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High-Q cavity-induced synchronization in oscillator arrays
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A model for a large number of Josephson junctions coupled to a cavity is presented. The system displays
synchronization behavior very similar to that reported in recent experiments@P. Barbaraet al., Phys. Rev. Lett.
82, 1963~1999!#. The essential dynamical mechanism responsible for coherence should be generic in nonlinear
oscillator systems where the interactions are mediated by a highly resonant cavity, in analogy with gas lasers.
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I. INTRODUCTION

One of the most widely cited types of self-organized d
namical behavior is that of spontaneous synchronization
population of nonlinear oscillators. Well known exampl
include the flashing of fireflies, networks of neurons and c
diac pacemaker cells, chorusing crickets, laser arrays,
Josephson junction arrays@1–5#. Features common to thes
and other such systems can be understood in fairly gen
terms, most famously embodied by a model introduced
Kuramoto@6#. The Kuramoto model explains how mutual
interacting oscillators, each of which has a different natu
frequency, can undergo a sharp macroscopic transition f
a disordered to a coherent dynamical state when the coup
constant exceeds a critical threshold.

Recently@7#, laboratory experiments on two-dimension
Josephson arrays revealed a synchronization transition
unique properties. These experiments approached the
chronization problem in an interesting way, namely by
creasing the numberN of active oscillators~rather than tun-
ing a global parameter!. As N passed a critical value, th
amount of detected power increased dramatically; moreo
the conversion efficiency from dc to ac power was unusu
large compared to most other Josephson array experim
An important distinguishing feature of the experimental d
sign was the existence of a strongly resonant cavity. Barb
et al. suggest that this provides the essential mechanism
erating in their experiments. A somewhat related experim
was performed with a long Josephson junction interact
with a high-Q cavity @8,9#, and also in this case the resul
clearly showed an enhancement in the phase-locking du
the cavity. In these latter experiments, however, the thre
old for the onset of the fully phase-locked state as in@7# was
not observed.

Arrays of Josephson junctions coupled to a cavity th
seem to have striking similarities with the laser: they con
of oscillators that would radiate incoherently if not for th
presence of a tuned cavity. Barbaraet al.employed this anal-
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ogy to underline the remarkable similarities between the t
systems; they pointed out that this analogy has been note
others@10,11#, and as early as Tilley@12#.

The purpose of the present paper is to investigate the
of resonant cavity enhancement of synchronization from
perspective of nonlinear dynamics. The resonant cavity a
a crucial new element to the frequency-locking mechan
which is missing from traditional treatments. We explore th
mechanism both by studying a specific circuit model for t
Josephson array, and by developing the connection wi
modified version of the Kuramoto model. Thus, the ma
features are expected to be applicable in general to oscill
arrays coupled via a strong resonance. The advantage o
specific example of the Josephson array is that it lets
explore the phenomenon in some depth.

II. MODEL AND SIMULATIONS

Our circuit model is depicted in the inset of Fig. 1. W
consider an array ofN Josephson junctions coupled via c
pacitors to a resonantRLC load. The underdamped junction
are current biased in the hysteretic part of theI -V curve, so
that a given junction can be put in either the zero or fini

FIG. 1. Load power~stars, left axis! in normalized units and
Kuramoto order parameter~squares, right axis! versus number of
active junctions for a parallel array. The inset shows the circ
schematic. Parameters of the simulations areN530, b510, g
50.003, d50.006,bL51, Q5100.
2513 ©2000 The American Physical Society
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voltage state—only the latter corresponds to an active os
lator, which allows us~as in the experiments@7#! to change
the number of active oscillatorsNa by selecting the appro
priate initial conditions. In our simulations the critical cu
rents are chosen at random from a distribution with a fix
width ~as would be the case for any fabricated array w
many junctions!. The distribution of critical currents leads t
a distribution of natural frequencies; consequently, o
through their nonlinear interactions can any frequency lo
ing occur.

Figure 1 plots the power dissipated in theRLC load as a
function of Na as determined from numerical simulation
There is a clear threshold above which the load beco
active. To gain some insight into what the individual jun
tions are doing, we also plot an order parameterr
5(1/Na)( j exp(ifj) where f j is the phase of the macro
scopic wave function across thej th junction. This quantity
~by definition 0<r<1) jumps from a very low value to es
sentially unity. Thus, the threshold observed in the lo
power coincides with the sudden onset of complete coh
ence ~frequency and phase locking!. Moreover, the maxi-
mum conversion efficiency from dc to ac power is qu
large at 14% for the example in Fig. 1, as compared w
17% and 5% reported in Ref.@7#. A similar model of soliton
oscillators coupled in parallel to a cavity was introduced
@8,9#. It was shown that the interaction through the cav
was strong enough to force phase locking also for juncti
with different natural oscillation frequencies@13#.

The simulations shown in Fig. 1 also provide a key
sight as to the essential dynamics of the transition. Ab
threshold, as we successively add one more active oscil
to the system, the power in the load jumps by a fix
amount. Since it is the load that mediates the coupling
tween elements, this means that the coupling strength i
increases with each additional synchronized oscillator.
better visualize the effect, we have run a simulation with j
two and three identical junctions. We have then smoot
changed the critical current of one oscillator, and obser
the behavior of the power dissipated in the load and of
average voltage. The result is shown in Fig. 2, where
have plotted the average voltage across an oscill
~squares! as a function of the detuningD. The detuning is

FIG. 2. Load power~stars, left axis! and voltage~squares, right
axis! versus detuningD. The solid line refers to the case with tw
active oscillators, and the dashed lines to three active oscilla
All quantities are plotted in normalized units. Parameters of
simulations areN53, b510, d50.1, bL51, Q5100.
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defined in such a way that forD50 the first oscillator has
the same natural frequency of the others, and forD51 it has
the maximum difference. It is clear that the system with th
oscillators is able to keep the oscillators locked for a wid
range of detuning. It is also clear why this is so: the cav
loaded with a larger number of oscillators can deliver mo
power~measured as the power dissipated in the load, i.e.,
stars in Fig. 2! and therefore is able to overcome a larg
amount of disorder in the critical currents.

The simulations lead us to the qualitative picture depic
in Fig. 3. Sketched is a resonance curve representing
cavity response~peak atV), together with an interval~width
Dv) indicating the range of natural~i.e., uncoupled! fre-
quencies of the active oscillators. As each off-resonance
cillator is added, the power in the load builds gradually, a
as the load oscillations grow, they pull the individual osc
lator frequencies toward the cavity resonanceV. This con-
tinues until the cavity oscillation is large enough that o
oscillator locks to the frequencyV. This event substantially
increases the amplitude of the load oscillations, so that a
tional oscillators are pulled into the locked state. Th
mechanism provides a strong feedback mechanism whic
absent in a low-Q cavity.

This idea can be made quantitative by analyzing the eq
tions governing the dynamics of the circuit in Fig. 1.
dimensionless form, they are

bf̈ j1ḟ j1I j sinf j5I 2q̇ j , ~1!

P̈1
R

Lv rc
Ṗ1

1

Lcv rc
2

qj5
1

bL
ḟ j , ~2!

where j 51, . . . ,N, andb is the junction capacitance,I j is
the critical current,I is the bias current,qj is the charge on
the j th coupling capacitor,P is the total charge on the loa
capacitors,c is the coupling capacitance, andL, R, andC
are the load inductance, resistance, and capacitance, re
tively. To make the equations dimensionless we have u

rs.
e

FIG. 3. Schematic~in arbitrary units! illustrating the essentia
elements of a cavity-induced synchronization mechanism: a s
cavity resonance~peaked atV) and an off-resonance distribution o
oscillator frequencies~centerv0, width Dv).
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the frequencyv rc52eRI0 /\ and the analogous of the su
perconducting quantum interference device~SQUID! param-
eterbL5\/2eLI0. The distributionP(I j ) of the critical cur-
rents is assumed Lorentzian around an average valuĪ :
P(I J)5(g/p)@g21( Ī 2I j )

2#21. We note, first, the familiar
fact that the junctions do not directly couple to each ot
@8#, but rather couple to the load which then acts back on
junctions, in this case through the coupling capacitors. T
key point is this: when the load has a sharp resonance, it
not merely as a coupling medium, but it’s role as an act
dynamical entity becomes crucial. Summing the seco
equation over allj yields

P̈12G Ṗ1V2P51/~NbL!(
k51

N

ḟk , ~3!

where we have introduced the damping parameterG5R/2L
and the resonant frequencyV5A1/LC. The junction oscil-
lations serve to drive the load oscillations, which feed ba
on the junction dynamics, and in the absence of a str
cavity resonance each~active! junction affects the load~and
thus each of the other junctions! with roughly the same
strength. In contrast, for a high-Q load those junctions
locked at the resonance frequency drive the load m
harder than junctions which are not locked~and so off-
resonance!. Consequently, the locked junctions interact
more strongly with the array.

To make sure that the mechanism we are presenting
is general enough, we have also run simulations withseries
arrays, i.e., with the more traditional scheme@14#:

bf̈ j1ḟ j1I j sinf j5I 2q̇ j ~4!

q̈1
R

Lv rc
q̇1

1

LCv rc
2

qj5
1

bL
(
i 51

N

ḟ i . ~5!

The simulation results are shown in Fig. 4, together wit
sketch of the series circuit. We notice that although the qu
titative picture may be different, the qualitative features
the same as Fig. 1, thus suggesting that the same ge
mechanism is at work.

FIG. 4. Load power~stars, left axis! in normalized units and
Kuramoto order parameter~squares, right axis! versus the numbe
of active junctions for a series array. The inset shows the cir
schematic. Parameters of the simulations areN530, b510, g
50.003, d50.1, bL50.1, Q5100.
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III. A GENERAL FRAMEWORK

In view of the generality of the observed phenomenon,
would like to draw a connection with a generic model d
scribing synchronization. Undoubtedly, the best known su
model was introduced by Kuramoto@6,15#

u̇ j5v j2~K/N!(
i 51

N

sin~u j2u i1a!. ~6!

In fact, a rigorous condition between the overdamped
ries arrays@Eqs. ~4! and ~5! with b50] and the Kuramoto
model, Eq.~6!, has been demonstrated previously@16#. We
have not been able to provide a similarly careful reduction
the more general Josephson systems~1! and ~2! and ~4! and
~5!. In what follows, we have a more humble goal. Name
we want to capture the essential features of the new sync
nization mechanism by an appropriate modification of
generic model. Our remarks parallel the analysis of R
@16#; the basic picture, we believe, remains unaltered for
derdamped junctions in the parallel biasing scheme of Fig

In general the variablesu j in Eq. ~6! represent a reparam
etrization of the limit cycle in the uncoupled limit, such th
the uncoupled oscillator undergoes uniform angular veloc
around the limit cycle. Although this variable is well define
mathematically, in general it is not easy to write down t
explicit transformation from the original dynamical variabl
@the f j of Eq. ~5!# to the phase variables@the u j of Eq. ~6!#.
As it happens, for overdamped arrays@bc50 in Eq. ~5!# the
explicit transformation is known@16#. Similarly, in the clas-
sic problem of weakly coupled, weakly nonlinear oscillato
the required transformation is that from Cartesian to po
coordinates, and the phase variablesu j is simply the polar
angle@17#.

Going back to Eq.~6!, if the load is not strongly resonan
then the circuit equations can be analyzed using a we
coupling averaging method. The resulting dynamics m
onto the Kuramoto model@16#, where the coupling strength
K embodies the load response but is independent of h
many junctions are synchronized. Said differently, in th
weak-coupling limit, the coupling constantsK anda depend
only on the bare frequencies of the individual junctions,
respective of the frequency-pulling induced by the load. T
stands in contrast to the behavior of the full, unaverag
dynamics when the load has a highQ, since then the locked
and unlocked junctions affect the coupling differently. W
can take account of this effect by making the coupli
strength dependent oni as follows:

u̇ j5v j2~1/Na!(
i 51

Na Na

N
Ki sin~u j2u i1a!, ~7!

where Ki takes on a large valueK̃ if the i th oscillator is
locked, and otherwise has a relatively smaller valueK. ~We
have split off the ratioNa /N for later convenience.! Notice
that the sum is only over all active junctions, since only the
drive the load in the first place. In essence, this modificat
of the Kuramoto model is a simple way to take into accou
the dynamical nature of the coupling ‘‘constant’’ withou
expanding the phase space to include additional dynam
variables.

it
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Let us now consider the consequences of the new wrin
to the collective synchronization. We can readily see that
modified Kuramoto model reproduces the basic feature
Fig. 1. As oscillators are activated one by one, the coup
term builds slowly. At some point, the load is active enou
to lock one oscillator, at which point the corresponding co
pling constant jumps, increasing the magnitude of the n
linear interaction, and making it more likely to lock one
more additional oscillators. If the jump is large enough, t
can cause a cascade, with several oscillators suddenly l
ing at the critical value ofNa ~see below!.

To make these ideas quantitative, we suppose that
ratio between the two values of the coupling constant is
termined by the ratio between the response of the reson
at the two frequencies, the bare frequency of the unloc
oscillatorsv0 and at the resonanceV @see Eq.~5!#:

K̃

K
5A~v0 /V!221

LV/R
. ~8!

Here the fact that we have modeled the system using
analytically tractable Kuramoto form becomes useful.
long as the order parameterr is zero the system remains in
state corresponding to the lower coupling constantK. This
state is stable up to a critical value of the coupling const
Kc equal to the width of the natural frequency distributi
2g @6# ~recall g is the half width of the natural frequenc
distribution!, so we can promptly derive the onset of inst

bility of the r 50 and thus estimateÑa, the threshold numbe
of oscillators above which some frequency locking will fir
occur. This estimate is made simply by writing the conditi
for the critical coupling constant corresponding to the low
K value, and solving for the number of active oscillators:

Na

N
K.2g ⇒Ña.

N

K
2g. ~9!

When the stater 50 becomes unstable in the standard mo
~6! the order parameter smoothly increases asr
.A122g/K. Instead, in the new model~7! the higher value
of the coupling must be used, and therefore the value of
order parameterr just after the threshold is

r .A12
2g

ÑaK̃/N
5A12A LV/R

~v0 /V!221
. ~10!

In other words if the ratio 8 is large enough, we expec
sudden jump fromr 50 to r .1 at the critical valueÑa . This
is just what we see in our simulation of the Josephson a
~Fig. 1!.

If we now imagine decreasing again the number of act
oscillators, eventually ther 50 state becomes stable aga
because there are too few active oscillatorsNa8 . Setting r
50 yields

Na8

N
K̃,2g, ~11!

and so, from Eq.~8!,
le
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Na8,ÑaA LV/R

~v0/V!221
. ~12!

It follows that this restabilization of ther 50 case will occur
at a number of active oscillators lower than the first thresh
@Eq. ~9!#. Exactly how much lower depends on the relati
amplitudes of the resonance at the two frequencies~8!. In
conclusion, we predict that there will be a coexistance of t
stable solution branches, one corresponding to very wea
coupled~and unsynchronized! oscillators and the other cor
responding to a finite value of the order parameter when
number of active oscillators is in between Eqs.~12! and~9!.

IV. CONSEQUENCES OF THE GENERAL MODEL

The preceeding discussion shows that the synchroniza
behavior observed in the Josephson arrays is captured b
modified Kuramoto model~7!. The key element is that the
coupling ‘‘constant’’ is significantly enhanced for a locke
oscillator; physically, the source of this enhancement is
highly resonant cavity. Our general picture implies that t
observed ‘‘turn on’’ of locking will be more pronounced th
sharper the resonance of the cavity, since this increases
difference betweenK̃ andK. This is precisely what we ob
serve in our simulations of the full circuit equations,
shown in Fig. 5. As the cavityQ is raised, the rise of syn
chronization above the transition point gets steeper. We
that for some~lower! values ofQ, the load power turns on in
a way that appears approximately quadratic Eq.@7#, but for
larger values the onset is nearly vertical. Notice, too, that
thresholdNth shifts down with increasingQ, since the nec-
essary condition for the onset of synchronization is that
load is driven hard enough to overcome the cavity pow
losses~and increasingQ decreases these losses!. From these
observations, we conclude that the dependence of the
power,Pac , on the number of phase-locked junctions is no
trivial. For the parameter values used in Fig. 5 we can p
Nth vs 1/Q and extrapolate to 1/Q→0, and find the limiting

FIG. 5. Power in load~in normalized units! vs the number of
active junctions for various cavityQ’s for a parallel array. Param
eters of the simulations areN530, b510, g50.003, d
50.006, bL51, Q525 ~crosses!, 50 ~pluses!, 75 ~triangles!, 100
~squares!, and 200~stars!. The inset shows the lower part of th
caseQ5400.
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PRE 61 2517HIGH-Q CAVITY-INDUCED SYNCHRONIZATION IN . . .
value ofNth'5 corresponding to the dissipation in the jun
tions.

Yet another interesting effect can be seen in Fig. 5
Na524. It turns out that, for this realization of randomne
used in Fig. 5, the 25th junction has an exceptionally l
critical current~some 1/4 of the mean!. What happens, and i
clearly reflected in the figure, is that this junction never f
quency locks. Thus, the rise in the load power sim
‘‘misses a beat’’ but otherwise continues its steady rise
further junctions are activated~and synchronized!. This type
of ‘‘defect’’ could be easily observable in laboratory expe
ments, since quite typically a large Josephson array will c
tain a few percent of very poor junctions.

We emphasize that the outcome of the randomization
the supercurrent has but little influence on the thresh
curves as those shown in Fig. 5. For one of these curves
tried with ten different randomizations~same width! and the
threshold curves deviated at most by one junction.

The inset of Fig. 5 demonstrates that something happ
at very large cavityQ, namely the appearance of a pr
nounced hysteresis, just as expected from our analysis o
general model. The figure shows what happens as junct
are successively activated up toNa530, and then succes
sively in reverse order.~A junction was deactivated by rese
ting its initial conditions and raising its critical current to
very high valueI 510.! We see that the synchronized sta
persists, thanks to the large oscillations of the load, wh
are able to provide adequate driving to synchronize the
maining active junctions. Such hysteresis was observe
recent studies@18# of a Kuramoto-type model using unde
damped oscillators@i.e., adding a mass termmü j to Eq. ~6!#
and was also reported in coupled mechanical oscillator
tems@4#.

Finally, Fig. 6 summarizes our results for howNth de-
pends on what are the key physical elements of this cav
induced synchronization mechanism. Recalling Fig. 3,
important parameters are the width of the cavity resona
1/Q, the detuning between the mean oscillator natural
quencyd, and the width of this natural frequency distributio
g. The threshold for synchronization is lowered by eith
decreasing the cavity losses~decreasing 1/Q) or decreasing
the cavity-oscillator mismatch~decreasingd). ~Negatived
negative leads to phase lock in the out-of-phase mode
therefore the present feedback mechanism does not w!
gy
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Both of these amount to systematically increasing the in
actions; in contrast, merely by increasing the widthg has
little systematic effect onNth , though it may increase the
scatter over different realizations. Here we do not show
effect ofg because for this set of parameters it has simply
effect on the threshold.

In conclusion, the model presented in this paper descr
the recent experiments@7# on power radiation from Joseph
son junction arrays in a cavity very well. The features of t
synchronization behavior can be understood in generic
namical terms as embodied by a modified Kuramoto mod
We also predict that some hysteretic behavior should be
served if it is possible to turn off active~and synchronized!
oscillators, a feature that is not possible in the Joseph
junctions experiments of Ref.@7#. The strongly resonant cav
ity provides the key mechanism for junction-junction inte
actions, a property familiar in other coherent physical s
tems, e.g., gas lasers@7,10–12#.
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FIG. 6. Threshold value ofNa vs the inverse cavity factor 1/Q
~pluses, left axis! for d50.006 and vs the normalized frequenc
detuning d ~squares, right axis! of a parallel array forQ5100.
Parameters of the simulations areN530, b510, g50.003, bL
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