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Energy equipartition starting from high-frequency modes
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We study the approach to equipartition in the Fermi-Pasta-Ulam oscillator chain with quartic nonlinearity
Fermi-Pasta-Ulam8 system starting from generic high-frequency-mode initial conditions. Typically 90% of
the energy is placed in one high-frequency mode, with 10% in adjacent modes. The mode energy is found to
distribute itself into first a number of localized structures which coalesce over time into a single localized
structure, a chaotic breathéCB). Over longer times the CB is found to break up, with energy transferred to
lower frequency modes which do not have the breather symmetry. A transition with decreasing initial mode
frequency is found such that the CB does not form, as expected from the loss of breather symmetry. The
scaling of CB formation time with energy densiti/N, is found to beT,<(E/N) !, and the scaling of
equipartition time found to bé’eqx(E/N)’z. The scaling ofT, can be predicted from an argument which
postulates stochastic diffusion from high-frequency-mode chaotic beat oscillations to the low-frequency
modes. The theory also predicts that a miminum valu&/® exists below whiclT ., should increase more
rapidly with E/N than in the power law range, and this transition has been found numerically.

PACS numbd(s): 05.45—a, 05.70-a

I. INTRODUCTION found that the breakup of a nonlinear structure, starting from
a high-frequency-mode initial condition, occurred at higher
Coupled oscillator chains form good test systems for in-energy(and on a slower time scalé¢han from energy ini-
vestigating energy exchange among degrees of fredd@m tially in a low-frequency mode.
In particular, the Fermi-Pasta-UlafffPU) system, consist- A partial understanding of the increased stability came
ing of a set of equa| masses Coup|ed to nearest neighbors Wm a series of analyses of breatherlike structures on dis-
nonlinear springs, has been extensively stufiieel 3. Start- ~ Créte systems that admitted exact breather solufibs6—
ing with energy initially in a low-frequency mode, Fermi 18:13. The high-frequency-mode initial conditions have
et al. [2] observed, for low energies, that the oscillators digSYMMmetry of neighboring oscillators close to that of the lo-

not relax to the equipartition state, but displayed recurrencegalized exact_breatherg. The_ F‘?SU'“”Q dynamips consists of
two stages. First there is an initial period in which the mode

which were later explained in terms of beating among th . ; X
system modefL 3] Al?cheoretical rediction of a t?\resholg to e\breaks up into a number of breatherlike structures which coa-
Y o P lesce into one large unstable structure. These structures have

fast _eq_uipartition_ by made ov_erla[}l] was subsequently been called chaotic breath€i@B) [13]. Since a single large
gualitatively confirmed by studies of energy thresholds recp closely approximates a stable breather, the final decay

quired to give approximate equipartition among modesg, e ‘toward equipartition, is slow. This behavior has been
[5-7]. A weaker mechanism that also led to equipartition ongpcarved in oscillator chains approximating the Klein-

a slower time scale has also been ;tucﬂ&adl()]. With initial  Gordon equation with various force laW6-18, e.g., the
energy in a low-frequency mode, it was shown in R&l  gjiscretized sine-Gordon equatiftg], and, more relevantly
that the resonant interaction of a few low-frequency modesgr this paper, the FP\B model [12,13. In these latter
can lead to local superperiod beat oscillations that are stayorks, the energy was placed in the highest-frequency mode
chastic, transferring energy to high-frequency modes by difwith strict alternation of the amplitudes from one oscillator
fusion. With increasing local energy, there is a transitionto the next. This configuration is stable up to a particular
from exponentially slow transfer to a time scale that is in-energy at which a parametric instability occurs, leading to
versely proportional to a power of the energy density. the events described abol&2,13. However, the nonlinear

It has also been shown that the FBBL$ystem with quartic  evolution does not depend on such special initial conditions,
nonlinearity can be approximated, for low-frequency-modebut will generically evolve from any high-frequency-mode
initial conditions, by the mKDV equation, which admits a initial condition that has predominantly the alternating am-
soliton solution, that can become unstable with increasinglitude symmetry. One does not know, in this generic situa-
energy[11]. It was further demonstrated that this instability tion, whether there exists any true energy threshold to
roughly coincides with the creation of stochastic layers in theachieve equipartition, but as discussed extensively with re-
beat oscillationg9]. The close connection between the de-spect to low-frequency-mode initial conditions, the practical
velopment of stochastic layers in beat oscillations and instathresholds refer to observable time scal®sl0. From a
bilities in nonlinear structures was also noted for the disphase space perspective it is intuitively reasonable that for a
cretized sine-Gordon equation, consisting of pendula coupletarge number of oscillators and not too low an initial energy
by linear springgd14,15. In Ref. [14], it was numerically a generic set of initial conditions will lie in a chaotic layer,
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but the chaotic motion can remain close to a regular orbit fowhere thee; are the normalized oscillator energi@s order

very long timeg[1]. to distinguish between normal mode energies and oscillator
In this paper we follow the studies of high-frequency energies we label the formey and the latteg; in this work),

modes in Refs[12,13, but for more generic initial condi- which are given by

tions. We numerically study the equipartition time scale,

confirming the scaling found in Ref13] for our more ge- 11 , 1 ) )

neric case. Although the central importance of the existence e=y12P T z[(Ai+170) "+ (Ai—Gi-1)°]

of CB’s is confirmed, we also emphasize the dual signifi-

cance of the modes and the beat phenomenon among modes B 4 4

that has been shown to be of central importance to under- +gl@i1=9)"+(Gi—ai-1)"] @

standing equipartition with low-frequency initial conditions

[9,19). In particular, we show how these beats can be used tBoth the quantitiesi.y andngvary in the range from 0 to 1
predict the scaling of the time to equipartition as a functiongng have small values for energies concentrated, respec-

of energy density. tively, in a few modes or oscillators and large valel®se
to 1) for energies distributed evenly in the modes or oscilla-
II. NUMERICAL CALCULATIONS tors. We can plot these quantities versus time for various

initial conditions, values olN, and energy densitids/N. For
statistical quantities we also average over sevéyaically
5-20 different realizations of the initial mode phases to re-
N2 1 8 duce fI;Jctuations. | | f
B i 2 4 We first concentrate our attention on a particular value o
H_i; 7+i=20 2@ 7 (@m0 (D 128 which is sufficiently large to avoid small effects,
but small enough for faster calculations. We choose a generic
We consider the case of strong springg>0) and fixed high-frequency-mode initial condition with the modg
boundariesqy=qy.;=0. The constantd describing the =120 containing 90% of the energy and the remaining 10%
strength of the anharmonic potential can be scaled to anij the adjacent modes. More specifically, we choose a total
positive value. We vary the energy and fixat the com-  System energy oE =50. The primary oscillator symmetry in
monly used value 0.1 to compare with previous studies. Théhis case is alternating amplitudes. As in cases previously
equations of motion, obtained from the Hamiltonidn, are  studied[12,13, in which the energy is placed in the highest
numerically integrated using a fourth order symplectic inte-mode, the mode energy rapidly breaks up into a number of
grator[20] with a fixed integration step. The harmonic part traveling oscillator-localized nonlinear structures, which then
of the Hamiltonian can also be put in the formN)indepen- coalesce over time into a Single dominant localized structure;
dent normal modes via the canonical transformation these are the chaotic breath&@B). Unlike the results for

the initial conditions used in previous studies, there is no
[20, &
_ i ;
Q= Vir1 & SN+ 1

abrupt onset of the CB formation with increasing energy.
i, (2 Rather the time of formation lengthens as the energy is de-
o | 2 N
= No,N+n & N
where the frequencieQ; of the normal mode$Q; ,P;} are

The Hamiltonian representing the FR3Jehain of N os-
cillators is[1,2]

i

creased, and probably becomes exponentially long at suffi-
ciently low energy. Following Ref.13] we trace the evolu-
tion of localized structures in Fig. 1, with the gray scale
Pi s ) quantitatively corresponding to the energy in the localized
oscillator sites. We concentrate on three times: a time at
which there are several CB’s being formed, a somewhat later
time with only one CB and a time when the dominant CB
i has substantially decayed. Corresponding to the three times
Q=2 sir( ) (4)  we show the oscillator energies in Fig. 2, and the mode en-
2N+2 ergies in Fig. 3. The sharp breather structures are noted in
Figs. 2a) and 2b), and the envelope six){x pattern of
The main statistical tools we use to examine the eVOIUtior}nodes(averaged in t|m)$ centered O'j: 128, noted in F|gs
of the energy distribution are the normalized effective NUM-3(3) and 3b). In Fig. 2c) the CB has mostly dissipated,
ber of normal modes containing energy, while in Fig. 3c) the energy has spread substantidlbyt
still well short of equipartitionto low-frequency modes that
do not have the breather symmetry. To emphasize the
' ) breather symmetry we show, in Fig. 4, the mode amplitudes
of the principal modes in the breather over a short time cor-
responding roughly to Figs.(B) and 3b). Over the short
observation time the breather is concentrated primarily on
oscillators 9 and 10. The alternating symmetry is evident,
and the amplitudes oscillate at the breather frequengy
~2.6(tp~2.4s). Finally, in Figs. 5 and 6 we give the sta-
, 6) tistical measures,s. and ng; as functions oft, including
again the times in Figs. 2 and 3. We note thg{.illustrates

1

N
neﬁ=ﬁexp{ - 21 elne
=

wheree;=E;/X;_E; are the normalized linear energies of

the normal modepE; =(1/2)QJ-(QJ-2+ P,-z)]; and the normal-
ized effective number of oscillators containing energy,

1 N
nosczﬁexp{ - elne

=1
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i =120 at times(d t=1x10's, (b) t=1x10°s, and (c) t=2
| X 10°s.
\
et $ BEidd 1 i 8 we illustrate for various values & at fixed N=128 and
) ’ v=120 the times required for breather formation, for the
t(s) breather to approximately maintain its shape, and for the
. breather to disintegrate. As in Fig. By iS used to distin-
4 o

guish the regimes. We observe that all times decrease with
increasingE. The maintenance of the CB and its deteriora-
tion cannot be easily separated, and may be collectively des-
ignated as the time to reach equipartition.
In Fig. 9 we plot InTe, vs INN, whereT, is the time for
Nysc tO increase ta,,=0.7. We see, for fixed//N=15/16
and fixedE/N=0.625, that there is a transition, approxi-
mately atN =128 whereTl ., changes from a decreasing func-
' tion of N to a constant, independent Nf For largeN, T,
2,05x105 has also been found to be independentNofwith low-
frequency-mode initial conditions. However, this scaling can
ts) be obscured by early-in-time transients for some parameters.
FIG. 1. Time evolution of the energy distribution in the oscilla- The main scaling is with energy density, which we give in
tors of the FPUB oscillator chain with3=0.1, E=50, N=128

100

oscillators and initial energy concentrated around the mede 0.08 (a)

=120, at times(@) 0<t<10's, (b) 1P<t<1.1x1C°, and(c) 2 0.06

X 10°<t<2.1x 10°. Darker regions correspond to oscillators with o 0.04

more energy, lighter regions to oscillators with less energy. 0.02

the formation and decay of the breathers. In contnast, 0.00 ®

after an initial transient in which the multiple breathers form, 0.06

hides the dynamics in a slow statistical progression towards o 0.04

equipartition. 0.02 WMM\W
Another question to be considered is the effect of initial 0.00 seute

conditions. Taking the energy as in Figs. 1-6 and the time 0.06 | ©

such that the breather has formed at this energy, we examine

various initial conditions in Fig. 7. The breather symmetry, o 0.04

which is exact for all energy initially in the modeg= 128, 0.02

should be completely lost foy=64 and below. This loss of 0.00 ; o o o 18

breather symmetry is quite evident in Fig. 7, which indicates
that the breather will essentially pick up its full energy for all

mode j

phases abovéapproximately y= 105, below which deteri- FIG. 3. Energy density distributions in the mode space for a
orization of the breather occurs. After a rather rapid transi+PU-8 system with 3=0.1, E=50, N=128 oscillators andy

tion the breather has been essentially eliminated 5y85. =120 at times(a) t=1x10"s, (b) t=1x10°s, and(c) t=2
We now consider the effect of varying parameters. In Fig.x 10° s.
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FIG. 4. Breather phase oscillations for the oscillators at sites ~ FIG. 6. Time evolution of the normalized effective number of
=9 (dotted ling, i =10 (solid line), andi =11 (dashed lingfor 8 modes () for 3=0.1, E=50, y=120, andN= 128 oscillators.
=0.1, E=50, y=120, andN=128 oscillators. The oscillator
=10 has frequency);=2.62s 1. highest normal mode; e.g., in Fig. 4 the CB has a frequency

w,=2.62 while the highest mode frequency is maye=2.
F|g 10. P|Ott|ng |nTeq VS |n(E/N) we find a S|ope well ap- However, we know this .breather iS.UnStal.ﬁE CB), as it .
proximated by—2, i.e., Teqoc(E/N)*Z_ In the next section Must have been form_ed in the cha_otlc portion of the Hamil-
we present an argument from which this scaling can be estfonian phase space in order that is was able to be formed
mated. In Fig. 11 we give the scaling with energy density offom a few initial modes. Within the usual theory the process
the time for CB formatiorT,, defined as the time far,,.to ~ then becomes quite subtle, as it depends on the relatively
fall to n,s=0.3. For a single breather to form we require thatSmall continuous spectrum of the chaos.
To=Teq- We find this inequality to hold over the range of  Although the dominant structure is the CB, the mode
E/N values we have investigated, which corresponds t$PeCtrum, into which the CB can be decomposed, plays an
cases in which CB'’s form. However, we note that the scalindmpPortant role. In particular, adjacent modes interact to form
of the breather formation time is approximately, eats on a slower time scale, which can then interact by the
«(E/N) L. Thus extrapolations of.qand T, to higher en- Arnold diffusion mechanism to drive energy to low-
ergy predict a crossing, which is a transition to energy denfreéquency modes which lack the breather symmetry. This
sities beyond which single breathers will not form. Of courselransfer of energy from the high-frequency portion of the
the transition is qualitative, in the sense that the definitions ofPECctrum to the low-frequency portion is probably the domi-

the times for formation and destruction of the CB are alsd@nt energy transfer mechanism; it has been shown to be the
qualitative. dominant energy transfer mechanism from low-frequency-

mode initial conditions to the high-frequency mod8s In a
recent work{19] we have found that the scaling with energy
. ESTIMATING THE TIME TO EQUIPARTITION density of the time to reach equipartition can be predicted

In the usual picture of breather stability, the physicalfrom thqtsmechamsr_n. The proportionalifl.(low-to-high
mechanism by which the breather loses stability is that thé (E/N)~ was predicted and confirmed numerically. Here
breather frequency becomes resonant with a linear normdye show that the same formalism can predict the scaling
mode[16—1§. This explanation is not directly applicable to Teqhigh-to-lowe<(E/N)~*, which we have found numeri-
our problem as the breather frequency is higher than th&ally in Fig. 10. We only quote some results of the theory.
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FIG. 7. Averages of the normalized effective humber of oscil-

FIG. 5. Time evolution of the normalized effective number of lators (n,s) over eight different initial conditions vs the initial en-
oscillators 6, for 8=0.1, E=50, y=120, andN=128 oscilla-  ergy mostly in modey for 3=0.1, E=50, N=128 oscillators and
tors. t=5x10"s.
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FIG. 8. Averages of the normalized effective number of oscil-

lators (nhos9 Over eight different initial conditions vs time fqB
=0.1, y=120,N=128 oscillators an& = 14 (solid line), 26 (long-
dashed ling 38 (dashed ling and 50(dotted ling.

FIG. 10. Natural logarithm of time until,s>0.7 (T¢g) vs natu-
ral logarithm of E/N for 8=0.1, y=120, andN=128 oscillators
(each point is obtained by averaging over eight different initial con-
ditions). The linear fit, obtained over all points but the leftmost two,

relevant beat oscillations in Fig. 12. The energies in two

adjacent modegother modes are also involvedre shown,

with a small fast energy interchange associated with the CB
and a large slow energy interchange at the main beat frawhereP represents the eight permutations of sign, & and
quency. The scaling of the main beat frequency with energy and the functiorB(x) takes the value 1 if the argument is
zero,—1 if the argument ist2(N+ 1), and zero otherwise.
To theoretically estimate the scaling of the time to equi-The selection rulé9) follows from the quartic nature of the
coupling. We can estimat@g, by taking a derivative oH
variables of the normal modes. We first transform to thewith respect to an actioh and then evaluating the nonlinear
term in Eq.(8). The derivative reduces the sum by one index,
and the selection rul€d) by a second index. If we further

density is found, numerically, to b@goc(E/N)°E.
partition we transform the Hamiltoniafl) to action-angle

normal mode variables, using) and(3), and then introduc-
ing the canonical action-angle variablds ¢) through the

=— +
The reader is referred to the original papers for a more dehas a slope of=—2.04+0.08.

tailed treatmenf9,19]. Before outlining the steps, we show

G(i,j,k1)=> B(i+]j+k+1),
P

C)

transformations  Q;=/(21;/Q;)cos(¢) and P; consider the sum to run over sona& modes, to be deter-
=/(2Q;1;)sin(¢;) we obtain mined, the number of terms in the above sum is then of the
order of (6k) [2]. We assume every quartic term in this sum
5 is typically of the same size, i.e., with equal energies for all
H= Z Q! 8N<8). Z G(i.j.k,1) low-frequency modes();l;=E/sk. If we also take the
phases to be random, then the effective number of terms is
XA Q001151 hang(ijkl), (8) K, giving the estimate

whereang(ijkl) =cos(#)cos@)cosih)cose). The coeffi- 0.~ PE (10
cientsG, as calculated in Ref$3,9] are BYIN

12,5 115

110 1
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FIG. 9. Natural logarithm of time untits>0.7(T¢g Vs natural

FIG. 11. Natural logarithm of time unti,,:<0.3 (T}) VS natu-

logarithm of the total number of oscillators fg8=0.1, E/N ral logarithm of E/N for 8=0.1, y=120, andN =128 oscillators
=0.625 andy/N=15/16(each point is obtained by averaging over (each point is obtained by averaging over eight different initial con-
20 different initial conditions ditions). The linear fit has a slope @f=—1.19+0.12.
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0.10 which has the dominan{8E/N) ~2 scaling as found numeri-

0.08 cally. The many approximations are not critical to the scal-
_ 006 ing, but, of course, change the coefficient, which is certainly
30,04 no better than an order of magnitude calculation. In fact, if
. 002 \/\’\MWWWW we compare the magnitude dt, from Eg. (16) with the

0.00 numerical value from Fig. 10, d&=50, we find thatT,

0.08 from Eq. (16) is a factor of approximately 50 smaller. We
0.06 might expect a significant underestimateTof, because we
g are not explicitly taking into account the effect of the CB. In

5 004 fact, for half of the total equipartition time in Fig. 5 the
002 dominant nonlinear processes are holding the CB together.
0000000 50010 50020 50030 50040 50050 For low-frequency-mode initial conditions, in which there is

(s) no breather formation, the theoretical and numerical times
are well within an order of magnitudé.9]. The above con-
FIG. 12. Time evolution of the energy densities of the modessiderations predict that at low initial energy there will be no
j=121 andj=122 for $=0.1,E=50, y=120, andN=128 oscil-  modes with sufficient energy to produce energy transfer at
lators. Two different beat oscillations between the modes can begtes that are nonexponentially slow. From EB) we find
observed, with respective beat frequencies equél o~ 0.60 and that with N=128 andE="50, sk~3 such that reducing the
0f)~5.3. energy by greater than a factor of 3 should result in large
increases inT.q. We can see this happening in Fig. 10,

For low-frequency modesjoy=mj/N, but for high-  \yhere already atE=26, Teq is departing from theTe,
frequency modes we can approximégy,qn=2. Note that -2 scaling.

the scaling ofQ)g with E/N is approximately that found nu-
merically. The key assumption in the calculation is to re-
quire, for fast Arnold diffusiorf9], that IV. CONCLUSIONS AND FINAL REMARKS

0g=580,, (12) We have shown that the formation of chaotic breathers
(CB’s), from high-frequency mode initial conditions in the
where 80, is the spread of mode frequencies to which en-FPU48 coupled oscillator system, is generic, not dependent
ergy can be transferred. For transfer to low-frequency mode@n the specific initial conditions. However, the CB formation
is successively weakened as the initial conditions contain
ol less of the alternating oscillator breather symmetry. The ba-
N’ 12 sic process is the formation of a few CB’s from the modes
initially containing most of the energy, followed by a coales-
where 8l is the number of low-frequency modes which arecence into a single dominant CB, which then decays over
taken to correspond one-to-one with high-frequency modegjme by energy transfer to low-frequency modes which do
Sl = k. Using this and combining Eqé10)—(12) we obtain  not contain the breather symmetry. We have found that the
the fractional number of couplings dominant scalings ar&,>(E/N)~* for CB formation, and
Teqoc(E/N)‘2 for CB decay toward equipartition, where
E/N is the energy density. Because of the different scalings,
at highE/N, Ty,>T¢,and the CB will not form.
We have observed, numerically, that a Fourier decompo-
We estimate the rate of energy transfer from a high-ition into modes shows that there are beat oscillations
frequency mode to the low-frequency modes by taking theamong the modes, similar to those found for low-frequency-
derivative ofH with respect to angle. Using the same proce-mode initial conditions. The transfer of energy from low to

5Q|:

sk 2 BE

N7 N (13

dure as above, we obtain high frequencies was shown to be due to stochasticity, aris-
ing in the low-frequency beats, driving energy transfer, non-

ﬁmﬂ(ﬁ) SKE.E (14) linearly, to difference frequencies between high-frequency

dt NN = modes[9]. Postulating that this mechanism also operates to

o _ transfer energy from high frequencies to low frequencies, we
where(};=2, as above, andk/N is given by Eq(13). With  haye shown that it can explain the energy density scaling of
these substitutions we rearrange and integrate to obtain, qfteqoc(E/N)‘z. It further predicts the breakdown of the scal-

equipartition, whereg; = E/N, ing at low energy density, as found numerically.
i 5 BE\ (T The analysis also suggests how the formation of a CB
m _ “ B_ € inhibits the energy equipartition process, particularly at
In 2B E(t)dt. (15 _ ) : ;
BEIN m N/ Jo lower energies. The concentration of the energy in oscillator

_ _ _ _ space naturally spreads the energy in mode space. If the en-
As in previous work, we make the simplest assumption thagrgy per mode falls significantly below that required for the

E,(t)~(t/T)(E/N) to perform the integration, yielding strong Arnold diffusion, then the transfer of energy from
) high-frequency to low-frequency modes becomes exponen-
T :Z(l) n( /2 ) (16) tially small as exp{ &) /Qg). Fluctuations in mode ampli-
4 2\ BE BEIN/’ tude probably assist in the energy transfer process.
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There does not presently exist a theory which predicts theesults can probably be applied to other coupled oscillator
formation time of the CB. There are some similarities be-chains, such as that arising in the approach to equipartition
tween the coalescence of CB’s and the coalescence of othffom high and low-frequency modes in the discretized sine-
nonlinear structures, such as vortices. The open questioSordon equation, which previously have been only partially
concerning this intermediate time scale are well worth fur-ynderstood.
ther investigation.

The additional understanding that has recently been
gained for CB formation and destruction from high- ACKNOWLEDGMENTS
frequency-mode initial conditions, combined with the previ-
ous understanding of the approach to equipartition from low- This work was partially supported by FAPESP and Capes
frequency-mode initial conditions, now presents a fairly(Brazilian Government Agencigsand by National Science
complete picture of the energy transfer phenomenon. Th&oundation Grant No. PHY 9505621.

[1] A. J. Lichtenberg and M. A. LiebermaRegular and Chaotic (1976; Rocky Mt. J. Math.8, 211(1978.
Dynamics(Springer-Verlag, Berlin, 1992 [12] V. M. Burlakov, S. A. Kiselev, and V. I. Rupasov, Phys. Lett.

[2] E. Fermi, J. Pasta, S. Ulam, and M. Tsingtou,Tine Many- A 147,130(1990; V. M. Burlakov and S. Kiselev, Zh. Eskp.
Body Problemedited by D. C. MattigWorld Scientific, Sin- Teor. Fiz.99, 1526(1991) [Sov. Phys. JETR2, 854(1991)].
gapore, 1993 reprinted [13] T. Cretegny, T. Dauxois, S. Ruffo, and A. Torcini, Physica D

[3]J. Ford, J. Math. Phy2, 387 (1961). 121, 109 (1998.

[4] F. M. Izrailev and B. V. Chirikov, Dokl. Akad. Nauk SSSH, [14] C. G. Goedde, A. J. Lichtenberg, and M. A. Lieberman,
166 (1966 [Sov. Phys. Dokl11, 30 (1966]. Physica D57, 200 (1992.

[5] P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger, Phys. Rev. [15] M. C. Forrest, C. G. Goedde, and A. Sinha, Phys. Rev. Lett.
A 2, 2013(1970. 68, 2722(1992.

[6] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vul-
piani, Phys. Rev. A31, 1039(1985.

[7] M. Pettini and M. Landolfi, Phys. Rev. Al, 768(1990.

[8] H. Kantz, R. Livi, and S. Ruffo, J. Stat. Phy&5, 627 (1994).

[9] J. DeLuca, A. J. Lichtenberg, and M. A. Lieberman, Ch&ps

[16] O. Bang and M. Peyrard, Phys. Rev5B, 4143(1996.

[17]J. L. Marin and S. Aubry, Nonlinearity9, 1501 (1996;
Physica D119, 163(1998.

[18] T. Cretegny, S. Aubry, and S. Flach, Physicald9 73

283(1995. (1998. .
[10] J. DeLuca, A. J. Lichtenberg, and S. Ruffo, Phys. ReG1E [19] J. DeLuca, A. J. Lichtenberg, and S. Ruffo, Phys. Re\a0E
2877(1995. 3781(1999.

[11] C. F. Driscoll and T. M. O'Neil, Phys. Rev. Let87, 69  [20] E. Forestand R. D. Ruth, Physica43, 105(1990.



