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Breakdown of the bounding properties of variational transition state theory
and the Rayleigh quotient method

Alexander N. Drozdov* and Susan C. Tucker
Department of Chemistry, University of California, Davis, California 95616

~Received 1 November 1999!

The thermally activated escape of a Brownian particle from one metastable state to another by crossing an
intervening potential barrier is studied by means of variational transition state theory~VTST! and a Rayleigh
quotient method. Historically, these two methods have been shown to provide an upper bound to the ‘‘rate
constant,’’ and a restricted identity between them has been recently demonstrated by Talkner and Pollak@Phys.
Rev. E50, 2646~1994!#. Yet, we show that while VTST gives an upper bound to a specific definition of the
‘‘reactive flux rate,’’ neither VTST nor this reactive flux rate provide a rigorous upper bound to the least
nonvanishing eigenvalue of the underlying Fokker–Planck operator, as is done by the Rayleigh quotient
method in the Smoluchowski limit. Numerical results for the rate in a symmetric double well show that in the
spatial diffusion regime, the failure of the VTST and reactive flux methods is only significant for relatively low
barriers, e.g.,bE&5.

PACS number~s!: 05.40.2a, 82.20.Db, 82.20.Fd
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I. INTRODUCTION

The Rayleigh–Ritz variational method is known to be
very powerful tool for systematically treating Sturm
Liouville problems of quantum mechanics and statistics@1#.
The central advantage of this approach is that when app
to a Hermitian operatorH it ensures the traditional uppe
bound property to the exact eigenvalues of this operator

E<
~C,HC!

~C,C!
, ~1.1!

with ( f ,g) denoting the scalar product. The latter prope
allows one to solve approximately the stationary Schro¨dinger
equation by making use of a physically motivated trial ans
for the wave functionC. The energy-expectation functiona
is varied with respect to free parameters entering the
function to obtain the global minimum, which then provid
the best approximation to the true eigenvalue. A similar
proach is also available for efficiently solving the tim
dependent Schro¨dinger equation@2#

i\Ċ~z,t !5HC~z,t !, ~1.2!

where the dot denotes the time derivative. These method
among the very few tools in the arsenal of quantum fi
theory and many-body theory, where alternative numer
techniques are expensive or unfeasible.

In contrast, nonequilibrium statistical mechanics is lac
ing a variational principle of the same flexibility as in qua
tum theory, capable of determining both the steady-state
the time-dependent solution to the initial-value problem. A
though the Liouville equation for the probability densi
function in the nonequilibrium problems,

*Permanent address: Institute for High Temperatures, 13
Izhorskaya Street, 127412 Moscow, Russia.
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Ṗ~z,t !5LP~z,t !, ~1.3!

is analogous to the Schro¨dinger equation for the wave func
tion, Eq. ~1.2!, there is a mathematical obstacle to applyi
the quantum variational principle to this analogous case.
obstacle arises because the evolution operatorL is in general
non-Hermitian for dissipative dynamical systems of intere
As will be described below, the modern theory of therma
activated rate processes@3–5#, which is essentially due to
Kramers@6#, suffers from this problematic state of affairs.

Kramers @6# studied the motion of a Brownian particl
with mass-weighted coordinatex, which can be thought to
represent the reaction coordinate of a chemical reaction.
particle moves in a potential of mean forceU(x), such that it
may switch from one metastable stateA @i.e., the reactants
(x,0)] to another stateB @i.e., the products (x.0)] by
crossing over a potential barrier atx50 ~see Fig. 1!. The
quantity of interest is then the escape rateGA of the particle
from the well, which corresponds to the chemical react
rate. The energy required for this particle to cross the bar
must be supplied by the surrounding heat bath. In the Bro
ian approximation, the bath is assumed to have a vanishin
small correlation time such that a Markovian process res
for the considered system. The time evolution of the cor
sponding probability density for this Brownian particl
P(z,t), in phase spacez5(x,v), is governed by the Fokker
Planck equation with the operatorL given by

9 FIG. 1. Schematic graph of a two-state process in a bista
potentialU(x).
2457 ©2000 The American Physical Society
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L52v
]

]x
1

dU~x!

dx

]

]v
1g

]

]v S v1b21
]

]v D , ~1.4!

whereg is the friction coefficient, andb the inverse energy
available from the thermal bath,b215kBT. One can easily
check by substitution that the stationary~equilibrium! solu-
tion of the Fokker-Planck equation has the stand
Maxwell–Boltzmann form

Peq~x,v !5~b/2p!1/2Z21exp$2b@ 1
2 v21U~x!#%,

~1.5!

Z5E
2`

`

dx exp@2bU~x!#.

The diffusion matrix associated with Eq.~1.4! does not
possess an inverse, and, consequently, Eq.~1.4! cannot in
principle be transformed to a Hermitian form. As a result,
powerful, nonperturbative schemes of quantum mecha
are generally inapplicable and cannot be used to solve
Kramers rate problem. However, in the strong friction lim
(g→`), where the velocity relaxes to equilibrium infinitel
rapidly and may therefore be eliminated adiabatically fro
the Fokker-Planck equation, Eqs.~1.3! and ~1.4!, this equa-
tion may be reduced to a Smoluchowski equation for
reduced probability

P~x,t !5E
2`

`

dvP~x,v,t ! ~1.6!

with

L5g21
]

]x Fb21
]

]x
1

dU~x!

dx G . ~1.7!

Since the Smoluchowski operator is selfadjoint, variatio
methods of the standard form may be employed to ob
improved estimates for the escape rateGA in this limiting
case (g→`) @7,8#. The latter convenient fact is utilized i
the Rayleigh quotient method@7–11#, which recognizes tha
the least-nonvanishing eigenvalue of the underlying Fokk
Planck equation corresponds to the kinetic rate constant,
the sum of the forward and backward escape rates,G5GA
1GB . The general structure of this method is the same a
quantum mechanics@Eq. ~1.1!# in that the least nonvanishin
eigenvalue is calculated variationally from a trial eigenfun
tion. Typically, a physically motivated trial eigenfunctio
proposed by Kramers@6# is used. The principal advantage
of the Rayleigh quotient method are that~i! it rigorously
bounds the rate from above in the Smoluchowski (g→`)
limit, and ~ii ! a first-order error in the trial function leads t
only a second-order error in the estimate for the rate.

During the past two decades, a great deal of effort
been directed towards extending the applicability of su
variational principles for the Fokker-Planck equation to t
range of moderate friction. One popular strategy is based
the transformation of the original stochastic, dissipative s
tem to an equivalent infinite dimensional Hamiltonian sy
tem@12#. Within the Hamiltonian formulation the escape ra
GA may be estimated, by means of transition state the
~TST!, as a ratio of the equilibrium unidirectional flu
d
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through some chosen dividing surface to the population
the well @13–16#. The quality of such an estimate of the ra
will, however, depend upon the choice of the dividing su
face @13#. An attractive feature of this approach is that it
thought to give an upper bound to rate constants, such th
trial dividing surface may be varied to minimize the ra
estimate@13,17–19#, a procedure known as variational TS
~VTST!. Reviews of the present state of the art have rece
been given by Tucker@20# and Pollak@21#.

Although the Rayleigh quotient and VTST methods a
very different, Talkner and Pollak@22# have recently demon
strated that there exists a restricted identity between th
Specifically, these authors were able to prove this identity
the case that VTST is limited to planar dividing surfaces a
the Rayleigh quotient is limited to Kramers’ trial function
Since VTST has generally been thought to provide an up
bound to the true rate constant, Talkner and Pollak@22# con-
cluded, quite reasonably, that their VTST–Rayleigh quoti
identity proves the nontrivial result that the Rayleigh qu
tient method, when restricted to the class of Kramers fu
tions, also bounds the rate from above for all values of
friction coefficientg.

In this paper, we show that the identity between VTS
and the Rayleigh quotient method breaks down for low b
riers and that, as a result, Pollak and Talkner’s conclus
about the bounding properties of the Rayleigh quotient
suspect in this limit. Perhaps more interestingly, we find t
VTST itself does not provide a rigorous upper bound to
‘‘true’’ rate constant, defined by the least nonvanishing
genvalue of the Fokker–Planck operator, and may subs
tially underestimate it in the limit of low barriers. A striking
consequence of this failure of VTST is that it implies a sim
lar failure of the reactive flux method@as defined in Eq.
~2.14!#, since VTSTdoesbound the reactive flux formula
~based on the same dividing surface! from above. Compari-
son with exact numerical rates in a symmetric double w
confirms these findings. The reminder of the paper is or
nized as follows. In Sec. II, a phenomenological rate law
reviewed, along with its connection to the reactive fl
method, the TST rate, the Rayleigh quotient rate and
least nonzero eigenvalue of the Fokker–Planck opera
Disadvantages of the reactive flux method are discussed,
a way to improve it is suggested. Bounding properties
emphasized throughout. In Sec. III, we briefly outline a
compare explicit expressions for the VTST and Rayle
quotient methods. The bounding properties of these meth
are then tested in Sec. IV by comparing analytical and
merical calculations of the rate in the limit of both strong a
moderate friction. Section V concludes with some final
marks.

II. REACTIVE FLUX METHOD

To begin with, we review a phenomenological approa
to the problem of interest and discuss its connection to
underlying dissipative dynamics, and, in particular, to t
so-called ‘‘reactive flux’’ and to the least nonvanishing e
genvalue. The phenomenological approach is based on
assumption that the two-state process displayed in Fig. 1
be described by a simple linear rate law@23,24#
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Ṅ̄A~ t !52G̃AN̄A~ t !1G̃BN̄B~ t !,
~2.1!

Ṅ̄B~ t !5G̃AN̄A~ t !2G̃BN̄B~ t !.

Here,G̃A and G̃B are the rates of escaping from theA andB

metastable states, respectively, whileN̄A(t) and N̄B(t) are
the time-dependent nonequilibrium probabilities of findi
the system in the same states. Thus, when defined relati
a dividing surface separatingA andB, s(z)5$1, zPAR; 0,
zPB%, these probabilities read

N̄A~ t !512N̄B~ t !5E dzs~z!P~z,t !, ~2.2!

where we have assumed the system of interest to be clo
N̄A1N̄B51. Additionally, the escape rates are related

each other through the equilibrium fractions,G̃ANA
e5G̃BNB

e ,

defined byNM
e 5N̄M(`), M5A, B. For such a closed sys

tem the phenomenological Eq.~2.1! can be reduced to on
equation for the nonequilibrium fluctuation variabl
DNne(t)5N̄A(t)2NA

e , which then yields single-exponentia
dynamics,

DNne~ t !

DNne~0!
5exp~2G̃t !. ~2.3!

Equation~2.3! depends upon the phenomenological kine

rate constant,G̃5G̃A1G̃B , and, clearly, it need only be valid
at long times, when the decay of a perturbation,DNne(t),
back to equilibrium becomes unconditionally single exp
nential.

Since it is generally impossible to derive phenomenolo
cal rate equations like Eq.~2.1! from evolution equations like
Eqs.~1.3! and ~1.4!, there exists no precise identification
microscopic dynamical quantities with the phenomenolog
rate constants. As a consequence, various methods have
devised to establish such a connection. One of the most c
monly used approaches is based on the equilibrium time
relation function formalism@23,24#. Since the problem of
interest can be formulated in two formally equivalent way
namely, using the Hamiltonian representation, Eq.~2.4!, and
the original Fokker-Planck Eq.~1.4!–two formulations of the
equilibrium correlation function formalism are possible.

A. Hamiltonian representation

To begin we consider the Hamiltonian formulation. T
starting point of this approach is the observation that
Fokker-Planck dynamics, Eq.~1.4!, is equivalent to the dy-
namics of the Hamiltonian@12#

H5 1
2 px

21U~x!1 1
2 (

i
@pi

21~v i yi2gix/v i !
2#, ~2.4!

involving a bath of mass-weighted harmonic oscillatorsyi
bilinearly coupled to the system coordinatex. The summa-
tion in Eq. ~2.4! is understood to be over an infinite set
bath oscillators tending towards a continuum. The bath
rameters~frequenciesv i and coupling constantsgi) are re-
to

ed,

-

i-

l
een
m-
r-

e

a-

lated to the friction coefficientg through the expression
2gd(t)5( i(gi /v i)

2 cos(vit). In Eq. ~2.4!, the system of in-
terest is represented by a particle~a representative point! in
an infinite-dimensional phase space (q,p), whose axes are
the positionsq5(x,y1 ,y2 , . . . ) andconjugate momentap
5(px ,p1 ,p2 , . . . ), the respective dynamics of which ar
governed by Hamilton’s equations.

If the system consists ofN particles, andf is a dividing
surface separating reactants and products, which is define
the full infinite-dimensional spaceq, we can define the frac
tion of particles in stateA, and stateB, at timet as

NA~ t !512NB~ t !5
1

N (
n51

N

u$2 f @qn~ t !#%, ~2.5!

whereu(x) is the Heaviside step function. At equilibrium
the average fraction of particles inA and in B are then
^NA&5NA

e and ^NB&5NB
e , where the brackets denote th

equilibrium ensemble average. The application of a dist
bance changes the observed fractions from their equilibr
values,NA

e and NB
e , to time-dependent nonequilibrium va

ues, ^NA&(t) and ^NB&(t). Recall that at the macroscopi
level, the time dependence of these numbers is assumed
characterized by the linear rate law, Eq.~2.1!, and thus by
single exponential decay.

It will now be our goal to link the phenomenological re
sult ~2.3! to the equilibrium time correlation function
@23,24#,

C~ t !5
^DN~0!DN~ t !&

^DN~0!DN~0!&
, ~2.6!

where DN(t)5NA(t)2NA
e is an equilibrium fluctuation of

the number of particles of typeA, and the brackets agai
denote the equilibrium ensemble average. With Eq.~2.5! this
correlation function takes the form

C~ t !5
^Du~0!Du~ t !&

NA
eNB

e
, ~2.7!

where Du(t)[u$2 f @qn(t)#%2NA
e , and where we have

made use of the fact that for a closed system at equilibr
^DN(0)DN(0)&5NA

eNB
e . Proceeding further we note tha

the time evolution ofC(t) can always be written as

C~ t !5 (
m51

cm exp~2lmt !. ~2.8!

The summation in Eq.~2.8! is over all the characteristic fre
quencies,lm , of the full infinite-dimensional system and, b
construction, the expansion coefficientscm satisfy (m51cm
51. Due to the equivalence of the Hamiltonian@Eq. ~2.4!#
and the Fokker-Planck@Eq. ~1.4!# representations, these fre
quencieslm are just the eigenvalues of the Fokker-Plan
operatorL. The coefficients,cm , will depend upon the par-
ticular choice of the dividing surface and may in general
both positive and negative. However, in the limit of larg
friction where the spectrum of the Fokker-Planck operato
real, the coefficientscm will all be positive. In this limit, one
may interpret each coefficientcm as the fraction of the exces
number of particles in stateA, DN, which decay with the
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corresponding ratelm . Or, more explicitly,cm represents
the fraction of initial representative phase space points wh
relax to equilibrium~relative to the surfacef ) with an expo-
nential relaxation timelm . If we could find the dividing
surface yieldingc151, cm.150, thenC(t) based on this
dividing surface should, in fact, monitor only the slowe
system mode, which is characterized by the least nonvan
ing eigenvalue,l1. In this case alone, the relaxation dynam
ics of C(t) will be single exponential, and thus the pheno
enology will hold true at all times. Comparison of Eqs.~2.3!
and~2.8! ~with c151, cm.150) shows that the phenomeno

logical rate constantG̃ is just l1, and hence we equate th
least nonvanishing eigenvalue of the Fokker-Planck oper
with the true kinetic rate constantG, i.e.,

G̃[G5l1 . ~2.9!

Unfortunately, to find such a perfect dividing surface o
would have to solve the corresponding Hamilton’s equatio
which cannot usually be done.

In contrast to the case of the perfect dividing surface,
arbitrary dividing surface will yield multiexponential relax
ation dynamics forC(t) @see Eq.~2.8!#. Yet, even in this
latter caseC(t) should decay as a single exponential at lo
times, since

C~ t@1/l2!5c1 exp~2l1t !. ~2.10!

Importantly, the Onsager regression hypothesis suggests
the nonequilibrium fluctuationDNne(t) decays to equilib-
rium in the same fashion as do equilibrium fluctuatio
DN(t) of the number of particles of typeA, such that

DNne~ t !

DNne~0!
5C~ t !. ~2.11!

At long times (t@l2
21) we find, by combining Eqs.~2.10!

and ~2.11!, that

DNne~ t !

DNne~0!
5c1exp~2l1t !. ~2.12!

Comparing Eq.~2.12! with Eq. ~2.3! and using Eq.~2.9!
shows that the phenomenology is, in general, valid at lo
times if and only if the coefficientc1 is close to unity. If
c1Þ1, then an explicit expression for this coefficient wou
be required to extract the rateG5l1 from the correlation
function. This issue will be addressed in Sec. III of t
present paper.

For now, we examine the implications of this result f
the time-dependentreactive fluxexpression@24#

kRF~ t !52Ċ~ t !5
^d@ f ~0!# ḟ u@2 f ~ t !#&

NA
eNB

e
, ~2.13!

which is derived from Eq.~2.7! by making use of the fac
that the derivative of a step function is a Dirac delta functio
The properties of the functionkRF(t) deserve to be pointed
out, as Eq.~2.13! forms the basis for the standard compu
tional method for determining reaction rate consta
@26,27#. These properties are:
h

t
h-

-

or

s,

n

hat

g

.

-
s

~i! From a computational point of view the most appe
ing feature of the reactive flux method is that it allows one
avoid problems arising from widely separated time sca
Such time scale separations are typical in barrier cross
processes for which the decay time 1/G51/l1 is usually
much larger than the intrawell relaxation time~which is of
the order of 1/l2) that it takes a particle to thermalize withi
the part of phase space bordered by the barrier. The rea
flux method circumvents this difficulty by initiating trajecto
ries at the barrier top, such that, by Eq.~2.13!, the long time
behavior may be extracted on a short time scale. Specific
after a timet, that is longer than 1/l2 but is much shorter
than the inverse rate 1/G51/l1 , C(t) should decay by a
single exponential, Eq.~2.10!. Consequently, by differentiat
ing Eq. ~2.10!, the reactive flux function becomeskRF(t
@1/l2)'c1Ge2Gt. Accordingly, for a time tp such that
l2

21!tp!G21, the reactive flux formula~2.13! approaches a
plateau value

kRF~ tp!5GRF5c1G. ~2.14!

However, it is typically assumed on basis of the pheno
enology, Eq.~2.3!, which when compared to Eqs.~2.10! and
~2.11! givesc151, that the reactive flux expressionGRF co-
incides exactly with the true rateG @10,21,23–27#. Yet, from
Eq. ~2.14!, it follows immediately that this assumption wi
not be true unlessc151.

~ii ! The zero time limit of the reactive flux expression, E
~2.13!, is just the TST estimate of the rate for the dividin
surfacef ~Refs.@20,21,24#!

kRF~01 !5GTST@ f #5
^d~ f ! ḟ u~ ḟ !&

NA
eNB

e
. ~2.15!

Note that this limit must be taken ast goes to zero from
above.

~iii ! The time-dependent reactive flux,kRF(t), is bounded
from above by its zero time value, the TST rate express
for that dividing surface, Eq.~2.15!, such that kRF(t)
<GTST@ f #. This property can be seen mathematically as f
lows: at any timet the functionu@2 f (t)# can at most be
unity. If the initial velocity ḟ were negative, then even i
u@2 f (t)#51 the net contribution will be negative, that is,
will be smaller than the contribution of 0 given for the TS
estimate@u( ḟ )50 if ḟ ,0]. On the other hand, ifḟ is posi-
tive, whenu@2 f (t)# has its maximal value of 1,kRF(t) also
has its maximal value, which is just the TST rate. Physica
this bounding property results because in TST it is assum
that all trajectories crossing the dividing surface are ass
ated with the slowest relaxation time 1/G51/l1, i.e., with
reaction. If an imperfect dividing surface is used, there w
be surface-crossing trajectories that relax more rapidly t
l1. These trajectories will repeatedly recross the dividi
surface on the time scale of intrawell motion (l2 or faster!
and are not associated with the reaction. Thus,GTST, at
most, overcountsthe number of truly reactive trajectories
Consequently, since the reactive flux expression starts w
the TST estimate att50, and, as time proceeds, eliminat
recrossing trajectories from those counted towards the o
all rate, it follows that
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GRF<GTST@ f #. ~2.16!

Since the only apparent approximation in the derivation
the TST method is this overcounting of recrossing trajec
ries, it is commonly believed that TST provides a rigoro
upper bound to the rate constant. Yet, we have shown@see
Eq. ~2.14!# thatGRF, and thusGTST @see Eq.~2.16!#, bounds
only c1G and notG itself. Hence, from Eq.~2.16! we see that
TST also boundsc1G rather thanG itself, as generally be-
lieved.

The above reactive flux approach is applicable only
there is a well-defined separation of time scales, since
function kRF(t) would otherwise go to zero without a wel
defined plateau. Another disadvantage of this expression
~2.13!, is that its plateau value@Eq. ~2.14!# involves the co-
efficientc1 , which is in general not known. A way to resolv
both of these problems is to employ, instead of Eq.~2.13!, an
alternative expression given by

kC~ t !52
d

dt
ln@C~ t !#5

kRF~ t !

C~ t !
, ~2.17!

in which the unknown factorc1 cancels at times longer tha
1/l2. It is not difficult to see that the reactive flux so defin
retains the principal advantages of the standard reactive
method, Eq.~2.14!, being free of its drawbacks. In particula
for intermediate~as well as long! times Eq.~2.17! always
approaches a limiting value coinciding with the least non
nishing eigenvalue@see Eq.~2.9!#, i.e., with the true rate
kC(t@l2

21)5l15G.

B. Operator representation

An alternative approach to the above problem is based
an operator representation of an equilibrium correlation fu
tion @10,26#

W~ t !5
^Dx~0!Dw~ t !&

NA
eNB

e
5

^Dxexp~ tL* !Dw&

NA
eNB

e
, ~2.18!

whose physical significance depends on the functionsx and
w. In Eq. ~2.18!, L* 5Peq

21LPeq is the backward operator o
the time-reversed process@3#

L* 52v
]

]x
1FdU~x!

dx
2gvG ]

]v
1

g

b

]2

]v2
, ~2.19!

Dx5x2^x&, and similarly forw, while ^ & denotes the av-
erage with respect to the stationary solutionPeq(x,v) and
has the properties of an inner product, i.e.,

^Dx~0!Dw~ t !&5E dz Peq~z!Dx~z!etL* Dw~z!.

~2.20!

Note that if the functionsw(z) andx(z) are both taken to be
the step functionsu(2x), the correlation functionW(t) in
Eq. ~2.18! reduces to the correlation function introduced e
lier, C(t), Eq. ~2.6!, with the dividing surface taken asf
5x50. More generally, although the characteristic functi
of the domain of attraction of the reactant stateA, namely
w(z), equals unity far inside the domain of attraction a
f
-

s

f
e

q.

ux

-

n
-

-

zero far outside, it may show a smooth transition from the
extreme values in contrast to the step functionu(2 f ). The
function x(z) is of similar nature asw(z).

The phenomenological result, Eq.~2.3!, can be linked to
the equilibrium time correlation functionW(t) in the same
way as it was toC(t). In particular, at long times when th
phenomenology holds,W(t) has the same decay as the va
ableDN(t) itself. Consequently, a corollary of the improve
reactive flux expression@Eq. ~2.17!# defined on the basis o
W(t),

kW~ t !52
d

dt
ln@W~ t !#, ~2.21!

should exhibit the same long time behavior as does
~2.17!, i.e.,

kW~ t@l2
21!5G. ~2.22!

This W(t)-based approach has been used in both analy
@10,25# and numerical@28# calculations of rate constants.
has the advantage thatW(t) may be expanded in the eigen
values of the Fokker-Planck operator withknown coeffi-
cients, as follows below. It is this expansion which will e
able us to develop an approximate expression forc1 in Eq.
~2.14!, and will enable us to determine which quantity VTS
does bound from above~see Sec. III B!.

We begin by recognizing that the Green function of t
Fokker-Planck equation can be expanded in terms of
complete set of eigenfunctionshm , i.e.,

P~z,tuz0![etLd~z2z0!5 (
m50

Peq~z!hm~z!hm
1~z0!e2lmt

~2.23!

where

L* hm52lmhm ,

L1hm
152lmhm

1 , ~2.24!

~hm
1 ,hn!5dmn .

In the above we have introduced a scalar product of t
functions having the weight functionPeq ,

~ f ,g!5E dx dvPeq~x,v ! f ~x,v !g~x,v !. ~2.25!

Moreover,L1 is the backward operator of the original pro
cess,

L15v
]

]x
2FdU~x!

dx
1gvG ]

]v
1

g

b

]2

]v2
. ~2.26!

It may be noted here that this operator has the same ei
valueslm as the backward operator of the time-reversed p
cessL* with corresponding eigenfunctionshm

1 that are the
time reversed functions ofhm , hm

1(x,v)5hm(x,2v). Then,
using that the equilibrium probability densityPeq satisfies
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the stationary Fokker-Planck equation,LPeq50, such that
h05h0

151 and l050, one finds from substitution of Eq
~2.23! into Eq. ~2.18! that

W~ t !5 (
m51

wm exp~2lmt !, ~2.27!

where the expansion coefficients are given by

wm5
~x,hm!~w,hm

1!

NA
eNB

e
. ~2.28!

Substitution of Eq.~2.27! into Eqs.~2.21! and ~2.22! yields
G5l1 as anticipated@cf Eq. ~2.9!#.

The efficacy of the above approach depends crucially o
proper choice of the functionsx(z) and w(z). The best
choice would be the eigenfunctions ofL1 and L* corre-
sponding to the first nonzero eigenvaluel1. In that case, all
the coefficientswm exceptw1 would be equal to zero, an
the initial value of the log-based reactive fluxkW(0) would
already yield the exact rate constant. An approximate eig
function j of L* may also serve the purpose, provided th
kW(0) is well defined. Indeed, settingw(z)5NA

e@j(z)11#
andx(z)5NB

e@j1(z)11# ensures proper equilibrium dens
ties Ne and leads, via Eq.~2.18!, to W(t)5^j1exp(tL* )j&,
which, via Eq.~2.21!, leaves us with

kW~0!5GRQ@j#52
~j1,L* j!

~j1,j!
. ~2.29!

The above equation is nothing but a Rayleigh quoti
@10,11#. Bounding properties of this expression may be d
duced by studying the differencekW(0)2kW(`) which
reads

kW~0!2kW~`!5

(
m52

wm~lm2l1!

(
m51

wm

. ~2.30!

If one assumes thatlm are real, then the differenceslm
2l1 are positive by definition, the coefficientswm

wm5~j1,hm!~j,hm
1!5~j1,hm!2 ~2.31!

are also positive, andkW(0)>l1 follows. Consequently, a
sufficientcondition for the Rayleigh quotient to provide a
upper boundto the exact rate, i.e., forGRQ@j#>G, is that the
spectrum of the Fokker-Planck operator bereal, as is gener-
ally the case in the Smoluchowski limit.

C. Miscellaneous

For completeness we also mention two other poss
ways to identify the phenomenological rates. One is base
the observation thatW(t);exp(2Gt) at long times when the
phenomenology is valid. A first dynamical rate express
for the phenomenological rate constant is then clearly@24#

GMRT
21 5tMRT5E

0

`

dt W~ t !/W~0!. ~2.32!
a

n-
t

t
-

le
on

n

By definition, the right-hand side of the above equation i
so-called mean relaxation time, the quantity often used w
studying noise-induced transitions@29,30#. With Eq. ~2.27!
this quantity reads

GMRT5W~0!S (
m51

wm /lmD 21

. ~2.33!

On account of the separation of time scales which is inhe
to barrier crossing processes and shows itself in a large
in the spectrum of the Fokker-Planck operator separating
first nonzero eigenvalue from the rest of the spectrum,
~2.33! can be written asGMRT'GW(0)/w1.

A second approach is based on the mean first pas
time formalism@3,4,11#. Within its scope the escape rate
determined as the inverse of the mean timetMFPT after which
a stochastic trajectory starting within the well passes the
chastic separatrix for the first time,GMFPT5tMFPT

21 . This re-
duces Eqs.~1.3! and~1.4! to the stationary backward Fokke
Planck equation supplemented by absorbing bound
conditions. However, since the spectrum of the Dirich
problem is in general different from that of the Neuma
problem, it is difficult to connectGMFPT with the other rate
expressions, Eqs.~2.9!, ~2.22!, and~2.32!.

III. VTST AND RAYLEIGH QUOTIENT METHODS

In this section, explicit expressions for the rate are deriv
for both the VTST and the Rayleigh quotient method,
order to elucidate the relationship between these two m
ods. For simplicity we restrict our considerations to a sy
metric double well,U(x)5U(2x). In such a case, the for
ward and backward rates are equal andG52GA . The
generalization to an arbitrary bistable potential is straightf
ward. One may also note that our presentation can be
tended to systems with memory friction.

A. Transition state theory

As noted, the starting point of the VTST method is t
TST rate, Eq.~2.15!. An explicit expression for this rate
reads

GTST@ f #5

4E dqdp d~ f !~v•¹ f !u~v•¹ f !e2bH

E dqdp e2bH

, ~3.1!

where the Dirac delta functiond( f ) limits the integration to
the dividing surfacef 50, the gradient of the surface,¹ f , is
in the full infinite-dimensional phase space (q,p), and v is
the generalized velocity vector in phase space with com
nents (ẋ,ṗx ,ẏ1 ,ṗ1 , . . . ). Whenwriting Eq. ~3.1! we used
the fact that for a symmetric double well the equilibriu
populations of reactants and products areNA

e5NB
e5 1

2 , inde-
pendent of the dividing surface@18#. The standard one
dimensional TST rate

GTST5HA1
2 pbE

2`

0

dx eb[U(0)2U(x)]J 21

~3.2!
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is obtained from Eq.~3.1! by taking the dividing surface to
be of the formf 5x50. A commonly used approach, VTST
is to perform the integration of Eq.~3.1! over various trial
surfaces and to select the smallest crossing rate as the
approximation to the true rate@13#. The latter may be
achieved either by trial and error or by selecting a trial s
face f depending on a set of free parameters, which may
varied to yield a minimum rate. Following Talkner and Po
lak @22# we choose the dividing surface to be planar such t

f 5a0x1(
i 51

aiyi , ~3.3!

where the coefficientsai are the components of the unit ve
tor ¹ f perpendicular to the dividing surface and are theref
normalized

(
i 50

ai
251. ~3.4!

Substituting Eq.~3.3! into ~3.1! and varying the resulting rat
expressionGVTST@a0 ,a1 , . . . # with respect to the coeffi-
cientsai , one obtains~for more details see Ref.@19#!

ai5a0gi /~v i
21m2!,

~3.5!

a05A2m/~2m1g!.

Thus, the problem of finding the optimal planar dividing su
face@the set of transformation coefficients (a0 ,a1 , . . . )] re-
duces to finding asingleeffective frequencym. The latter in
turn is to be fixed by minimizingGVTST@m#, a procedure tha
results in a self-consistent integral equation of the form

E
2`

`

dx@g2bm~m1g!~2m1g!x2#

3exp@2bU~x!2bm~m1g!2x2/g#50.

~3.6!

This equation must be solved numerically to find the eff
tive frequencym.

To simplify comparison with the Rayleigh quotien
method we define a variablev such that

m5Av21g2/42g/2, ~3.7!

which leads us to

GVTST@v#5
2

pZ
Am~v21m2!

g E
2`

`

dx

3expF2bU~x!2
bv4

mg
x2G . ~3.8!

The variational parameter is now the effective barrier f
quency v, rather thanm, and is determined by Eq.~3.6!
through Eq.~3.7!. Notice that Eq.~3.8! is simply a VTST
rate expression in which the system parabolic barrier
quencyv, which changes as the dividing surface is rotat
is used as the variational parameter@22#. Indeed, for each
est

-
e

t

e

-

-

-

-
,

planar dividing surface there exists a corresponding pa
bolic barrier frequency, which determines the slopea of the
effective deterministic separatrix in phase space,x5a(v)v
~see Fig. 2!. Minimizing GVTST@v# with respect tov is thus
identical to optimizing the rate constantGVTST@a0 ,a1 , . . . #
with respect to the coefficientsai , or, in other words, to
optimizing the slope of the separatrixa.

Before closing three remarks are in order. First, in t
weak friction limit (g→0) where the true rate falls off with
decreasingg, GVTST@v# becomes insensitive to the varia
tional parameter, approaching the standard TST rate,
~3.2!, independent of~any finite! v. Consequently, Eq.~3.8!
is applicable only in the spatial diffusion regime, i.e., as lo
as the true rate keeps increasing with decreasing friction
efficient. Second, we note that forg.0, Eq.~3.6! may give
more than one solution. Therefore, one must determ
which solution leads to the minimum of the rate constant a
identify this solution withGVTST . Third, for a double well
potential with a parabolic barrier @U(x)5U(0)
2(1/2)vb

2x21O(x3)# the calculation may be substantial
simplified by settingv equal to the barrier frequency@17#,
v5vb , in which case the effective frequencym becomes
identical to the standard Kramers-Grote–Hynes reactive
quency, as given by Eq.~3.7! with v5vb . Such a simple
choice of the dividing surface, although in general not fu
optimized, is unconditionally justified in the high-barrie
~low-temperature! limit where one may safely ignore the an
harmonicity of the potential.

B. Relation of the Rayleigh quotient method to VTST

The Rayleigh quotient, Eq.~2.29!, also provides a varia-
tional methodology for determining the rate,G5l1, if the
function j is taken as a variational trial function, i.e.,G@j#
5GRQ@j#. In Sec. II we saw that whenj5h1, the true eigen-
function, Eq.~2.29! yields the true eigenvalue, and thus th
more accurate is the trial function the more accurate will
the estimate for the rate. Although there exist a number
different Rayleigh quotient expressions@9–11,22#, the above
approach, formulated by Talkner@10,11#, has the advantage
that it is variational in the whole friction range. By this w
mean that a first-order error in the trial function leads to
second-order error for the rate. However, as noted ear
Eq. ~2.29! only gives a rigorous upper bound to the ra
when the spectrum of eigenvalues is real. The latter is
general true for strong friction (g@vb) and may not be the
case in the intermediate-to-weak friction regime (g&vb).

FIG. 2. Schematic representation of the VTST optimization p
cedure. Solid line, equipotentialv2/21U(x)5const; dashed line,
TST dividing surfacex50; dot-dashed line, optimized dividing sur
facex5av.
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To elucidate the relationship between the VTST and R
leigh quotient estimates for the rate we follow Talkner a
Pollak @22# and restrict ourselves to the Kramers trial fun
tion @6#. The derivation of this function is based on the id
that at vanishing temperature (b→`) the solutions of the
resulting first-order partial differential equation are piecew
constant on the domains of reactants and products.
choose these values to be11 and21, such that the resulting
function is normalized and orthogonal to the stationary so
tion. For low temperatures the presence of the small di
sive term inL* changes the behavior of the eigenfunctionh1
only near the deterministic separatrix where the steplike
havior is smoothed out and it is therefore only in this reg
that h1 differs from the stationary solution,h051. Thus, for
sufficiently smallb21 only the barrier region contributes t
the Rayleigh quotient~2.29!, because this expression co
tains the stationary distribution as a weight. Hence, it is u
ful to rewrite the true potential as a sum of a parabolic bar
potential Upb(x)52 1

2 v2x2, with the frequencyv being a
free~variational! parameter, and a reminderU(x)1 1

2 v2x2. It
is then not difficult to show@6# that the corresponding op
eratorLpb* has a nontrivial eigenfunctionj associated with a
zero eigenvalue whose form is

j~x,v !5A 2b

pmgE0

mv2v2x
dsexpS 2

bs2

2mg D , ~3.9!

which is just the so-called Kramers trial function. Substi
tion of Eq. ~3.9! into the numerator of the Rayleigh quotie
~2.29! yields

~j1,L* j!5
1

gZ
A2b3

p3 E2`

`

dx E
2`

`

dy FdU~x!

dx
1v2xG

3expH 2 1
2 bF2U~x!1v2x21

v2y2

v22m2G J
3E

0

my1(v21m2)x
dsexpS 2

bs2

2mg D , ~3.10!

where we have performed the derivative with respect tov
and replacedv by the variabley5v2mx. A partial integra-
tion overx allows one to get rid of thes integral. The result-
ing integral overy is Gaussian and therefore can be p
formed analytically leading us to

~j1,L* j!5GVTST@v#, ~3.11!

where GVTST@v# is given by Eq.~3.8!. This immediately
gives

GRQ@v#5
GVTST@v#

~j1,j!
. ~3.12!

It is thus seen that the Rayleigh quotient rate express
based on the Kramers trial function,GRQ@v# differs from the
VTST rate based on a planar dividing surface,GVTST@v#, by
the denominator in Eq.~3.12! that satisfies the inequality

~j1,j!<1. ~3.13!
-

e
e

-
-

e-

-
r

-

-

n

For a symmetric double well, Eq.~4.1!, over a wide range of
the variational parameter (v*vb) this denominator can be
well approximated by

~j1,j!'12e2bE, ~3.14!

where E is the barrier height. Consequently, the ident
shown by Talkner and Pollak@22# can be recovered only in
the low-temperature limit (b→`) where the denominato
(j1,j) becomes equal to unity. This latter result can be o
tained from Eq.~2.25! by realizing that the trial function
j(x,v), Eq. ~3.9!, reduces to a piecewise function 2u(mv
2v2x)21 asb→`. Outside of the low-temperature limit
Eq. ~3.12! leads us to conclude, in contrast with the conc
sion of Talkner and Pollak, that VTSTdoes notpossess the
bound property inherent to the Rayleigh quotient method
the Smoluchowski limitg→`. The latter is consistent with
our earlier finding, Eqs.~2.14! and~2.16!, that VTST bounds
GRF5c1G rather than the rateG itself. Although this failure
of the VTST bounding properties is revealed using the
stricted set of dividing surfaces$ f %, Eq.~3.3!, we are assured
that GVTST optimized from an unrestricted set$ f̃ %, which
may include different types of both planar and curved div
ing surfaces@18# will also fail to bound the true rate, since b
definition the unrestricted resultGVTST@ f̃ # is smaller than
GVTST@ f #.

Thus, to see which quantity the VTST rate does bou
from above, one has to determine the coefficientc1. This can
be achieved by establishing a connection between the
time limits of the derivativesĊ(t) and Ẇ(t) underlying
VTST and the Rayleigh quotient method, respectively.
VTST is restricted to planar dividing surfaces, Eq.~3.3!,
while the Rayleigh quotient method is limited to the class
Kramers trial functions, Eq.~3.9!, one immediately obtains
via Eqs. ~2.15!, ~2.29!, and ~3.11! that Ẇ(01) equals
Ċ(01), Ẇ(01)5Ċ(01)5GVTST@v#. That is, the two cor-
relation functions become similar in this case, allowing us
estimate the unknown coefficientc1 as c15w1, such that
from Eq. ~2.31!,

c15~j1,h1!2. ~3.15!

The above equation involves the true eigenfunctionh1 whose
closed form expression is not known exactly. However, o
calculations show@see, e.g., Fig. 6 in Sec. IV# that in the
spatial diffusion regime this eigenfunction can be well a
proximated by the normalized Kramers trial function

h1~x,v !'
j~x,v !

A~j1,j!
, ~3.16!

which gives

c1'~j1,j![c1j . ~3.17!

The approximate coefficientc1j is nothing but the denomi-
nator of the Rayleigh quotient rate expression, Eq.~3.12!,
which is typically c1j.0 for g.vb . It then follows that
GVTST5c1jGRQ, and, sinceGVTST>c1G @by Eqs.~2.14! and
~2.16!#, that
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GRQ>~c1 /c1j!G. ~3.18!

It is thus seen that, forany value of the friction coefficient,
the Rayleigh quotient will necessarily bound the true r
from aboveonly if the approximate estimate ofc1 , c1j , is
less than or equal to the true value,c1j<c1. The bounding
property of GVTST , however, is more difficult to satisfy
since in this case it isc1 rather thanc1 /c1j , which must be
greater than or equal to 1. Sincec1 is generally not known
@see Eq.~3.15!#, these are not particularly useful boundin
properties. However, in the zero-temperature~high-barrier!
limit, Eq. ~3.16! with j taken atv5vb becomes exact an
c1→c1j , such thatGRQ>G. Similarly, one can show tha
c1j→1, and therefore thatc1→1 in this same limit, such tha
GVTST>G. On the other hand, we see that, while bothGRQ
andGVTST will bound the true rate in the high-barrier limi
GVTST is expected to loose its bounding property more r
idly than doesGRQ as the barrier height~inverse temperature!
decreases becauseGRQ5GVTST /c1j>GVTST .

IV. COMPARISON OF VTST AND THE RAYLEIGH
QUOTIENT METHOD WITH NUMERICAL RESULTS

The validity of the above analysis is tested by compar
Eqs. ~3.8! and ~3.12! with exact ~analytical and numerical!
results for the rate. As both formulas are applicable only
the spatial diffusion regime, we restrict our consideration
g.vb . The potential is taken to be a symmetric quar
double well

U~x!5E~x221!2, ~4.1!

with a barrier of heightE and frequencyvb52AE.

A. Smoluchowski limit

Exact results for the rate may be easily obtained only
a one-dimensional Fokker-Planck process. Therefore,
instructive to begin our comparison in the strong fricti
limit where the Fokker-Planck Eq.~1.4! reduces to the one
dimensional Smoluchowski Eq.~1.7!. It may be noted that
for a Smoluchowski operator, the time-reversal operation
duces to the identical transformation; accordingly,L15L*
andh1(x)5h(x). The numerical basis set scheme we ha
employed to generate highly accurate results for the le
nonvanishing eigenvalueG5l1 and the associated eigen
functionh1 is described elsewhere@31#. This calculation pro-
vides the benchmark against which we test the Rayleigh q
tient and VTST rate theories. Also, since the Smoluchow
operatorL* is Hermitian, its spectrum is real, and therefo
the Rayleigh quotient provides a rigorous upper bound to
first nonzero eigenvalue in this limit~regardless ofc1). This
bound holds true for any normalizable trial functio
that is orthogonal to the stationary distributionPeq(x)
5Z21 exp@2bU(x)#.

For completeness, we also include comparison with
two other dynamical approaches to the rate constant
cussed in Sec. II C. In the Smoluchowski limit, the kine
rate in a symmetric double-well potential may be given
the inverse of the mean first passage time, after whic
stochastic trajectory starting at one of the local minimu
values, say, atx51, reaches the top of the barrier atx50
e
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GMFPT
21 5gbE

0

1

dx E
x

`

dy eb[U(x)2U(y)] . ~4.2!

Analogously, the mean relaxation time formalism, E
~2.32!, yields an explicit rate formula which reads@29,30#

GMRT
21 52gbZ21E

0

`

dx ebU(x)F E
x

`

dy e2bU(y)G2

. ~4.3!

It may be noted that in deriving Eq.~4.3! we have set for
simplicity j(x)5w(x)5u(2x). Moreover, since the coeffi
cientswm entering Eq.~2.33! are all positive in the Smolu-
chowski limit, the rate expressionGMRT gives an upper
bound to the least nonvanishing eigenvalue in this casel1
<GMRT .

In the strong friction limit,g→`, m5v2/g, and the Ray-
leigh quotient and VTST rate expressions, Eqs.~3.8! and
~3.12!, take the form

GRQ@v#5

E
2`

`

dx e2bU(x)2bv2x2

bgE
2`

`

dx e2bU(x)S E
0

x

dy e2bv2y2/2D 2 ,

~4.4!

and

GVTST@v#5
2v2

pgZE2`

`

dx e2bU(x)2bv2x2
, ~4.5!

respectively. Before comparing these rates withG5l1, let us
analyze how the VTST rate expression depends on the va
tional parameterv. First, one sees thatGVTST@v→0#
52v2/pg→0, such that the VTST rate expression has
global minimum atv50, GVTST@v50#50. This solution,
which results from the failure of the method of Lagrangi
multipliers used to derive Eq.~3.5! at v50, is invalid, as it
does not satisfy the normalization condition@see Eqs.~3.4!
and ~3.5!#. Second, as evidenced by Fig. 3~a!, when the
variational parameter increases,GVTST@v# increases to a lo-
cal maximum followed by a local minimum if the barrier
high, whereas it increases only monotonically for low bar
ers. Thus, we have to opt for the solution of Eq.~3.6! that
leads to the smallestnonzerorate constant, if such a solutio
exists, as it does for high barriers. We refer to this solution
the true VTST rate, and to the VTST estimate for the r
obtained withv5vb as the simple VTST rate expressio
Note that only this latter result can be computed in the l
barrier limit.

On the other hand, Fig. 3~b! demonstrates that no suc
false minima are found in the Rayleigh quotient method. T
corresponding rate expression, Eq.~4.4!, has a nontrivial glo-
bal minimum at all barrier heights. The functionalGRQ@v#
varies fromGRQ5(bg^x2&)21 at v50, reaches a minima
value nearv5vb , and then linearly increases asv→`.

Figure 4~a! confirms that the simple VTST rat
GVTST@vb# does not possess an upper bound property
contrast to the Rayleigh quotient method, which does@Fig.
4~b!#. Indeed, simple VTST considerably underestimates
true rate,l1, in the limit of moderate to low barriers,bE
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<4, and slightly overestimates it forbE.4. It is also seen
that the VTST method does not bound either of the two ot
dynamical expressions for the rate discussed above,GMFPT
@Eq. ~4.2!# and GMRT @Eq. ~4.3!#. The situation become
worse if one uses the true VTST rate. By definition, this r

FIG. 3. RatioG@v#/G@vb# as a function of the variational pa
rameter v. The calculation is performed in the strong frictio
Smoluchowski limit for a double well potential, Eq.~4.1! with
bE52 ~dot-dashed lines!, 4 ~dashed lines!, and 6~solid lines!. ~a!
VTST rate, Eq.~4.5!; ~b! Rayleigh quotient, Eq.~4.4!.

FIG. 4. Percentage errors, 1003~approximate–exact!/exact, in
the least nonvanishing eigenvalue of the Smoluchowski opera
Eqs. ~1.7! and ~4.1!, made by using different rate expressions.~a!
Dot-dashed line, simple VTST rate expressionGVTST@vb#; solid
line, true VTST rate; dashed line,GMFPT, Eq. ~4.2!; solid line with
circles, GMRT , Eq. ~4.3!. ~b! Solid line, results obtained by mini
mizing GRQ@v#; dashed line,GRQ@vb#.
r

e

is smaller thanGVTST@vb#, and we see it already underes
matesl1 at bE55. Additionally, forbE,2.5 the functional
GVTST@v# has no nontrivial minimum and thus its minimiza
tion @with such a planar dividing surface, Eq.~3.3!# fails to
provide any result for the rate at all.

On the other hand, we know that by construction VTS
gives an upper bound to the standard reactive flux expres
GRF @see Eqs.~2.14! and~2.16!#, which differs from the true
rateG by the factorc1 defined by Eq.~3.15!. In Fig. 5~a! we
compare VTST with both ratesGRF5c1l1 and G5l1. For
simplicity the calculation is performed forv5vb . As an-
ticipated,GVTST@vb# systematically overestimates the sta
dard reactive flux formulaGRF at all barrier heights even in
the extreme limit of vanishing barrierbE→0, where VTST
underestimates the exact rate by more than 75%. Addit
ally, the true VTST rate~not shown! exhibits the same
bounding properties as doesGVTST@vb#. We have thus con-
firmed that the failure of VTST for low barriers is also in
herent to the standard reactive flux method, and that
failure can be traced to the coefficientc1, Eq. ~3.15!, and its

r,

FIG. 5. ~a! Percentage errors made byGVTST@vb# in comparison
to the least nonvanishing eigenvaluel1 ~dashed line! and in com-
parison to the standard reactive flux formula computed fromGRF

5c1l1 with c1 given by Eq.~3.15! ~solid line!. ~b! Logarithm of
the deviation of the reactive flux coefficientc1 from unity when
v5vb . The solid line and circles are for results obtained in ter
of Eq. ~3.15! and~3.17!, respectively.~c! Coefficientc1, Eq. ~3.15!,
as a function of the variational parameterv for bE51 ~dot-dashed
line!, 5 ~dashed line!, and 20~solid line!. Circles are for analogous
results obtained withc1j , Eq. ~3.17!.
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dependence on the reduced barrier heightbE, see Fig. 5~b!.
The logarithmic plot clearly demonstrates that with incre
ing bE the coefficientc1 approaches unity exponentially@cf
Eq. ~3.14!# so that for bE*10 the standard reactive flu
formula GRF becomes practically indistinguishable from th
true rateG. For completeness we also show in Fig. 5~c! c1 as
a function of the variational parameter. As anticipated, t
quantity noticeably deviates from unity for both low barrie
(bE&3) and low values of the variational parameter (v
!vb). In either of these two limits both the standard react
flux method and VTST will fail. Away from the limitv
→0, for a very high barrier (bE520), c1, and thus the
reactive flux result, remain independent of the variatio
parameterv ~invariant with respect to the precise definitio
of the dividing surfacef ). For a moderate barrier (bE55)
the reactive flux is insensitive to the variational parame
only for v*vb , while for a low barrier (bE51) the
method looses its invariance with respect to the definition
the dividing surface. It is also worth noticing the excelle
agreement attained between the coefficientc1 calculated in
terms of the numerically exact eigenfunctionh1, Eq. ~3.15!,
and its Kramers trial function approximationc1j , Eq. ~3.17!,
in this Smoluchowski limit. The agreement is seen to h
for all barrier heights and all values of the variational para
eterv.

The results presented in Figs. 3–5 confirm our analy
findings, i.e., that although VTSTdoesbound the reactive
flux result, Eq.~2.16!, neither the reactive flux method no
VTST provide a rigorous upper bound to the least nonv
ishing eigenvalue. Consequently, VTST cannot be unequ
cally assumed to provide a rigorous upper bound to all s
tems. Perhaps more interestingly, Fig. 5 shows thatc1
decreases with the variational parameterv as well as with
the barrier height, which means that as the planar divid
surface is rotated in the full phase space~to smallerv), the
fraction of initial phase space points~in the dividing surface!
which relax according tol1 must be decreasing. Indeed, th
decrease inc1 proceeds smoothly to the nonphysical~ill-
defined! limit at v50 ~for all barrier heights!, where the
normalization condition@Eq. ~3.4!# fails. Thus, in some
sense, the planar dividing surface is failing–for both VTS
and the reactive flux method – asv→0, an issue we will
address in more depth in a future work. For now, we rec
nize simply that the dependence ofc1 on v and on the sys-
tem properties~such as the barrier height! enter Eq.~3.15!
through the trial functionj and the stationary distribution
function Peq , respectively. Additionally, the failure of the
VTST and reactive flux bounds in thev→0 limit corre-
sponds to a coincident failure of the Kramers trial functionj,
Eq. ~3.9!, which reduces to zero and therefore becomes
normalized in this limit.

Most importantly, however, is the result~Fig. 5! that if the
barrier height is not sufficiently high, the coefficientc1 may
noticeably deviate from unity even forv5vb , i.e., in the
vicinity of the relevant minimum of the VTST rate expre
sion. The latter failure arises because the equilibrium dis
bution is such that the rate is no longer independent of
precise definition of the metastable states, although the
cape dynamics may still be governed by a single least n
vanishing eigenvalue that is well separated from the res
the finite eigenvalues. This indicates that the phenome
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logical rate description as a whole looses its meaning aw
from the limit of high barriers,bE→`. As evidenced by
Fig. 4, the existing dynamical expressions for the rate (l1 ,
GMFPT, and GMRT) coincide with each other only forbE
.8 for the symmetric quartic potential considered. F
lower barriers these rates differ, even though there is st
well defined separation of time scales of the order
l2 /l1'103, e.g., forbE57.

In contrast to the VTST and standard reactive flux me
ods, the Rayleigh quotient method incorporates the fac
c1j5(j1,j)'c1 directly, and hence it systematically ove
estimates the least nonvanishing eigenvalue regardless o
reduced barrier height, as shown in Fig. 4~b!. We can gain
more insight into the meaning ofc1 and thus into the escap
dynamics by comparing the normalized Kramers trial fun
tion jN , reading

jN~x!5

E
x

0

dy e2bv2y2/2

F E
2`

`

dx e2bU(x)S E
0

x

dy e2bv2y2/2D 2G1/2,

~4.6!

with the numerically exact results for this eigenfunction,
shown in Fig. 6.~Note that for simplicity the free paramete
v was taken to bev5vb .) Since the eigenfunctionh1(x) is
antisymmetric,h1(2x)52h1(x), only results forx<0 are
presented in the figure. First, it is seen that the normali
Kramers functionjN @Eq. ~4.6!# is in excellent agreemen
with the exact eigenfunctionh1(x) for all temperatures, from
the low bE520 through the very high temperaturebE51.
Second, it is clear that in the limit of extremely low temper
ture ~high barrier!, bE→`, both functions jN5h1(x)
slowly approach the steplike function 2u(2x)21 underly-
ing the standard TST rate, Eq.~3.2!.

Finally, we would like to note the accuracy of the Ra
leigh quotient method in this largeg-limit. As evidenced by
Fig. 4~b!, the relative error made inl1 by using GRQ@v#
remains lower than 0.5% for all values ofbE including the
limit of vanishing barrier,bE→0. It is also remarkable tha
the analytical rate formulaGRQ@vb# is only slightly worse
than estimates for the rate obtained by minimizingGRQ@v#,
showing a maximal difference of 1.7%.

FIG. 6. Eigenfunctionh(x) corresponding to the first nonzer
eigenvalue of the Smoluchowski operator, Eqs.~1.7! and~4.1! with
bE51 ~dot-dashed line!, 5 ~dashed line!, and 20 ~solid line!.
Circles are for the normalized Kramers trial functionjN(x), Eq.
~4.6! with v5vb .
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B. Full friction range

For moderate friction,g.vb , as long as the escape d
namics are dominated by spatial diffusion across the ba
top, the observed dependence of the predicted rates on
variational parameter remains the same as in the limit
strong frictiong→`. The only difference at moderate fric
tion is in the limiting values. While the VTST rate function
still has a global minimum atv50 of 2v2/(pg)50, it ap-
proaches the TST rate~3.2! as v→`. Similarly, the Ray-
leigh quotient now varies fromGRQ@0#5(bg^x2&21/g)21,
through a minimum, to the TST rate asv→`.

Estimations of the rate obtained in terms of VTST and
Rayleigh quotient method have been compared with num
cally exact results for the least nonvanishing eigenvalue
ported in Refs.@28# and @32#. The calculations were per
formed for the potential~4.1! with bE51.25, 2.5, 5, and 10
using a path integral method described elsewhere@28,33#.
We have found that for a high barrier (bE510) both meth-
ods overestimate the least nonvanishing eigenvalue in
whole friction range. As anticipated, excellent agreemen
attained in the spatial diffusion regime,g*vb , in which
case theoretical predictions deviate from exact numerica
sults by only;0.1%. Larger deviations are observed in t
weak friction regime,g&vb . These deviations arise becau
the slow energy diffusion process, which causes the rat
fall off with decreasingg is not accounted for by the VTST
and Rayleigh quotient methods.

Away from the high-barrier limit, both methods are foun
to yield rates that drop belowl1 ~see Fig. 7!, that is, the
bounding properties of both methods fail for moderateg.
However, the VTST result drops below the exact rate m

FIG. 7. Percentage errors in the least nonvanishing eigenv
of the Fokker-Planck operator, Eqs.~1.4! and ~4.1! with bE52.5
and 5, made by using VTST and the Rayleigh quotient meth
Circles and solid lines are for results obtained by minimizi
GVTST@v#, Eq. ~3.8!, and GRQ@v#, Eq. ~3.12!, respectively. Dot-
dashed and dashed lines are, respectively, for the simple rate
mulasGVTST@vb# andGRQ@vb#.
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rapidly than does the Rayleigh quotient result, as anticipa
since the latter is related to the former according toGRQ

5GVTST /c1j , Eq. ~3.12!, where the coefficientc1j , which is
at most unity@Eq. ~3.13!#, decreases with decreasing barri
height as 12exp(2bE), Eq. ~3.14!. Thus, although the Ray
leigh quotient method does indeed bound the VTST re
~within the aforementioned restrictions!, it doesnot preserve
its upper bound property in the range of moderate frict
where the Fokker-Planck operator~1.4! is in general non-
Hermitian @34#. Despite this qualitative similarity, quantita
tive differences between the two methods appear as the
rier is lowered. The relative error of the true VTST ra
expression increases with decreasingbE much more rapidly
than does the error of the Rayleigh quotient result; forbE
52.5 VTST underestimates the exact numerical rate by m
than 10% as compared to 1.5% for the Rayleigh quoti
method. With further decreases in the barrier height the t
VTST method fails completely, as expected since the VT
rate functionalGVTST@v# ceases to have a nontrivial min
mum in this limit. In contrast, the Rayleigh quotient result
at worst, 6.6% below the true rate even for the extremely l
barrier ofbE51.25 ~not shown!. Additionally, the Rayleigh
quotient method restores its bounding property asg becomes
large, whereas VTST does not provide a rigorous up
bound to the rate in this limit. Finally, we note that the an
lytical rate formulaGRQ@vb# is again only slightly worse
than the full variational result.

V. CONCLUSIONS

In analyzing the relative abilities of the VTST and th
Rayleigh quotient methods to precisely predict the rate
thermally activated barrier crossing processes in conden
media, we have uncovered some unexpected qualificat
on the bounding properties of these methods. Our study
motivated by a recent paper of Talkner and Pollak@22#, who
demonstrated a restricted identity between these two va
tional approaches. The identity is formulated as follows:
VTST is restricted to planar dividing surfaces and the R
leigh quotient method is limited to Kramers trial function
then the two methods are equivalent. Furthermore, base
the ‘‘upper bound property’’ of the VTST method, Talkne
and Pollak concluded that for this restricted class of tr
functions, the Rayleigh quotient provides an upper bound
the rate not only in the strong friction limit but also in th
whole friction range. The latter result is not trivial, as
demonstrates a bounding property for a non-Hermitian
erator.

In the present paper, we have shown that the abo
mentioned derivations of Talkner and Pollak are correct o
in the limit of high barriersbE→`. Outside of this limit,
i.e., for moderate and low barriers, the VTST and the R
leigh quotient methods are, in fact,not identical even when
the former is restricted to planar dividing surfaces and
latter is limited to Kramers trial functions. Additionally, w
have proven the unexpected result that VTST doesnot pro-
vide a rigorous upper bound to the exact rate constant,
fined as the least nonvanishing eigenvalue of the Fokk
Planck operator. Even more importantly, we confirm th
VTST doesgive an upper bound to the standard numeri
reactive flux result~based on the same dividing surface!,
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from which it follows that the reactive flux result also fails
bound the least nonvanishing eigenvalue~except asbE
→`). We therefore introduced an improved reactive fl
expression, which overcomes this drawback. Finally,
have demonstrated that the Rayleigh quotient, which give
rigorous upper bound to the least nonvanishing eigenvalu
the Smoluchowski limit, alsoloosesits bounding property
away from this strong friction limit. Yet, we have shown th
in spite of the lack of a bounding property as the reduc
barrier heightbE decreases, the Rayleigh quotient res
continues provide a good estimate of the rate. This stand
contrast to the VTST result, whose accuracy deteriorates
idly as the barrier decreases and the bounding propert
lost.

Although we have restricted ourselves in this paper
Ohmic friction, the present analysis can be generalized
cover systems with memory friction. In such a case, int
ducing a sufficient number of auxiliary variables, one m
transform the original non-Markovian process to an equi
lent Fokker-Planck dynamics@28,35# and then again use
VTST and the Rayleigh quotient method to estimate the
@22#.

Closing this paper we would like to note the power of t
Rayleigh quotient method. Contrary to the standard reac
flux formulation underlying VTST, the Rayleigh quotien
d.
.
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provides a precise definition of the kinetic rate which i
volvesno unknown factor@like c1 in Eq. ~2.14!# and is ap-
plicable regardless of whether or not there exist a separa
of time scales. As long as the dynamics are dominated
spatial diffusion across the barrier, this method is capable
giving highly accurate results for the least nonvanishing
genvalue even when the barrier becomes vanishingly l
bE→0. Indeed, in all the cases considered herein the o
mized Rayleigh quotient result was, throughout the spa
diffusion regime, found to be within 0.5% of the exact ra
Additionally, the accuracy of the Rayleigh quotient meth
which is based on the Kramers trial function as zeroth-or
approximation can besystematicallyimproved via perturba-
tion theory@11,8,30#.
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