PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Recurrence time statistics in deterministic and stochastic dynamical systems
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The dynamics of transitions between the cells of a finite phase-space partition is analyzed for deterministic
and stochastic dynamical systems in continuous time. Special emphasis is placed on the dependence of mean
recurrence time on the resolution between successive observations, in the limit0. In deterministic
systems the limit is found to exist, and to depend on only the intrinsic parameters of the underlying dynamics.

In stochastic systems two different cases are identified, leading-todependent behavior and-&2 behavior,
depending on whether a finite speed of propagation of the signals exists or not. An extension of the results to
the second moment of the recurrence time is outlined.

PACS numbd(s): 05.40—a

[. INTRODUCTION transformations, wheré denotes time. It will be assumed
that T, is ergodic and that it induces in the phase spaee
Recurrence time statisti¢4] provides useful information completely additive measuge such thafu(I")=1. LetC be
on the nature of the processes going on in a dynamical sys subset of such thaw(C)>0. Supposing that the dynami-
tem in a variety of contexts, from the foundations of statis-cal system is probed after every interval the following
tical mechanic$2] to the classification of atmospheric “ana- expression may be derivdd] for the mean time of recur-
logs” and the prediction of short-term weather fluctuationsrence toC:
[3]. It has a long history in the theory of stochastic processes

and, more recently, it has been the subject of investigations (0,)=1/u(C). (1.1
in low-dimensional deterministic systeri¥ 5] giving rise to
complex behavior. Now, in the limit 7— 0 of continuous sampling, a naive ap-

The advent of nonlinear dynamics and chaos theories haglication of Eq.(1.1) yields the trivial(and incorredt result
highlighted a number of unexpected connections between dé#,)—0. This happens because, in deriving Ef.1), no
terministic dynamics and stochastic processes. Thugccount has been taken of the fact that the representative
information-theoretic concepts are at the basis of the definipoint in phase space must definitely leave the Ceffirst
tion of the Kolmogorov-Sinai entroph6], one of the princi- before returning to it, in order for the event to qualify as a
pal indicators of dynamical complexity. Furthermore, upongenuine recurrence tG. A reformulation of the recurrence
projection on a suitable phase space partition, deterministiproblem that rectifies this drawback was given by Smolu-
dynamics can be mapped in a rigorous manner to a Markoghowski[9] (also see Ref(2]), leading to the modified ex-
process or even a Bernoulli procd33. What is more, clas- pression
sic and time-honored examples of random processes such as
Brownian motion are now realized to be manifestations of _ 11-u(C)]
deterministic chaos in a high-dimensional phase spate (0= n(C)—u(Cy)

On the other hand, at least certain stochastic processes,
taken in the strict sense, do present marked differences froffor the mean time of recurrence @ HereC, denotes the set
deterministic behavior. One of the most prominent of these if pointsxeI" such that
the lack of uniqueness of a realizatithe analog of a phase
trajectory in the deterministic caseven when initial condi- C,={xeC, T, xeC}. (1.3
tions are specified. The objective of the present paper is a
comparative study of continuous time deterministic and stoin other wordsu(C,) is the measure of the set of points that
chastic processes on the basis of their recurrence propertiegart inC and remain in that cell without leaving it at time
We shall focus specifically on the mean recurrence time iWhat is interesting and noteworthy is that E4.2) permits
the limit in which the sampling or resolution timetends to  the possibility of a nonvanishing limiting value for the mean
zero. recurrence time when one passes to the limit of continuous

We shall be dealing with a one-parameter faniilyof = sampling,7]0.

(1.2
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In Sec. Il we recapitulate in brief the derivation and im- * *
port of Egs.(1.2) and(1.3), starting from the corresponding (0,)= 7-2 n,u(Cn)/ Z u(C,), (2.5
recurrence time distributions. In Sec. Ill, we consider deter- n=1 n=1
ministic dynamics and show thab.) attains a well-defined
limiting value asr— 0, that depends entirely on the intrinsic
parameters 01_‘ the dynarr_ucs, pr.owded certain ergodic prop- (6.)=1(1— lim Wy)/u(C). (2.6)
erties are satisfied. Section IV is devoted to a class of sto- N0
chastic processes, comprising both jump processes and con-
tinuous processes, for which a non-vanishingO limit of  As the system is ergodic ang(C)>0, limy_..Wy must in
(6,) exists. It turns out that the essential property requiredact vanish. Therefore,
for this is the existence of a finite transition rate between
states, satisfying suitable integrability conditions. In particu- T T
lar, we elaborate on the specific example of flalirsear and (0= w(C) 1-W;°
nonlineaj driven by dichotomous noise. In Sec. V, the dif-
fusive counterparts of the foregoing flows are consideredAs mentioned in Sec. |, formul@.7) suffers from the defect
We show that 4,), as given by Eq(1.2), retains in this case that(#,) vanishes as— 0, essentially becausestay of the
a characteristic proportionality te*’ for small 7, over and  representative point i€ has been counted asrecurrence
above its dependence on the intrinsic parameters of the pr&moluchowski’'s modificatiofi9] consists of the replacement
cess. The origin of this behavior is elucidated. In Sec. VI, weof Eq. (2.5 by the alternative definition
extend the Smoluchowski formulation to higher moments of
the recurrence time. Specifically, a formal expression is de- - -
rived for the second moment in the—0 limit. Section VII (0,)= Tnzl nM(Cn+1)/ nzl u(Cny1), (28
is devoted to concluding remarks.

which simplifies to

(2.7)

which simplifies, on using Eq2.3), to
Il. RECAPITULATION OF THE

SMOLUCHOWSKI FORMULA (0,)= 11-w@] = ™W _ (2.9
Tou(C)—u(Cy) W —W,

It is helpful, for what follows, to recapitulate briefly how
Eg. (1.2) is arrived at[2]. We begin with a deterministic For a better understanding of this modification, and also be-
system in discrete timar(n=0,1,...)with a time evolu-  cause we shall be dealing with stochastic systems as well, let
tion operatorT, and invariant measurgu = p(x)dx. Define  ys express the foregoing in terms of the corresponding prob-
the setsC,, by ability measures. Thug(C,,) is simply the joint probability
P(C,0;C,7;...;C,(n—1)7;C,n7), where the coarse-grained
probabilities are defined in terms of the pointwise probability
densities according to

C,={xeC,TxeC}

Ch={xeC,T,xeC,... T" xeC,T"xeC}, n=2.
@ P(C)= f p(X)dx, (2.10
C

Let W,(n=1) be the measure of the sdxeC,T.x

eC,...T" xe C}. In terms ofy(x), the indicator function

of C P(C,0,C,7)= dexofde p(X0,0:%, 7)

n-1
Wn:frkl:[o [1— x(T*)]d . (2.2) :fcdxofgdxP(XO)P(X010|X,T), (2.11

and so on, where(x) is the invariant probability density.
The original formula fox 6.), Eq.(2.7), follows if we define
the probabilityF (n) of a first return toC as theconditional
probability

Further, letWy= frdu=1. Then, using the fact thai(x)
=u(T,X), it can be shown that

w(Cr)=W,_1—2W,+W,,;, n=1 (2.3

_ o _ F(n)=P(C,0/C,7;...;C,(n—1)7,C,n7), (2.12
Since the sequend&V,} is nonincreasing and bounded from

below (by 0), lim,_,..W, exists. If follows that and re-express it in terms of the joint probability, i.e.,
” F(n)=P(C,0;C,7,...;C,(n—1)7;C,n7)/P(C)
> #(Ca)=1-W;=u(C), (2.4
n=1 =p(Cp)/n(C), (213

so that recurrence t€ is assured for almost all initial con- on using Eq(2.4). On the other hand, the modified formula
ditions. Moreover, the mean recurrence timeCt@, by defi- (2.9 corresponds to defining(n) as the conditional prob-
nition, ability
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F(n)=P(C,0;C,7/C,27;...;C,n7,C,(n+1)7).
(2.14

Once again, in terms of joint probabilities, this becomes

F(n)=P(C,0;C,7;...:.C,n7.C,(n+1)7)/P(C,0:C, 7).
(2.15

The numerator is just(C,. 1), while the denominator can

be rewritten as
P(C,0;C,7)=P(C)—P(C,0;C,7). (2.19
Therefore,
F(n)=u(Cni)/[(C) = u(Cy)] (2.17

and Egs.(2.8) and (2.9) follow at once. In handling prob-

abilities (measuresin coarse-grained or cell dynamics, it is
probability

important to note that while the joint
P(C,0;C’,7) can be written as in Eq2.11), the conditional
probability P(C,0/C’,7) cannot be written directly as
JcOXof crdxyp(Xo,01%1, 7).

Returning to Eq.2.9), the mean recurrence time in the

continuous time limit is given by

I 11— u(C)]
<t>=llﬂ10< 07)= llino,u(C) —u(xeC;T,xeC)’

(2.18

Equivalently, in terms of probability measures,
(ty= lim L2 PO] (2.19

7—0 QT
where

QF%[P(C)— P(C,0,C,7)]. (2.20

Thus the leading smakt-behavior of P(C)—P(C,0;C,7)

determinesgt). In particular if this difference turns out to be

regular in the neighborhood ef=0 and isO(7) as7—0, we
obtain a finite, nonzerdt). In what follows, we shall exam-

ine a variety of dynamical systems, both deterministic and
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wheref is the evolution operator.

As we have seen in Sec. Il, in order to evalugie) [Egs.
(2.9 and(2.17] one needs the two-time probability density
p(X0,0;x, 7). Owing to the constraint of Eq3.1), in a deter-
ministic system this quantity is given by

p(X0,0;%,7) = p(Xo) 8(X—T;Xo), (3.3
yielding
(6:)=[1-P(C)]/Q;,, (3.9
where
1
QTE;{jcdxop(xo)_fcdxop(xo) deX O(X—=T,Xo) |-
(3.9
This may be reduced to
1 ax* |t
sz;fcdx p(X)—% —| Pl (38

where the sum runs over all the preimagés of x that lie in

C. Precisely atr=0,0(x% ) =p(x), and the Jacobian deter-
minant is equal to unity. As a result, the integrand in Eq.
(3.6) vanishes. Agrincreases from zero, thé _are progres-
sively moved out ofC, and the integration effectively bears
on the complement oENC__in C, i.e.,

1
QT=—f dx p(X).
T Jcicne_

The existence of a finite, intrinsic, resolution-independent
mean recurrence time therefore amounts to the condition that
"mquf exists and is finite, i.e.,

(3.7

1
Qp=Ilim —f dx p(x)
cicne_,

0T

=finite. (3.8

d
:‘{d—Jm,dXPW

=07

stochastic, to study the existence or otherwise of a meapgy ynstable systems, it is convenient to decompose formally

recurrence time in the=0 limit.

Ill. DETERMINISTIC DYNAMICS

Deterministic dynamical systems are characterized by th
property that the instantaneous staiein phase space is

uniquely determined from the initial statg according to

Xt:Tth, (31)

whereT; is the time evolution operator. If the dynamics runs
continuously in timegt), the evolution can further be cast in

the form of a set of first-order differential equations

dx

4t =00,

(3.2

the integration in Eq(3.8) to an integration over the coordi-
natess andu along the stable and unstable manifolds respec-
tively. For a givenC of sufficient smallness and for any
small, but nonvanishing, positive C_ . is deformed with
?espect toC in such a way that it is squeezed alongnd
stretched along (see Fig. 1 Equation(3.9) can then be
written in the more transparent form

d X0+ b
dar f d

min(xyp+ta—v7,Xyp+a)
S
Xs0

Qo= — dup(s,u) )

=0*"

(3.9

max(Xy0— v 7,Xy0)

wherev is a characteristic phase space velocity along the
unstable manifold withirC. Evaluating the time derivative,
we obtain
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can be evaluated directly, or by using the representation of

G- the & function as an exponential integral, to obtain

7-:[(b—a)—|w7|, |wT|<(b—a) (313

0, |lor|>(b—a)
b CnC-+

Therefore the leading behavior §f, comes from

Q= H<m—mw—H{wrao—mM%,

<%%$ NN e i (3.14

e . . where| 7| <min;(b,—a)/w; . Thus, asr—0,

FIG. 1. Schematic representation of the integration domain in | 7] "

Eq. (3.9), in the presence of unstable dynamissindu stand for sz(zw)nr 21 w,-ll_[ (b—ay). (3.15
directions along the stable and unstable manifolds, respectively. 1= *

xo+b This is not differentiable at=0, although IimTlOQT exists,
Qo=f dsv[p(s,xt+a)—p(S,Xw)]- (3.10  and is given by

Xs0

This expression is well behaved for systems admitting a Qo= nz o [T (be—ay). (3.16

Sinai-Ruelle-BowenSRB) measurg[10]: as a function of (2m)" =1 i

Xu0, Since such measures are smooth along the unstable di-

rection; and as a consequence of the integration over th@l,) thus tends to a finite, nonvanishing limit in this case too,

stable direction, even thoughmay be singular with respect asrt—0".

to s, provided it remains integrable. It is important to note

that this property do_eBc_)tguarantee that th_e integral in Eq. IV. STOCHASTIC DYNAMICS WITH A EINITE

(3.9), or the expression in square brackets in €op), can be TRANSITION RATE

expanded in powers af with only the linear term contribut-

ing to the final result — the expressions involved are gener- We now turn to the application of E¢R2.18 to stochastic

ally nonanalytic inr. dynamical systems. Two broad classes can be distinguished
For integrable, stable dynamical systems, such as thodeere, depending upon the smalbehavior of the conditional

exhibiting periodic or quasiperiodic behavior, the argumentgprobability P(C,0/C,7). In the first case, we find

above need to be suitably adapted. Since recurrence impli¢¥C,0/C,7) =1+ 0O(7), so that a finitg(i.e., nonzerpvalue

ergodicity, the natural representation of a phase space yointof (t) emerges. In the second case, typified by the presence of

within C is now in terms of coordinates along which the white noise, the leading correction &(r*?), and(t) van-

Lyapunov exponent is zero, such as angle variables obtaingghes. We take these up in turn in this section and in Sec. V.

by a canonical transformation. In the case of uniform motionin the former case, it is convenient to deal with jump pro-

a typical term contributing t@® . in Eq. (3.5 would then be cesses first, and then continuous processes.

of the form

A. Jump processes

1 - ” ) .
Q,= J' f deno When a finite transition rate can be defined in the state
(277) space(which can be discrete or continuguthe behavior of
b b n P(C,0/C,7) becomes analytic in the vicinity of=0. The
_f ldqol"'f nd<P H 8o —pio—w 7). simplest illustration is provided by a stationary dichotomous
" e ' Markov process(DMP) &(t) which switches between the
(3.11) values=c at a mean rata. ldentifying C with the statet+c

(and henceC with the state— c), it is trivially seen that

This expression can be evaluated analytically in a variety oP(C)=2 and

ways, and produces a finite, nonvanishing result in the limit o o L1

7—0. Nevertheless, it is not differentiable or analyticrat <t>_lm7/(l e " coshhr)=A"" .0
=0. For the purpose of demonstrating this explicitly, it suf-

fices to consider the case of a single angular coordinate. T
integral

r}Qote that(t) is not 2. "1, as one might naively expect.
Next, consider a Markov jump proceg¢e[R]) driven
X . by a Poisson sequence of pulses with a mean xatthe
IT:j d‘Pof de 8(¢— go— w7) (3.12 Kub_o-Anderson_ proces[il]). Assgmmg that a normalized
a a stationary density(x) exists, in this case we have
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provided\ #0. The first waiting-time distribution is there-
P(C)= LP(X)dX (42 fore given by

and ¢0(t):)\f:€¢(t’)dt’. 4.13
p(X0,0x,t)=8(x—xg)e M+p(x)(1—e M), (4.3

Returning to the jump process governed by this renewal pro-
This leads to cess, we can show that E@.3) is replaced by

P(C,0;C,7)=P(C)e »+P4C)(1—e ") (4.4 p(X0,01X,t) = 8(X—=Xo) do(t) + p(X)[ 1= po(1)]. .14

This gives, using Eq(4.12 and the fact thatyo(0)=1, by
(ty=[\P(C)]"%. (4.5  definition,

and thus, in the limitr— 0, to

ap(Xo,0/X,t)

At the next stage of generalization, we may consider a (
at

state-dependent jump radgx). This leads to a stationary
Markov procesgthe so-called kangaroo procdgsdl]), with _
the transition probability density Equation(2.19 then leads to

) =p(X) = (X=Xo). (4.19
t=0

p(Xo|X, 7) = 8(X—Xo)[ 1=\ (Xo) 7]+ A (X0) W(X) 7+ O(72), (H=[\P(C)] ", (4.16

(4.6 exactly as in the case of the corresponding Markovian jump

whereW(x) is related to the stationary densjiyx). Using  ProcessEq. (4.5].
Eq. (4.6) to write down the master equation for the process, _ _
we find B. Continuous processes: dichotomous flows
Turning from jump processes to continuous processes, we
W(x) =N(X)p(X)/{N), (47 see that(t) is nonvanishing whenever we can write the
small-r expansion

where
(?p(X01O|X1t)
X0,0[X,7) = 8(X—Xg)+ 7| —————| +0(7?),
<k>=f A(X)p(x)dx. (4.9) P(X0,0%,7) = 8(X=Xo) at - (7)
' (4.17)
Also defining the resricted average rate where the time derivative can be read off from the master
equation
(Me= jc)\(X)P(X)dX, (4.9

Jd
200600 = | dTp(t0 DX’ )
r
in this case we find
—p(X.0x,HW(x—x")].  (4.18

(M[1-P(C)] N . . o
(4.10 Here w(x—x'") is the transition probability per unit time.

(= :
(Me((N)=(N)e) Further, assuming stationarity and the existence of a normal-

Another direction of generalization from E@.3) is to an ized invariant denSIty)(x)=I|mt_mp(xo,0|x,t), we have

equilibrium renewal process governed by an arbitr@myn-

exponential waiting-time distribution functiong(t): a so- p(C):f p(x)dx. (4.19
called “continuous time random walk” or renewal process c

[12]. In this casex(t) is non-Markovian. The density of the
interval between successive jumps jgt)=— ¢(t). The
mean time between jumps is given by

Equation(2.19 then yields the following expression for the
continuous time limit of the mean time of recurrenceo

JameX

S —|” . 4.1

A fo ty(t)dt fo ¢(t)dt (4.11 ()= (4.20
f def cdX p(x")w(x'—x)

To find the transition probability of the jump process itself,

however, we need the first waiting-time distributiapy(t), A very instructive illustration of the behavior of the mean

for the first jump starting from an arbitrary origin of time. o\ rrence time for a continuous process in the limit0 is

For an ongoing equilibrium renewal process, this is found,gyided by the linear dichotomous flow, given by the sto-
from the relationship chastic differential equation

— po(t)=Ngh(1), (4.12 X=— yx+ (1), (4.21)
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wherexe R,y>0 and the nois€(t) is the stationary DMP
defined in the beginning of this section. The procgés
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which lies abovexg in the entire range of the latter variable,
and reaches the valwy at the upper limitxo=c/vy. Hence

describes the overdamped motion of a particle in a parabolithe entire range ok, contributes to this term, which be-

potential, with a(stablg fixed point at the origin. The inter-

esting case is therefore the two-cell partitiGr=[0,) and
C=(—=,0). The probability densitiep-.(x,,0/x,t), corre-
sponding toé= = c, satisfy the coupled equations

P 9
ﬁpi=a—x[(7XI C)p+]—Np+—pz). (4.22

The normalized stationary solutiofi3—15 for the total
probability density,

P(X0.0%,1) = (X0, 0%, )+ p_ (X0, 0%,1),  (4.23

has the compact supportc/ y<x=<c/vy, in which region it
is given by

Ny—1

1 c\1-2My[ 2
) ( (4.29

p(x>=—(— S-x2
B<}1§) y y
2y

The system has a “phase transition” at=vy. For A>vy
(respectively A <1y), p(x) vanishes(respectively, diverges
at the end points=*c/vy. As p(x) is an even function of
x,P(C)=3%, whereC=[0,c/y] andC=[—c/y,0].

It is evident from the general formul@.18 that (t) de-
pends on both the stationary distributip(x) as well as the
smallt behavior ofp(x,,0/x,t). To highlight this point, we
consider the general initial conditions

P+:W+5(X_Xo)ap—:W75(X_XO)a (425)
wherexge C and O<w.<1w,+w_=1. The general solu-
tion of Eqgs.(4.22 with the initial conditions(4.25 can be

comes
cly
W+e‘“j dxop(Xg)=w,P(C)e .  (4.29
0

On the other hand, the support of théunction inp _ lies on
the line

C
X=xpe "=~ (1=e ),

(4.30

which lies belowx,. Hence the range of; is restricted to
run fromc(e””—1)/y to c/y. (As we are concerned with
vy7<1, the lower limit of integration does lie beloa/y).
Using the fact thaP(C)=3 andw, +w_=1, we obtain

1
P(C)-P(COC,N=5(1-e ™)

B c(e?¥"—1)/
+w_e “f Tdxop(Xo).
0

(4.3)

Substituting forp(xg) from Eq. (4.24), the integral can be
evaluated exactly in terms of an incomplege function.
However, only the leading smafibehavior is required in the
foregoing. Sincep(X,) is regular in the neighborhood af
=0, the latter is proportional te itself. Passing to the limit
7=0 we obtain, using Eq€2.19 and(2.20,
(ty=[N+2w_cp(0)] L. (4.32

Substituting forp(0), wearrive at the following finite, non-
vanishing mean recurrence time in the continuous-time limit:

found, and is quite complicated. However for the purpose at

hand it suffices to know the short-time behavior of the solu- N1
tion. This is determined by the motion of the characteristics ow F(—+ 5)
of the first order partial differential equatiq@d.22, and is <t>=()\‘1)/ 1+ - \Y 4 . (4.33
found to be N o
Y

p=(Xo,0[x,t) ~w.e s

_C _c\ .
XF—|—|Xo+—|e V.
Y

Substituting this in

cly cly
P(C.0:C.7)= | dxoptxo) | (- (40,07
+p_(X0,0x,7)1, (4.27)

we find that the support of thé function inp, lies on the
line

(4.28

c
X=Xpe 77+ ;(1—e‘77),

Thus (t) is diminished asw_ is increased, as may be ex-
pected on physical grounds.

Equation(4.33 also helps us see hoft) varies as a func-
tion of the damping parameterfor a given value oh. The
modulating factor multiplying\ ~* in the expression foft)
increases from (£2w_)"! (which is obtained fory>\)
toward unity asy decreases. Foy<<\, this factor is[1
+(const.}y*?]"1. In the limit y=0, which corresponds to
pure dichotomougor “persistent”) diffusion [16,17, we
have(t)=\"1.

Finally, these considerations may be extended to the case
of a general dichotomous flojd3—-16. Here we are inter-
ested in particular in the case of motion in the bistable po-
tential:

V(x)=3x*—1yx2. (4.39
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The counterpart of Eq4.21) is now the stochastic differen- o o
tial equation P(C,0,C,7)= JO dXofO dxp(xo)p(xg,0%,7) (5.4

x=1(x)+£(1), (4.39 can be evaluated in closed form, and we find

where 1 L
_- _ . T tan i a2yr_ 101
QT—T[P(C) P(C,O,C,r)]—ZWTtan [(e?7"—1)17].

(5.5

It is noteworthy thatD does not appear in this expression
(recall that we have chosex=0 as the boundary of).
X Thus, ast—0,Q, scales like §/7)*? so that(t) tends to
—2?\f dy f(y) zero like (/y)¥2in the limit 7=0, essentially because of the
0 infinite velocity of the diffusion process. If the left boundary
of C is at some poina+#0, we find

2 .y _
QT:i(z) J du e‘a(“”)zerfc{ Ja(u—e)
27 0

with the compact suppoi|<Xmax, Wherexm,.y is the real ™ Je(2+¢)
root of f(x) +c=0. We can show that, as in the linear case, (5.6
the short-time behavior op(xg,0/x,t) essentially corre-
sponds to ballistic motion, in the sense thdkg,0/x,t) is,
apart from a modulating facta !, the sum of twos func-
tions whose peaks are located at the solutionsandx_ of

f(x)=yx—x3.

Assuming that is sufficiently large, the stationary probabil-
ity density is again a symmetric function,

p(x)=consx[c®—f2(x)] !

X[Cz—fz(y)]l}, (4.36

wherea= ya?/(2D) ande =e?"— 1. Once again, in the limit
7—0, this quantity has a leading behavior proportional to
€27, so that(t) vanishes liker'”2. Notice that(t) depends
now onD as well as ony, the dominant dependence being

x=f(x)*c, (4.37 given by the factore™72°/2D. In the limit of smallD this

implies that, for any giverr, the recurrence process is dra-
respectively. The arguments made in the linear case can thenatically accelerated.

be adapted suitably to arrive at the conclusion tR&C)
—(P(C,0;C, ) is again proportional ta itself as7—0, so B. Diffusion in a bistable potential

that Qq, and hence i 6,), is finite and nonzero. . . . e .
Qo nflo( ) Next we consider the case in which diffusion occurs in a

bistable potential18], so that the Langevin equatidh.l) is
V. DIFFUSIVE PROCESSES augmented by a cubic nonlinearity and the sign of the linear

A. Ornstein-Uhlenbeck process term is inverted, to read

We turn now to the important case of stochastic processes x=yx—x3+(2D)Y2p(t). (5.7

for which no finite transition probability per unit time can be ) i . . .
defined—typically, the situation when white noise Compo_The invariant probability density can again be evaluated ex-

nents are present. For a ready comparison with the case 8ftY from the corresponding Fokker-Planck equation subject
dichotomous noise just considered, we again look at boti0 No-flux conditions at-c, and is given by

linear drift as well as that in a bistable potential, but with a 1/1 1
Gaussian white noise rather than dichotomous noise. We be- p(x)=2"1 exp{— (_ yx2— —x4
gin with the case of a linear drift, i.e., the familiar Ornstein- D12 4
Uhlenbeck(OU) process, given by the Langevin equation

; (5.8

where
x=—yx+(2D)Y2y(t) (y>0), (5.1

Z=e72’4Dfocdu ul’zexp{—i(u—y)z} (5.9
with (7(t))=0{n(t)n(t'))=48(t—t"). As before, letC 0 4D

=(0) and C=(—,0). The solution for the conditional
probability density obeying the initial conditiof(x —X;) is
given by the well-known solution

is the normalization factor. Foy<<0, the origin =0) re-
mains the unique fixed point of the deterministic limit of Eq.
(5.7, and p(x) in Eq. (5.9 is qualitatively similar to the
y 12 Y(X—Xoe~ )2 Gaussian that obtains in the case of the OU processy As
p(x0,0|x,t)=[2Dl—__2yt} x;{ — 2Dl——‘27‘} crosses zero to positive values, the origin becomes unstable
7D(1-e ") (1-e"") and a bifurcation occurs to the stable branckes + y*2.
' The corresponding invariant density in E¢.9) is now a
The stationary density is bimodal one which, in the limib— 0, reduces to two Gaus-
sians centered at, andx_, respectively.
vz p( - 'yxz) Turning to recurrence time statistics, as before we choose
ex

Y c
p(x):(m 2D (53 as the reference celC the interval [0, »), so thatC=
(—,0). By the symmetry ofp(x) aboutx=0, we have
By symmetry,P(C)=3%. Further, the integrals involved in  P(C)=3, so that Eq(2.9 becomes
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L The factor in square brackets is not very significant in the

(0,)= —T, (5.10 light of the approximation involved, and has been retained
3—P(C,0,C,7) for the formal consistency of the normalization pfX,).
_ Inserting Eq(5.17) into Eq.(5.16 and changing variables of
with integration tou= (4D ) ~Y%,, we find
P(C,O;C,T): fo dXop(Xo) J;) pr(Xo,O|X,T). P(C)_ P(C,O;C,T)Zzlil(DT)llzf duerfC(U)
0
(5.11
Y
For the purposes of evaluati{@,) in the continuous sam- Xex;{ - 5[2U(DT)1/2— 71/2]2}-
pling limit 7—0, it is sufficient to consider the smatlbe-
havior of the conditional density(xo,0/x,t). This is given (5.19

by the time-dependent solution of the Fokker-Planck equa-_. . . .

tion corresponding to Eq5.7), with the drift term linearized >/"C€ €rfcl) is integrable, the leading smatibehavior of
aroundx, , in view of the fact thatp(xy) is weighted pre- this EXpression may be .obtalned by simply setting0 in
dominantly around this point. Setting=x—x. , the linear- the integrand. We find, finally,

ized Fokker-Planck equation f@r(£o,0/¢,t) reads (0.~ L (71 9) [ 1+ erf( y/Dl’Z)]eVZ’D. (5.20

2

ap I°p

d . . . . .
—=2'y(9—§(§p)+ D (5.12 As in the case of linear drift, the mean recurrence time is

¢ seen to be resolution dependent, vanishing &8 in the
limit 7—0. Once again, this is ultimately a consequence of
the infinite velocity associated with diffusion, in marked con-
trast to stochastic dynamics driven by dichotomous noise.
y 12 V(= L™ 2M? The new feature that is obtained in the case of diffusion in a
p(§0,0|§,t)=[—_4t} p{— ——m}- bistable potential, as opposed to the OU process, is that the
7D(1—-e ") D(1-e™ *") : ;
(5.13 smallness of the~dependent factor |.r<167> is now counter-
acted by the factor expf/D), which is exponentially large
Passing to the smai-regime and reverting to the original for small values oD. This factor has & andD dependence
variablex, that is similar to that of the mean exit tinier Kramers time
[19], exq(AU/D)] from the basin of attraction of the stable
1 (X—X%g)? fixed pointx, across the potential barriarJ, the difference
p(xX00x,)=(4mD7)""expg — —,=——|. (514  peing that the barrier corresponding to E&.7) is v2/4
rather thary?.
We note that this approximate expression remains properly

normalized. Substituting Ed5.14) into Eq. (5.11), we ob- VI. HIGHER MOMENTS OF THE RECURRENCE TIME
tain

ot

For an initial conditionp(Z,,0/¢,0)= 8(£— ¢,), the solution
is given by

Having examined the behavior of the mean recurrence
1 (= —Xp time in the continuous time limit for a variety of systems, let
P(C,0,C,7)= Efo dxop(Xo)erf 20007 (5.19  us consider what happens to the higher moments of the re-
currence time—more specifically, the second moment.
Using the fact that erfe¢z)=2—erfcz, this yields thrpm Eq.(2.17) for the recurrence time distribution, we
obtain

©

1
P(C)—P(C,0;C,7)= EJ

X
. dxop(xo)erfc{ ﬁm} .

(5.1

As p(Xg) is peaked at the stable fixed poit, and we are
interested in the leading smailbehavior, we may expand
p(Xg) aroundxy=x, . The result is a Gaussian of the form
extd — v (%—y*)?/D], which must, however, be normalized (6.7)
so as to maintain the measuR{C)=3. The appropriate
expression is

> n2u(Cpyy)
n=1

N+1
=1im |2, W,—(N+1)2Wy_ 1+ N2Wy]|.

N— o n=2

It is easy to show that the condition

, (5.17) > W< (6.2

p(Xo)ZZ"leXr{ - %(Xo_ vk

where the normalization factor is now given by is sufficient to makeg 05) finite. On the other hand, W,
=0(n" 1) asn—x, as happen$4,20] in models of inter-

( ﬂ) 2 mittent chaos, the#?) diverges. Therefore, provided Eq.

Z'= [1+erf(4/D™?)]. (5.18 (6.2) holds, we have
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* from the standpoint of the dependence of the first few mo-

7 1—M(C)+22 W, ments of the recurrence time on the sampling timé he
<02>: n=2 _ (6.3 issue here is whether in the limit of continuous sampling
! u(C)—u(Cy) (7—0) one obtains, for a given phase space cell, a finite

result depending entirely on the intrinsic parameters or, in-
ever, an additional factor of ! emerges in the numerator: stead, a r_esol_uti(_)nid_ep_ender_wt expression_ sugge_sting that re-
ast—0, S5W,— 7 L[2S5(t)dt, whereSc(t) is the cumu- currence in this limit is |II_-def|n§d. Our main th_e3|s was that

] o R ] ] these two types of behavior define two wide, different classes
lative probability of survival inC. The continuous-sampling ¢ gynamical systems. In particular, the possibility that they
limit of the second moment of the recurrence time is theréy, o ide a clearcut separation between deterministic and sto-
fore chastic systems was critically examined.

r We have shown that in deterministic systems an intrinsic
”mC——C)’ expression for mean recurrence time exists in the limit
ot (€)= (G —0 for regular motion as well as chaotic motion, provided

the probability distribution fulfills certain smoothness prop-
erties which are satisfied by SRB type measures. In the op-
(t) % posite end diffusion processes have been considered, and
(%)= 1-4(C) fo Sc(t)dt. (6.4 shown to lead to resolution-dependent mean recurrence times
tending to zero in the limit— 0. More unexpected was the
Applying this to the class of continuous stochastic pro-result, derived in Sec. IV, that there exist processes which
cesses considered in Sec. IV B, this becomes, with the helpre continuous ibothspace and time such as systems driven
of Eq. (4.20, by dichotomous noise, for which a finite, resolution-
independent mean recurrence time can be defined. The main
ZJng(t)dt ingredient at the origin of this result was the existence of a
0 finite speed of propagation of signals in such systems, as
: (6.5 opposed to the infinite speed of propagation characteristic of
ff dxf dx’ p(x")W(x' —X) diffusion processes. In this context one may recall that sto-
¢ c chastic processes continuous in time but discrete in state

We have seen that the existence of a finite mean recugPace such as birth and death processes generally have well-
rence time is quite general, and essentially follows from thedefined recurrence times.
ergodic nature of the dynamics. On the other hand, the sec- An appealing aspect of our conclusions is the consider-
ond moment of the recurrence time is finite only under adble generality of the processes fitting into the different
more restrictive condition. The vanishing as->~ of W,,  classes that we have identified. Still, we cannot claim to have
which is proportional to the probability of a sojourn@ is achieved an exhaustive classification. It would undoubtedly

not sufficient:S W, must converge as well. The existence of b€ worth pursuing this goal in future investigations.

finite higher moments imposes successively more stringent Although not explicitly required in the general formula-
conditions on the decay &k, for largen. Under “normal”  tion, much of our analysis focused on dissipative systems
circumstances, in whichV, falls off generically exponen- possessing sufficiently strong ergodic properties. It would be
tially with increasingn, all moments of the recurrence time appropriate to consider more explicitly the case of Hamil-
are finite. In ther=0 limit of continuous sampling, these tonian dynamics, in which strong and weak ergodic behav-
moments may vanish in certain cases, as we have seen. How¥'s are intertwined in phase space in addition to being de-
ever, there do occur situationsuch as intermittency in pendent on the initial conditions. Of particular interest would
chaog in which W, decays according to a power ld#,20],  be the signature, at the level of recurrence time statistics, of
and the higher moments of the recurrence tifimeluding,  the transition to nonintegrability and chaos through different
possibly, the second moment itgethay diverge. This fea- scenarios and of the stickiness of the Cantori in the regime of
ture will be carried over, in such instances, to the corre-developed chaos.

sponding continuous sampling limit.

As 7— 0, the denominator tends to zero likeat best. How-

|im<ei>z<t2>=(2f:sat)dt

7—0

or, finally,

()=
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