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Disordered totally asymmetric simple exclusion process: Exact results
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We study the effect of quenched spatial disorder on the current-carrying steady states of a totally asymmetric
simple exclusion process with spatially disordered jump rates. Expressions for the steady state weights and the
current are derived for this model in one dimension. These solutions are exploited to study analytically the
exactsymmetries of the system. In particular, we confirm the recent numerical observation of Tripathy and
Barma@Phys. Rev. E58, 1911~1998!# that the magnitude of the steady state current is left invariant when the
direction of all the allowed particle jumps are reversed.
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Driven diffusive systems have been the subject of ext
sive studies in recent years@1#. A key ingredient that makes
the study of these systems interesting is the presence
driving field due to which the underlying dynamics do n
generically obey a detailed balance, leading to steady st
with nonvanishing currents. In the absence of a unify
theme that encompasses our understanding of nonequ
rium phenomena, these systems offer a relatively sim
framework within which phenomena far from thermal eq
librium may be studied.

These systems further provide the possibility of study
the intriguing interplay of disorder, interaction, and drive f
a wide range of parameter values like the degree of disor
filling, and drive strength@2#. Driven systems in the absenc
of disorder have been studied extensively, and have reve
basic differences between equilibrium and nonequilibri
systems@1,3,4#. For instance, spontaneous symmetry bre
ing @5,6# and phase separation have been demonstrate
one-dimensional asymmetric exclusion processes@7#. In con-
trast it is well known that one-dimensional systems in th
mal equilibrium with short range interactions do not exhi
such phenomena@8#. Also, systems with disorder and driv
but no interactions between particles have been reason
well studied and understood@9#.

A number of physical situations involving flow in rando
media require an understanding of disorder driven diffus
systems of interacting particles@10#. Most of the understand
ing gained in these system was largely based on nume
simulations. In fact, analytical characterizations in terms
exact steady state measures in systemswithout translational
invariance have only been found in the case of the disorde
drop-push model@11#.

An interesting class of models, for which again there e
ists no analytical characterization of the steady state weig
or the steady state current, is the disordered totally asymm
ric simple exclusion process~DTASEP!. Even the single dis-
order case has not been amenable to an analytic treatm
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Extensive numerical and mean-field studies have been d
and a number of interesting features have been highligh
@11–14#.

In this work we derive formally exact solutions for th
steady state weights and current for the DTASEP mode
one dimension. These solutions are valid for arbitrary dis
der and particle fillings. We further show how these so
tions can be exploited to study the exact symmetries of
model by studying the transformations that leave the mag
tude of the steady state current invariant. In particular
show that the model possesses an exact particle-hole sym
try for any given disorder realization, a result that was o
served in numerical simulations by Tripathy and Barma@15#.

Definition of the model.The DTASEP model is defined o
a one-dimensional lattice of lengthL with periodic boundary
conditions. Each site can hold either one particle
zero. Each bond (i ,i 11) of the lattice is assigned
quenched random ratea i chosen independently from som
chosen probability distribution. The evolution is governed
random sequential dynamics defined as follows: in a ti
interval dt the particle attempts to hop, with probabilit
a idt, to its neighboring sitei 11. We consider the case i
which the jumps are allowed only in one direction~to the
right!, and are the same for all bonds. In addition, the mo
is completed if and only if sitei 11 is unoccupied. The time
averaged steady state currentJi in the bond (i ,i 11) is given
by

Ji5a i^ni~12ni 11!&, ~1!

whereni counts the number of particles at sitei.
Since for every particle hopping to the right, a ‘‘hole

hops to the left, the implies that interchanging all the p
ticles for holes~charge conjugationC) and reversing the
direction of hopping~time reversalT), leaves the steady stat
current, up to a sign, the same. Hence the steady state cu
is symmetric under a combinedCT transformation. This
symmetry is valid in general: in any dimension; in the pre
ence of disorder; and in the case when the particle can
along any direction with finite probabilities~DASEP!.

In Eq. ~1!, if all the a i ’s are set equal to the same consta
a, then it follows that the steady state currentJ0, which is
2453 ©2000 The American Physical Society
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assumed to be the same on each bond and hencJ0
5L21( iJi , is invariant underni→12ni for all i. Hence for
the clean totally asymmetric simple exclusion process in
dimension~TASEP!, charge conjugation by itself leaves th
steady state current invariant. SinceCT symmetry always
holds, it follows that for the TASEP model in one dimensi
both charge conjugation~C! and time reversal~T! symme-
tries hold individually.

Surprisingly, in one dimension, it was shown that cha
conjugation symmetry is respected even when disorde
included~the DTASEP model!. This symmetry was expose
in numerical simulations carried out by Tripathy and Barm
@15#. They studied a system of sizeL56 with N52 par-
ticles, and verified the invariance of the current up to o
part in 108 for some arbitrarily given disorder realization
Further, studying the steady state weights of all the6C2 par-
ticle configurations showed no straightforward corresp
dence between the two systems related by charge conj
tion.

With these observations in mind, for this model we der
a formally exact expression for the steady state probab
density and the currentJ0. The validity of these expression
have been confirmed explicitly for small system sizes. Th
allow us to demonstrate the observed reflection symmetryT
symmetry! in general for all fillings and disorder configura
tion, which in turn fromCT symmetry implies the symmetr
of the steady state current under charge conjugation (C sym-
metry!. We then derive an expression relating the two sets
steady state weights after reflection, and explicitly show t
their relationship is indeed nontrivial.

For L sites withN particles, the number of configuration
M5LCN . Here LCN5L!/(L2N)!N! is the number of ways
N particles can be distributed amongL sites, with a maxi-
mum of only one particle per site. The dynamics of the
configurations, for a given realization of the quenched bo
variablesR5$a1 ,a2 , . . . ,aL%, are given by the rate equa
tion

dPm

dt
5(

n
T~n→m!Pn2(

n8
T~m→n8!Pm , ~2!

swhereT(m→n) gives the transition probability from con
figuration m→n. This expression can be conveniently e
pressed in matrix notation as

dP~ t !

dt
5WP~ t !, ~3!

with Wmn5T(n→m) and Wmm52(n8T(m→n8). Since
1•P(t)5(mPm(t)51 for all timet ~normalization!, it fol-
lows that1•W50. This implies thatW has a zero eigenvalu
with left eigenvector1. Hence it follows that there also exis
a right eigenvectorP such thatWP50. This defines the
steady state solution of the problem for a given choice of
disorderR.

The steady state of the problem considered above is c
acterized by a uniform currentJ0 across each bond. Give
the solutionP, the current across, say, sitei and i 11, is
given asa i(Pm5J0, where the sum isonly over the set of
configurations with a particle on sitei and a hole on sitei
11 @see Eq.~1!#.
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The above sum for all sitesi can be combined and con
veniently written in matrix notation by defining a matrixG
such thatG•P5J0(1/a1 ,1/a2 , . . . ,1/aL)T[J0(1/a)T. The
entries ofG for a given rowi ~corresponding to sitei ) has 1
in column m if the mth configuration, which arises with
probability Pm in the steady state, has a particle at sitei and
a hole at sitei 11, and is 0 otherwise. The order of theG
matrix is thereforeL3M , since there areL sites andM con-
figurations. TheG matrix can be expanded to anM3M
matrix by augmenting an (M2L)3M zero matrix toG,
such that

Q•P[S GL3M

0(M-L) 3M
D •P5J0S 1/a

0 D[J0V, ~4!

where, for convenience, we have defined new variablesQ
5(G,0)T and V5(1/a,0)T. Hence the three equations th
determine the steady state distribution and current are

W•P50, ~5a!

Q•P5J0V, ~5b!

1•P51. ~5c!

If we assume that row rank (W)5M21, and is not less,
then there exists a one-parameter solution to Eq.~5a!. The
most general form of the solution will be of the formbP,
whereb is the arbitrary parameter. The solution when su
stituted into Eq.~5b! allows theb factor to be absorbed in
the definition ofJ0 by rescalingJ0→J0 /b. Hence the most
general solutionP[P(J0) will have J0 appearing as the only
free parameter. The value ofJ0 is fixed by the normalization
condition given in Eq.~5c!. Hence a uniqueP andJ0 solve
Eq. ~5!.

Although a unique solution exists, neither Eq.~5a! nor Eq.
~5b! can be inverted to obtain a solution forP andJ0 as both
W and Q are singular matrices. However, except for a fe
values of h, the sum Q1hW is invertible since det(Q
1hW) is a polynomial inh. Therefore, multiplying Eq.~5a!
by h and adding it to Eq.~5b! gives us

~Q1hW!•P5J0V. ~6!

Now, if h is such that (Q1hW) is invertible, then, using
Eq. ~6!, we obtain P(J0)5J0(Q1hW)21

•V. The steady
state currentJ0 is obtained using the normalization conditio
in Eq. ~5c!, giving 1/J051•(Q1hW)21

•V. Hence the final
solutions are given as

P5
~Q1hW!21

•V

1•~Q1hW!21
•V

, ~7a!

J05
1

1•~Q1hW!21
•V

. ~7b!

It is important to note that, since we have already shown t
a unique solution to Eq.~5! exists, the above solutions ar
independent ofh.

Now we consider the system in which the direction of t
allowed jumps is reversed. We denote the set of quenc
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random bond variables when the particles are allowed
jump to the left asR̄5$a1 ,a2 , . . . ,aL%. In R̄ the magnitude
and ordering of thea i ’s are the same as inR, although the
direction of hopping has been reversed. LetP̄ be the steady
state weights andW̄ andQ̄ the corresponding matrices suc
thatW̄•P̄50 andQ̄•P̄5 J̄0V. TheV vector in both cases ar
the same, andJ̄0 is the appropriate current. Following th
same procedure as above, we obtain

P̄5
~Q̄1hW̄!21

•V

1•~Q̄1hW̄!21
•V

, ~8a!

J̄05
1

1•~Q̄1hW̄!21
•V

. ~8b!

In order to prove the equality of the two currentsJ0 and
J̄0, we proceed by defining a matrixSsatisfying the relations

Q•S5Q̄, ~9a!

S21
•P5P̄. ~9b!

It follows from Eq. ~5b! that the existence of such a m
trix S guarantees the equality of the currents under time
versal. We now proceed to derive further constraints thaS
should satisfy. First, since each row ofG contains as many
1’s as the number of configurations for which there exist
particle at sitei and a hole at sitei 11, we haveG•1
5L22CN211. The same is true ofḠ, although the exact lo-
cation of each of the 1’s will differ since the direction o
hopping has been reversed. Going back to Eq.~9a!, we ob-
tain

Q•SS 1

1D 5Q̄S 1

1D 5L22CN21S 1

0D 5QS 1

1D . ~10!

All the conditions in the above equation can be satisfie
we takeS•151. Second, since bothP andP̄ are normalized,
from Eq.~9b! we obtain that1•P51•S•P̄51. This equation
can be satisfied if we take1•S511A, with the additional
constraint thatA•P̄50. We observe that the equation is sa
isfied only up to a vectorA which is ‘‘orthogonal’’ to P̄.

Acting by W on both sides of Eq.~9b! gives

W•P5WS•P̄50. ~11!

This equation can be satisfied if we takeWS52W̄. The sign
is fixed by observing that, since the direction of hopping h
z

er
to

-

a

if

-

s

been reversed inR̄, the outgoing configurations with respe
to a given initial particle configuration are mapped to t
incoming configurations inR and vice versa, leading to th
relationW•152W̄•1 @refer to Eqs.~2! and~3!#. Then, using
the property thatS•151, it follows that WS•15W•15

2W̄•1.
Thus the two equations thatS should satisfy are

QS5Q̄, ~12a!

WS52W̄. ~12b!

It is interesting to note that it isnot a similarity transforma-
tion that relates the two systems defined byW andW̄.

By multiplying Eq. ~12! by an appropriate parameterh,
and adding the two equations, we obtain

S5~Q1hW!21
•~Q̄2hW̄!. ~13!

It is now trivial to numerically check that the form ofS
derived above explicitly solves Eqs.~9!, thereby confirming
the observation made by Tripathy and Barma@15# in their
numerical simulations that the currents under time reve
are equal for all fillings and disorder strength. The nontriv
nature of theS matrix also explains why they did not find
simple relationship between the two steady state weig
which we give in Eq.~9b! At this point, one should note tha
in contrast to our algebraic approach, Goldstein and Sp
@16# recently gave an interesting probabilistic proof of t
same observation.

In conclusion, we show how our approach offers a unifi
way to ‘‘search’’ for other quantities that are also invaria
under time reversal. For example, ifZ is some left eigenvec-
tor of the matrix S with eigenvalue 1~i.e., Z•S5Z), then it
follows from Eq. ~5b! that Z•P5Z•P̄. This implies that
there are as many invariant quantities as the number of s
left eigenvectors ofS ~if only one could find and interpre
them!. We therefore believe that the algebraic approach
have developed has wider applicability in studying and u
derstanding the symmetries of more general models not a
nable to direct analytical studies.
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