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High-Q cavity-induced synchronization in oscillator arrays
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A model for a large number of Josephson junctions coupled to a cavity is presented. The system displays
synchronization behavior very similar to that reported in recent expeririénBarbarat al, Phys. Rev. Lett.
82, 1963(1999]. The essential dynamical mechanism responsible for coherence should be generic in nonlinear
oscillator systems where the interactions are mediated by a highly resonant cavity, in analogy with gas lasers.

PACS numbeg(s): 05.45.Xt, 74.50+r

[. INTRODUCTION ogy to underline the remarkable similarities between the two
systems; they pointed out that this analogy has been noted by
One of the most widely cited types of self-organized dy-others[10,11], and as early as Tillej12].
namical behavior is that of spontaneous synchronization in a The purpose of the present paper is to investigate the role
population of nonlinear oscillators. Well known examplesof resonant cavity enhancement of synchronization from the
include the flashing of fireflies, networks of neurons and carperspective of nonlinear dynamics. The resonant cavity adds
diac pacemaker cells, chorusing crickets, laser arrays, ari@ crucial new element to the frequency-locking mechanism
Josephson junction array$—5]. Features common to these Which is missing from traditional treatments. We explore this
and other such systems can be understood in fairly genertechanism both by studying a specific circuit model for the
terms, most famously embodied by a model introduced byosephson array, and by developing the connection with a
Kuramoto[6]. The Kuramoto model explains how mutually modified version of the Kuramoto model. Thus, the main
interacting oscillators, each of which has a different naturafeatures are expected to be applicable in general to oscillator
frequency, can undergo a sharp macroscopic transition fror@rrays coupled via a strong resonance. The advantage of the
a disordered to a coherent dynamical state when the couplingpecific example of the Josephson array is that it lets us
constant exceeds a critical threshold. explore the phenomenon in some depth.
Recently[7], laboratory experiments on two-dimensional
Josephson arrays revealed a synchronization transition with
unique properties. These experiments approached the syn-

chronization problem in an interesting way, namely by in-  Our circuit model is depicted in the inset of Fig. 1. We
creasing the numbeX of active oscillatorgrather than tun-  consider an array ol Josephson junctions coupled via ca-
ing a global parametgrAs N passed a critical value, the pacitors to a resonafRLC load. The underdamped junctions
amount of detected power increased dramatically; moreovegre current biased in the hysteretic part of th¢ curve, so
the conversion efficiency from dc to ac power was unusuallthat a given junction can be put in either the zero or finite-
large compared to most other Josephson array experiments.
An important distinguishing feature of the experimental de-

II. MODEL AND SIMULATIONS

sign was the existence of a strongly resonant cavity. Barbara 20 =0

et al. suggest that this provides the essential mechanism op- 1 C A °

erating in their experiments. A somewhat related experiment = 1.5 4 F1.s S

was performed with a long Josephson junction interacting <2 @*ci I =

with a highQ cavity [8,9], and also in this case the results | / fo"

clearly showed an enhancement in the phase-locking due to *;1 0 . r1o g

the cavity. In these latter experiments, however, the thresh- ~ @

old for the onset of the fully phase-locked state afgrijwas 2 K

not observed. 205 1 o5 =
Arrays of Josephson junctions coupled to a cavity thus

seem to have striking similarities with the laser: they consist

of oscillators that would radiate incoherently if not for the 0.0 g 6 30 400

presence of a tuned cavity. Barbataal. employed this anal- active oscillators

FIG. 1. Load power(stars, left axis in normalized units and
Kuramoto order parametdsquares, right axjsversus number of

*Electronic address: giofil@physics.unisa.it active junctions for a parallel array. The inset shows the circuit
"Electronic address: nfp@eltek.dtu.dk schematic. Parameters of the simulations Bre30, 8=10, y
*Electronic address: kurt.wiesenfeld@physics.gatech.edu =0.003, §=0.006,3,=1, Q=100.
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FIG. 2. Load powelstars, left axisand voltagesquares, right 1 I I
axis) versus detunind. The solid line refers to the case with two : . . | : ! } " . .
active oscillators, and the dashed lines to three active oscillators. Q Wo w
All quantities are plotted in normalized units. Parameters of the » . o . .
simulations areN=3, g=10, §=0.1, 8, =1, Q=100. FIG. 3. Schematigin arbitrary unit$ illustrating the essential

elements of a cavity-induced synchronization mechanism: a sharp

voltage state—only the latter corresponds to an active oscileavity resonancépeaked af)) and an off-resonance distribution of
lator, which allows ugas in the experimen{s’]) to change oscillator frequenciegcenterw,, width Aw).
the number of active oscillatofd, by selecting the appro-
priate initial conditions. In our simulations the critical cur- defined in such a way that fd» =0 the first oscillator has
rents are chosen at random from a distribution with a fixedhe same natural frequency of the others, andXer1 it has
width (as would be the case for any fabricated array withthe maximum difference. It is clear that the system with three
many junctiong The distribution of critical currents leads to oscillators is able to keep the oscillators locked for a wider
a distribution of natural frequencies; consequently, onlyrange of detuning. It is also clear why this is so: the cavity
through their nonlinear interactions can any frequency lockioaded with a larger number of oscillators can deliver more
ing occur. power(measured as the power dissipated in the load, i.e., the

Figure 1 plots the power dissipated in tR&Cload as a stars in Fig. 2 and therefore is able to overcome a larger
function of N, as determined from numerical simulations. amount of disorder in the critical currents.
There is a clear threshold above which the load becomes The simulations lead us to the qualitative picture depicted
active. To gain some insight into what the individual junc-in Fig. 3. Sketched is a resonance curve representing the
tions are doing, we also plot an order parameter cavity responsépeak at(}), together with an intervalwidth
=(1/Ny)Z; expl¢;) where ¢; is the phase of the macro- Aw) indicating the range of naturdl.e., uncoupled fre-
scopic wave function across théh junction. This quantity quencies of the active oscillators. As each off-resonance os-
(by definition O<r=<1) jumps from a very low value to es- cillator is added, the power in the load builds gradually, and
sentially unity. Thus, the threshold observed in the loadas the load oscillations grow, they pull the individual oscil-
power coincides with the sudden onset of complete coherator frequencies toward the cavity resonafzeThis con-
ence (frequency and phase lockingMoreover, the maxi- tinues until the cavity oscillation is large enough that one
mum conversion efficiency from dc to ac power is quiteoscillator locks to the frequenc§. This event substantially
large at 14% for the example in Fig. 1, as compared withincreases the amplitude of the load oscillations, so that addi-
17% and 5% reported in Rdf7]. A similar model of soliton  tional oscillators are pulled into the locked state. This
oscillators coupled in parallel to a cavity was introduced inmechanism provides a strong feedback mechanism which is
[8,9]. It was shown that the interaction through the cavityabsent in a lowQ cavity.
was strong enough to force phase locking also for junctions This idea can be made quantitative by analyzing the equa-
with different natural oscillation frequenci¢$3]. tions governing the dynamics of the circuit in Fig. 1. In

The simulations shown in Fig. 1 also provide a key in-dimensionless form, they are
sight as to the essential dynamics of the transition. Above

threshold, as we successively add one more active oscillator B;ﬁj—i— ¢j +1;sing; =1 _qj , (1)
to the system, the power in the load jumps by a fixed

amount. Since it is the load that mediates the coupling be- R . 1 1

tween elements, this means that the coupling strength itself P+ P+ ——=0j=2¢;, 2)
increases with each additional synchronized oscillator. To Lo Lewf, B

better visualize the effect, we have run a simulation with just

two and three identical junctions. We have then smoothlywherej=1,... N, andg is the junction capacitance; is

changed the critical current of one oscillator, and observethe critical current] is the bias current; is the charge on

the behavior of the power dissipated in the load and of théhe jth coupling capacitorP is the total charge on the load
average voltage. The result is shown in Fig. 2, where weapacitorsc is the coupling capacitance, ahd R, andC

have plotted the average voltage across an oscillatoare the load inductance, resistance, and capacitance, respec-
(squares as a function of the detuning. The detuning is tively. To make the equations dimensionless we have used
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2.0 . . - L : . : 2.0 Ill. A GENERAL FRAMEWORK

In view of the generality of the observed phenomenon, we
would like to draw a connection with a generic model de-
scribing synchronization. Undoubtedly, the best known such
model was introduced by Kuramof6é,15|
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In fact, a rigorous condition between the overdamped se-
R R N TS X ries arraydEqgs. (4) and (5) with 8=0] and the Kuramoto
active osallators model, Eq.(6), has been dgmons.tra.ted previougly]. Wg
have not been able to provide a similarly careful reduction of
FIG. 4. Load power(stars, left axis in normalized units and the more general Josephson systéfisand (2) and(4) and
Kuramoto order parametésquares, right axisversus the number (5). In what follows, we have a more humble goal. Namely,
of active junctions for a series array. The inset shows the circuitve want to capture the essential features of the new synchro-
schematic. Parameters of the simulations Bre30, 5=10, ¥ = pjzation mechanism by an appropriate modification of the
=0.003, 6=0.1, . =0.1, Q=100. generic model. Our remarks parallel the analysis of Ref.
[16]; the basic picture, we believe, remains unaltered for un-
the frequencyw,.=2eRly/# and the analogous of the su- yerdamped junctions in the parallel biasing scheme of Fig. 1.
perconducting quantum interference dewSQUID) param- In general the variableg; in Eq. (6) represent a reparam-
eter BL="/2eLlo. The distribution(l;) of the critical cur-  etrization of the limit cycle in the uncoupled limit, such that
rents is assumed Lorentzian around an average vilue the uncoupled oscillator undergoes uniform angular velocity
P(IJ)=(7/77)[7/2+(I_—Ij)z]’l. We note, first, the familiar around the limit cycle. Although this variable is well defined
fact that the junctions do not directly couple to each othemathematically, in general it is not easy to write down the
[8], but rather couple to the load which then acts back on thexplicit transformation from the original dynamical variables
junctions, in this case through the coupling capacitors. Théthe ¢; of Eq. (5)] to the phase variabldshe 6; of Eq. (6)].
key point is this: when the load has a sharp resonance, it actss it happens, for overdamped arrdy3.=0 in Eq.(5)] the
not merely as a coupling medium, but it's role as an activeexplicit transformation is knowfpl6]. Similarly, in the clas-
dynamical entity becomes crucial. Summing the secongic problem of weakly coupled, weakly nonlinear oscillators,

0.0

equation over al] yields the required transformation is that from Cartesian to polar
coordinates, and the phase variablgss simply the polar
N
. ) o E ) angle[17].
P+2I'P+Q°P= 1/(N'8L)k:l bis ©) Going back to Eq(6), if the load is not strongly resonant,

then the circuit equations can be analyzed using a weak-
where we have introduced the damping paramEteiR/2L  coupling averaging method. The resulting dynamics maps
and the resonant frequen€y= \1/LC. The junction oscil- Onto the Kuramoto modgL6], where the coupling strength
lations serve to drive the load oscillations, which feed backK embodies the load response but is independent of how
on the junction dynamics, and in the absence of a strongany junctions are synchronized. Said differently, in this
cavity resonance eadlactive junction affects the loadand ~ Weak-coupling limit, the coupling constarsand a depend
thus each of the other junctionsvith roughly the same o©nly on the bare frequencies of the individual junctions, ir-
strength. In contrast, for a hig®- load those junctions respective of the frequency-pulling induced by the load. This
locked at the resonance frequency drive the load mucktands in contrast to the behavior of the full, unaveraged
harder than junctions which are not lock¢and so off- dynamics when the load has a high since then the locked
resonance Consequently, the locked junctions interact farand unlocked junctions affect the coupling differently. We
more strongly with the array. can take account of this effect by making the coupling

To make sure that the mechanism we are presenting heférength dependent dres follows:

is general enough, we have also run simulations séhes

- - o N,
: : N
arrays, i.e., with the more traditional schefid]: 0j=wj—(l/Na)2 WaKi Sin( 6, — 6,+ a), @
. _ . =1
ﬂ¢j+¢j+|j3|n¢j:|_qj (4)
N whereK; takes on a large valuK if the ith oscillator is
g+ R q+ 1 q-=i S & 5) locked, and otherwise has a relatively smaller vefuéWe
Lo’ LCw? Y = e have split off the ratidN,/N for later conveniencg Notice

that the sum is only over all active junctions, since only these
The simulation results are shown in Fig. 4, together with adrive the load in the first place. In essence, this modification
sketch of the series circuit. We notice that although the quanef the Kuramoto model is a simple way to take into account
titative picture may be different, the qualitative features arehe dynamical nature of the coupling “constant” without
the same as Fig. 1, thus suggesting that the same genesxpanding the phase space to include additional dynamical
mechanism is at work. variables.
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Let us now consider the consequences of the new wrinkle 2.0 . : : ' : :
to the collective synchronization. We can readily see that this
modified Kuramoto model reproduces the basic feature of
Fig. 1. As oscillators are activated one by one, the coupling
term builds slowly. At some point, the load is active enough
to lock one oscillator, at which point the corresponding cou-
pling constant jumps, increasing the magnitude of the non-
linear interaction, and making it more likely to lock one or
more additional oscillators. If the jump is large enough, this
can cause a cascade, with several oscillators suddenly lock-
ing at the critical value oN, (see below

To make these ideas quantitative, we suppose that the
ratio between the two values of the coupling constant is de-
termined by the ratio between the response of the resonance 0.0
at the two frequencies, the bare frequency of the unlocked
oscillatorswy and at the resonande [see Eq.(5)]:

o

o

power in the load
O
8

10 20
active oscillators

FIG. 5. Power in loadin normalized units vs the number of
K (wO/Q)Z_ 1 active junctions for various cavit@’s for a parallel array. Param-
=\ (8) eters of the simulations areN=30, =10, y=0.003, §
K LO/R =0.006, B, =1, Q=25 (crossey 50 (pluse$, 75 (triangles, 100
squares and 200(starg. The inset shows the lower part of the

Here the fact that we have modeled the system using th aseQ =400,

analytically tractable Kuramoto form becomes useful. As
long as the order parameters zero the system remains in a
state corresponding to the lower coupling const&ntThis N/ <N LO/R

. » . <Ng\/———— (12
state is stable up to a critical value of the coupling constant a (wo/Q)2—1
K. equal to the width of the natural frequency distribution
2y [6] (recall y is the half width of the natural frequency It follows that this restabilization of the=0 case will occur
distribution), so we can promptly derive the onset of insta-at a number of active oscillators lower than the first threshold
bility of the r =0 and thus estimati,,, the threshold number [Ed- (9)]. Exactly how much lower depends on the relative
of oscillators above which some frequency locking will first @Mplitudes of the resonance at the two frequen@sin
occur. This estimate is made simply by writing the condition€onclusion, we predict that there will be a coexistance of two

for the critical coupling constant corresponding to the lowerStable solution branches, one corresponding to very weakly
K value, and solving for the number of active oscillators: couPled(@nd unsynchronizgdscillators and the other cor-
responding to a finite value of the order parameter when the

N, ~ N number of active oscillators is in between E¢k2) and(9).
WK>2’y:>NaZR2’y. 9

IV. CONSEQUENCES OF THE GENERAL MODEL
When the state=0 becomes unstable in the standard model

(6) the order parameter smoothly increases as behavior observed in the Jose .
. . phson arrays is captured by the
=\1-2y/K. Instead, in the new mod€¥) the higher value 1, ified Kuramoto modei7). The key element is that the

of the coupling must be used, and therefore the value of th‘éoupling “constant” is significantly enhanced for a locked

order parameter just after the threshold is oscillator; physically, the source of this enhancement is the
highly resonant cavity. Our general picture implies that the

/ 2y \/ [ LO/R observed “turn on” of locking will be more pronounced the
r= l1-——= 1- —F—F . (10 sharper the resonance of the cavity, since this increases the
NaK/N (wo/Q)?=1 difference betweeik andK. This is precisely what we ob-
. . . serve in our simulations of the full circuit equations, as
In other words if the ratio 8 is large enough, we expect & awn in Fig. 5. As the cavit is raised, the rise of syn-
sudden jump from=0 tor=1 at the critical valudN, . This  chronization above the transition point gets steeper. We see
is just what we see in our simulation of the Josephson arrayhat for somelower) values ofQ, the load power turns on in
(Fig. 1). a way that appears approximately quadratic [&g, but for
If we now imagine decreasing again the number of activgarger values the onset is nearly vertical. Notice, too, that the
oscillators, eventually the=0 state becomes stable again thresholdN,;, shifts down with increasing, since the nec-
because there are too few active oscillatbis. Settingr  essary condition for the onset of synchronization is that the

The preceeding discussion shows that the synchronization

=0 yields load is driven hard enough to overcome the cavity power
losses(and increasing) decreases these lossdsrom these
N;R 5 11 observations, we conclude that the dependence of the ac
N <27 (11) power,P,., on the number of phase-locked junctions is non-

trivial. For the parameter values used in Fig. 5 we can plot
and so, from Eq(8), Niy Vs 1Q and extrapolate to @— 0, and find the limiting
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value ofN;,~5 corresponding to the dissipation in the junc- 0.025 — : ——
tions. o 1

Yet another interesting effect can be seen in Fig. 5 at ~0.020 - [o-ot0
N,=24. It turns out that, for this realization of randomness § N
used in Fig. 5, the 25th junction has an exceptionally low 50015 7 %
critical current(some 1/4 of the meanWhat happens, and is > 2.
clearly reflected in the figure, is that this junction never fre-  5°°7° 1 00054
guency locks. Thus, the rise in the load power simply & <
“misses a beat” but otherwise continues its steady rise as  ©-00% 7
further junctions are activatg@nd synchronized This type g
of “defect” could be easily observable in laboratory experi- 0.000 =155 " 25 25  3o°00°
ments, since quite typically a large Josephson array will con- threshold

tain a few percent of very poor junctions. FIG. 6. Threshold value dfl, vs the inverse cavity factor @/

We emphasize that the outcome of the randomization ofpjuses, left axis for =0.006 and vs the normalized frequency
the supercurrent has but little influence on the thresholdetuning 5 (squares, right axjsof a parallel array forQ=100.
curves as those shown in Fig. 5. For one of these curves wearameters of the simulations ake=30, 8=10, y=0.003, 5,
tried with ten different randomizatiorisame width and the =1.
threshold curves deviated at most by one junction. ) , , ,

The inset of Fig. 5 demonstrates that something happerEOt,h of these amount to system_atlcally_mcreasmg the inter-
at very large cavityQ, namely the appearance of a pro- e}cnons; in contrast, merely by increasing thg widthhas
nounced hysteresis, just as expected from our analysis of tHg{l® Systematic effect omNy,, though it may increase the
general model. The figure shows what happens as junctiorﬁcatter over different reaﬁzaﬂons. Here we dp not s_how the
are successively activated up M,=30, and then succes- effect of y because for this set of parameters it has simply no
sively in reverse ordexA junction was deactivated by reset- €fféct on the threshold. o ,
ting its initial conditions and raising its critical current to a !N conclusion, the model presented in this paper describes
very high valuel = 10) We see that the synchronized state € recent experiments] on power radiation from Joseph-
persists, thanks to the large oscillations of the load, whict$On junction arrays in a cavity very well. The features of the
are able to provide adequate driving to synchronize the reSynchronization behavior can be understood in generic dy-
maining active junctions. Such hysteresis was observed iff@mical terms as embodied by a modified Kuramoto model.
recent studie$18] of a Kuramoto-type model using under- We also predict that some hysteretic behavior should be ob-

damped oscillatorfi.e., adding a mass term'éj t0 Eq. (6)] served if it is possible to turn off activieand synchronized

and was also reported in coupled mechanical oscillator s qucillators, a feature that is not possible in the Josephson
tems[4] P P Y junctions experiments of Rf7]. The strongly resonant cav-

Finally, Fig. 6 summarizes our results for hog, de- ity provides the key mechanism for junction-junction inter-
' ' . h ..actions, a property familiar in other coherent physical sys-
pends on what are the key physical elements of this cawty,EemS e.g., gas lasefg,10—13
induced synchronization mechanism. Recalling Fig. 3, the e ’ '
important parameters are the width of the cavity resonance
1/Q, the detuning between the mean oscillator natural fre-
quencyd, and the width of this natural frequency distribution ~ We gratefully acknowledge P. Barbara and C. Lobb for
v. The threshold for synchronization is lowered by eitherextensive discussions and for sharing their experimental re-
decreasing the cavity lossédecreasing 1) or decreasing sults prior to publication. We also thank T. Bohr, S. Benz,
the cavity-oscillator mismatclidecreasings). (Negatives  T.A.B. Kennedy, and J. Mygind for useful discussions. K.W.
negative leads to phase lock in the out-of-phase mode arahd G.F. thank the DTU Department of Physics for its hos-
therefore the present feedback mechanism does not workpitality.
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