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Recurrence time statistics in deterministic and stochastic dynamical systems
in continuous time: A comparison
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The dynamics of transitions between the cells of a finite phase-space partition is analyzed for deterministic
and stochastic dynamical systems in continuous time. Special emphasis is placed on the dependence of mean
recurrence time on the resolutiont between successive observations, in the limitt→0. In deterministic
systems the limit is found to exist, and to depend on only the intrinsic parameters of the underlying dynamics.
In stochastic systems two different cases are identified, leading to at-independent behavior and at1/2 behavior,
depending on whether a finite speed of propagation of the signals exists or not. An extension of the results to
the second moment of the recurrence time is outlined.
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I. INTRODUCTION

Recurrence time statistics@1# provides useful information
on the nature of the processes going on in a dynamical
tem in a variety of contexts, from the foundations of stat
tical mechanics@2# to the classification of atmospheric ‘‘ana
logs’’ and the prediction of short-term weather fluctuatio
@3#. It has a long history in the theory of stochastic proces
and, more recently, it has been the subject of investigat
in low-dimensional deterministic systems@4,5# giving rise to
complex behavior.

The advent of nonlinear dynamics and chaos theories
highlighted a number of unexpected connections between
terministic dynamics and stochastic processes. T
information-theoretic concepts are at the basis of the de
tion of the Kolmogorov-Sinai entropy@6#, one of the princi-
pal indicators of dynamical complexity. Furthermore, up
projection on a suitable phase space partition, determin
dynamics can be mapped in a rigorous manner to a Mar
process or even a Bernoulli process@7#. What is more, clas-
sic and time-honored examples of random processes suc
Brownian motion are now realized to be manifestations
deterministic chaos in a high-dimensional phase space@8#.

On the other hand, at least certain stochastic proces
taken in the strict sense, do present marked differences f
deterministic behavior. One of the most prominent of thes
the lack of uniqueness of a realization~the analog of a phas
trajectory in the deterministic case!, even when initial condi-
tions are specified. The objective of the present paper
comparative study of continuous time deterministic and s
chastic processes on the basis of their recurrence prope
We shall focus specifically on the mean recurrence time
the limit in which the sampling or resolution timet tends to
zero.

We shall be dealing with a one-parameter familyTt of
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transformations, wheret denotes time. It will be assume
that Tt is ergodic and that it induces in the phase spaceG a
completely additive measurem, such thatm(G)51. LetC be
a subset ofG such thatm(C).0. Supposing that the dynam
cal system is probed after every intervalt, the following
expression may be derived@1# for the mean time of recur-
rence toC:

^ut&5t/m~C!. ~1.1!

Now, in the limit t→0 of continuous sampling, a naive ap
plication of Eq.~1.1! yields the trivial~and incorrect! result
^ut&→0. This happens because, in deriving Eq.~1.1!, no
account has been taken of the fact that the representa
point in phase space must definitely leave the cellC first
before returning to it, in order for the event to qualify as
genuine recurrence toC. A reformulation of the recurrence
problem that rectifies this drawback was given by Smo
chowski @9# ~also see Ref.@2#!, leading to the modified ex-
pression

^ut&5
t@12m~C!#

m~C!2m~C1!
~1.2!

for the mean time of recurrence toC. HereC1 denotes the se
of pointsxPG such that

C15$xPC,Tt xPC%. ~1.3!

In other words,m(C1) is the measure of the set of points th
start inC and remain in that cell without leaving it at timet.
What is interesting and noteworthy is that Eq.~1.2! permits
the possibility of a nonvanishing limiting value for the mea
recurrence time when one passes to the limit of continu
sampling,t↓0.
2490 ©2000 The American Physical Society
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In Sec. II we recapitulate in brief the derivation and im
port of Eqs.~1.2! and ~1.3!, starting from the correspondin
recurrence time distributions. In Sec. III, we consider det
ministic dynamics and show that^ut& attains a well-defined
limiting value ast→0, that depends entirely on the intrins
parameters of the dynamics, provided certain ergodic pr
erties are satisfied. Section IV is devoted to a class of
chastic processes, comprising both jump processes and
tinuous processes, for which a non-vanishingt50 limit of
^ut& exists. It turns out that the essential property requi
for this is the existence of a finite transition rate betwe
states, satisfying suitable integrability conditions. In partic
lar, we elaborate on the specific example of flows~linear and
nonlinear! driven by dichotomous noise. In Sec. V, the d
fusive counterparts of the foregoing flows are consider
We show that̂ ut&, as given by Eq.~1.2!, retains in this case
a characteristic proportionality tot1/2 for small t, over and
above its dependence on the intrinsic parameters of the
cess. The origin of this behavior is elucidated. In Sec. VI,
extend the Smoluchowski formulation to higher moments
the recurrence time. Specifically, a formal expression is
rived for the second moment in thet→0 limit. Section VII
is devoted to concluding remarks.

II. RECAPITULATION OF THE
SMOLUCHOWSKI FORMULA

It is helpful, for what follows, to recapitulate briefly how
Eq. ~1.2! is arrived at@2#. We begin with a deterministic
system in discrete timent(n50,1, . . . ) with a time evolu-
tion operatorTt and invariant measuredm5r(x)dx. Define
the setsCn by

C15$xPC,TtxPC%

Cn5$xPC,Tt xPC̄,...,Tt
n21xPC̄,Tt

nxPC%, n>2.
~2.1!

Let Wn(n>1) be the measure of the set$xPC̄,Ttx
PC̄,...,Tt

n21xPC̄%. In terms ofx(x), the indicator function
of C,

Wn5E
G
)
k50

n21

@12x~Tt
kx!#dm. ~2.2!

Further, letW05*Gdm51. Then, using the fact thatm(x)
5m(Tt x), it can be shown that

m~Cn!5Wn2122Wn1Wn11 , n>1. ~2.3!

Since the sequence$Wn% is nonincreasing and bounded fro
below ~by 0!, limn→`Wn exists. If follows that

(
n51

`

m~Cn!512W15m~C!, ~2.4!

so that recurrence toC is assured for almost all initial con
ditions. Moreover, the mean recurrence time toC is, by defi-
nition,
r-
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^ut&5t (
n51

`

nm~Cn!Y (
n51

`

m~Cn!, ~2.5!

which simplifies to

^ut&5t~12 lim
N→`

WN!/m~C!. ~2.6!

As the system is ergodic andm(C).0, limN→`WN must in
fact vanish. Therefore,

^ut&5
t

m~C!
5

t

12W1
. ~2.7!

As mentioned in Sec. I, formula~2.7! suffers from the defect
that ^ut& vanishes ast→0, essentially because astayof the
representative point inC has been counted as arecurrence.
Smoluchowski’s modification@9# consists of the replacemen
of Eq. ~2.5! by the alternative definition

^ut&5t (
n51

`

nm~Cn11!Y (
n51

`

m~Cn11!, ~2.8!

which simplifies, on using Eq.~2.3!, to

^ut&5
t@12m~C!#

m~C!2m~C1!
5

tW1

W12W2
. ~2.9!

For a better understanding of this modification, and also
cause we shall be dealing with stochastic systems as wel
us express the foregoing in terms of the corresponding p
ability measures. Thusm(Cn) is simply the joint probability
P„C,0;C̄,t;...;C̄,(n21)t;C,nt…, where the coarse-graine
probabilities are defined in terms of the pointwise probabi
densities according to

P~C!5E
C
r~x!dx, ~2.10!

P~C,0;C̄,t!5E
C
dx0E

C̄
dx r~x0,0;x,t!

5E
C
dx0E

C̄
dx r~x0!r~x0,0ux,t!, ~2.11!

and so on, wherer(x) is the invariant probability density
The original formula for̂ ut&, Eq. ~2.7!, follows if we define
the probabilityF(n) of a first return toC as theconditional
probability

F~n!5P„C,0uC̄,t;...;C̄,~n21!t;C,nt…, ~2.12!

and re-express it in terms of the joint probability, i.e.,

F~n!5P~C,0;C̄,t;...;C̄,~n21!t;C,nt!/P~C!

5m~Cn!/m~C!, ~2.13!

on using Eq.~2.4!. On the other hand, the modified formu
~2.9! corresponds to definingF(n) as the conditional prob-
ability
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F~n!5P„C,0;C̄,tuC̄,2t;...;C̄,nt;C,~n11!t….
~2.14!

Once again, in terms of joint probabilities, this becomes

F~n!5P„C,0;C̄,t;...;C̄,nt;C,~n11!t…/P~C,0;C̄,t!.
~2.15!

The numerator is justm(Cn11), while the denominator can
be rewritten as

P~C,0;C̄,t!5P~C!2P~C,0;C,t!. ~2.16!

Therefore,

F~n!5m~Cn11!/@m~C!2m~C1!# ~2.17!

and Eqs.~2.8! and ~2.9! follow at once. In handling prob-
abilities ~measures! in coarse-grained or cell dynamics, it
important to note that while the joint probabilit
P(C,0;C8,t) can be written as in Eq.~2.11!, the conditional
probability P(C,0uC8,t) cannot be written directly as
*Cdx0*C8dx1r(x0,0ux1 ,t).

Returning to Eq.~2.9!, the mean recurrence time in th
continuous time limit is given by

^t&[ lim
t→0

^ut&5 lim
t→0

t@12m~C!#

m~C!2m~xPC;Tt xPC!
.

~2.18!

Equivalently, in terms of probability measures,

^t&5 lim
t→0

@12P~C!#

Qt
, ~2.19!

where

Qt5
1

t
@P~C!2P~C,0;C,t!#. ~2.20!

Thus the leading small-t behavior of P(C)2P(C,0;C,t)
determineŝ t&. In particular if this difference turns out to b
regular in the neighborhood oft50 and isO(t) ast→0, we
obtain a finite, nonzerôt&. In what follows, we shall exam
ine a variety of dynamical systems, both deterministic a
stochastic, to study the existence or otherwise of a m
recurrence time in thet50 limit.

III. DETERMINISTIC DYNAMICS

Deterministic dynamical systems are characterized by
property that the instantaneous statext in phase space is
uniquely determined from the initial statex0 according to

xt5Ttx0 , ~3.1!

whereTt is the time evolution operator. If the dynamics ru
continuously in time~t!, the evolution can further be cast i
the form of a set of first-order differential equations

dx

dt
5 f ~x!, ~3.2!
d
n

e

wheref is the evolution operator.
As we have seen in Sec. II, in order to evaluate^ut& @Eqs.

~2.9! and ~2.17!# one needs the two-time probability densi
r(x0,0;x,t). Owing to the constraint of Eq.~3.1!, in a deter-
ministic system this quantity is given by

r~x0,0;x,t!5r~x0!d~x2Tt x0!, ~3.3!

yielding

^ut&5@12P~C!#/Qt , ~3.4!

where

Qt[
1

t F E
C
dx0r~x0!2E

C
dx0r~x0!E

C
dx d~x2Tt x0!G .

~3.5!

This may be reduced to

Qt5
1

t EC
dxFr~x!2(

a
U]x2t

a

]x U21

r~x2t
a !G , ~3.6!

where the sum runs over all the preimagesx2t
a of x that lie in

C. Precisely att50,r(x2t
a )5r(x), and the Jacobian deter

minant is equal to unity. As a result, the integrand in E
~3.6! vanishes. Ast increases from zero, thex2t

a are progres-
sively moved out ofC, and the integration effectively bear
on the complement ofCùC2t in C, i.e.,

Qt5
1

t EC/CùC2t

dx r~x!. ~3.7!

The existence of a finite, intrinsic, resolution-independ
mean recurrence time therefore amounts to the condition
lim

t↓0
Qt exists and is finite, i.e.,

Q05 lim
t↓0

1

t EC/CùC2t

dx r~x!

52F d

dt ECùC2t

dx r~x!G
t501

5finite. ~3.8!

For unstable systems, it is convenient to decompose form
the integration in Eq.~3.8! to an integration over the coordi
natess andu along the stable and unstable manifolds resp
tively. For a givenC of sufficient smallness and for an
small, but nonvanishing, positivet, C2t is deformed with
respect toC in such a way that it is squeezed alongu and
stretched alongs ~see Fig. 1!. Equation~3.9! can then be
written in the more transparent form

Q052F d

dt Exs0

xs01b

dsE
max~xu02vt,xu0!

min~xu01a2vt,xu01a!

du r~s,u!G
t501

,

~3.9!

where v is a characteristic phase space velocity along
unstable manifold withinC. Evaluating the time derivative
we obtain
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Q05E
xs0

xs01b

dsv@r~s,xu01a!2r~s,xu0!#. ~3.10!

This expression is well behaved for systems admitting
Sinai-Ruelle-Bowen~SRB! measure@10#: as a function of
xu0 , since such measures are smooth along the unstabl
rection; and as a consequence of the integration over
stable direction, even thoughr may be singular with respec
to s, provided it remains integrable. It is important to no
that this property doesnot guarantee that the integral in Eq
~3.9!, or the expression in square brackets in Eq.~3.6!, can be
expanded in powers oft with only the linear term contribut-
ing to the final result — the expressions involved are gen
ally nonanalytic int.

For integrable, stable dynamical systems, such as th
exhibiting periodic or quasiperiodic behavior, the argume
above need to be suitably adapted. Since recurrence im
ergodicity, the natural representation of a phase space pox
within C is now in terms of coordinates along which th
Lyapunov exponent is zero, such as angle variables obta
by a canonical transformation. In the case of uniform mot
a typical term contributing toQt in Eq. ~3.5! would then be
of the form

Qt5
1

~2p!nt Ea1

b1
dw10¯E

an

bn
dwn0

3F12E
a1

b1
dw1¯E

an

bn
dwn)

j 51

n

d~w j2w j 02v jt!G .

~3.11!

This expression can be evaluated analytically in a variety
ways, and produces a finite, nonvanishing result in the li
t→0. Nevertheless, it is not differentiable or analytic att
50. For the purpose of demonstrating this explicitly, it su
fices to consider the case of a single angular coordinate.
integral

I t5E
a

b

dw0E
a

b

dw d~w2w02vt! ~3.12!

FIG. 1. Schematic representation of the integration domain
Eq. ~3.8!, in the presence of unstable dynamics.s and u stand for
directions along the stable and unstable manifolds, respectivel
a
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can be evaluated directly, or by using the representation
the d function as an exponential integral, to obtain

I t5H ~b2a!2uvtu, uvtu,~b2a!

0, uvtu.~b2a!
. ~3.13!

Therefore the leading behavior ofQt comes from

Qt'
1

~2p!nt F)
j 51

n

~bj2aj !
n2)

j 51

n

$~bj2aj !2v j utu%G ,

~3.14!

whereutu,minj(bj2aj)/vj . Thus, ast→0,

Qt5
utu

~2p!nt (
j 51

n

v j)
kÞ j

~bk2ak!. ~3.15!

This is not differentiable att50, although lim
t↓0

Qt exists,

and is given by

Q05
1

~2p!n (
j 51

n

v j)
kÞ j

~bk2ak!. ~3.16!

^ut& thus tends to a finite, nonvanishing limit in this case to
ast→01.

IV. STOCHASTIC DYNAMICS WITH A FINITE
TRANSITION RATE

We now turn to the application of Eq.~2.18! to stochastic
dynamical systems. Two broad classes can be distinguis
here, depending upon the small-t behavior of the conditiona
probability P(C,0uC,t). In the first case, we find
P(C,0uC,t)511O(t), so that a finite~i.e., nonzero! value
of ^t& emerges. In the second case, typified by the presenc
white noise, the leading correction isO(t1/2), and ^t& van-
ishes. We take these up in turn in this section and in Sec
In the former case, it is convenient to deal with jump pr
cesses first, and then continuous processes.

A. Jump processes

When a finite transition rate can be defined in the st
space~which can be discrete or continuous!, the behavior of
P(C,0uC,t) becomes analytic in the vicinity oft50. The
simplest illustration is provided by a stationary dichotomo
Markov process~DMP! j(t) which switches between th
values6c at a mean ratel. Identifying C with the state1c

~and henceC̄ with the state2c), it is trivially seen that
P(C)5 1

2 and

^t&5 lim
t→0

t/~12e2lt coshlt!5l21. ~4.1!

Note that^t& is not 2l21, as one might naively expect.
Next, consider a Markov jump processx(P@R#) driven

by a Poisson sequence of pulses with a mean ratel ~the
Kubo-Anderson process@11#!. Assuming that a normalized
stationary densityr(x) exists, in this case we have

n
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P~C!5E
C
r~x!dx ~4.2!

and

r~x0,0ux,t !5d~x2x0!e2lt1r~x!~12e2lt!. ~4.3!

This leads to

P~C,0;C,t!5P~C!e2lt1P2~C!~12e2lt! ~4.4!

and thus, in the limitt→0, to

^t&5@lP~C!#21. ~4.5!

At the next stage of generalization, we may conside
state-dependent jump ratel(x). This leads to a stationar
Markov process~the so-called kangaroo process@11#!, with
the transition probability density

r~x0ux,t!5d~x2x0!@12l~x0!t#1l~x0!W~x!t1O~t2!,
~4.6!

whereW(x) is related to the stationary densityr(x). Using
Eq. ~4.6! to write down the master equation for the proce
we find

W~x!5l~x!r~x!/^l&, ~4.7!

where

^l&5E
G
l~x!r~x!dx. ~4.8!

Also defining the restricted average rate

^l&C5E
C
l~x!r~x!dx, ~4.9!

in this case we find

^t&5
^l&@12P~C!#

^l&C~^l&2^l&C!
. ~4.10!

Another direction of generalization from Eq.~4.3! is to an
equilibrium renewal process governed by an arbitrary~non-
exponential! waiting-time distribution functionf(t): a so-
called ‘‘continuous time random walk’’ or renewal proce
@12#. In this casex(t) is non-Markovian. The density of th
interval between successive jumps isc(t)52ḟ(t). The
mean time between jumps is given by

l215E
0

`

tc~ t !dt5E
0

`

f~ t !dt. ~4.11!

To find the transition probability of the jump process itse
however, we need the first waiting-time distribution,f0(t),
for the first jump starting from an arbitrary origin of time
For an ongoing equilibrium renewal process, this is fou
from the relationship

2ḟ0~ t !5lf~ t !, ~4.12!
a

,

,

d

providedlÞ0. The first waiting-time distribution is there
fore given by

f0~ t !5lE
t

`

f~ t8!dt8. ~4.13!

Returning to the jump process governed by this renewal p
cess, we can show that Eq.~4.3! is replaced by

r~x0,0ux,t !5d~x2x0!f0~ t !1r~x!@12f0~ t !#.
~4.14!

This gives, using Eq.~4.12! and the fact thatf0(0)51, by
definition,

S ]r~x0,0ux,t !

]t D
t50

5r~x!2d~x2x0!. ~4.15!

Equation~2.19! then leads to

^t&5@lP~C!#21, ~4.16!

exactly as in the case of the corresponding Markovian ju
process@Eq. ~4.5!#.

B. Continuous processes: dichotomous flows

Turning from jump processes to continuous processes
see that^t& is nonvanishing whenever we can write th
small-t expansion

r~x0,0ux,t!5d~x2x0!1tS ]r~x0,0ux,t !

]t D
t50

1O~t2!,

~4.17!

where the time derivative can be read off from the mas
equation

]

]t
r~x0,0ux,t !5E

G
dx8@r~x0,0ux8,t !w~x8→x!

2r~x0,0ux,t !w~x→x8!#. ~4.18!

Here w(x→x8) is the transition probability per unit time
Further, assuming stationarity and the existence of a norm
ized invariant densityr(x)5 lim

t→`
r(x0,0ux,t), we have

P~C!5E
C
r~x!dx. ~4.19!

Equation~2.19! then yields the following expression for th
continuous time limit of the mean time of recurrence toC:

^t&5

E C̄r~x!dx

E C̄dxE Cdx8r~x8!w~x8→x!

. ~4.20!

A very instructive illustration of the behavior of the mea
recurrence time for a continuous process in the limitt→0 is
provided by the linear dichotomous flow, given by the s
chastic differential equation

ẋ52gx1j~ t !, ~4.21!
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wherexPR,g.0 and the noisej(t) is the stationary DMP
defined in the beginning of this section. The processx(t)
describes the overdamped motion of a particle in a parab
potential, with a~stable! fixed point at the origin. The inter
esting case is therefore the two-cell partitionC5@0,̀ ) and
C̄5(2`,0). The probability densitiesr6(x0,0ux,t), corre-
sponding toj56c, satisfy the coupled equations

]

]t
r65

]

]x
@~gx7c!r6#2l~r62r7!. ~4.22!

The normalized stationary solution@13–15# for the total
probability density,

r~x0,0ux,t ![r1~x0,0ux,t !1r2~x0,0ux,t !, ~4.23!

has the compact support2c/g<x<c/g, in which region it
is given by

r~x!5
1

BS 1

2
,
l

g D S c

g D 122l/gS c2

g22x2D l/g21

. ~4.24!

The system has a ‘‘phase transition’’ atl5g. For l.g
~respectively,l,g), r(x) vanishes~respectively, diverges!
at the end pointsx56c/g. As r(x) is an even function of
x,P(C)5 1

2 , whereC5@0,c/g# and C̄5@2c/g,0#.
It is evident from the general formula~2.18! that ^t& de-

pends on both the stationary distributionr(x) as well as the
small-t behavior ofr(x0,0ux,t). To highlight this point, we
consider the general initial conditions

r15w1d~x2x0!,r25w2d~x2x0!, ~4.25!

wherex0PC and 0,w6,1,w11w251. The general solu-
tion of Eqs.~4.22! with the initial conditions~4.25! can be
found, and is quite complicated. However for the purpose
hand it suffices to know the short-time behavior of the so
tion. This is determined by the motion of the characterist
of the first order partial differential equation~4.22!, and is
found to be

r6~x0,0ux,t !'w6e2ltdF S x7
c

g D2S x07
c

g De2gtG .

~4.26!

Substituting this in

P~C,O;C,t!5E
0

c/g

dx0r~x0!E
0

c/g

dx@r1~x0 ,0ux,t!

1r2~x0,0ux,t!#, ~4.27!

we find that the support of thed function in r1 lies on the
line

x5x0e2gt1
c

g
~12e2gt!, ~4.28!
lic

t
-
s

which lies abovex0 in the entire range of the latter variable
and reaches the valuec/g at the upper limitx05c/g. Hence
the entire range ofx0 contributes to this term, which be
comes

w1e2ltE
0

c/g

dx0r~x0!5w1P~C!e2lt. ~4.29!

On the other hand, the support of thed function inr2 lies on
the line

x5x0e2gt2
c

g
~12e2gt!, ~4.30!

which lies belowx0 . Hence the range ofx0 is restricted to
run from c(egt21)/g to c/g. ~As we are concerned with
gt!1, the lower limit of integration does lie belowc/g).
Using the fact thatP(C)5 1

2 andw11w251, we obtain

P~C!2P~C,0;C,t!.
1

2
~12e2lt!

1w2e2ltE
0

c~egt21!/g
dx0r~x0!.

~4.31!

Substituting forr(x0) from Eq. ~4.24!, the integral can be
evaluated exactly in terms of an incompleteb function.
However, only the leading small-t behavior is required in the
foregoing. Sincer(x0) is regular in the neighborhood ofx0
50, the latter is proportional tot itself. Passing to the limit
t50 we obtain, using Eqs.~2.19! and ~2.20!,

^t&5@l12w2cr~0!#21. ~4.32!

Substituting forr(0), wearrive at the following finite, non-
vanishing mean recurrence time in the continuous-time lim

^t&5~l21!Y F 11S 2w2

Ap

GS l

g
1

1

2D
GS l

g
11D D G . ~4.33!

Thus ^t& is diminished asw2 is increased, as may be ex
pected on physical grounds.

Equation~4.33! also helps us see hoŵt& varies as a func-
tion of the damping parameterg for a given value ofl. The
modulating factor multiplyingl21 in the expression for̂t&
increases from (112w2)21 ~which is obtained forg@l)
toward unity asg decreases. Forg!l, this factor is @1
1(const.)g1/2#21. In the limit g50, which corresponds to
pure dichotomous~or ‘‘persistent’’! diffusion @16,17#, we
have^t&5l21.

Finally, these considerations may be extended to the c
of a general dichotomous flow@13–16#. Here we are inter-
ested in particular in the case of motion in the bistable
tential:

V~x!5 1
4 x42 1

2 gx2. ~4.34!
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The counterpart of Eq.~4.21! is now the stochastic differen
tial equation

ẋ5 f ~x!1j~ t !, ~4.35!

where

f ~x!5gx2x3.

Assuming thatc is sufficiently large, the stationary probabi
ity density is again a symmetric function,

r~x!5const3@c22 f 2~x!#21F22lE
0

x

dy f~y!

3@c22 f 2~y!#21G , ~4.36!

with the compact supportuxu,xmax, wherexmax is the real
root of f (x)1c50. We can show that, as in the linear cas
the short-time behavior ofr(x0,0ux,t) essentially corre-
sponds to ballistic motion, in the sense thatr(x0,0ux,t) is,
apart from a modulating factore2lt, the sum of twod func-
tions whose peaks are located at the solutionsx1 andx2 of

ẋ5 f ~x!6c, ~4.37!

respectively. The arguments made in the linear case can
be adapted suitably to arrive at the conclusion thatP(C)
2(P(C,0;C,t) is again proportional tot itself ast→0, so
that Q0 , and hence lim

t↓0^ut&, is finite and nonzero.

V. DIFFUSIVE PROCESSES

A. Ornstein-Uhlenbeck process

We turn now to the important case of stochastic proces
for which no finite transition probability per unit time can b
defined—typically, the situation when white noise comp
nents are present. For a ready comparison with the cas
dichotomous noise just considered, we again look at b
linear drift as well as that in a bistable potential, but with
Gaussian white noise rather than dichotomous noise. We
gin with the case of a linear drift, i.e., the familiar Ornstei
Uhlenbeck~OU! process, given by the Langevin equation

ẋ52gx1~2D !1/2h~ t ! ~g.0!, ~5.1!

with ^h(t)&50,̂ h(t)h(t8)&5d(t2t8). As before, let C

5(0,̀ ) and C̄5(2`,0). The solution for the conditiona
probability density obeying the initial conditiond(x2x0) is
given by the well-known solution

r~x0,0ux,t !5F g

2pD~12e22gt!G
1/2

expF2
g~x2x0e2gt!2

2D~12e22gt! G .
~5.2!

The stationary density is

r~x!5S g

2pD D 1/2

expS 2gx2

2D D . ~5.3!

By symmetry,P(C)5 1
2 . Further, the integrals involved in
,

en

es

-
of

th

e-

P~C,0;C,t!5E
0

`

dx0E
0

`

dx r~x0!r~x0,0ux,t! ~5.4!

can be evaluated in closed form, and we find

Qt5
1

t
@P~C!2P~C,0;C,t!#5

1

2pt
tan21@~e2gt21!1/2#.

~5.5!

It is noteworthy thatD does not appear in this expressio
~recall that we have chosenx50 as the boundary ofC!.
Thus, ast→0,Qt scales like (g/t)1/2, so that^t& tends to
zero like (t/g)1/2 in the limit t50, essentially because of th
infinite velocity of the diffusion process. If the left bounda
of C is at some pointaÞ0, we find

Qt5
1

2t S a

p D 1/2E
0

`

du e2a~u11!2
erfcFAa~u2«!

A«~21«!
G ,

~5.6!

wherea5ga2/(2D) and«5egt21. Once again, in the limit
t→0, this quantity has a leading behavior proportional
«1/2/t, so that^t& vanishes liket1/2. Notice that^t& depends
now on D as well as ong, the dominant dependence bein
given by the factore2ga2

/2D. In the limit of small D this
implies that, for any givent, the recurrence process is dr
matically accelerated.

B. Diffusion in a bistable potential

Next we consider the case in which diffusion occurs in
bistable potential@18#, so that the Langevin equation~5.1! is
augmented by a cubic nonlinearity and the sign of the lin
term is inverted, to read

x5gx2x31~2D !1/2h~ t !. ~5.7!

The invariant probability density can again be evaluated
actly from the corresponding Fokker-Planck equation sub
to no-flux conditions at6`, and is given by

r~x!5Z21 expF 1

D S 1

2
gx22

1

4
x4D G , ~5.8!

where

Z5eg2/4DE
0

`

du u21/2expF2
1

4D
~u2g!2G ~5.9!

is the normalization factor. Forg,0, the origin (x50) re-
mains the unique fixed point of the deterministic limit of E
~5.7!, and r(x) in Eq. ~5.9! is qualitatively similar to the
Gaussian that obtains in the case of the OU process. Ag
crosses zero to positive values, the origin becomes unst
and a bifurcation occurs to the stable branchesx656g1/2.
The corresponding invariant density in Eq.~5.9! is now a
bimodal one which, in the limitD→0, reduces to two Gaus
sians centered atx1 andx2 , respectively.

Turning to recurrence time statistics, as before we cho
as the reference cellC the interval @0, `&, so that C̄5
(2`,0). By the symmetry ofr(x) about x50, we have
P(C)5 1

2 , so that Eq.~2.9! becomes
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^ut&5

1
2 t

1
2 2P~C,0;C,t!

, ~5.10!

with

P~C,0;C,t!5E
0

`

dx0r~x0!E
0

`

dx r~x0,0ux,t!.

~5.11!

For the purposes of evaluating^ut& in the continuous sam
pling limit t→0, it is sufficient to consider the small-t be-
havior of the conditional densityr(x0,0ux,t). This is given
by the time-dependent solution of the Fokker-Planck eq
tion corresponding to Eq.~5.7!, with the drift term linearized
aroundx1 , in view of the fact thatr(x0) is weighted pre-
dominantly around this point. Settingz5x2x1 , the linear-
ized Fokker-Planck equation forr(z0,0uz,t) reads

]r

]t
52g

]

]z
~zr!1D

]2r

]z2 . ~5.12!

For an initial conditionr(z0,0uz,0)5d(z2z0), the solution
is given by

r~z0,0uz,t !5F g

pD~12e24gt!G
1/2

expF2
g~z2z0e22gt!2

D~12e24gt! G .
~5.13!

Passing to the small-t regime and reverting to the origina
variablex,

r~x0,0ux,t!.~4pDt!21/2expF2
~x2x0!2

4Dt G . ~5.14!

We note that this approximate expression remains prop
normalized. Substituting Eq.~5.14! into Eq. ~5.11!, we ob-
tain

P~C,0;C,t!5
1

2 E0

`

dx0r~x0!erfcF 2x0

2~Dt!1/2G . ~5.15!

Using the fact that erfc(2z)522erfcz, this yields

P~C!2P~C,0;C,t!5
1

2 E0

`

dx0r~x0!erfcF x0

2~Dt!1/2G .
~5.16!

As r(x0) is peaked at the stable fixed pointx1 , and we are
interested in the leading small-t behavior, we may expand
r(x0) aroundx05x1 . The result is a Gaussian of the for
exp@2g (x02g1/2)2/D#, which must, however, be normalize
so as to maintain the measureP(C)5 1

2 . The appropriate
expression is

r~x0!.Z821 expF2
g

D
~x02g1/2!2G , ~5.17!

where the normalization factor is now given by

Z85S pD

g D 1/2

@11erf~g/D1/2!# . ~5.18!
-

ly

The factor in square brackets is not very significant in
light of the approximation involved, and has been retain
for the formal consistency of the normalization ofr(x0).
Inserting Eq.~5.17! into Eq.~5.16! and changing variables o
integration tou5(4Dt)21/2x0 , we find

P~C!2P~C,0;C,t!.Z821~Dt!1/2E
0

`

du erfc~u!

3expF2
g

D
@2u~Dt!1/22g1/2#2G .

~5.19!

Since erfc(u) is integrable, the leading small-t behavior of
this expression may be obtained by simply settingt50 in
the integrand. We find, finally,

^ut&. 1
2 p~t/g!1/2@11erf~g/D1/2!#eg2/D. ~5.20!

As in the case of linear drift, the mean recurrence time
seen to be resolution dependent, vanishing liket1/2 in the
limit t→0. Once again, this is ultimately a consequence
the infinite velocity associated with diffusion, in marked co
trast to stochastic dynamics driven by dichotomous no
The new feature that is obtained in the case of diffusion i
bistable potential, as opposed to the OU process, is tha
smallness of thet-dependent factor in̂ut& is now counter-
acted by the factor exp(g2/D), which is exponentially large
for small values ofD. This factor has ag andD dependence
that is similar to that of the mean exit time@or Kramers time
@19#, exp„DU/D…] from the basin of attraction of the stabl
fixed pointx1 across the potential barrierDU, the difference
being that the barrier corresponding to Eq.~5.7! is g2/4
rather thang2.

VI. HIGHER MOMENTS OF THE RECURRENCE TIME

Having examined the behavior of the mean recurre
time in the continuous time limit for a variety of systems, l
us consider what happens to the higher moments of the
currence time—more specifically, the second moment.

From Eq.~2.17! for the recurrence time distribution, w
obtain

(
n51

`

n2m~Cn11!

5 lim
N→`

F2 (
n52

N11

Wn2~N11!2WN111N2WN12G .

~6.1!

It is easy to show that the condition

(
`

Wn,` ~6.2!

is sufficient to makê ut
2& finite. On the other hand, ifWn

5O(n21) as n→`, as happens@4,20# in models of inter-
mittent chaos, then̂ut

2& diverges. Therefore, provided Eq
~6.2! holds, we have
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^ut
2&5

t2 F12m~C!12(
n52

`

WnG
m~C!2m~C1!

. ~6.3!

As t→0, the denominator tends to zero liket, at best. How-
ever, an additional factor oft21 emerges in the numerato
ast→0, S2

`Wn→t21*0
`SC̄(t)dt, whereSC̄(t) is the cumu-

lative probability of survival inC̄. The continuous-sampling
limit of the second moment of the recurrence time is the
fore

lim
t→0

^ut
2&[^t2&5S 2E

0

`

SC̄~ t !dtD lim
t→0

t

m~C!2m~C1!
,

or, finally,

^t2&5
2^t&

12m~C!
E

0

`

SC̄~ t !dt. ~6.4!

Applying this to the class of continuous stochastic p
cesses considered in Sec. IV B, this becomes, with the
of Eq. ~4.20!,

^t2&5

2E
0

`

SC̄~ t !dt

E
C̄

dxE
C

dx8r~x8!w~x8→x!

. ~6.5!

We have seen that the existence of a finite mean re
rence time is quite general, and essentially follows from
ergodic nature of the dynamics. On the other hand, the
ond moment of the recurrence time is finite only unde
more restrictive condition. The vanishing asn→` of Wn ,
which is proportional to the probability of a sojourn inC̄, is
not sufficient;SnWn must converge as well. The existence
finite higher moments imposes successively more string
conditions on the decay ofWn for largen. Under ‘‘normal’’
circumstances, in whichWn falls off generically exponen-
tially with increasingn, all moments of the recurrence tim
are finite. In thet50 limit of continuous sampling, thes
moments may vanish in certain cases, as we have seen. H
ever, there do occur situations~such as intermittency in
chaos! in which Wn decays according to a power law@4,20#,
and the higher moments of the recurrence time~including,
possibly, the second moment itself! may diverge. This fea-
ture will be carried over, in such instances, to the cor
sponding continuous sampling limit.

VII. CONCLUSIONS

In this paper we have addressed the recurrence prope
of dynamical systems in continuous time and state sp
es
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e,

from the standpoint of the dependence of the first few m
ments of the recurrence time on the sampling timet. The
issue here is whether in the limit of continuous sampli
(t→0) one obtains, for a given phase space cell, a fin
result depending entirely on the intrinsic parameters or,
stead, a resolution-dependent expression suggesting tha
currence in this limit is ill-defined. Our main thesis was th
these two types of behavior define two wide, different clas
of dynamical systems. In particular, the possibility that th
provide a clearcut separation between deterministic and
chastic systems was critically examined.

We have shown that in deterministic systems an intrin
expression for mean recurrence time exists in the limit
→0 for regular motion as well as chaotic motion, provid
the probability distribution fulfills certain smoothness pro
erties which are satisfied by SRB type measures. In the
posite end diffusion processes have been considered,
shown to lead to resolution-dependent mean recurrence t
tending to zero in the limitt→0. More unexpected was th
result, derived in Sec. IV, that there exist processes wh
are continuous inbothspace and time such as systems driv
by dichotomous noise, for which a finite, resolutio
independent mean recurrence time can be defined. The m
ingredient at the origin of this result was the existence o
finite speed of propagation of signals in such systems
opposed to the infinite speed of propagation characteristi
diffusion processes. In this context one may recall that s
chastic processes continuous in time but discrete in s
space such as birth and death processes generally have
defined recurrence times.

An appealing aspect of our conclusions is the consid
able generality of the processes fitting into the differe
classes that we have identified. Still, we cannot claim to h
achieved an exhaustive classification. It would undoubte
be worth pursuing this goal in future investigations.

Although not explicitly required in the general formula
tion, much of our analysis focused on dissipative syste
possessing sufficiently strong ergodic properties. It would
appropriate to consider more explicitly the case of Ham
tonian dynamics, in which strong and weak ergodic beh
iors are intertwined in phase space in addition to being
pendent on the initial conditions. Of particular interest wou
be the signature, at the level of recurrence time statistics
the transition to nonintegrability and chaos through differe
scenarios and of the stickiness of the Cantori in the regim
developed chaos.
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