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Breakdown of the bounding properties of variational transition state theory
and the Rayleigh quotient method
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The thermally activated escape of a Brownian particle from one metastable state to another by crossing an
intervening potential barrier is studied by means of variational transition state théb8T) and a Rayleigh
quotient method. Historically, these two methods have been shown to provide an upper bound to the ‘“rate
constant,” and a restricted identity between them has been recently demonstrated by Talkner af&Ryslak
Rev. E50, 2646(1994]. Yet, we show that while VTST gives an upper bound to a specific definition of the
“reactive flux rate,” neither VTST nor this reactive flux rate provide a rigorous upper bound to the least
nonvanishing eigenvalue of the underlying Fokker—Planck operator, as is done by the Rayleigh quotient
method in the Smoluchowski limit. Numerical results for the rate in a symmetric double well show that in the
spatial diffusion regime, the failure of the VTST and reactive flux methods is only significant for relatively low
barriers, e.g.BE<5.

PACS numbsgfs): 05.40—a, 82.20.Db, 82.20.Fd

l. INTRODUCTION P(zt)=LP(zt), (1.3

The Rayleigh—Ritz variational method is known to be ajg analogous to the Schiimger equation for the wave func-
very powerful tool for systematically treating Sturm- ion Eq (1.2), there is a mathematical obstacle to applying
Liouville problems of quantum mechanics and statisfids e quantum variational principle to this analogous case. The
The central advantage of this approach is that when applieghsiacle arises because the evolution opetatsiin general
to a Hermitian operatof{ it ensures the traditional upper non_Hermitian for dissipative dynamical systems of interest.
bound property to the exact eigenvalues of this operator  ag will be described below, the modern theory of thermally

activated rate process¢3-5|, which is essentially due to
_ (W, RHY) (1.1) Kramers[ 6], suffers from this problematic state of affairs.
(v, ' Kramers[6] studied the motion of a Brownian particle
with mass-weighted coordinate which can be thought to
with (f,g) denoting the scalar product. The latter propertyrepresent the reaction coordinate of a chemical reaction. The
allows one to solve approximately the stationary Sdhrger ~ particle moves in a potential of mean foridgx), such that it
equation by making use of a physically motivated trial ansatanay switch from one metastable stadi.e., the reactants
for the wave function?. The energy-expectation functional (Xx<<0)] to another stateB [i.e., the products X>0)] by
is varied with respect to free parameters entering the triatrossing over a potential barrier at=0 (see Fig. 1 The
function to obtain the global minimum, which then provides quantity of interest is then the escape rBjeof the particle
the best approximation to the true eigenvalue. A similar apfrom the well, which corresponds to the chemical reaction
proach is also available for efficiently solving the time- rate. The energy required for this particle to cross the barrier

dependent Schdinger equation2] must be supplied by the surrounding heat bath. In the Brown-
ian approximation, the bath is assumed to have a vanishingly
ihW(z,t)=HV¥(21) (1.2 small correlation time such that a Markovian process results

for the considered system. The time evolution of the corre-

where the dot denotes the time derivative. These methods af ondmg probability (iensny ]‘or this Brownian particle,
(z,t), in phase space=(x,v), is governed by the Fokker-

among the very few tools in the arsenal of quantum field lanck equation with the operatbraiven b
theory and many-body theory, where alternative numerica‘D q P g y
techniques are expensive or unfeasible.

In contrast, nonequilibrium statistical mechanics is lack-
ing a variational principle of the same flexibility as in quan-
tum theory, capable of determining both the steady-state and
the time-dependent solution to the initial-value problem. Al-
though the Liouville equation for the probability density
function in the nonequilibrium problems,

*Permanent address: Institute for High Temperatures, 13/19 FIG. 1. Schematic graph of a two-state process in a bistable
Izhorskaya Street, 127412 Moscow, Russia. potentialU(x).
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g dUx) ¢ 9 0 through some chosen dividing surface to the population of
a_x+ ax 5+ 7£(v+,3 %), (1.4 the well[13—16. The quality of such an estimate of the rate
will, however, depend upon the choice of the dividing sur-
wherey is the friction coefficient, ang the inverse energy face[13]. An attractive feature of this approach is that it is
available from the thermal batl® *=kgT. One can easily thought to give an upper bound to rate constants, such that a
check by substitution that the stationagquilibrium) solu-  trial dividing surface may be varied to minimize the rate
tion of the Fokker-Planck equation has the standardestimate[13,17—19, a procedure known as variational TST

L=-v

Maxwell—-Boltzmann form (VTST). Reviews of the present state of the art have recently
been given by Tucke20] and Pollaki21].
Ped(X,0)=(BI2m)"?Z Texpg{ — B[ 50>+ U(x) ]}, Although the Rayleigh quotient and VTST methods are

(1.5 very different, Talkner and Pollglk2] have recently demon-

strated that there exists a restricted identity between them.

7= jm dxexd — BU(X)]. Specifically, these agthpr_s were able to prove this identity in

—w the case that VTST is limited to planar dividing surfaces and

o . . _ the Rayleigh quotient is limited to Kramers'’ trial functions.
The diffusion matrix associated with E(L.4) does not  gince VTST has generally been thought to provide an upper

possess an inverse, and, consequently, (Eg)) cannot in  hound to the true rate constant, Talkner and PdI2® con-

principle be transformeq to a Hermitian form. As a result, thecluded, quite reasonably, that their VTST—Rayleigh quotient
powerful, nonperturbative schemes of quantum mechanicgjentity proves the nontrivial result that the Rayleigh quo-
are generally inapplicable and cannot be used to solve thgant method, when restricted to the class of Kramers func-

Kramers rate problem. However, in the strong friction limit tj5ns - also bounds the rate from above for all values of the
(y—), where the velocity relaxes to equilibrium infinitely iction coefficienty.

rapidly and may therefore be eliminated adiabatically from | this paper, we show that the identity between VTST
the Fokker-Planck equation, Eq4..3) and(1.4), this equa-  gnq the Rayleigh quotient method breaks down for low bar-
tion may be reduced to a Smoluchowski equation for th&jers and that, as a result, Pollak and Talkner’s conclusion

reduced probability about the bounding properties of the Rayleigh quotient is
" suspect in this limit. Perhaps more interestingly, we find that

p(x,t):j dvP(x,v,t) (1.6) VTST itself does not provide a rigorous upper bound to the

- “true” rate constant, defined by the least nonvanishing ei-

, genvalue of the Fokker—Planck operator, and may substan-
with tially underestimate it in the limit of low barriers. A striking
consequence of this failure of VTST is that it implies a simi-
2, 9uX (1.7 lar failure of the reactive flux methofas defined in Eq.
12 dx (2.14)], since VTSTdoesbound the reactive flux formula

) ) ) o o (based on the same dividing surfadeom above. Compari-
Since the Smoluchowski operator is selfadjoint, variationaly, with exact numerical rates in a symmetric double well

methods of the standard form may be employed to obtailonfirms these findings. The reminder of the paper is orga-
improved estimates for the escape rétg in this limiting  pjzeq as follows. In Sec. II, a phenomenological rate law is
case (y—) [7,8]. The latter convenient fact is utilized in reviewed, along with its connection to the reactive flux
the Rayleigh quotient methdd@—11], which recognizes that method, the TST rate, the Rayleigh quotient rate and the
the least-nonvanishing eigenvalue of the underlying Fokkerteast nonzero eigenvalue of the Fokker—Planck operator.
Planck equation corresponds to the kinetic rate constant, i.epjsadvantages of the reactive flux method are discussed, and
the sum of the forward and backward escape rdtes]’s 5 way to improve it is suggested. Bounding properties are
+I'g. The general structure of this method is the same as igmphasized throughout. In Sec. IIl, we briefly outline and
guantum mechanid€q. (1.1)] in that the least nonvanishing compare explicit expressions for the VTST and Rayleigh
eigenvalue is calculated variationally from a trial eigenfunc—quotiem methods. The bounding properties of these methods
tion. Typically, a physically motivated trial eigenfunction are then tested in Sec. IV by comparing analytical and nu-
proposed by Kramerg§] is used. The principal advantages merical calculations of the rate in the limit of both strong and

of the Rayleigh quotient method are th@} it rigorously  moderate friction. Section V concludes with some final re-
bounds the rate from above in the Smoluchowski«{>) marks.

limit, and (ii) a first-order error in the trial function leads to
only a second-order error in the estimate for the rate.

During the past two decades, a great deal of effort has
been directed towards extending the applicability of such
variational principles for the Fokker-Planck equation to the To begin with, we review a phenomenological approach
range of moderate friction. One popular strategy is based oto the problem of interest and discuss its connection to the
the transformation of the original stochastic, dissipative sysunderlying dissipative dynamics, and, in particular, to the
tem to an equivalent infinite dimensional Hamiltonian sys-so-called “reactive flux” and to the least nonvanishing ei-
tem[12]. Within the Hamiltonian formulation the escape rate genvalue. The phenomenological approach is based on the
I'n may be estimated, by means of transition state theorgssumption that the two-state process displayed in Fig. 1 can
(TST), as a ratio of the equilibrium unidirectional flux be described by a simple linear rate 1§28,24]

1 9
L=y |B

-1

Il. REACTIVE FLUX METHOD
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lated to the friction coefficienty through the expression
2y8(t)=2(g;/ w;)? cosit). In Eq. (2.4), the system of in-
terest is represented by a parti¢kerepresentative poinin

an infinite-dimensional phase spaog ), whose axes are
the positionsq=(x,y1,Y2, . ..) andconjugate momenta
Here,I'5 andI'g are the rates of escaping from theandB go(v%(rhpeld,pbz); H’a{%hgﬁge;gj;ttigﬁsijnamICS of which are
metastable states, respectively, whNg(t) and Ng(t) are If the system consists dfl particles, and is a dividing

the time-dependent nonequilibrium probabilities of finding surface separating reactants and products, which is defined in
the system in the same states. Thus, when defined relative {ge full infinite-dimensional spacg, we can define the frac-

a dividing surface separatifyandB, o(z)={1, ze AR; 0,  tion of particles in staté, and stateB, at timet as
ze B}, these probabilities read

Na(t)= — T ANA(D) + T'gNg(1),
(2.2)

Ng(t) =T ANA(t) ~T'gNg(1).

1 N
WA(t)=1—ﬁB(t):f dzo(2)P(zt), (22 NAO=1=No(O) =g 2 A= fla" 15 25

where we have assumed the system of interest to be close\%here 0(x) is the Heaviside step function. At equilibrium,
Y the average fraction of particles iA and in B are then

Na+Ng=1. Additionally, the escape ratgs are Nrelated t0<NA>=NZ and (Ng)=N¢, where the brackets denote the
each other through the equilibrium fractioBsN3=T'gNg,  equilibrium ensemble average. The application of a distur-
defined bnyAzﬁM(oo), M=A, B. For such a closed sys- bance changes the observed fractions from their equilibrium
tem the phenomenological E.1) can be reduced to one Vvalues,Ng and Ng, to time-dependent nonequilibrium val-
equation for the nonequilibrium fluctuation variable, ues,(Na)(t) and (Ng)(t). Recall that at the macroscopic
AN, (1) =NA(t) —N&, which then yields single-exponential level, the pme dependgnce of these numbers is assumed to be
characterized by the linear rate law, E@8.1), and thus by

dynamics, . ‘
single exponential decay.
AN, (1) - It will now be our goal to link the phenomenological re-
o = X T, (2.3 sult (2.3 to the equilibrium time correlation function
ANne(0)
(23,24,
Equation(2.3) depends upon the phenomenological kinetic (AN(0)AN(D))
rate constanﬂ,:zfAﬂLl:B, and, clearly, it need only be valid C(t)= m (2.6

at long times, when the decay of a perturbatiam,¢(t),
back to equilibrium becomes unconditionally single eXpo'whereAN(t)zNA(t)—Nf\ is an equilibrium fluctuation of

nential. .the number of particles of typd, and the brackets again

Since it is generglly impossible to derjve phenqmenplogpdenote the equilibrium ensemble average. With ) this
cal rate equations like E2.1) from evolution equations like correlation function takes the form

Egs.(1.3) and(1.4), there exists no precise identification of
microscopic dynamical quantities with the phenomenological (AB(0)AB(1))
rate constants. As a consequence, various methods have been C)y=———
devised to establish such a connection. One of the most com- NaNg
monly used approaches is based on the equilibrium time cor-

— _ n NG
relaton functon formalsn{23,24, Since the problem of 8% T BN SR e b
interest can be formulated in two formally equivalent ways— y d

namely, using the Hamiltonian representation, &), and (AN(0)AN(0))=N;Ng . Proceeding further we note that

the original Fokker-Planck Eql.4)—two formulations of the the time evolution ofC(t) can always be written as
equilibrium correlation function formalism are possible.

; 2.7)

C(t)= 2, cpexp—Nub). (2.9
A. Hamiltonian representation m=1

To begin we consider the Hamiltonian formulation. The The summation in Eq2.8) is over all the characteristic fre-
starting point of this approach is the observation that theuencies)r,, of the full infinite-dimensional system and, by
Fokker-Planck dynamics, Eql1.4), is equivalent to the dy- construction, the expansion coefficiemtg satisfy =,_1Cp,
namics of the Hamiltoniah12] =1. Due to the equivalence of the Hamiltonigiq. (2.4)]
and the Fokker-Planckeq. (1.4)] representations, these fre-
quencies\,, are just the eigenvalues of the Fokker-Planck
operatorL. The coefficientsg,,, will depend upon the par-
ticular choice of the dividing surface and may in general be
involving a bath of mass-weighted harmonic oscillatgrs both positive and negative. However, in the limit of large
bilinearly coupled to the system coordinateThe summa- friction where the spectrum of the Fokker-Planck operator is
tion in Eq. (2.4) is understood to be over an infinite set of real, the coefficients,, will all be positive. In this limit, one
bath oscillators tending towards a continuum. The bath pamay interpret each coefficient, as the fraction of the excess
rameters(frequenciesw; and coupling constanty;) are re- number of particles in statd, AN, which decay with the

H=%p§+U<x>+%Z [p?+ (wiyi— gix/w)?], (2.9
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corresponding rate.,,. Or, more explicitly,c,, represents (i) From a computational point of view the most appeal-
the fraction of initial representative phase space points whiclng feature of the reactive flux method is that it allows one to
relax to equilibrium(relative to the surfacé) with an expo- avoid problems arising from widely separated time scales.
nential relaxation timex,,. If we could find the dividing Such time scale separations are typical in barrier crossing
surface yieldingc;=1, ¢,-1=0, thenC(t) based on this processes for which the decay timel’H1/\; is usually
dividing surface should, in fact, monitor only the slowestmuch larger than the intrawell relaxation tindehich is of
system mode, which is characterized by the least nonvanistihe order of 1X,) that it takes a particle to thermalize within
ing eigenvalue) ;. In this case alone, the relaxation dynam-the part of phase space bordered by the barrier. The reactive
ics of C(t) will be single exponential, and thus the phenom-flux method circumvents this difficulty by initiating trajecto-
enology will hold true at all times. Comparison of EGR.3)  ries at the barrier top, such that, by Eg.13, the long time
and(2.8) (with ¢c;=1, c,~1=0) shows that the phenomeno- behavior may be extracted on a short time scale. Specifically,

logical rate constark is just\;, and hence we equate this &fter @ timet, that is longer than 2/, but is much shorter
least nonvanishing eigenvalue of the Fokker-Planck operatdhan the inverse rate =1/x,, C(t) should decay by a
with the true kinetic rate constatit, i.e., single exponential, Eq2.10. Consequently, by differentiat-
ing Eq. (2.10, the reactive flux function becomdsyg(t
F=r=nx,. 2.9 >1/\,)~c e . Accordingly, for a timet, such that
)\2’1<tp<I‘*l, the reactive flux formul&2.13 approaches a
Unfortunately, to find such a perfect dividing surface oneplateau value
would have to solve the corresponding Hamilton’s equations,
which cannot usually be done. kre(tp) =Lre=cyl'. (2.14
In contrast to the case of the perfect dividing surface, an
arbitrary dividing surface will yield multiexponential relax- However, it is typically assumed on basis of the phenom-
ation dynamics forC(t) [see Eq.(2.9)]. Yet, even in this enology, Eq(2.3), which when compared to Eq.10 and
latter caseC(t) should decay as a single exponential at long(2.11) givesc, =1, that the reactive flux expressidixg co-
times, since incides exactly with the true rafe [10,21,23-27. Yet, from
Eqg. (2.14), it follows immediately that this assumption will
C(t>1M,)=cqexp(—\jt). (2.10  not be true unless;=1.
(i) The zero time limit of the reactive flux expression, Eq.

Importantly, the Onsager regression hypothesis suggests thgt 13 s just the TST estimate of the rate for the dividing
the nonequilibrium fluctuatiom N,¢(t) decays to equilib-  gyrfacef (Refs.[20,21,24)

rium in the same fashion as do equilibrium fluctuations

AN(t) of the number of particles of typ&, such that <5(f)f6(f)>
A Kre(O+) =Tyl f]=—7—. (2.19
Nne(t) it 01 NSNS
ANg0) Y (210

Note that this limit must be taken dsgoes to zero from
At long times ¢>\, ') we find, by combining Eqs(2.10  above.

and(2.12), that (iii ) The time-dependent reactive flukzg(t), is bounded
from above by its zero time value, the TST rate expression
ANpe(t) for that dividing surface, Eq.2.195, such thatkgg(t)
AN, (0) =C1exp(— Aqt). (212 <I'157{ f]. This property can be seen mathematically as fol-

lows: at any timet the function 6] —f(t)] can at most be
Comparing Eq.(2.12 with Eq. (2.3) and using Eq(2.9  unity. If the initial velocity f were negative, then even if
shows that the phenomenology is, in general, valid at long[ —f(t)]=1 the net contribution will be negative, that is, it
timesif and only if the coefficientc, is close to unity. If  will be smaller than the contribution of 0 given for the TST
ci1#1, then an explicit expression for this coefficient v_vould estimate] 0(i‘)=0 if 'f<0]_ On the other hand, i is posi-
be rgquwed to extract Fhe rate= N\, from'the correlation tive, whend[ — f()] has its maximal value of kg(t) also
function. This issue will be addressed in Sec. Il of they g its maximal value, which is just the TST rate. Physically,

present paper. _ o _ this bounding property results because in TST it is assumed
For now, we examine the implications of this result for \h4¢ 4| trajectories crossing the dividing surface are associ-
the time-dependenreactive fluxexpressiori24] ated with the slowest relaxation timel’H 1/\ 4, i.e., with

. reaction. If an imperfect dividing surface is used, there will
Kee(t) = — C(t) = (5[f(0)]f9[—f(t)])’ 2.13 be surface—cro_ssing trajectories that relax more rapidly than
NaNg N1. These trajectories will repeatedly recross the dividing
surface on the time scale of intrawell motion,(or fastey
which is derived from Eq(2.7) by making use of the fact and are not associated with the reaction. Thiggr, at
that the derivative of a step function is a Dirac delta function.most, overcountsthe number of truly reactive trajectories.
The properties of the functiokg(t) deserve to be pointed Consequently, since the reactive flux expression starts with
out, as Eq(2.13 forms the basis for the standard computa-the TST estimate &t=0, and, as time proceeds, eliminates
tional method for determining reaction rate constantgecrossing trajectories from those counted towards the over-
[26,27). These properties are: all rate, it follows that
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Fres<T s f]. (2.16 zero far outside, it may show a smooth transition from these
extreme values in contrast to the step functi{r-f). The
Since the only apparent approximation in the derivation offunction y(z) is of similar nature ag(z).
the TST method is this overcounting of recrossing trajecto- The phenomenological result, E.3), can be linked to
ries, it is commonly believed that TST provides a rigorousthe equilibrium time correlation functiod/(t) in the same
upper bound to the rate constant. Yet, we have shisge way as it was taC(t). In particular, at long times when the
Eq.(2.14] thatI'ge, and thud'rsr [see Eq(2.16], bounds  phenomenology hold&)/(t) has the same decay as the vari-
only c,I" and notl” itself. Hence, from Eq(2.16) we see that  able AN(t) itself. Consequently, a corollary of the improved
TST also bound,I" rather thanl itself, as generally be- reactive flux expressiofEq. (2.17)] defined on the basis of
lieved. W(t),
The above reactive flux approach is applicable only if

there is a well-defined separation of time scales, since the d
function kge(t) would otherwise go to zero without a well- kw(t) == g7 In[W(D)], (2.2)
defined plateau. Another disadvantage of this expression, Eq.
(2.13, is that its plateau valufEq. (2.14] involves the co-  ghould exhibit the same long time behavior as does Eq.
efficientc,, which is in general not known. A way to resolve (217 je.,
both of these problems is to employ, instead of 413, an

alternative expression given by kW(t>)\2‘1)=F. (2.22
ke(t)=— iln[C(t)]z kRF(t), (2.17  This W(t)-based approach has bgen used in both analytical
dt C(t) [10,25 and numerica[28] calculations of rate constants. It

has the advantage thé{(t) may be expanded in the eigen-
values of the Fokker-Planck operator wikmown coeffi-
cients, as follows below. It is this expansion which will en-
Wble us to develop an approximate expressioncfom Eq.

in which the unknown factoc, cancels at times longer than
1/\,. It is not difficult to see that the reactive flux so defined
retains the principal advantages of the standard reactive fl
method, Eq(2.14), being free of its drawbacks. In particular, (2.14), and will enable us to determine which quantity VTST
for intermediate(as well as longtimes Eq.(2.17) always do.es bound from abovsee Sec. Il B

approaches a limiting value coinciding with the least nonva- We begin by recognizing thait the Green function of the

Eishing _eliggnva_lulf{see Eq.(2.9], i.e., with the true rate Fokker-Planck equation can be expanded in terms of the
c(t=>N;7)=\=T. complete set of eigenfunctiors,, i.e.,

B. Operator representation o S P
. . P(zt|z°)=e"6(z—2")= Peo(2hn(2)h (27)e™ *m
An alternative approach to the above problem is based on (2429 ( ) o ed DN 2)im(2)

an operator representation of an equilibrium correlation func- (2.23
tion [10,26]
where
Ax(0)Ap(t A yexp(tL*)A
W(t)=< x(0)Ae(t)) (AxexptL*) <P>’ 218 Ceh—

NENg NENg m m'im
whose physical significance depends on the functjprasd L*hyp=—=Nphy, (2.29
. In Eq.(2.18, L* =P LP,, is the backward operator of
the time-reversed proce§3] (hy,hn) = Smn-

. d [dU(x) gy & In the above we have introduced a scalar product of two
L= v Tax T T Bz 219 functions having the weight functioRq,

Ax=x—{x), and similarly fore, while { ) denotes the av- f :f dx doP. (x.0)f(x X 29
erage with respect to the stationary soluti@gy(x,v) and (1.9) e X 0)f(Xv)9(x,v).  (2.29

has the properties of an inner product, i.e., ) o
Moreover,L™" is the backward operator of the original pro-

(Ax(0)Ag(t))= J 2Py AX(2)E" Ap(2). cess:
(2.20 g

Note that if the functiong(z) and x(z) are both taken to be
the step functiong)(—x), the correlation functionV(t) in
Eq. (2.18 reduces to the correlation function introduced ear-It may be noted here that this operator has the same eigen-
lier, C(t), Eq. (2.6), with the dividing surface taken as  values\ as the backward operator of the time-reversed pro-
=x=0. More generally, although the characteristic functioncessL* with corresponding eigenfunctioris, that are the

of the domain of attraction of the reactant stétenamely  time reversed functions df,,, h..(x,v)=hn(x,—v). Then,
¢(2), equals unity far inside the domain of attraction andusing that the equilibrium probability densify., satisfies

dU(x)
dx

17 22
v B gp? (228

+yv
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the stationary Fokker-Planck equatidnP.,=0, such that By definition, the right-hand side of the above equation is a
ho=hg =1 and\,=0, one finds from substitution of Eq. so-called mean relaxation time, the quantity often used when
(2.23 into Eq.(2.18 that studying noise-induced transitiof29,3(. With Eq. (2.27

this quantity reads

W(t)sz_l W exp(—Apt), (2.27) 1
FMRT=W(O)( m; wmn\m) . (2.33
where the expansion coefficients are given by
(x,hm)(@,h5) On account of the separation of time scales which is inherent
BER AL AL L (2.28  to barrier crossing processes and shows itself in a large gap
NANE in the spectrum of the Fokker-Planck operator separating the

o . . first nonzero eigenvalue from the rest of the spectrum, Eq.
Substitution of Eq(2.27) into Egs.(2.21) and(2.22) yields (2.33 can be written a§ ygr~TW(0)/w,.

I'=\; as anticipatedcf Eq. (2.9]. _ A second approach is based on the mean first passage
The efficacy of the above approach depends crucially on §me formalism[3,4,11. Within its scope the escape rate is

proper choice of the functiong(z) and ¢(z). The best  getermined as the inverse of the mean timgpr after which

choice would be the eigenfunctions bf* and L* corre- g gochastic trajectory starting within the well passes the sto-

sponding to the first nonzero eigenvalug In that case, all  .pagtic separatrix for the first im&yepr= Tyipr. This re-

the coefficientswy, exceptw,; would be equal to zero, and y,ces Eqs(1.3) and(1.4) to the stationary backward Fokker-

the initial_value of the log-based reactive flkw(o_) would. Planck equation supplemented by absorbing boundary
already yield the exact rate constant. An approximate eigersgngitions. However, since the spectrum of the Dirichlet

function ¢ of L* may also serve the purpose, provided thatyohiem is in general different from that of the Neumann
kw(0) is well defined. Indeed, setting(2)=Ni[£(2)+1]  proplem, it is difficult to connect yepr With the other rate
and x(2) =Ng[ ¢ (2) + 1] ensures proper equilibrium densi- expressions, Eq€2.9), (2.22, and (2.32.
ties N® and leads, via Eq(2.18), to W(t)=(&"exptL*)é),
which, via Eq.(2.21), leaves us with Ill. VTST AND RAYLEIGH QUOTIENT METHODS
k(0)=Trd[ £]= — (£°,L79 ' (2.29 In this section, explicit expressions for the rate are derived
(1,6 for both the VTST and the Rayleigh quotient method, in
order to elucidate the relationship between these two meth-
The above equation is nothing but a Rayleigh quotientbds. For simplicity we restrict our considerations to a sym-
[10,11. Bounding properties of this expression may be de-metric double wellU(x)=U(—x). In such a case, the for-
duced by studying the differenck,,(0)—ku() which  ward and backward rates are equal aRe2I',. The

reads generalization to an arbitrary bistable potential is straightfor-
ward. One may also note that our presentation can be ex-
m22 WA= A1) tended to systems with memory friction.
kw(0) — k()= . 2.3
w(0) —kw(>) (230 A. Transition state theory
2

As noted, the starting point of the VTST method is the

) TST rate, Eq.(2.15. An explicit expression for this rate
If one assumes thak,, are real, then the differences, (eads

— )\, are positive by definition, the coefficients,,

W= (&7, hp) (€,hg) = (&7, hp)? (2.31 4f dadp &(f)(v-V)o(v-Vf)e F"

iy Prsi f]= , (3.
are also positive, an#t,(0)=\, follows. Consequently, a f dqdp e A"
sufficientcondition for the Rayleigh quotient to provide an

upper boundo the exact rate, i.e., fdfrd §]=T, is that the
spectrum of the Fokker-Planck operatorrieal, as is gener- where the Dirac delta functiod(f) limits the integration to

ally the case in the Smoluchowski limit. the dividing surfacd =0, the gradient of the surfacgf, is
in the full infinite-dimensional phase spaceg,f§), andv is
C. Miscellaneous the generalized velocity vector in phase space with compo-

pents ,p,.y1,p1, - - ). Whenwriting Eq. (3.1) we used

ways to identify the phenomenological rates. One is based o e fact. that for a symmetric double well trle_elqgilibrium
the observation that/(t)~exp(—T') at long times when the POPulations of reactants and products Bife=Ng =7, inde-
phenomenology is valid. A first dynamical rate expressionPendent of the dividing surfacgl8]. The standard one-

for the phenomenological rate constant is then clefa#} dimensional TST rate

For completeness we also mention two other possibl

© -1
yr S fo dt W(t)/W(0). (2.32 rTST:[ \/%Wﬁjldx eB[U(O)—U(x)]] 3.2
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is obtained from Eq(3.1) by taking the dividing surface to

be of the formf =x=0. A commonly used approach, VTST, >
is to perform the integration of Eq3.1) over various trial B
surfaces and to select the smallest crossing rate as the best 0 V

approximation to the true ratg€l3]. The latter may be
achieved either by trial and error or by selecting a trial sur-
facef depending on a set of free parameters, which may be
varied to yield a minimum rate. Following Talkner and Pol- 0

lak [22] we choose the dividing surface to be planar such that X

FIG. 2. Schematic representation of the VTST optimization pro-
f=apx+ E ay;, (3.3 cedure. Solid line, equipotential?/2+ U (x) =const; dashed line,
i=1 TST dividing surfacex=0; dot-dashed line, optimized dividing sur-

. ) facex=av.
where the coefficients; are the components of the unit vec-

tor Vf perpendicular to the dividing surface and are thereforemanar dividing surface there exists a corresponding para-
normalized bolic barrier frequency, which determines the slepef the
effective deterministic separatrix in phase spacew(w)v
E ai2=1_ (3.4 (see Fig. 2. Minimizing I'y 51 @] with respect tow is thus
=0 identical to optimizing the rate constahit/ s ag,a1, - - - |
with respect to the coefficients;, or, in other words, to
optimizing the slope of the separatrix
Before closing three remarks are in order. First, in the
weak friction limit (y—0) where the true rate falls off with
decreasingy, I'yts7 @] becomes insensitive to the varia-
tional parameter, approaching the standard TST rate, Eq.
(3.5 (3.2), independent ofany finite w. Consequently, Eq3.8)
ap= m is applicable only in the spatial diffusion regime, i.e., as long
as the true rate keeps increasing with decreasing friction co-
Thus, the problem of finding the optimal planar dividing sur- efficient. Second, we note that for>0, Eq.(3.6) may give
face[the set of transformation coefficienta,a;, ...)] re- more than one solution. Therefore, one must determine
duces to finding aingleeffective frequencyx. The latter in ~ Which solution leads to the minimum of the rate constant and
turn is to be fixed by minimizind' 5[ #], @ procedure that identify this solution withI'\st. Third, for a double well
results in a self-consistent integral equation of the form  potential ~ with a parabolic barrier [U(x)=U(0)
—(1/12)w2x?+0(x%)] the calculation may be substantially
* 2 simplified by settingw equal to the barrier frequendst7],
f xdx[y— Bripty)2pty)X] w=wy, in which case the effective frequengy becomes
identical to the standard Kramers-Grote—Hynes reactive fre-
X exp] — BU(X) — Bu(u+y)*x? y]=0. quency, as given by Eq3.7) with =w,. Such a simple
(3.6) choice of the dividing surface, although in general not fully
optimized, is unconditionally justified in the high-barrier
This equation must be solved numerically to find the effec{low-temperaturglimit where one may safely ignore the an-

Substituting Eq(3.3) into (3.1) and varying the resulting rate
expressionl’yrsl@g,a1, - . -] with respect to the coeffi-
cientsa;, one obtaingfor more details see Ref19])

ai=aog; /(wf+ p?),

tive frequencyu. harmonicity of the potential.
To simplify comparison with the Rayleigh quotient
method we define a variable such that B. Relation of the Rayleigh quotient method to VTST
w=w?+y?4—yI2, (3.7 The Rayleigh quotient, Eq2.29, also provides a varia-
tional methodology for determining the rate=\,, if the
which leads us to function £ is taken as a variational trial function, i.dX[ £]
=I"rd &]. In Sec. Il we saw that wheg= h,, the true eigen-

more accurate is the trial function the more accurate will be
the estimate for the rate. Although there exist a number of
different Rayleigh quotient expressiof%-11,23, the above
approach, formulated by Talkngt0,11], has the advantage
that it is variational in the whole friction range. By this we
The variational parameter is now the effective barrier fre-mean that a first-order error in the trial function leads to a
quency o, rather thanu, and is determined by Eq3.6)  second-order error for the rate. However, as noted earlier,
through Eq.(3.7). Notice that Eq.(3.8) is simply a VTST Eq. (2.29 only gives a rigorous upper bound to the rate
rate expression in which the system parabolic barrier frewhen the spectrum of eigenvalues is real. The latter is in
guencyw, which changes as the dividing surface is rotatedgeneral true for strong frictiony w,) and may not be the

is used as the variational paramef2e]. Indeed, for each case in the intermediate-to-weak friction regimewy,).

2w+ p?) (= function, Eq.(2.29 yields the true eigenvalue, and thus the
visilo]=— — _dx

B

Xexp{—,@U(x)—sz . (3.9




2464 ALEXANDER N. DROZDOV AND SUSAN C. TUCKER PRE 61

To elucidate the relationship between the VTST and Rayfor a symmetric double well, E¢4.1), over a wide range of
leigh quotient estimates for the rate we follow Talkner andthe variational parameterw& wy,) this denominator can be
Pollak[22] and restrict ourselves to the Kramers trial func- well approximated by
tion [6]. The derivation of this function is based on the idea
that at vanishing temperaturgg{-=) the solutions of the
resulting first-order partial differential equation are piecewise
constant on the domains of reactants and products. Wwhere E is the barrier height. Consequently, the identity
choose these values to bel and— 1, such that the resulting shown by Talkner and Pollgl22] can be recovered only in
function is normalized and orthogonal to the stationary soluthe low-temperature limit §—c) where the denominator
tion. For low temperatures the presence of the small diffu{é¢",£) becomes equal to unity. This latter result can be ob-
sive term inL* changes the behavior of the eigenfunctign  tained from Eq.(2.25 by realizing that the trial function
only near the deterministic separatrix where the steplike beé(x,v), Eq. (3.9), reduces to a piecewise functiord@uuv
havior is smoothed out and it is therefore only in this region— w°x) —1 asB—c. Outside of the low-temperature limit,
thath, differs from the stationary solutiom,=1. Thus, for ~ Eg.(3.12 leads us to conclude, in contrast with the conclu-
sufficiently smallg~* only the barrier region contributes to sion of Talkner and Pollak, that VTSdoes notpossess the
the Rayleigh quotient2.29, because this expression con- bound property inherent to the Rayleigh quotient method in
tains the stationary distribution as a weight. Hence, it is usethe Smoluchowski limity—cc. The latter is consistent with
ful to rewrite the true potential as a sum of a parabolic barrieour earlier finding, Eqs2.14) and(2.16), that VTST bounds
potentiaIUpb(x):—%wzxz, with the frequencyw being a I're=c;I' rather than the ratE itself. Although this failure

(£, 6)~1—e FE (3.149

free (variationa) parameter, and a remindéi(x) + 3 w?x?. It~ of the VTST bounding properties is revealed using the re-
is then not difficult to show6] that the corresponding op- stricted set of dividing surfacds}, Eq.(3.3), we are assured
zero eigenvalue whose form is may include different types of both planar and curved divid-
ing surface$18] will also fail to bound the true rate, since by
2B [ mw-wx Bs*
E(x,v)= —f dsexp —=—/|, (3.9
myJo 2py Cyrerl f1.

Thus, to see which quantity the VTST rate does bound
tion of Eq.(3.9) into the numerator of the Rayleigh quotient be achieved by establishing a connection between the zero
(2.29 yields time limits of the derivativesC(t) and W(t) underlying

VTST is restricted to planar dividing surfaces, H&.3),
while the Rayleigh quotient method is limited to the class of

eratorL 5, has a nontrivial eigenfunctioé associated with a  that I'yrs7 optimized from an unrestricted séf}, which
definition the unrestricted resulTVTST[?] is smaller than
which is just the so-called Kramers trial function. Substitu-from above, one has to determine the coefficigntThis can
VTST and the Rayleigh quotient method, respectively. If
g L /233Jw ] f 4 [dUe0
(&7, 5)_ﬁ 3 O Y gy e
Kramers trial functions, Eq(3.9), one immediately obtains

2\,2

y Ll ol s w2 via Egs. (2.19, (2.29, and (3.11) that W(0+) equals
exp — 2| 2V + o wi— 2 C(0+), W(0+)=C(0+)=Trs1l w]. That is, the two cor-
) relation functions become similar in this case, allowing us to
» ILY"'(CUZ‘*’MZ)Xd _ Bs 31 estimate the unknown coefficiemt asc,=w,, such that
0 sep —o o) G190 fomEq. (2.3,

where we have performed the derivative with respect to ci=(£%,hy)?

(3.19
and replacead by the variabley=v — ux. A partial integra- o . ,
tion overx allows one to get rid of the integral. The result- "€ above equation involves the true eigenfunctipavhose

ing integral overy is Gaussian and therefore can be per_clos;ed f_orm expression is not _know_n exactly. However, our
formed analytically leading us to calculations showsee, e.g., Fig. 6 in Sec. [Mhat in the

spatial diffusion regime this eigenfunction can be well ap-

(&5 L*8)=Tyrsfw], (3.11)  proximated by the normalized Kramers trial function
where I'yrsi{ @] is given by EQq.(3.8). This immediately &(X,v)
gives hi(X,v)~ ——=—, (3.18
(£7.9)
r . .
Trd w]= (V;T[;]. (312  Which gives
| C1=(£7,)=cyq. (3.17)

It is thus seen that the Rayleigh quotient rate expression

based on the Kramers trial functiokirq w] differs from the
VTST rate based on a planar dividing surfateyst @], by
the denominator in E(3.12) that satisfies the inequality

(£7,6)=<1. (3.13

The approximate coefficiert;; is nothing but the denomi-
nator of the Rayleigh quotient rate expression, E12,
which is typically ¢;,>0 for y>wy,. It then follows that
I'vrst=C1¢l rg, and, sincd’yrsr=c,I' [by Egs.(2.14) and
(2.16)], that



PRE 61 BREAKDOWN OF THE BOUNDING PROPERTIES P. .. 2465

Fro=(C1/cy )T (3.18 Pl yﬁJldx fwdy U0 U] @2
It is thus seen that, foany value of the friction coefficient, 0 X
the Rayleigh quotient will necessarily bound the true rateAnangoust
from aboveonly if the approximate estimate af;, Cy;, is ’
less than or equal to the true valuge<c;. The bounding
property of I'yrst, however, is more difficult to satisfy, %
since in this case it is; rather tharc, /c;,, which must be Frxleplwzz?’ﬁzflfo dx e?V
greater than or equal to 1. Since is generally not known
[see EQ.(3.19], these are not particularly useful bounding
properties. However, in the zero-temperatineh-barriey
limit, Eq. (3.16 with ¢ taken atw= w,, becomes exact and

C1—Cy¢, such thatl'go=T". Similarly, one can show that chowski limit, the rate expressiofiyr gives an upper

C1¢—1, and therefore that, —1 in this same limit, such that 1), 4 15 the least nonvanishing eigenvalue in this cage
I'yrsr=TI". On the other hand, we see that, while bbth, <T g e 2€,
andI'yrst will bound the true rate in the high-barrier limit, "';"?gé strong friction limit,y— =, u=w? vy, and the Ray-
I'yrst IS expected to loose its bounding property more rap]eigh quotient and VTST rate expressions, E(&8) and
idly than doed"rq as the barrier heighitnverse temperatuye (3.12), take the form

decreases becaubgo=I"yrs7/C1:=1yrst.

the mean relaxation time formalism, Eq.
(2.32, yields an explicit rate formula which reafi29,30

2

f dy e B0 | (4.3
X

It may be noted that in deriving Eq4.3) we have set for
simplicity &(x) = ¢(x)= 0(—x). Moreover, since the coeffi-
cientsw,, entering Eq.(2.33 are all positive in the Smolu-

* — BU(X) — Bw?x2
IV. COMPARISON OF VTST AND THE RAYLEIGH f_wdx e AUBIZAex
QUOTIENT METHOD WITH NUMERICAL RESULTS I'rd 0]= - 5,
- ~BU — Bw?y?I2
The validity of the above analysis is tested by comparing Byfﬁxdx e’ (x)( Jo dy e Fe
Egs. (3.8 and (3.12 with exact(analytical and numerical (4.2

results for the rate. As both formulas are applicable only in
the spatial diffusion regime, we restrict our consideration tognd
v>w,. The potential is taken to be a symmetric quartic
double well

2 o
r - ZL d —BU(X)— Bwx? 4
vrstl @] Ty xe ) (4.9

U(X)=E(x*—1)?, (4.1 -

respectively. Before comparing these rates With\ 1, let us
analyze how the VTST rate expression depends on the varia-
tional parameterw. First, one sees thal'yrsi @—0]
=2w?/wy—0, such that the VTST rate expression has a

Exact results for the rate may be easily obtained only forglobal minimum atw=0, I'yys{ @w=0]=0. This solution,

a one-dimensional Fokker-Planck process. Therefore, it isvhich results from the failure of the method of Lagrangian
instructive to begin our comparison in the strong friction multipliers used to derive Eq3.5) at w=0, is invalid, as it
limit where the Fokker-Planck Eql.4) reduces to the one- does not satisfy the normalization condititsee Eqs(3.4)
dimensional Smoluchowski Eq1.7). It may be noted that and (3.5]. Second, as evidenced by Fig@3 when the
for a Smoluchowski operator, the time-reversal operation revariational parameter increasd$, sl @] increases to a lo-
duces to the identical transformation; accordindly,=L* cal maximum followed by a local minimum if the barrier is
andh™(x)=h(x). The numerical basis set scheme we havehigh, whereas it increases only monotonically for low barri-
employed to generate highly accurate results for the leasrs. Thus, we have to opt for the solution of Eg§.6) that
nonvanishing eigenvalu€ =X, and the associated eigen- leads to the smallesionzerorate constant, if such a solution
functionh, is described elsewhef81]. This calculation pro- exists, as it does for high barriers. We refer to this solution as
vides the benchmark against which we test the Rayleigh quahe true VTST rate, and to the VTST estimate for the rate
tient and VTST rate theories. Also, since the Smoluchowskbbtained withw= wy, as the simple VTST rate expression.
operatorL* is Hermitian, its spectrum is real, and therefore Note that only this latter result can be computed in the low
the Rayleigh quotient provides a rigorous upper bound to théarrier limit.

first nonzero eigenvalue in this limitegardless o€,). This On the other hand, Fig.(8) demonstrates that no such
bound holds true for any normalizable trial function false minima are found in the Rayleigh quotient method. The
that is orthogonal to the stationary distributid®,q(x) corresponding rate expression, E4.4), has a nontrivial glo-
=Z"texg—BUX)]. bal minimum at all barrier heights. The functiondkd ]

For completeness, we also include comparison with thevaries froml“RQ=(,By<x2>)‘1 at w=0, reaches a minimal
two other dynamical approaches to the rate constant disralue nearw= wy, and then linearly increases as— .
cussed in Sec. IIC. In the Smoluchowski limit, the kinetic  Figure 4a) confirms that the simple VTST rate
rate in a symmetric double-well potential may be given byl'yts7 w,] does not possess an upper bound property, in
the inverse of the mean first passage time, after which aontrast to the Rayleigh quotient method, which dfeg.
stochastic trajectory starting at one of the local minimum4(b)]. Indeed, simple VTST considerably underestimates the
values, say, at=1, reaches the top of the barrierat 0 true rate,\, in the limit of moderate to low barrier§3E

with a barrier of heigh€ and frequencyw,=2E.

A. Smoluchowski limit
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FIG. 3. RatioI'[w]/T[wy,] as a function of the variational pa-
rameter . The calculation is performed in the strong friction
Smoluchowski limit for a double well potential, E¢4.1) with
BE=2 (dot-dashed lings 4 (dashed lines and 6(solid lines. (a)
VTST rate, Eq.(4.5); (b) Rayleigh quotient, Eq4.4).

=<4, and slightly overestimates it f{@E>4. It is also seen
that the VTST method does not bound either of the two other
dynamical expressions for the rate discussed abbygpr

PRE 61

%error
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FIG. 5. (a) Percentage errors made By s wp] in comparison

[Eq. (4.2] and Tyrr [EQ. (4.3]. The situation becomes to the least nonvanishing eigenvalhg (dashed lingand in com-

eDarison to the standard reactive flux formula computed filga

worse if one uses the true VTST rate. By definition, this rat ~ ¢\, with ¢, given by Eq.(3.19 (solid line). (b) Logarithm of
the deviation of the reactive flux coefficieny from unity when

10 T T

o= wy. The solid line and circles are for results obtained in terms

Yerror
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-30
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of Eq. (3.15 and(3.17), respectively(c) Coefficientcq, Eq.(3.15),
as a function of the variational parameterfor BE=1 (dot-dashed
line), 5 (dashed ling and 20(solid ling). Circles are for analogous

results obtained witlr,;, Eq.(3.17).

is smaller tharl'y157 wp], @and we see it already underesti-
matesh; at BE=5. Additionally, for BE<2.5 the functional
I'yrs1 @] has no nontrivial minimum and thus its minimiza-
tion [with such a planar dividing surface, E@.3)] fails to
provide any result for the rate at all.

On the other hand, we know that by construction VTST
gives an upper bound to the standard reactive flux expression
I'ze [see Eqgs(2.14 and(2.16)], which differs from the true
ratel” by the factorc; defined by Eq(3.15. In Fig. 5a) we
compare VTST with both rateBge=c{\; andI"'=\,. For
simplicity the calculation is performed fab=w,. As an-
ticipated, I' 157l w,] Systematically overestimates the stan-
dard reactive flux formuld'gg at all barrier heights even in
the extreme limit of vanishing barri@E— 0, where VTST

FIG. 4. Percentage errors, 1R0approximate—exagexact, in h 0 L
the least nonvanishing eigenvalue of the Smoluchowski operatotnderestimates the exact rate by more than 75%. Addition-

Egs. (1.7 and (4.1), made by using different rate expressio(s.
Dot-dashed line, simple VTST rate expressibgrsi wp]; solid
line, true VTST rate; dashed lin€yepr, EQ. (4.2); solid line with

circles,I'yrt, EQ. (4.3). (b) Solid line, results obtained by mini-

mizing I'r w]; dashed linel'rq wp].

ally, the true VTST rate(not shown exhibits the same

bounding properties as do&§sqf w,]. We have thus con-
firmed that the failure of VTST for low barriers is also in-
herent to the standard reactive flux method, and that this

failure can be traced to the coefficienyt, Eq. (3.15), and its
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dependence on the reduced barrier hejgt see Fig. ). [ T '
The logarithmic plot clearly demonstrates that with increas- .

ing BE the coefficientc; approaches unity exponentia(lgf
Eqg. (3.14)] so that for BE=10 the standard reactive flux
formula I'ge becomes practically indistinguishable from the <
true ratel”. For completeness we also show in Figc)x; as

a function of the variational parameter. As anticipated, this

guantity noticeably deviates from unity for both low barriers

(BE=3) and low values of the variational parametes ( 0 L
<wy). In either of these two limits both the standard reactive 1.5 1
flux method and VTST will fail. Away from the limitw
—0, for a very high barrier g=20), ¢4, and thus the
reactive flux result, remain independent of the variationa
parameter (invariant with respect to the precise definition -, : : .

of the dividing surface). For a moderate barrieiBE=5) a-rgle\:sitﬁrzio;:he normalized Kramers trial functigh(x), Ea.
the reactive flux is insensitive to the variational parameter

only for w=w,, while for a low barrier BE=1) the ogical rate description as a whole looses its meaning awa
method looses its invariance with respect to the definition o# 9 - P . _ 9 y
rom the limit of high barriers BE—. As evidenced by

the dividing surface. It is also worth noticing the excellentFi 4, the existing dynamical expressions for the rate, (
agreement attained between the coefficientalculated in Fg' ' and T )gco)i/ncide with Fe)zach other only foﬁ%

i i i MFPT MRT.
terms of the numerically exact eigenfunctiby, Eq. (3.19, >8 for the symmetric quartic potential considered. For

and its Kramers trial function approximaties,, Eq.(3.17), . ! o
in this Smoluchowski limit. The agreement is seen to hololIower barriers these rates differ, even though there is still a

for all barrier heights and all values of the variational param-"€! deﬂr;d separation of time scales of the order of
eter w. No/N1~10°, e.g., forBE=7.

The results presented in Figs. 3—-5 confirm our analytic0 di}n fr?;t?;tgi) tr? © L/(;iseztarr:?etsgigdﬁrgoieigtveesf[[l;\)é Taecfpc;r
findings, i.e., that although VTS@oesbound the reactive ' yielgh 9 P

(£t E) ; ; : _
flux result, Eq.(2.16), neither the reactive flux method nor C1¢=(£",£)~c, directly, and hence it systematically over
VTST provide a rigorous upper bound to the least nonvan_esUmates the_ Ieast.nonvamshlng e!gen'value regardles; of the
ishing eigenvalue. Consequently, VTST cannot be unequivor—educed barrier height, as shown in Figb) We can gain

cally assumed to provide a rigorous upper bound to all sysan?]raer;]?;ggt Izgon:hgrmeiﬂgag}mﬁg ézulirlgrfetrgetﬁzlc?lfr?c-
tems. Perhaps more interestingly, Fig. 5 shows tbat y y paring

decreases with the variational parameteas well as with tion &, reading
the barrier height, which means that as the planar dividing

FIG. 6. Eigenfunctiorh(x) corresponding to the first nonzero
Figenvalue of the Smoluchowski operator, Eds7) and(4.1) with
BE=1 (dot-dashed ling 5 (dashed ling and 20 (solid line).

surface is rotated in the full phase spatesmallerw), the Od o Boty2
fraction of initial phase space pointi® the dividing surface X y
which relax according ta; must be decreasing. Indeed, this EMX)= 2712

o« X

decrease irc; proceeds smoothly to the nonphysidal- f dx eBU(X)(f dy eﬁw2y2/2> }
defined limit at =0 (for all barrier heights where the - 0
normalization condition[Eq. (3.4)] fails. Thus, in some (4.6
sense, the planar dividing surface is failing—for both VTST
and the reactive flux method — as—0, an issue we will with the numerically exact results for this eigenfunction, as
address in more depth in a future work. For now, we recogshown in Fig. 6.(Note that for simplicity the free parameter
nize simply that the dependence®fon » and on the sys- ® was taken to b= w},.) Since the eigenfunction,(x) is
tem propertiegsuch as the barrier heighenter Eq.(3.15  antisymmetrich;(—x)=—hy(x), only results forx<0 are
through the trial functioné and the stationary distribution presented in the figure. First, it is seen that the normalized
function Pg,, respectively. Additionally, the failure of the Kramers functioné, [Eq. (4.6)] is in excellent agreement
VTST and reactive flux bounds in the—0 limit corre-  Wwith the exact eigenfunctioh,(x) for all temperatures, from
sponds to a coincident failure of the Kramers trial functign the low SE=20 through the very high temperatug&=1.
Eq. (3.9), which reduces to zero and therefore becomes unSecond, it is clear that in the limit of extremely low tempera-
normalized in this limit. ture (high barriey, BE—«, both functions &,=h,(x)

Most importantly, however, is the resuRig. 5) that if the ~ slowly approach the steplike functiong@—x)—1 underly-
barrier height is not sufficiently high, the coefficiesyt may  ing the standard TST rate, E(B.2).
noticeably deviate from unity even fab=wy,, i.e., in the Finally, we would like to note the accuracy of the Ray-
vicinity of the relevant minimum of the VTST rate expres- leigh quotient method in this large-limit. As evidenced by
sion. The latter failure arises because the equilibrium distriFig. 4(b), the relative error made in; by usingI'rd @]
bution is such that the rate is no longer independent of theemains lower than 0.5% for all values BE including the
precise definition of the metastable states, although the e$imit of vanishing barrier BE— 0. It is also remarkable that
cape dynamics may still be governed by a single least northe analytical rate formuld'zq w,] is only slightly worse
vanishing eigenvalue that is well separated from the rest ofhan estimates for the rate obtained by minimizifgy ],
the finite eigenvalues. This indicates that the phenomencshowing a maximal difference of 1.7%.
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T rapidly than does the Rayleigh quotient result, as anticipated
_______________ since the latter is related to the former accordinglg,
1 =I'yrst/C1¢, EQ.(3.12, where the coefficient,,, which is
"""""" at most unity{Eq. (3.13], decreases with decreasing barrier
height as - exp(—BE), Eq.(3.14). Thus, although the Ray-
leigh quotient method does indeed bound the VTST result
(within the aforementioned restrictionst doesnot preserve
its upper bound property in the range of moderate friction
. where the Fokker-Planck operat@t.4) is in general non-
% Hermitian[34]. Despite this qualitative similarity, quantita-
tive differences between the two methods appear as the bar-
5 \ T ' rier is lowered. The relative error of the true VTST rate

Yerror
. ~ \\
\
\

expression increases with decreasgty much more rapidly

=\ e than does the error of the Rayleigh quotient result; &

: =2.5 VTST underestimates the exact numerical rate by more
t than 10% as compared to 1.5% for the Rayleigh quotient
'x} JET—— method. With further decreases in the barrier height the true
LY VTST method fails completely, as expected since the VTST
A0 F = rate functionall’\;57] @] ceases to have a nontrivial mini-
mum in this limit. In contrast, the Rayleigh quotient result is,
at worst, 6.6% below the true rate even for the extremely low

FIG. 7. Percentage errors in the least nonvanishing eigenvalutéarrler of BE=1.25(not shown. Additionally, the Rayleigh

of the Fokker-Planck operator, Eq4.4) and (4.1 with BE=2.5 Quotient method restores its bounding propertyyaﬂecomes
and 5, made by using VTST and the Rayleigh quotient methodlarge’ whereas V.TST. d(.)e.s nc.)t provide a rigorous upper
Circles and solid lines are for results obtained by minimizing bo_und to the rate in this “mlt_' FInaII_y, we note that the ana-
Tyrsio], EQ. (3.8), and Trd w], Eq. (3.12, respectively. Dot- lytical rate form_ulz_iFRQ[wb] is again only slightly worse
dashed and dashed lines are, respectively, for the simple rate foftan the full variational result.

mulasT gl wp] andT'rd wp].

%error

V. CONCLUSIONS

B. Full friction range . . -
et g In analyzing the relative abilities of the VTST and the

For moderate frictiony>wy,, as long as the escape dy- Rayleigh quotient methods to precisely predict the rate of
namics are dominated by spatial diffusion across the barriehermally activated barrier crossing processes in condensed
top, the observed dependence of the predicted rates on thgedia, we have uncovered some unexpected qualifications
variational parameter remains the same as in the limit obn the bounding properties of these methods. Our study was
strong frictiony—<. The only difference at moderate fric- motivated by a recent paper of Talkner and Po[2R], who
tion is in the limiting values. While the VTST rate functional demonstrated a restricted identity between these two varia-
still has a global minimum ab=0 of 20%(7wy)=0, itap-  tional approaches. The identity is formulated as follows: if
proaches the TST rat€.2) as w—c. Similarly, the Ray- VTST is restricted to planar dividing surfaces and the Ray-
leigh quotient now varies frof g 0]=(By(X?)—1/y) "%,  leigh quotient method is limited to Kramers trial functions,
through a minimum, to the TST rate as— . then the two methods are equivalent. Furthermore, based on

Estimations of the rate obtained in terms of VTST and thethe “upper bound property” of the VTST method, Talkner
Rayleigh quotient method have been compared with numeriand Pollak concluded that for this restricted class of trial
cally exact results for the least nonvanishing eigenvalue refunctions, the Rayleigh quotient provides an upper bound to
ported in Refs[28] and[32]. The calculations were per- the rate not only in the strong friction limit but also in the
formed for the potential4.1) with BE=1.25, 2.5, 5, and 10 whole friction range. The latter result is not trivial, as it
using a path integral method described elsewh@833.  demonstrates a bounding property for a non-Hermitian op-
We have found that for a high barrieBE=10) both meth- erator.
ods overestimate the least nonvanishing eigenvalue in the In the present paper, we have shown that the above-
whole friction range. As anticipated, excellent agreement isnentioned derivations of Talkner and Pollak are correct only
attained in the spatial diffusion regimg=wy, in which in the limit of high barriersBE—o. Outside of this limit,
case theoretical predictions deviate from exact numerical re-e., for moderate and low barriers, the VTST and the Ray-
sults by only~0.1%. Larger deviations are observed in theleigh quotient methods are, in factpt identical even when
weak friction regimey< wy,. These deviations arise becausethe former is restricted to planar dividing surfaces and the
the slow energy diffusion process, which causes the rate tlatter is limited to Kramers trial functions. Additionally, we
fall off with decreasingy is not accounted for by the VTST have proven the unexpected result that VTST doatspro-
and Rayleigh quotient methods. vide a rigorous upper bound to the exact rate constant, de-

Away from the high-barrier limit, both methods are found fined as the least nonvanishing eigenvalue of the Fokker—
to yield rates that drop below; (see Fig. 7, that is, the Planck operator. Even more importantly, we confirm that
bounding properties of both methods fail for modergte VTST doesgive an upper bound to the standard numerical
However, the VTST result drops below the exact rate moreeactive flux result(based on the same dividing surface
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from which it follows that the reactive flux result also fails to provides a precise definition of the kinetic rate which in-
bound the least nonvanishing eigenval(except asBE  volvesno unknown factorlike c; in Eq. (2.14] and is ap-
—). We therefore introduced an improved reactive fluxplicable regardless of whether or not there exist a separation
expression, which overcomes this drawback. Finally, weof time scales. As long as the dynamics are dominated by
have demonstrated that the Rayleigh quotient, which gives gpatial diffusion across the barrier, this method is capable of
rigorous upper bound to the least nonvanishing eigenvalue igiving highly accurate results for the least nonvanishing ei-
the Smoluchowski limit, alsdoosesits bounding property genvalue even when the barrier becomes vanishingly low,
away from this strong friction limit. Yet, we have shown that gg_.0. Indeed, in all the cases considered herein the opti-
in spite of the lack of a bounding property as the reducednized Rayleigh quotient result was, throughout the spatial
barrier height BE decreases, the Rayleigh quotient resultgitfusion regime, found to be within 0.5% of the exact rate.
continues provide a good estimate of the rate. This stands indditionally, the accuracy of the Rayleigh quotient method
contrast to the VTST result, whose accuracy deteriorates ragyhich is based on the Kramers trial function as zeroth-order
idly as the barrier decreases and the bounding property igpproximation can beystematicalljmproved via perturba-
lost. tion theory[11,8,30.

Although we have restricted ourselves in this paper to
Ohmic friction, the present analysis can be generalized to
cover systems with memory friction. In such a case, intro-
ducing a sufficient number of auxiliary variables, one may
transform the original non-Markovian process to an equiva- We thank Alexander Berezhkovskii, Eli Pollak, and Peter
lent Fokker-Planck dynamicg28,35 and then again use Talkner for many stimulating discussions and helpful com-
VTST and the Rayleigh quotient method to estimate the ratenents on our work. This work was supported by the National
[22]. Science Foundation under Grant No. CHE-9727361, and

Closing this paper we would like to note the power of theS.C.T. acknowledges the National Science Foundation
Rayleigh quotient method. Contrary to the standard reactiv&oung Investigator Program and the Dreyfuss Foundation
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