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Disordered totally asymmetric simple exclusion process: Exact results
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We study the effect of quenched spatial disorder on the current-carrying steady states of a totally asymmetric
simple exclusion process with spatially disordered jump rates. Expressions for the steady state weights and the
current are derived for this model in one dimension. These solutions are exploited to study analytically the
exactsymmetries of the system. In particular, we confirm the recent numerical observation of Tripathy and
Barma[Phys. Rev. 58, 1911(1998] that the magnitude of the steady state current is left invariant when the
direction of all the allowed particle jumps are reversed.
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Driven diffusive systems have been the subject of extenExtensive numerical and mean-field studies have been done,
sive studies in recent yeal$]. A key ingredient that makes and a number of interesting features have been highlighted
the study of these systems interesting is the presence of[d1-14.
driving field due to which the underlying dynamics do not In this work we derive formally exact solutions for the
generically obey a detailed balance, leading to steady stat&éeady state weights and current for the DTASEP model in
with nonvanishing currents. In the absence of a unifyingone dimension. These solutions are valid for arbitrary disor-
theme that encompasses our understanding of nonequili§ler and particle fillings. We further show how these solu-
rium phenomena, these systems offer a relatively simpldons can be exploited to study the exact symmetries of the

framework within which phenomena far from thermal equi- M0del by studying the transformations that leave the magni-
librium may be studied tude of the steady state current invariant. In particular we

. - . show that the model possesses an exact particle-hole symme-
These systems further provide the possibility of StUdymgtry for any given disorr)der realization, a r(fsult that wasyob—

the intriguing interplay of disorder, interaction, and drive for ; . . i .
a wide range of parameter values like the degree of disorde?erved. ||_’1_numer|cal simulations by Tripathy and Ba_v[mé].
' Definition of the modelThe DTASEP model is defined on

filling, and drive strengtti2]. Driven systems in the absence a one-dimensional lattice of lengthwith periodic boundary
of disorder have been studied extensively, and have revealed \jitions. Each site can hold either one particle or
basic differences between equilibrium and nonequilibrium '

zero. Each bondi(i+1) of the lattice is assigned a

systemq1,3,4. For instance, spontaneous symmetry breakqenched random rate; chosen independently from some

ing [5,6] and phase separation have been demonstrated ¥hosen probability distribution. The evolution is governed by
one-dimensional asymmetric exclusion proce$ggdn con-  random sequential dynamics defined as follows: in a time
trast it is well known that one-dimensional systems in ther4nterval dt the particle attempts to hop, with probability
mal equilibrium with short range interactions do not exhibit o dt, to its neighboring sité +1. We consider the case in
such phenomengB]. Also, systems with disorder and drive which the jumps are allowed only in one directiGio the
but no interactions between particles have been reasonablight), and are the same for all bonds. In addition, the move
well studied and understod@]. is completed if and only if site+ 1 is unoccupied. The time
A number of physical situations involving flow in random averaged steady state curréptn the bond {,i +1) is given
media require an understanding of disorder driven diffusivedy
systems of interacting particl¢$0]. Most of the understand-
ing gained in these system was largely based on numerical Ji=ai(n;i(1—n; 1)), (1)
simulations. In fact, analytical characterizations in terms of
exact steady state measures in systaritisout translational ~ wheren; counts the number of particles at site
invariance have only been found in the case of the disordered Since for every particle hopping to the right, a “hole”
drop-push modefl11]. hops to the left, the implies that interchanging all the par-
An interesting class of models, for which again there ex-icles for holes(charge conjugatiorC) and reversing the
istsno analytical characterization of the steady state weightslirection of hoppindtime reversall), leaves the steady state
or the steady state current, is the disordered totally asymmeturrent, up to a sign, the same. Hence the steady state current
ric simple exclusion proces®TASEP. Even the single dis- is symmetric under a combine@T transformation. This
order case has not been amenable to an analytic treatmesyymmetry is valid in general: in any dimension; in the pres-
ence of disorder; and in the case when the particle can hop
along any direction with finite probabilitie®ASEP).
*Electronic address: kirkol@math.iisc.ernet.in In Eq. (1), if all the a;’s are set equal to the same constant
"Electronic address: fnalexp@wicc.weizmann.ac.il «, then it follows that the steady state currdgt which is
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assumed to be the same on each bond and hdgce The above sum for all siteiscan be combined and con-
=L"13,J;, is invariant unden;—1—n; for all i. Hence for  veniently written in matrix notation by defining a matrx
the clean totally asymmetric simple exclusion process in onsuch thatG-P=Jy(1/a,1lay, . .. L) '=Jo(1/a)T. The
dimension(TASEBP), charge conjugation by itself leaves the entries ofG for a given rowi (corresponding to site) has 1
steady state current invariant. Sin€I symmetry always in column m if the mth configuration, which arises with
holds, it follows that for the TASEP model in one dimension probability P,,, in the steady state, has a particle at siged
both charge conjugatiofC) and time reversalT) symme- a hole at sited +1, and is 0 otherwise. The order of ti&
tries hold individually. matrix is thereford. X M, since there aré sites andM con-
Surprisingly, in one dimension, it was shown that chargefigurations. TheG matrix can be expanded to ai XM
conjugation symmetry is respected even when disorder imatrix by augmenting anM —L)XM zero matrix toG,
included(the DTASEP mode¢l This symmetry was exposed such that
in numerical simulations carried out by Tripathy and Barma
[15]. They studied a system of size=6 with N=2 par- LXM e
ticles, and verified the invariance of the current up to one Q-P= 0 P=Jo 0 =JoV, (4)
part in 1¢ for some arbitrarily given disorder realization. (M0
Further, studying the steady state weights of all §&g par-  where, for convenience, we have defined new variatjles
ticle configurations showed no straightforward correspon—=(G,0)" and V=(1/a,0)". Hence the three equations that
dence between the two systems related by charge conjugdetermine the steady state distribution and current are
tion.

With these observations in mind, for this model we derive W-P=0, (53
a formally exact expression for the steady state probability
density and the curred,. The validity of these expressions Q-P=JyV, (5b)
have been confirmed explicitly for small system sizes. They
allow us to demonstrate the observed reflection symmadtry ( 1.P=1. (50

symmetry in general for all fillings and disorder configura-
tion, which in turn fromCT symmetry implies the symmetry
of the steady state current under charge conjugatidaym- ) :
metry). We then derive an expression relating the two sets ofnost general form of the solution will be of the forgP,

steady state weights after reflection, and explicitly show thaf?N€re/ is the arbitrary parameter. The solution when sub-
their relationship is indeed nontrivial. stituted into Eq.(5b) allows theB factor to be absorbed in

For L sites withN particles, the number of configurations the definition ofJ, by rescalinglo—Jo/B8. Hence the most
M=_Cy. Here, Cy=L!/(L—N)!N! is the number of ways general solutioriP=P(J,) will h_avgJO appearing as the qnly
N particles can be distributed amongsites, with a maxi- free parameter. The value df is fixed by the normalization

mum of only one particle per site. The dynamics of thesgfondition given in Eq(Sc). Hence a uniqué andJ, solve

configurations, for a given realization of the quenched bondEd- (5)- ) ) ) )
variablesR={a; a5, . ...}, are given by the rate equa- Although a unique solution exists, neither Efa) nor Eq.
(5b) can be inverted to obtain a solution ferandJ, as both

If we assume that row rank)=M —1, and is not less,
then there exists a one-parameter solution to (&g). The

ton W and Q are singular matrices. However, except for a few
dP,, values of », the sumQ+ »W is invertible since defD
a9t En) T(h—m)P,— 2 T(m—n")Pn, (2 + W) is a polynomial iny. Therefore, multiplying Eq(5a)
n by 7 and adding it to Eq(5b) gives us
s_wher_eT(mHn) giv.es the transition probability frpm con- (Q+ 7W)-P=J,V. 6)
figuration m—n. This expression can be conveniently ex-
pressed in matrix notation as Now, if 7 is such that Q+ #W) is invertible, then, using
Eq. (6), we obtain P(Jo)=Jo(Q+ 7W) 1. V. The steady
dpP©) = WP(t), (3)  state currend is obtained using the normalization condition
dt in Eq. (50), giving 10,=1-(Q+ 7W) 1. V. Hence the final

. ) solutions are given as
with W,,,=T(nh—m) and W,,,=—2=,,,T(m—n’). Since
1. P(t)=2,Pn(t)=1 for all timet (normalization, it fol- (Q+ W)LV

lows thatl-W=0. This implies thaWV has a zero eigenvalue = < (73

with left eigenvector. Hence it follows that there also exists 1 (Q+7W) =V

a right eigenvectoP such thatwP=0. This defines the

steady state solution of the problem for a given choice of the _ 1

i Jo= . (7b)
isorderR. 1-(Q+ W) L.v

The steady state of the problem considered above is char-
acterized by a uniform curred, across each bond. Given It is important to note that, since we have already shown that
the solutionP, the current across, say, siteandi+1, is  a unique solution to Eq(5) exists, the above solutions are
given asa;ZP,=Jgy, where the sum isnly over the set of independent ofy.
configurations with a particle on siieand a hole on sité Now we consider the system in which the direction of the
+1 [see Eq.(1)]. allowed jumps is reversed. We denote the set of quenched
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random bond variables when the particles are allowed tQqan reversed iR the outgoing configurations with respect

jump to the left aR={ay,ay, ...,a.}.In §the magnitude to a given initial particle configuration are mapped to the
and ordering of they;'s are the same as iR, although the  incoming configurations iR and vice versa, leading to the

direction of hoppi_ng has_been reversed. Pebe the steady relationW- 1= —W- 1 [refer to Eqs(2) and(3)]. Then, using
state weights antlv andQ the corresponding matrices such the_property thatS-1=1, it follows that WS 1=W. 1=
thatW-P=0 andQ-P=J,V. TheV vector in both cases are —W- 1.

the same, and, is the appropriate current. Following the ~ Thus the two equations th&should satisfy are
same procedure as above, we obtain _

QS=Q, (129

— (Q+ 17V_V)71-V —
P ————, (8a) —
1.(Q+ 7W) L.V WS=—-W. (12b
It is interesting to note that it isot a similarity transforma-

Jo=———— _ (8b) tion that relates the two systems definedwyand W.
1.(Q+ W) L.V By multiplying Eg. (12) by an appropriate parametey,
and adding the two equations, we obtain

— 1

In order to prove the equality of the two curredigand

Jo, We proceed by defining a matr&satisfying the relations S=(Q+ W)L (Q— 7W). 13
Q-S= 6 (93 It is now trivial to numerically check that the form &
derived above explicitly solves Eq&), thereby confirming

S 1.p=p. (9b)  the observation made by Tripathy and Barfi#] in their

numerical simulations that the currents under time reversal
It follows from Eg. (5b) that the existence of such a ma- are equal for all fillings and disorder strength. The nontrivial
trix S guarantees the equality of the currents under time renature of theS matrix also explains why they did not find a
versal. We now proceed to derive further constraints $hat simple relationship between the two steady state weights
should satisfy. First, since each row Gfcontains as many which we give in Eq(9b) At this point, one should note that,
1’s as the number of configurations for which there exists dan contrast to our algebraic approach, Goldstein and Speer
particle at sitei and a hole at sitd+1, we haveG-1  [16] recently gave an interesting probabilistic proof of the

=,_,Cy_11. The same is true 0B, although the exact lo- Same observation.

cation of each of the 1's will differ since the direction of  In conclusion, we show how our approach offers a unified
hopping has been reversed. Going back to @), we ob- Way to “search” for other quantities that are also invariant
tain under time reversal. For example Zfis some left eigenvec-
tor of the matrix S with eigenvalue (.e.,Z-S=2Z), then it
Q.S 1 _3 1) _ c 1 0 10 follows from Eq. (5b) that Z-P=Z-P. This implies that
1 1/ L2¥N-1g 1) there are as many invariant quantities as the number of such
left eigenvectors ofS (if only one could find and interpret
All the conditions in the above equati@ can be satisfied itthem). We therefore believe that the algebraic approach we
we takeS- 1=1. Second, since botA andP are normalized, have developed has wider applicability in studying and un-
from Eq.(9b) we obtain thatl- P=1. S.-P=1. This equation derstanding the symmetries of more general models not ame-
can be satisfied if we take- S=1+A, with the additional NaPle to direct analytical studies.
constraint thaA - P=0. We observe that the equation is sat- \We would like to thank Mustansir Barma and Goutam

isfied only up to a vectoA which is “orthogonal” to P. Tripathy for bringing this problem to our attention and for a
Acting by W on both sides of Eq9b) gives careful reading of the manuscript. We thank Dr. E. Speer for
o his detailed comments. A.P. acknowledges very fruitful dis-
W-P=WS P=0. (11 cussions with Chandan Das Gupta, Toby Joseph, and Amit

. Puniyani, and K.M.K. is grateful to the Department of Sci-
This equation can be satisfied if we talkéS= —W. The sign  ence and Technology, Indi@lDST/PAM/GR/381) for finan-
is fixed by observing that, since the direction of hopping ha<ial assistance.
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