conditions. The differences between the Burgers a
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Navier-Stokes equations are as interesting as the similar
@7# and this is also true for the multidimensional Burge
equation~1!.

The three-dimensional form of Eq.~1! has been used to
model the formation of the large scale structure of the U
verse when pressure is negligible, that is, during the non
ear stage of the gravitational instability arising from rando
initial perturbations@8–11#. Other problems leading to th
multidimensional Burgers equation, or variants of it, inclu
surface growth under sputter deposition and flame front m
tion @12#. In such instances, the potentialc corresponds to
the shape of the front’s surface, and the equation for
velocity potentialc is identical to the KPZ~Kardar, Parisi,
Zhang! equation@12–14#. For the deposition problemv5
2“c is the gradient of the surface. The roughness of
surface, measured by its mean-square gradientE(t)
5^(“c(x,t))2&5^v2(x,t)&, may either decrease or increa
with time. Nevertheless we will use the expression ‘‘turb
lence energy’’ for this value ofE(t). With external random
forces the Burgers and KPZ equations describe phenom
such as turbulence without pressure, disordered systems
rected polymers, etc.@12,15–18#.

Here we will consider the evolution of the velocity fiel
v(r ,t) and potentialc(r ,t) as given by the noiseless mult
dimensional Burgers and KPZ equations. In this case
evolution of the fields is fully determined by the statistic
properties of the initial fieldv0(r ), which is assumed to be
potentialv0(r )52“c0(r ). Our main attention will be given
to the case of vanishing viscosity (n→0), when the dissipa-
tive effects are important only in the vicinity of shocks.

It is known that the asymptotic behavior (t→`) of Bur-
gers turbulence strongly depends on the behavior of
structure function of the initial potentialdc(r)5^@c0(r
1r)2c(r )#2& at large distances@2,5#. If the structure func-
2595 ©2000 The American Physical Society
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2596 PRE 61S. N. GURBATOV
tion dc(r) increases as a power law in space then the in
potential field is Brownian, or fractional Brownian motio
and some scaling may be used@2,5,11,19#. In this case the
turbulence is self-similar. The evolution of the external sc
L(t) of the self-similar solution in time is determined by th
spatial behavior ofdc(r) at large distances. Very recently
complete solution of the one-dimensional Burgers equat
with initial Gaussian white noise distributed data in the
viscid limit, has been obtained@20#.

If the structure function of the potential is bounded atr
→`, then scaling arguments no longer work. Kida@21# has
proposed using, for the one-dimensional Burgers turbule
a discrete cellular model of the initial conditions with ind
pendent distribution of potential in different cells. He h
shown that the energy decays ast21 with a logarithmic cor-
rection when the probability distribution of the potential
each cell has a stretched exponential tail;exp(2Hb). Later
it was shown@22–24# that for an initial continuous Gaussia
field all of the statistical characteristics of one-dimensio
Burgers turbulence become self-similar and the energy
cays ast21/(ln t)1/2. Several models of the evolution of Bu
gers turbulence with an initial perturbation of non-Gauss
type have also been proposed~Ref. @14#, and references
therein,@25–28,30#!. It has been shown that the law of e
ergy decay strongly depends on the statistical propertie
the initial field with homogeneous potential.

It is known that in the limit of vanishing viscosity th
solution of Burgers’ equation is reduced to searching for
absolute maximum of some function of the initial potent
@31#. Consequently, the statistical properties of Burgers’ t
bulence are determined by the behavior of the probab
distribution of the initial potential. One of the important r
sults of the classical theory of extrema is that there are o
three universal classes of ‘‘extreme value distributions’’
the sequence of independent and identically distributed
dom variables@32#. This result was used in Ref.@33# for
dealing with the problem of the equilibrium of low
temperature physics of disordered systems and partly for
one-dimensional decaying Burgers turbulence. One of
main tasks is to show that, in the discrete cellular mode
the initial condition for thed-dimensional Burgers turbu
lence, there are also three classes of universal self-sim
evolution of the velocity and potential fields.

The paper is organized as follows. In Sec. II we formul
our problem and list some elementary results about the B
gers equation. We also consider the evolution of poten
and velocity fields for a simple kind of perturbation in ind
vidual cells at the initial stage. In Sec. III we derive th
general expression for the energy and probability distribut
functions of the potential and vector velocity fields. In Se
IV we show that three types of initial condition lead
asymptotic self-similar behavior of Burgers’ turbulence. S
V presents concluding remarks. We also discuss the in
ence of finite viscosity and long range correlation on the l
stage evolution of Burgers’ turbulence.

II. DESCRIPTION OF THE BASIC MODEL

A. Basic equations and local self-similarity

We will discuss the initial-value problem for the unforce
Burgers equation~1!, and consider only the potential solutio
of this equation, namely,
l

e

n,
-

e,
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v~x,t !52“c~x,t !. ~3!

The velocity potentialc(x,t) satisfies the following nonlin-
ear equation:

] tc5
1

2
~“c!21nDc. ~4!

This equation is the same as the KPZ equation@12–14#,
which is usually written in terms of the variableh5l21c.
The parameterl has the dimensions of length divided b
time and is the local velocity of the surface growth. Henc
forth h has the dimensionality of length and is the measure
shape of the surface. Using the Hopf-Cole transformationc
5 ln U @31,34#, one can reduce Eq.~4! to a linear diffusion
equation. We are mainly interested here by solutions in
limit n→0. Use of Laplace’s method then leads to the f
lowing ‘‘maximum representation’’ for the potential and ve
locity fields in the limit of vanishing viscosity@31,5,11#:

c~x,t !5max
y

F~x,y,t !, ~5!

F~x,y,t !5c0~y!2
~x2y!2

2t
, ~6!

v~x,t !5
x2y~x,t !

t
. ~7!

Herec0(y) is the initial potential andv0(x)52“c0(x). In
Eq. ~7! y(x,t) is the Lagrangian coordinate where the fun
tion F(x,y,t) achieves its global or absolute maximum for
given coordinatex and timet.

At large times the paraboloid peak in Eq.~6! defines a
much smoother function than the initial potentialc0(y).
Consequently, the absolute maximum ofF(x,y,t) coincides
with one of the local maxima ofc0(y). The Lagrangian co-
ordinatey(x,t) then becomes a discontinuous function ofx,
constant within a cell, but jumping at the boundaries@5,11#.
In each cell fluid particles move away from the small regi
near the cell centeryk . The velocity fieldv(x,t) has discon-
tinuities ~shocks! and the potential fieldc(x,t) has gradient
discontinuities~cusps! at the cell boundaries; these sho
surfaces or walls form a connected structure. Inside the c
the velocity and potential fields~surface shape! have a uni-
versal self-similar structure.

v~x,t !5
x2yk

t
, ~8!

c~x,t !5c0~yk!2
~x2yk!

2

2t
. ~9!

The longitudinal component of the velocity vectorv(x,t)
consists of a sequence of sawtooth pulses with random p
tions of the shocks and ‘‘zeros,’’ just as in one dimensio
The transverse components consist of sequences of recta
lar pulses with random amplitudes and random positions
the shocks. Wall motion results in continuous change of c
shape with cells swallowing their neighbors and thereby
ducing growth of the external scaleL(t) of the Burgers tur-
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bulence. At large times the behavior of the turbulence will
determined by the statistical properties of the initial poten
and, moreover, by the statistical properties of local maxi
c0(yk).

B. The cellular model and initial stage of evolution

We consider the cellular model of the initial conditions,
which we assume that space is divided into identical ce
each having a volumedV5L0

d , whereL0 is the length of the
cell andd is the spatial dimension. We assign an initial val
for the potential which is chosen independently within ea
cell. The same approach was used in Ref.@21# in order to
find the probability distributions of the amplitudes and v
locities of shocks for the one-dimensional Burgers turb
lence and in Refs.@5,8# for multidimensional Burgers turbu
lence in the case where the initial potential had a a stretched
exponential tail. In the ‘‘shot-noise model’’@25# it is as-
sumed that the initial potential is a sum of potentials of ‘‘u
nonhomogeneities’’ with random amplitudes and scales
with a Poisson ensemble for the position.

First we consider the evolution of the velocity and pote
tial fields of the ‘‘unit nonhomogeneities’’ inside the cel
assuming that there is no interaction between cells. We
sume for simplicity that inside each cell the initial potent
and velocity are isotropic and

c0~x!5c0~12x2/ l 0
2!, uxu, l 0 , ~10!

v0~x!5V0x/ l 0 , uxu, l 0 , V052c0 / l 0 , ~11!

wherec0(x)50,v0(x)50 whenuxu. l 0 andV0 is the ampli-
tude of the velocity at the borderuxu5 l 0. From the solution
~6!, ~7! we have for the velocity field

v~x,t !5V0

x

l 0~11V0t/ l 0!
, uxu,xs , ~12!

wherexs is the position of the shock surface

xs5 l 0~11V0t/ l 0!1/25~ l 0
212c0t !1/2. ~13!

In the one-dimensional case this solution is a well knownN
wave @3#.

The energy of the velocity field is given by

E~ t !5E v2~x,t !ddx5
2pd/2

G~d/2!
E

0

xs
v2r d21dr, ~14!

and from Eqs.~12!,~13! it follows that

E~ t !5E0~11V0t/ l 0!(d22)/2, E05
2pd/2V0

2l 0
d

G~d/2!~d12!
,

~15!

whereG(z) is a gamma function. From Eq.~15! we see that
for d51 the energyE(t) decreases with time, ford52 E(t)
is constant, and ford>3 E(t) increases with time. It is pos
sible to show thatE(t) may increase with time whend>3
even if the viscosity coefficientn is finite. The increase o
the energy in the multidimensional Burgers equation~in con-
trast with d51) is the result of this equation not having
conservation form.
e
l
a

s,

h

-
-

d

-

s-
l

Moreover it easy to show that in the multidimension
Burgers equation the energy does not conserve in the lim
vanishing viscosity even at the initial stage of evolutio
when the velocity field does not have shocks. Let us cons
the evolution of the continuos velocity field having only
radial componentv r(x,t)5v(r ,t). In the limit of vanishing
viscosity we have the implicit solution of Burgers equati
v5v0(r 2vt). Substitute this solution into Eq.~14! and re-
place the Eulerian coordinater by Lagrangian coordinate
y:r 5y1tv0(y), we have the following expression for th
energy:

E~ t !5
2pd/2

G~d/2!
E

0

`

v0
2~y!@y1tv0~y!#d21S 11t

]v0~y!

]y Ddy.

~16!

From Eq. ~16! we see that the energyE(t) of continuous
field conserves only in the one-dimensional case (d51). In
particular ford52 we have from Eq.~16!

E~ t !52pE
0

`

v0
2~y!ydy1t

4p

3 E
0

`

v0
3~y!dy. ~17!

Thus for the positive perturbation of the initial velocity th
energy~mean-square gradient of the surface! increases with
time, and for the negative perturbation of the velocity t
energy decreases with time. This effect takes place due to
relatively more significant contribution into mean-squa
gradient of the surface the regions with large distancer
~16!.

The asymptotic behavior of the potential and veloc
fields is determined only by the positions and values of
maximum of the initial potential in the cells~8!, ~9!. For
relatively large time (V0t@ l 0) the velocity inside the cells
has the universal behavior

v~x,t !5x/t, uxu<xs5~2c0t !1/2. ~18!

The position of the shock surfacexs and the energy of the
field

E~ t !;c0
(d12)/2t (d22)/2 ~19!

are determined only by the value of the initial potent
maximumc0. It is easy to show that this asymptotic beha
ior takes place for the arbitrary initial localized perturbatio
with the potential maximumc0.

Let us assume (L0@ l 0) and that the maximum value in
the ‘‘i th’’ cell is c0,i . The interaction between cells begin
when the shock surfaces of neighboring cells come in c
tact, i.e., whenuxs,i u1uxs, j u5L0. At rather large time the
border between the cells becomes a hyperplane, moving
constant velocityuc0,i2c0,j u/uyi2yj u away from the cell
with a larger value of the unital potential@5#. When the po-
tential maximum in all of the cells is the same, i.e., wh
c0,i5c0, then at large times the hypersurfaces betwe
neighboring cells are immobile and the velocityv(x,t) and
potentialc(x,t) fields have stationary periodic structure. Th
gradient of the velocity field decreases ast21, which means
that the energy densityE(t)5^v2& decreases according to

E~ t !;L0
2/t2. ~20!
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2598 PRE 61S. N. GURBATOV
For a random distribution of the potential maximumc0,i
we have the permanent absorption of cells with low values
the potential so that the external scale of the turbulenceL(t)
increases with time. The mean energy evolution strongly
pends on the statistical properties of the maximum poten
distribution. The energy decay is slower than for the perio
structure~20!. The interaction between cells changes also
law ~19!. Moreover, ford>3, due to the interaction betwee
cells the increase of energyE(t) Eq. ~19! may change to a to
a decrease. It will be shown later that asymptoticallyE(t)
}t2p with p lyings in the interval 2.p.(22d)/2.

III. ENERGY EVOLUTION AND PROBABILITY
DISTRIBUTIONS OF THE TURBULENCE

AND THE INTERFACE

We assume that the initial random potentialc0(y) is sta-
tistically homogeneous. Then, from Eq.~4! it follows that the
turbulence energy is determined by the time derivative of
mean potential

E~ t !5^v2~x,t !&5^@¹c~x,t !#2&52
]^c~x,t !&

]t
. ~21!

Let Pc(H,t) denote the probability density ofc at timet and
let Qc(H,t) denote the cumulative probability to havec
,H, given by

Qc~H,t !5E
2`

H

Pc~A,t !dA. ~22!

The mean value of the potential^c& ~i.e., mean value of the
height of the surface! at time t is then expressible as

^c&5E
2`

1`

HPc~H,t !dH. ~23!

Thus we can find the mean energy of the turbulence if
know the probability distribution functionPc(H,t), where
Pc(H,t)dH is the probability that the absolute maximum
F(x,y,t) ~6! lies in the intervalH,H1dH for all y.

The functionPc,y(H,y;x,t) is the joint probability distri-
bution function~PDF! of c and y and PcdHddy is the the
probability that the absolute maximum ofF(x,y,t) lies in
the intervalH,H1dH in the volume elementddy. By inte-
grating thePc,y(H,y;x,t) over H we obtain the PDF of the
Lagrangian coordinatey:

Py~y;x,t !5E
2`

1`

Pc,y~H,y;x,t !dH, ~24!

which permits one to find the probability distribution fun
tion of the velocity field~7!.

Since the initial potential is homogeneous we will co
sider the pointx50 and no longer includex in the parameter
of the probability distribution function. In the ‘‘cellular’’
model we assume that the space is divided up into elem
tary cells of volumedV5L0

d . We consider the late stage o
evolution when the external scaleL(t) is much greater than
f

e-
al
c
e

e

e

n-

L0. On this scale the initial potential field is homogeneo
~Formally we can introduce a random uniform distribution
cell positions.!

The asymptotic behavior of the probability distributio
function of absolute maximum of a large number of rando
quantities is determined by the asymptotic properties of th
cumulative distribution function at large values. We assu
that in each cell the cumulative probability function of th
initial potentialc0(y) is the same and can be represented
the following form:

Prob~c0,H !5F~H !512 f ~H !. ~25!

The cumulative probability distribution function forF @Eq.
~6!# in the i th cell is

Fi~H !512 f i~H !, f i~H !5 f S H1
yi

2

2t D . ~26!

Hereyi is the coordinate of theith cell. Due to the indepen
dence of the initial potential in different cells we can dete
mine the cumulative distribution functionc as

Prob~c,H !5Q~H,t !5) Fi~H !

[) @12 f i~H !#. ~27!

From Eq.~26! we see thatf i(H) decreases with the distanc
uyu.

We will consider the limit whent becomes large, so tha
the number of factors in Eq.~27! becomes significant. This
means that the absolute maximum ofF is reached for rather
large H, so in each cell we havef i(H)!1, thus 12 f i(H)
.exp@2fi(H)#, and we can rewrite Eq.~27! in the form

Q~H,t !5e2N(H,t), ~28!

where

N~H,t !5(
i

f i~H !5(
i

f S H1
yi

2

2t D . ~29!

At large t when the difference betweenf i in neighboring
cells is small, we can replace the summation in Eq.~29! by
an a volume integral:

N~H,t !5
1

L0
dE f S H1

y2

2t Dddy. ~30!

For largeH the events for whichc i is greater thanH are rare
and they have a Poisson distribution. ThusN in Eq. ~28! is a
mean number of events whenc.H.

From ~28,30! we have two equivalent expressions for t
mean potential:

^c&5E
2`

1`

H
]

]H
e2N(H,t)dH5E

0

1`

H~Q,t !e2QdQ,

~31!
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whereH(Q,t) is a solution of the equation

N~H,t !5Q. ~32!

Formally we can integrate in Eq.~31! over the infinite inter-
val of H since the probability ofH being negative is negli-
gibly small whent is large.

In order to find the probability distribution function of th
velocity we first of all need to find the joint probability dis
tribution of value and the coordinate of the absolute ma
mum of F. The probability that the absolute maximum is
the i th cell, with a value in the intervalH,H1dH, is

Prob~yPD j ,HP@H,H1dH# !

52
]

]H
f j~H !)

iÞ j
@12 f i~H !#. ~33!

Here the product over all cells withiÞ j is the probability
that outside thej th cell all local maxima are less thanH.

With the same assumption as before we can find the j
probability distribution coordinate and value of the absol
maximum. At larget we have

Py~y,t !5P~yPD j !/L0
d ~34!

and after integration overH we have the following expres
sion for the probability distribution function of the absolu
maximum coordinate

Py~y,t !52
1

L0
d E

2`

1` ]

]H
f S H1

y2

2t De2N(H,t)dH. ~35!

Integration by parts leads to

Py~y,t !5
1

L0
dE

2`

1`

f S H1
y2

2t D ]

]H
e2N(H,t)dH

5
1

L0
dE0

1`

f S H~Q!1
y2

2t De2QdQ. ~36!

HereH(Q) is a solution of Eq.~32!. Using Eq.~30! it is easy
to see that the norm ofPy(y,t) is unity.

In the theory of the absolute maximum of random s
quences@32# the large parameter of the theory isM — the
number of ‘‘points’’ in a sequence. In our case we consid
formally an infinite number of points, but owing to the par
bolic form used in Eq.~29! the effective number of cells is
finite and increases with time. We stress again that exp
sions~30!, ~36! are valid only whenL(t)@L0.

IV. THREE TYPES OF SELF-SIMILARITY
FOR BURGERS TURBULENCE

In a previous section we derived expressions for the pr
ability distribution function of the potentialc(x,t) ~28!, ~30!
and for the mean potential~31! which determines the energ
evolution of the turbulence~21!. We also derived the form o
the probability distribution function for the absolute max
mum coordinate~35! which coincides with the form of the
velocity probability distribution function~7!. It is known that
there are three types, known as the Frechet, Weibull,
i-

nt
e

-

r

s-

-

d

Cumbel classes, of asymptotic behavior for the probabi
distribution function of the large sequence of random qu
tities @32,33#. In this section we will show that these thre
types of initial condition lead to three types of asympto
self-similar behavior of the Burgers turbulence.

A. Distributions with a power-law tail: Frechet class

Let us now assume that the cumulative probability dis
bution function of the initial potential~25! has a power law
tail

f ~H !5S H*
H D g

. ~37!

In the integral~30! for N(H,t) we can integrate over the
radiusr 5uyu and obtain

N~H,t !5
2pd/2

G~d/2! S H*
H D gE

0

` r d21dr

S 11
r 2

2Ht D
g . ~38!

This integral converges wheng.d/2, and gives the
asymptotic distribution of the potentialc when the probabil-
ity distribution function of the initial potential decays suffi
ciently rapidly. Replacing the variabler by r 5(2tH)1/2x al-
lows us to writeN(H,t) as a power-law function ofH

N~H,t !5
H

*
g

L0
d

td/2

H (2g2d)/2
Cd ,

Cd5
2(d11)/2pd/2

G~d/2!
E

0

` xd21

~11x2!g
dx, ~39!

where Cd depends ond as well asg. Thus we have the
self-similar cumulative function~28! of the potential~height
of the surface! is given by

Q~H !5expF2S H*
H D (2g2d)/2S t

tnl
D d/2G . ~40!

Here we introducetnl as a nonlinear time of evolution

tnl5
L0

2

H* Cd
2/d

. ~41!

It follows from Eq. ~40! that the probability distribution
function of potential is self-similar with the amplitude sca
Hs(t):

Hs~ t !5H* S t

tnl
D d/(2g2d)

. ~42!

The time evolution of the velocity variance~21! is deter-
mined by the time derivative of the mean potential~31!. It is
easy to see from Eq.~40! that the expression for the mea
potential converges ifg.d/211, and in this case the mea
value ^c&;Hs(t). For g,d the mean potential̂ c& in-
creases faster in time then the local height of the surf
which grows proportionallytl. The superlinear increase o
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mean potential is possible while the KPZ equation~4! de-
scribes the evolution of shapec(x,t);h(x,t)5H(x,t)2tl
of the surface and the normal growing of the surface is
cluded a for this equation@12–14#.

From Eq.~21! the velocity variance~turbulence energy! is
given by

E~ t !52
]^c&

]t
;

]Hs

]t
}t2p; p5

2~g2d!

2g2d
. ~43!

We stress here that for this expression to be validg must
satisfy g.gcr5d/211. From Eq.~43! we see that wheng
lies in the interval

d

2
11,g,d, ~44!

the velocity variance increases with time. Thus the veloc
variance increases only if the spatial dimensiond satisfies
d>3. Ford53 we have the same results as the ‘‘shot-no
model’’ of the initial perturbation@25#. On the left hand side
of the inequality~44!, if g5d/21«,(«!1) we have for the
index p in Eq. ~43!

p«5
22d12«

2
. ~45!

This means that~a! when d51 the energy always decay
with p.1/2, ~b! whend52 the variance decays very slow
with p5«, ~c! when d53 the variance increases withp.
21/2, and~d! whend@1 thenp.(22d)/2.

This behavior of critical index has a simple explanation
we consider the velocity field evolution in an elementary c
at the stage before the interaction with other cells takes p
~Sec. II B!. It follows from Eq. ~19! that the energyE(t) of
an elementary volume varies asE(t);c0

(d12)/2t (d22)/2.
When the power indexg of potential probability distribution
function is close to the critical valuegc , then probability
distribution function of the initial potential has a relative
slow decay and the general evolution of the turbulence v
ance is determined by the cell with very high amplitude. It
easy to see that at the critical point the time dependenc
the mean variance~45! is the same as the time dependence
the energy of an initial cell~19!.

As g increases the interaction between the elemen
cells begins to play a more and more important role. Wh
g5d and (d.2) the increase of varianceE(t) will switch to
a decrease with time. Wheng@d the variance will decay as
t21 which is close to the law for the stretched exponen
type of initial potential~see Sec. IV C!.

It is easy to show from Eq.~36! that the probability dis-
tribution function of the coordinate of the absolute maximu
of the potential is also self-similar, i.e.,

W~y!5
1

Ld~ t !
WsS y

L~ t ! D , ~46!

whereWs(z) is the dimensionless form of probability distr
bution function
-

y

e

f
ll
ce

i-

of
f

ry
n

l

Ws~z!5AE
0

` e2QdQ

F 1

Q2/(2g2d)
1z2G g , ~47!

A is normalization coefficient depending ond andg. In ~46!
L(t) is the external scale of turbulence and

L~ t !5
~2Cd!1/2~ tH* !g/(2g2d)

L0
d/(2g2d)

;L0S t

tnl
D g/(2g2d)

, ~48!

The distribution~47! decays;z2 at small distances and
by the power law at large distances:W(z).A/z2g. From this
we see again that the mean energy is finite wheng.gcr
5d/211, which is also the condition that the mean ener
in separate cells~19! E(t);*H (d12)/2f 8(H)dH be finite.
Note that the mean initial energy~15! E(0)5^E0&/L0

d

;*H2f 8(H)dH is finite if g.2 for all value ofd.

B. Compactly supported potential: Weibull class

Let us now assume that the initial potential is bounded
some valueHm @c0(y)<Hm in all cells# and that the cumu-
lative probability distribution function has a power law b
havior in the neighborhood of the maximum, i.e.,

f ~H !5S HM2H

H*
D a

, H,HM ~49!

and is zero forH.HM . By the same procedure as abo
~see Sec. IV A! it follows that the cumulative probability
distribution function of potential has the form~28! with

N~H,t !5
~HM2H !(2a1d)/2~2t !d/2

L0
dH

*
a

Cd ,

Cd5
2(d11)/2pd/2

G~d/2!
E

0

1

r d21~12r 2!adr ~50!

and is self-similar for arbitrary dimensiond and power index
a. The mean potential tends to the maximumHM according
to the power law

^c&5HM2 c̃H* ~ tnl /t !
d/(2a1d). ~51!

Herec̃ is a positive numerical coefficient, andtnl is the non-
linear timetnl ~41!, where the constantCd is determined by
the expression~50!.

From Eq.~51! it follows that the energy always decreas
according to the power law

E~ t !52
]^c&

]t
;t2p, p5

2~a1d!

2a1d
. ~52!

It follows from Eqs. ~36!,~49!,~50! that the PDF of the
absolute maximum coordinatey is self-similar @Eq. ~46!#
with the spatial scaleL(t)

L~ t !;L0~ t/tnl!
a/(2a1d). ~53!

The general result for the length scale evolution for syste
in the Weibull class has actually been noted in Eq.@29# ~al-
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though not explicitly derived!. It is easy to see that the en
ergy ~43!,~52! and the external scale~48!, ~53! of the turbu-
lence are described by the same expressions for a distribu
having a power-law tail and for a compactly supported d
tribution if we seta52g in Eq. ~49! (g,0).

The form of the distribution of the absolute maximu
coordinate is now defined by the integral

Ws~z!5AE
u
*

(z)

`

~u2/(2a1d)2z2!ae2udu,

u* ~z!5z2a1d. ~54!

It can be seen that this distribution decays exponentially
largez

Ws~z!;e2z2a1d
za(22d22a). ~55!

It is interesting to compare the evolution of Burgers tu
bulence for a compactly supported initial potential with t
evolution of turbulence for a Gaussian initial potential ha
ing scaling properties with dimensionh, such that 0>h.
21 @30#. For values ofh that satisfy this condition the initia
potential correlation function has a singularity at the orig
In Ref. @30# a special class of random solution of the on
dimensional Burgers equation was constructed. For this
lution the self-similar behavior is true at all times and n
just asymptotically. Such scaling behavior corresponds to
characteristic lengthL(t);t1/(22h). Comparing this result
with Eq. ~53! we see that fora521/h anda.1 the evolu-
tion of turbulence with a compactly supported initial pote
tial tends asymptotically to the self-similar solution d
scribed in Ref.@30#.

From Eq.~52! we see that when probability distributio
function of initial potential decays very rapidly (a→`) the
mean energy decays ast21 just as it does for the stretche
exponential type of initial potential. The special case wh
a51 is equivalent to the uniform behavior of the probabil
distribution function for the initial potential overH,HM ,
that is to sayW(H)52] f (H)/]H5H

*
21 . In this case the

energy E(t);t2(11d)/(21d) which is equivalent to the
asymptotic law for the uniform distribution of the initial po
tential @28#.

The limit a→0 when the energy decays ast22 in all
dimensiond is also interesting. In this case the probabil
distribution function of the coordinate~and of the velocity!
has the universal formWs(z);exp(2zd) for all z. It easy to
see that fora→0 the integral scale of the turbulence do
not increase with time. The case ofa→0 has a simple ex-
planation if we rewrite the cumulative probability distribu
tion function for the initial potential corresponding in th
form

f ~H !5PE~HM2H !,

W~H !52
] f ~H !

]H
5Pd~H2HM !. ~56!

HereE(z) is the unit function,d(z) is the delta function, and
P is the probability that in some cells the potential amplitu
is exactly equal toHM . This probability may by rewritten as
on
-

at

-

-

.
-
o-
t
e

-

e

P5(L0 /LP)d whereLP is the typical distance between cel
when the initial potential is equal toH* andL0 is the size of
the cells. It is easy to see that in this case the unive
behavior of energy decayE(t);t22 is due to the fact that
after some intermediate stage we have ‘‘frozen’’ turbulen
This means that the spatial structure of the velocity will n
change in time and only the amplitude of the velocity w
decay likeDL/t, whereDL is the random distance betwee
two cells with equal initial potential, i.e., (Hi5H j5HM). In
the cased51 the velocity will be a sequence of the linesv
5(x2xi)/t with the immobile shocks at (xi 112xi)/2, where
xi is the position of the point wherec i5HM . This case was
considered in Refs.@26,27# but with some other assumption
and with other tools. In arbitrary dimensiond the energy
decays asLP

2 /t2, and the probability distribution function o
the Lagrangian coordinate and velocity will have the statio
ary formW(z)5Ae2zd

with the scaleL;LP;L0P21/d. For
d52 this distribution has a Gaussian form. In conclusion
note that this asymptotic ‘‘frozen’’ behavior for bounded in
tial perturbation of potential takes place for arbitrarya when
d→`.

C. Stretched exponential tail of the initial potential:
Gumbel class

Let us now assume that the cumulative probability dis
bution function of the initial potential~25! has a stretched
exponential tail

f ~H !5~H/Hp!aexp@2~H/H* !b#. ~57!

For initial conditions of this type of the distribution potenti
is localized in a narrow regionDH near the mean valueH0
@H* . In the integral~30! over y we can take into accoun
only the quadratic term in the exponent and obtain the
lowing expression:

N~H,t !5S H

Hp
D aF 2ptH

*
b

bHb21L0
2G d/2

e2(H/H
*

)b
. ~58!

Let us introduce the dimensionless potentialz so that

H5H* h0S 11
z

h0
bb

D , ~59!

where h0 is a solution of the transcendental equati
N(H* h0)51:

h0
(2a1d(12b))/2S t

tnl
D d/2

e2h0
b
51,

h0.S d

2
ln

t

tnl
D 1/b

. ~60!

Here tnl is the nonlinear time

tnl5
L0

2

2pH*
S Hp

H*
D 2a/d

. ~61!

The variablez in Eq. ~59! has a universal double-exponenti
distribution att@tnl
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F~z!5e2e2z
. ~62!

When t@tnl the distribution of the potentialc is concen-
trated in the narrow regionDH/H0;h0

2b;@d ln t/tnl#
21 near

the mean valuê H&5H* h0;(ln t)1/b. From Eq. ~21! we
have the following expression for the energy of turbulenc

E~ t !.2H*
]h0

]t
5

2H* ~d/2!1/b

tb
~ ln t/tnl!

(12b)/b. ~63!

From Eq.~63! we see that the energy decays according to
universal lawE(t);t21 with some logarithmic correction
the decay is faster ifb.1 @tail of probability distribution
function f (H) decays faster then the exponential law#, and
slower if b,1. It must be stressed also that the law of dec
does not depend on the dimension of the space and so i
same as in one dimension@21#.

The probability distribution function of absolute max
mum coordinatey and the velocityv ~7! are Gaussian and
the variance of each component is given by

^yi
2&5L2~ t !5

tH*
bh0

b21
;

t

~ ln t/tnl!
(b21)/b

,

^v i
2&5L2/t2. ~64!

The two-point probability distributions of the velocity an
correlation functions were found in Ref.@5,8# for the special
caseb52. The shape of the two-point probability distribu
tion function of the longitudinal component is the same
the space of different dimensions, and coincides with
analogous PDF of the one-dimensional Burgers turbulen
The transverse velocity components, unlike the longitudi
ones, are statistically independent in different cells and h
a Gaussian probability distribution inside them. These res
may be extrapolated to the arbitrary stretched exponen
tail of the initial potential.

V. CONCLUDING REMARKS

The present work has considered the evolution of rand
solutions of the unforced Burgers and equations ind dimen-
sions in the limit of vanishing viscosity. The main statistic
assumption is the independence of the initial velocity pot
tial c0 in different cells.

We show that the asymptotic behavior of the turbulence
large times is determined by the tail of cumulative init
potential probability distribution functionF(H)512 f (H).
We show that three classes of initial distribution lead to
self-similar evolution of the turbulence at large times. In t
theory of extremes these limiting distributions are known
~a! Frechet class whenf (H)}H2g; ~b! Weibull class when
f (H)}(Hmax2H)2g,g<0; and~c! Gumbel class whenf (H)
}exp(2Hb). One can find in Ref.@32# more general condi-
tions which are necessary and sufficient for the probab
distribution functionf (H) to belong to each of three types

We show that the mean potential~mean height of the
surface! increases with time in cases~a!,~b! according to the
power law^c&}Atr ,r 5d/(2g2d) (A,0 for g<0) while
in case ~c! it increases logarithmically according tôc&
}(ln t)1/b. For the Gumbel class the distribution of potent
:
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is localized in a narrow region near the mean value. For
Weibull class a PDF of potential exists forg.d/2 and the
mean value ofc is finite for g.d/211. The mean square
gradient of the surface ~turbulence energy! E(t)
5^@¹c(x,t)#2&5^v2(x,t)& has the power-law dependenc
E(t)}t2p,p52(g2d)/(2g2d) in cases~a! and~b! and de-
cays according tot21(ln t)(12b)/b in case~c!. For relatively
slow decay of the initial probability distribution of potentia
11d/2,g,d and dimension of the spaced.2 the energy
E(t) increases with time.

We show that the PDF of the velocity is self-similar wi
the scaleL(t)/t, whereL(t) is the external scale of the tur
bulence. In cases~a! and~b! the external scale of turbulenc
increases according to the pure power lawL(t)}tm,m
5g/(2g2d) while in case ~c! it increases like L(t)
}t1/2(ln t)(b21)/b. One can see that for fast decaying initi
distributions of potential (ugu→`) in classes~a! and~b! the
law of external scale increase and the law of energy de
tends to the corresponding laws of the Gumbel class. In
special caseg→20 @class~b!# we have the ‘‘frozen’’ turbu-
lence which means that the structures of the potential
velocity fields conserveL(t)5const and the amplitude of th
velocity increases ast21. We note that for the compactly
supported potential this ‘‘frozen’’ behavior takes place f
arbitraryg whend→`.

We now discuss what influence finite viscosity has on
asymptotic behavior of the Burgers turbulence at large tim
For large initial Reynolds number (Re0@1) we still have the
cellular structure of the turbulence at relatively large tim
For finite Renolds number it will be characterized by tw
scales, namely the external scaleL(t) and inner scaled the
latter being a typical width of the shock surface@5#. Owing
to viscosity the inner scale increases asd;nt/L. However
due to the increase ofL(t) the relative width of the shock
d(t)/L(t);nt/L2(t);Re21(t) may either decrease or in
crease with time. Here we write the Reynolds number
Re(t)5V(t)L(t)/n5L2(t)/nt, since the local slope of the
velocity is 1/t and the maximum velocity is of orderL(t)/t.

It is easy to see that for classes~a! and ~b! we have a
power law for the Reynolds number, namely, Re(t)}t r ,r
5d/(2g2d). Thus for the Frechet class (g.d/2) the Rey-
nolds number increases with time and hence even when
viscosity is finite we have the strong nonlinear stage of e
lution at large times. For the Weibull class (g<0) the Rey-
nolds number decreases with time and at large times
evolution of the turbulence will be determined only by th
linear diffusion. This is shown in Ref.@28# for the case of a
uniform distribution of the initial potential. In Ref.@28# it
was stressed that although one finds a universal power
growth for the energy decay~for a system with a bounded
and flat initial distribution!, the velocity-velocity correlation
function has a more complicated form, and there isno simple
dynamical scaling in the systemin the ‘‘nonlinear regime.’’
For the Gumbel class@ f (H)}exp(2Hb)# the Reynolds num-
ber Re(t)}(lnt)(12b)/b. Thus we may expect that forb,1 we
have conservation of the cellular structure at large times.
b.1 the nonlinear evolution is only an intermedia
asymptotic which changes at large times to linear dec
This effect is considered in Ref.@5,25# in the case of a
Gaussian initial perturbation.

Let us now move to the case when the initial potentia
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long-range correlated or nonhomogeneous. We consider
one-dimensional turbulence, assuming that the initial vel
ity is homogeneous with a spectrumEv(k);a2ukun at small
wave numbersk and falling off quickly at large wave num
bers. For the spectrum of potential we haveEc(k)
;a2ukun22. For a Gaussian velocity it is shown in Ref.@35#
that there are three regions ofn with different behavior of
turbulence. When21,n,1 the long-time evolution of the
spectrum is self-similar and the external scale of turbule
increases asL(t)}(at)m,m52/(31n) and is determined by
the ‘‘amplitude’’ of the large scale componenta. When 1
,n,2 the spectrum has three scaling regions: first, aukun
region at very smallk with a time-independent constant, a
sociated with long-correlated regions in physical space, s
ond, ak2 region at intermediate wave numbers which is
lated to the self-similarly evolving ‘‘inner region’’ in
physical space and, finally, the usualk22 region, associated
to the shocks. The growth of the external scale is now de
mined by two integrals of the initial spectrum andL(t)
}t1/2(ln t)21/4. Switching wave number from theukun to the
k2 region tends to zero faster than the energy wave num
;1/L(t) and asymptotically we have the self-similar evol
tion of the spectrum. Forn.2, long-time evolution is also
self-similar andL(t)}t1/2(ln t)21/4. Thus for a Gaussian per
turbation we have one critical indexn for the behavior of
external scale and energy. Whenn51 the index of the power
law dependence ofL(t) continuously transforms fromm
52/(31n),(n,1) to them51/2 index of the leading term
in the regionn.1.

Let us assume that for the multidimensional Burgers t
bulence the initial potential is isotropic and has a power-l
dependence at small wave numbers, i.e.,Ec(k);a2ukun22.
The variance of the potential is determined by^c2&
;*0

`Ec(k)kd21dk and is finite whenn.22d. For 22d
,n,2d its structure function is dc(x)5^@c0(x)
2c0(0)#2&;uxu22n2d. Using the rescaling of the structur
function in Eq.~6! we see that the external scale increases
L(t);(at)m,m52/(21n1d) @5,11#. This law does not de-
pend on the PDF of the initial potential. Introducing the Re
nolds number directly through the Hopf-Cole solution@5#
Re(t)5L2(t)/n5V(t)L(t)/nt we see that in this region ofn
the Reynolds number increases with time according
}t (22n2d)/(21n1d). It means that at late stage the turbulen
has a strong nonlinear cellular structure.

Considering the case of independent amplitudes in dif
ent cells, we see that the correlation function of the init
potentials equal to zero if the distance between the poin
dia
,
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greater then the size of the cell. Thus, the discrete mode
the initial conditions considered in the present paper is eq
to the uncorrelated potential withn>2. Here we show that
the laws of evolution of the external scaleL(t) ~48!,~53!,~64!
and the energyE(t) ~43!,~52!,~63! are very sensitive to the
tail of the PDF of the initial potential. For the stretched e
ponential tail~i.e., the Gumbel class! the leading term for the
evolution of the external scale ist1/2. Thus we can expec
that in multidimensional turbulence the long-range corre
tion of the potential for 22d,n,2 does not play an impor
tant role for the evolution of the external scale and ene
and we have only one critical indexn. This is shown in Refs.
@24,35# for the one-dimensional case with a Gaussian pot
tial. When n522d the universal index of the power law
dependence ofL(t) continuously transforms fromm52/(2
1n1d),(n,22d) to the indexm51/2 for the leading term
in the region wheren.22d. In this case we have also th
same critical indexn522d for the energy. In the interva
22d,n,2 we have conservation of the velocity spectru
Ev(k)}ukun at very small wave numbers. But this small r
gion is not significant for the energy of the turbulence a
asymptotically the spectrum of the velocity tends to the s
similar evolution.

We have a much more nontrivial situation when the p
tential distribution has a with power-law tail~Frechet class!
or when it is a compactly supported potential~Weibull
class!. For n,22d we find, using the scaling properties o
solution ~6!, that the external scale increases asL(t)
;(at)m,m52/(21n1d). Thus the evolution ofL(t) and
the energyE(t);L2(t)/t2 do not depend on the PDF of th
initial potential. For the uncorrelated potentialn>2 the
power indexes laws of the scale evolutionm5g/(2g2d)
and energy evolutionp52(g2d)/(2g2d) depend ong.
The case of a homogeneous continuous potential wit
power index 22d,n,2 is equal to the existence of long
range correlation of the the potential amplitudes in cells. W
can expect that in the region 22d,n,2 the long-range
correlation of potential influences the energy decay.
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