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Realizing the canonical ensemble in highly entropic inhomogeneous materials
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To properly model highly entropic inhomogeneous materials in the canonical ensemble by molecular dy-
namics simulations, it is necessary to choose algorithms which rigorously implement the ensemble. Approxi-
mate methods may have either very low efficiency or completely fail in the very soft regime. The calculation
of the shear modulus of the diluted central force network is used to illustrate this point. Four algorithms to
realize the canonical ensemble have been tested on two methods of evaluation of the shear modulus.

PACS numbgs): 65.50:+m, 02.70.Ns, 61.43:j, 62.20.Dc

[. INTRODUCTION force algorithm(B), the rigorous Brownian dynamics algo-
rithm (C), and the approximate Brownian dynamics algo-
The canonical ensemble is the most commonly used errithm (D). Of the four algorithms, only C generates a rigor-
semble in the study of the equilibrium properties of materi-ous canonical ensemble. It is the only algorithm that can be
als. To realize it efficiently and correctly in computer simu- applied successfully to all regimes, from the perfect rigid
lations is therefore an important issue. A number oflattice to the very soft diluted lattice just above the percola-
algorithms simulating, either rigorously or approximately, tion threshold. In contrast, the different approximate methods
the canonical ensemble by molecular dynanid®) simu- ~ work properly only in relatively rigid lattices.
lations have been successfully applied to liquids and solids The paper is organized as follows. After a brief introduc-
[1-13). Despite the existence of the rigorous methgj$0—  tion to the four MD algorithms for the canonical ensemble in
12] approximate methods are still widely used because oBec. II, Sec. Ill, and Sec. IV describe respectively the meth-
their simplicity and speed. In general they yield the sameods to calculate the shear modulus and the model studied. In
results within statistical error as the rigorous methods. HowSec. V we present the results and follow up with a discussion
ever, whether this equivalence still holds for the inhomoge-and conclusion in Sec. VI.
neous soft systems is not clear. Soft inhomogeneous materi-
als, such as crosslinked polymer melts, present particular Il. ALGORITHMS TO REALIZE
challenges to the simulation algorithifs4]. In a recent pa- THE CANONICAL ENSEMBLE
per[15] we reported that the usual criteria for the choice of ) . i )
the time step, the stability of the energy and the pressure, are W€ present here briefly the algorithms used in this work
not always appropriate in the study of highly entropic mate-° "ealize the canonical ensembles.
rials. In this paper we further confirm this point and investi-
gate the appropriateness for these systems of several well A. Algorithm A: The rescaling of velocities
accepted algorithms. Some of these have very low efficiency The simplest way to construct an approximate canonical
or even completely fail for soft materials. _ ensemble is to scale the velocities at every time step to keep
The system studied is a two-dimensior@D) diluted  the total kinetic energy constant in accordance with the re-

central force networkDCFN) near its percolation threshold. qyired temperatur@. The velocity Verlet algorithni12] is

gidity of the system. The shear modulus was calculated using,ok.
two different methods. In the stress-strain metk®8M) the

shear modulus is obtained from the changes in the sfoess
pressurg tensor upon deformation. We call this a macro-
scopic measurement and labeliis. In contrast, in the equi- Another simple way to yield an approximate canonical
librium fluctuation methodEFM), the shear modulus is ex- ensemble is the damped force methéd7]. It involves the
tracted from the microscopic fluctuations in the system. wdntegration of a set of Hamiltonian equations of motion
label this second measuremeit;. The efficiency of the

B. Algorithm B: The damped force algorithm

different MD algorithms will be investigated by comparing %: ﬂ,
the agreement betweean,s and u;. Four different MD al- dt m
gorithms for the canonical ensemble are studied. They are
the velocity rescaling algorithnilabeled A, the damped dp; 9D ap
—_— =, (2.7
dt X,  m,
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N replaced by a uniform random number distribution without

2
p—', (2.2 affecting some propertidd 7]. However, as we will report,
1 m such an approximation does not work well in the soft regime
because of ergodicity breaking.

1

Tnt= (AN d—1)kg 2

whereN is the number of particleg] the dimension of the

system,
4 Ill. CALCULATION OF THE SHEAR MODULUS
N
2 miF;-p; Here is a brief description of the two methods used to
=t obtain the elastic constant for pure shear deformation. This is
a= N ' (2.3 an area preserving deformation, where the system is elon-
izl pi2 gated in one direction, and appropriately compressed in the

other direction. The formulas are specifically written for the
2D system. The first method is the stress-strain method
(SSM). The modulus for pure shear is obtained from the
rI:hanges in the applied stress tenSgy, (negative for com-
pression under a strain represented by the Lagrangian strain
_ ) tensorzn [15,1§

b
P(r,p)«d&(T;—T) (P T 2.4
(1) 8(Ti=T) 8 >exp( kT 24 S~ Sn(1)~[S(0) =540

where P is the total linear momentum. Therefore, this 47111
method generates configurational properties in the canonicgjote that Eq.(3.1) requiresS,4(0) which may be aniso-
ensemble. The momentum distribution is, however, not Cagropic. What is actually calculated is

nonical, but it was believed that the equivalence of en-

sembles guarantees that the differences in most averages will B Si11( 1) — Sy 7)

be of the order ofO(1/N) [12]. This may not be true for “SS=T' 3.2
response functions. The “leapfrog” Verlet algoritHh2,16

was used to integrate the equations of motion in this workwhich assumes tha,;(0)=0. The off-diagonal elements
At small time step, this method should be equivalent to thedf S,5(0) are small and of no concern. There are, however,

whereF;= — d®/Jx; is the force on particlé Note thatw is
not a constant. This method yields a distribution of states i
phase spacg/,12]

(3.9

method of the rescaling of velociti¢$2]. due to finite size effects, non-negligible diagonal elements
S,.(0). The simplest way to eliminate these frozen-in
C. Algorithm C: The rigorous Brownian dynamics algorithm stresses in the undeformed sample is to perform the defor-

mation of every sample in the two Cartesian directions in

turn, as we did in this work. The deformation of a sample in

one Cartesian direction is therefore called a realization and
every sample yields two realizations.

2 The second method is the equilibrium fluctuation method
ﬂ: _ @—m-l“%ntw-(t) (2.5 (EFM) which calculates directly the elastic constants from
dt? ax; " dt e ' the microscopic fluctuations of the system over time without

the need to impose deformations. All elastic constants are
where the friction parametdr and the random noise term obtained from a single run. Note that within the linear stress-
W;(t) couple the system to a heat bath. The random forcetrain regime, elastic constants should be basically constants
acts on each particle and is related to the friction by theand therefore deformed and undeformed states yield the
fluctuation dissipation theorem same results. This property greatly simplifies the comparison
, , between the two methods since we can calculate pqth
(Wi(t)-W;(t"))=2dkg TI'5;; 8(t—t"), and ugs simultaneously in a deformed state as Webfj?i}d for
most samples in this work. In this method, the modylys
for pure shear for a 2D system is given ]

The principle of the Brownian dynamics algoritHi3,12)]
is to integrate the following equation of motion for each
particlei:

m;

(W;(1))=0, (2.6

I' is related to the diffusion coefficie® by I'=kgT/mD Crn Comm Caoe O
and is irrelevant for static properties. We usee 0.5 for Uef= novee Mz el
almost all of our work.W;(t) is specified by a Gaussian 4
distribution [12]. This method yields a rigorous canonical
ensembld12].

(3.3

wherec,,; are the condensed Voigt notation of elastic stiff-
ness coefficientgl19,20 defined by

D. Algorithm D: The approximate Brownian Saﬁ’( n)= Sa,B(O)+CaBUT7707' (3.9

dynamics algorithm for a system without internal torqu¢$9—21]. For a central

To implement the Gaussian distribution is time consum-force system the isothermal elastic stiffness coefficients can
ing. For a rigid system, the Gaussian distribution can bebe calculated froni19]
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The stress tensor is given by ~0.6975[26]. From here orp will mean the site concentra-

, tion. The regime of interest for this study is the interpal
IS ﬁzi 2 AX,(ij )Axﬁ(ij)g _ Nk T 5 <p<p, where, at zero temperature, the system is not rigid,
oA T r A e but at finite temperature develops a finite shear modulus of
(3.6 entropic origin whose onset i [18]. The unit of time is
=m/k and the unit of temperaturier3/ks. The size of
the system in most of our work is X616 sites. Systems of
size 32< 32 were also studied, but the results do not change
our conclusions. The simulations were done with periodic
boundary conditions at a temperature O.OOEkrS/kB. We
imposed a pure shear deformatibp—\L, andL,—L/X,
whereL, andL, are the lengths of the cell along the two
Cartesian coordlnate axes. So by definition for a small defor-
Yhation 711=A—1. We chosex=1.001 for p=0.85 for
afety. At low concentration, we chose=1.01 in most situ-
ions.
To investigate the possibility of ergodicity breaking, we

where the(---) designate configurational averages and
S(X)=X—(X), Ax,(ij) andr are defined as

AX,(i]) =X (1) =X, (], (3.7)
r2=|Ax,(ij)%. (3.9

A represents the area of the system. The first term in E
(3.5 is referred to as the “Born term.” It is the only nonzero
term for homogeneous materials at zero temperature and i
the absence of stress. The second term is the fluctuatlof"]1

term” and is always negative. The third term is the “Stressmonitored for some samples the behavior of the variance and
term.” The last is sometimes called the “kinetic term22]. P

. - : the skewness of the temperature distribution as was done in
We should emphasize that the a®avhich appears in Egs. : . .
(3.5 and (3.6) Emst be the currerﬂstresse)jpopne[lg], inc-] Refs [27,28 for the Brownian dynamics algorithm. In the
stead of the area of the stress-free state. The EFM provide I}OI’]ICBJ ensemble, we should have Willfin=Tin—T
way to obtain all elastic constants from a single run and ha
the advantage that no actual deformations are made, so no

2
symmetry breaking occurs. The EFM has been successfully variance Ry,= W:L (4.1
applied to crystalline materia|22—24 and to soft materials 2(Tinp)?
such as crosslinked polymer melts and diluted lattice net-
works[15,25. INA((8T0°)
Exact values of the elastic constants at finite temperature skewness Reew= =~ 535 BT 2y =1, 4.2
are not usually available. However, the two methods should 8((8Tin)%)
yield the same value. Hence, we can define the correct values 1 N p
of the shear modulus as the common limitfs and wes. ;
+0fs and peef With o= e e 2 o 4.3

V. THE SYSTEM STUDIED Note that there is a slight difference between E2) and

The system studied is the 2D diluted central force net{4.3) because the temperature is allowed to fluctuate in the
work, which has been used to show that the onset of meBrownian dynamics algorithm. The violation of Eq4.1)
chanical rigidity occurs at a concentration of bonds and siteand (4.2) would indicate ergodicity breaking.
which is significantly larger than the percolation threshold The shear modulus of the perfect triangular lattice at zero
[26]. It is simply a triangular network of springs of equal temperature and hydrostatic pressure is given exactly by
equilibrium lengthr 4 which is diluted by removing sites or =C,,=\/3/4(4—3r,/a)k [19,29, where a is the lattice
bonds randomly. In this system, the nearest neighbors inteeonstant,u = J3/4k=0.43301% for a=ry.
act via the circularly symmetric potentiad,,(ri;) = zk(r;; The nonbreakable bonds of the system introduce a set of
—r)? and more distant neighbors are noninteracting. Foguenched random variables. From the perspective of the
this system, geometric percolation occurs at a concentratiopresent calculations, the most important effect of the
of sites p.=0.5 and rigidity percolationfat T=0) at p, quenched random variables is that it is necessary to average
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TABLE I. Our best values of the average elastic modylufor 0.020-
pure shear deformation for ¥616 two-dimensional site diluted tri-
angular lattices, with nearest neighbor linear restoring forces, in
units of the force constarmg atT=0.005<r§/kB, and with periodic
boundary conditionsy is the site occupancy probabiljty

p w (units ofk)

1 0.4332-0.0002
0.85 0.18570.0014
0.6 0.0085% 0.00006
0.51 0.0012% 0.00002
0.5 0.00

s

(b) o Hy

Shear modulus (units of k)

measured quantities over different realizations of the same
concentration. At high concentration of sitep>0.8),
10-30 samples are enough to give high accurate results.
However, at low concentrationp&0.60) typically more
than 250 samples are required and the lower the concentra- 0.000 ' . . . .
tion, the larger the number of samples. The rule to choose the 0 1000 2000 3000 4000 5000
number of samples for those converged results in this work
is that by increasing the number of samples, the uncertainty
in the average results is about 3%, in a range of about 100 FiG, 1. Algorithm A: velocity rescaling schemé) Average
samples. In contrast, for those nonconverged results, 50—108) . and u.; for 150 samples vs time @t=0.6. Total running time:
samples are in general enough to provide a clear answer as 1 time steps withAt=0.00%,. (b) Averageuss and u¢ for 260
whether convergence will occur. On the other hand, thesamples vs time gv=0.6. Total running time: X 10° time steps
strong fluctuations in the system at low density make conwith At=0.0018,.

vergence very slow and so fairly long running times are re-

quired. At high density §>0.8), 16 time steps are in gen- B. Algorithm B: The damped force algorithm

eral enough to get good convergence. But at low density, it In previously published work on dense systems, time

requires in general 1—-2 million time steps and we ran mos%teps typically of the order akt=0.1t, to At=0.0%, have

of our samples up to 2 million time steps. been used?25,30,3]. In diluted systems gbv=0.6, with At
To facilitate the reading of the presentation of the results

that follows, Table | gives our best values far for the

Time (units of t))

0.020 -
16X 16 system at the four values pfthat were used as tests ]l o
of the algorithms: 1, 0.85, 0.6, and 0.51. These four values
cover the whole range from crystalline to disordered and f ] ¢
very soft. p=0.5 is the percolation threshold, at whigh © 0.0154
=0. ; _
=
=
o )
V. RESULTS = 0.010 1
3 BT E =
A. Algorithm A: The velocity rescaling scheme g i R L
The results for algorithm A have been given in Réf5]. — 1 o
. . < 0.005
In summary, at high density, good agreement between o ]
and u.s is obtained for the time stedt=0.0%,. For in- %)
stance, at density p=0.85, uss=0.184&, and s ]
=0.187&. However, at low density where the entropy is 0000 e e
significant, even a much smaller time sté&yi=0.005, did 0.00 0.05 0.10 0.15 0.20 0.25

not give convergent results. This is the case, for instance, at
the densityp=0.6, whereu.; and uss have different trends,

as shown in Fig. (h)_. Good agreement was obt_alned _W|th FIG. 2. Averageu, (solid symbols and s (open symbols
At=0.0018, [see Fig. tb)]. After an extrapolation using ith error bars vs time step for the velocity rescaling scheme
u(t)= () +alt, we found pes= pes(*)=0.0086% and  (circles (Algorithm A) and the rigorous Brownian dynamics algo-
tss=0.0087&. The agreement betweems and wss im-  rithm (squares (Algorithm C) at p=0.6. We do not plot error bars
proved with increasing number of samples. Figure 2 showsor the nonconverged data. The latter are limited to the very small
clearly thatu.; and uss 9o to @ common limit when the time  time step values with convergence o= 0.0018,, the only veloc-
step is decreased. ity rescaling data point with an error bar.

Time step (units of t )
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=0.02,, we get ue~0.00824& and uss~0.0083%. It is 0.020
much better than what was obtained using A, in which both ]
mes and ugg diverge at the samdt, but it is not good
enough. Therefore, we reduced the time step Ab
=0.005, and gotu.s=0.0085% and u = 0.0084(.
However, atp=0.51, usingAt=0.005, we found again
a large disagreement betweems(=0.0012&) and
teif(=0.0024%) though both of them converged well. Re-
ducing the time step further tdt=0.0016,, we got wu
=0.0012& but u.=0.0036&. Note thatus agrees well
with the value obtained from Gsee next sectigrbut w.; is
overestimated, as with Msee Sec. V D at higher density
(p=0.85). Also we can note that reduciag further did not
reduce the gap between,; and u.s-

0.015 4

O & 4 p O @ O m

0.005

Shear modulus (units of k)
e
()
=

LUNLENL B B L B S REUANLENL R LIRS B LA
C. Algorithm C: The rigorous Brownian dynamics algorithm 0 10000 20000 30000 40000 50000

The very low efficiency and the likely failure of algo- Time (units of t )

rithms A and B in the critical regime stimulated us to try the
rigorous method C. First, we found that using C, the varianc
of the temperature satisfied E@.1) to within 1% in 50 000 - ;
time steps and the skewness satisfied @) to within 5% és ?:LL;L?(; higvtehzog?/;ég;f: ?;:j i%%ngr?éﬂzolz ggzrlgm
in 100 000 time steps faveryrealization ap=0.6. At was  _q g0, Total running time: % 10° time steps withAt=0.2%,. The
equal to 0.0 and the equilibration time to 20000 time portion from 50008, to 125008, is not shown because bofis
steps. The uncertainty T itself is stabilized to<5/1000  and u,, are essentially constant. Curd) is the averaggse cor-
within a few thousand time steps even wilth=0.25,. Av-  responding tqa). Curve(c) is the averagg.s for 260 samples vs
eraging over many samples would yield an even better agregime going up to & 10° time steps ap=0.60 with At=0.0%,,.
ment. Therefore, there was no evidence of ergodicity breakeurve (d) is the averages.; corresponding tdc). Curve(e) is the
ing in this system. averageus for 360 samples vs time for up to 4@ime steps ap
For p=1,At=0.25, still gives almost perfect results. =0.51. At=0.05,. Curve(f) is the average..; corresponding to
We found thatue;=0.433% and us=0.433% up to 1¢ (). Algorithm A. Curve(g) is the averaggu for 50 samples vs
time steps. Atp=0.85, usingAt=0.0%,, we found that time up to 10 time steps ap=0.60. At=0.0Z,. Curve(h) is the
tei=0.184% and u=0.187k. These values agree well averageues corresponding tdg).
with the results of algorithm A. Moreover, we found that at
p=0.6, from At=0.25, to 0.025,, the uncertainty in the steps. The properly converging sequenceggfand wss VS
total energy and in the pressure, which are, respectivelytime steps at this value gf=0.6 are shown in Fig. 2.
<0.1% and<3%, showed no significant change in a single These results support further the conclusion that the al-
realization. u.s and ugs Vs time steps ap=0.6 are also lowableAt should be smaller than the value which stabilizes
shown in Fig. 2. the total energy and pressure or the value required in the
Again, we find clearly thaj.s and uss go to a common  perfect latticg 15]. Moreover, the optimum time step is sig-
limit with decreasing time step. Usinyt=0.25,, both ugs  nificantly larger than for the previous two algorithms, com-
and u.; converged well but to clearly different limitg4s  pensating for the slowness of the computer algorithm.
=0.0064& and uss=0.0078%, as shown in curve&) and To explore whether the time step is sensitive to the den-
(b) of Fig. 3. At At=0.1%,, the agreement is improved sity for this algorithm and whether it is possible to make
greatly but the limits are still clearly differentu.;  agree withue¢ in all regimes, we carried out simulations at
=0.0074& and u,=0.00794&. The relative difference is p=0.51. We found that usingt=0.1t, the agreement be-
greater than 6% and does not decrease with increasing nurtween the two methods is not satisfactopy,¢~0.00126&
ber of samples. AAt=0.1t,, the agreement is improved but u;s~0.0014%, and the gap does not decrease with an
further, but we can still observe different trendg,s increase in the number of samples. However, wih
=0.00804 andu=0.0083&. However, alAt=0.05,, we  =0.08,, the agreement is googs.;=0.0012& and wgq
got uet=0.0087% and u.=0.0086&. These values agree =0.0012% as shown in curve&) and(f) of Fig. 3, and the
well with the results from the velocity rescaling and the results were stable with 240 samples. The number of samples
damped force algorithms. The results as shown in cufwes required for a good result is significantly larger thanpat
and(d) of Fig. 3, show a clear trend towards a common limit. =0.6 (= 140). The correlation length increases rapidly with
Using At=0.028,, we got u.;=0.0086% and wss decreasing. The agreement gi=0.51 is remarkable con-
=0.0085%, values close to those obtained with=0.05,. sidering that the shear modulus at this density is very small.
We also found that witlAt=0.0%, and At=0.025,, 20 We can therefore conclude that the rigorous Brownian
samples are enough to show good agreement betwegen dynamics algorithm guarantees correct and us values,
and ugs. But to get an accurate result, i.e., a convergen@nd the time step is not sensitive to the density of sites in the
result with ~3% accuracy and little change with increasing system. We found however that a reasonable deformation
number of samples, requires about 140 samples at both tinmaay be necessary for convergence, especiallyufgy. At

FIG. 3. Algorithm C: rigorous Brownian dynami¢surves(a)
Ff‘o (f)]. Algorithm A: velocity rescaling schenieurves(g) and(h)].
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FIG. 4. Algorithm D: Approximate Brownian dynamics. Aver- Time (units of t,)
ageussand ue; for 300 samples vs time up to210° time steps at 0
p=0.6. At=0.002,. FIG. 5. Algorithm D: Approximate Brownian dynamics. Curve

. ) (a) is the average dR,,, for 40 samples vs time up to 4@ime steps
p=0.6, with a very small deformation=1.001, proper atp—1 with At=0.01t,. Curve(b) is the average oRge, COrre-
equilibration was very slow. Even using a rather small timesponding to curve(@. Curve (c) is the average oR,, for 300
stepAt=0.01ty, ussis not convergent angie;=0.0080&  samples vs time up to 210° time steps atp=0.6 with At
is obviously smaller than it should be. =0.002,. Curve (d) is the average OfRy, corresponding to

curve(c).
D. Algorithm D: The approximate Brownian dynamics
=(E(p§/2m)> even for the undeformed perfect lattice. A and
CB work better because they at least generate correct canoni-
dal distributions in the configuration space.

Historically this is the first method we used to calculate
elastic constants in the DCFN and the serious discrepan
betweenugs and uos found with this method led us to try
other methods. Atp=1 with At=0.01,, we found that
M= 0.431&K, u.s=0.429%. The agreement betweeng
and ey is still rather good though not as good as with the  As it should be, the two methods to calculate the elastic
rigorous algorithm C. However, an obvious discrepancy apconstants, the macroscopic measurementand the micro-
pears oncp<<1. At p=0.85 withAt=0.001,, we gotuss  scopic measuremept,;, can be made to agree if we choose
=0.1864& but uer=0.218K. Itis interesting to note thatss  the proper time step and/or the proper simulation algorithm.
is still rather good buj. is obviously too large, similar to  From the results obtained in the above section and by choos-
the result obtained from algorithm B pt=0.51. However, at  ing the shear modulus as the common limitaf; and e,
p=0.6, At=0.002,, we got uss=0.0066k and we;  we can obtain reliable and accurate val(&se Table)l We
=0.027&. We can see from Fig. 4 that bofla,s and wes may recall that convergence of one of the quantities is not in
converge well but to a different limit. Comparing with the itself a reliable measure of accuracy, as the limit could be
results from the three other algorithms, we can see that thigrong.
method overestimateg.; but underestimateg g at low p. The first factor affecting the convergence @f; and u
From the similarity between the results of B@t 0.51 and  is the time step. Our present results confirm our earlier dis-
those of this algorithm ap=0.85, it is reasonable to think covery[15] that the usual criteria for the choice of the time
that the source of the problem may be intrinsically the samestep, i.e., the stabilities of the energy and the pressure are not
and that it is ergodicity breaking. The same may apply toalways sufficient to ensure a faithful simulation of the prop-
algorithm A. erties of a system. The optimum time step for soft materials

With D, the temperature stabilizes to the required tem-can be much smaller than for a rigid material. This can be
perature within a few thousand time steps éweryrealiza-  explained by the fact that in the very inhomogeneous soft
tion. However, in contrast to C, both the variance and thaegime (highly diluted latticé changes in configuration may
skewness seriously violate Eq&t.1) and (4.2) even atp  require passage from one metastable state to another with
=1.0. At p=1.0, the discrepancy for the variance from Eq.some particles going through saddle points. These particles
(4.1) can be as large as 50% and for the skewness it is aboutay require a smalleAt and they determine the maximum
30%, even after averaging over 40 samglese Figs. &) At allowed for the whole system. We found that as we de-
and §b)]. At p=0.6, the discrepancy for the variance cancreaseAt, all types of convergence situations are observed
also be about 25% and for the skewness about 22%, &8r u.; and ues. First, neitherugs Nor wq¢ converge, corre-
shown in Figs. &) and §d). Moreover, we observed sys- sponding to a far too largat, as shown in curve&) and(h)
tematic asymmetries in KX=<E(p§/2m)) and K, of Fig. 3. Secondly, one quantity converges but the other

VI. DISCUSSION AND CONCLUSION
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does not, as shown in Fig(d. The next possibility is that well. Our results show that for the DCFN in the soft regime,
both ¢ and u.; converge but not to a common limit, as the approximate Brownian dynamics algorithm D fails to
shown in curvega) and (b) of Figs. 3 and 4. Finally, both give correct results for botj.; and ugs. A and B fail for
iss @nd wes cONverge to a common limit. We found that mer at low density, but they can give correpts even at
once a common limit is achieved, increasing the number ofather low density. Therefore, A and B perform better than D
Samp|es may improve the accuracy but reducmtgfurther but not as well as CThe rellablllty of A and B decreases
gives little improvement. This makes us conclude that thd10Wwever as the material becomes softer, as ever smaller time
agreement between,; and us can be used as a criterion to Steps are required to maintain agreement betwegnand
Choose the proper t|me Step and/or proper Simulatioﬁf’“ef' Th|S IS not alsatISfaCtOI‘y QI’ I’eassurlng Situation.
method. This criterion is computationally efficient since both ~ The problem with the approximate algorithms must result
et and uss can be calculated simultaneously in the samdom ergodicity breaking. In the rigid regime, ergodicity
run as mentioned in Sec. lII. breaking has little effect on the result since there is a sharp
The optimumAt is algorithm sensitive and can differ by Minimum in the free energy in phase space and most parts of
an order of magnitude from one algorithm to the other. 1tthe phase space give a zero contribution to the ensemble
should not be surprising that the rigorous Brownian dynam#&verage. The same seems to hold true for liquids for the
ics algorithm C allows a large time step. The key to imple-OPPOSite reason, a homogeneous' distribution of states in
menting C is to realize a proper distribution of the randomPhase space. However, for a soft inhomogeneous material,
force[12], and this distribution should be dependent more orf€r® may exist a large number of configurations close in
the number of samplingé.e., the running time in Mpthan ~ €Nergy which need to be sampled with thg porrect s;atlsncal
on the time step. The corresponding random variables whicl€ight, and therefore the effect of ergodicity breaking be-
appear in the numerical integration of the equations of mof0mes non-negligible. For algorithms A and B, the potential
tion are of the order of)(At?), so they dominate the cut off €Nergy can fl_uctl_Jate but the temperature cannot as measured
and round off errors in a rather large range of time steps. Iy the total kinetic energy. The dynamics of the collisions of
other words, the contact with the heat bath helps to stabiliz&® chains with each other may not be well represented and
the system. Although for the same total number of steps, ¢®énce the entropy would not be correct. And algorithm D,
requires a computational time 2 to 3 times longer than algo@/though it keeps the temperature fairly constant, has too
rithms A and B(velocity rescaling and damped force, respec-largé @ variance and skewness, and hence makes a rather
tively), its 10 to 30 times larger time step allows for better POOF canonical ensemble. _
efficiency, not to mention the increased confidence that this [t iS not yet clear whyuis always better thap in the
algorithm provides. In contrast, of all the ways to realize a@PProximate methods for the two systems that we have stud-
canonical ensemble, A may require the smallesbecause €d; the DCFN and the cross-linked polymer m¢id, 15.
it does not deal with the coordinates and the velocities ifoN€ Possible explanation is that is a direct second de-

parallel, so some uncorrelated disturbances may be added fyative of the free energy, so it requires a correct represen-
the integral of the equations of motion. tation of the detailed structure of the phase space, and hence

The same problem also exists in the microcanonical enlS more sensitive to ergodicity breaking. The difficulties en-
semble. For the system with=0.6 and\=1.01 and using countered with the shear modulus must occur for other re-

the velocity Verlet algorithni12] to integrate the equations SPOnse functions as well, such as the specific heat.
of motion, we found that with\t from 0.0%, to 0.02,, the In conclusion, this work demonstrates the importance of

uncertainty in the total energy and pressure remains almo&g@/izing a rigorous canonical ensemble for inhomogenous
the same. However, dtt=0.0%,, pe; and u, converge to soft _matenals. Similar problems may also occur in th_e ap-
different limits; /2o = 0.0094% and u..=0.00808& with 260 proximate constan and constant pressure MD simulations.
samples. The increase in the number of samples does ndf!€’e aré at least three other rigorous ways to realize the
reduce the gap between,; and u.,. In contrast, withAt canomca_l ensemble_ in MD s_,lmulatlohalo,l]]. Thg a}ppeal
=0.02,, We get ug;=0.00844& and u..=0.0082& from of Brownian dynamics for high entropy systems is its use of

300 samples, a rather good agreement again and very Cbg@nc_iom numbers which permits an efficient sampling of the
to the values obtained from the Brownian dynamics. available phase space.

The second factor affecting the convergenceugf and
Mss 1S the choice of the simulation algorithm. We found that
for soft inhomogeneous materials it should be necessary to This work was supported by the Natural Sciences and
implement the rigorous canonical ensemble to stowyst  Engineering Research Council of Canada. Stimulating dis-
properties. The approximate algorithms cannot guarantee treussions with Michael Plischke and Dan Vernon are grate-
correctness of the results even though they can converdelly acknowledged.
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