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Coarse grained Langevin-type effective field equations may provide some guidance for the analysis of
mesoscopic or microscopic molecular systems exhibiting fluctuations, or for systems of hundreds to thousands
of atomic or subatomic particles produced in atomic or high-energy nuclear collisions. Suggestions for con-
sistent realization of random fluctuations in discretized fluid dynamics will be presented.

PACS numbeps): 05.40—a, 47.11+]

[. INTRODUCTION cal equations do allow for more realistic clusterization. In
both cases the averaging is done after the whole dynamics,
Mesoscopic systems are of increasing importance, for exneaning that the time evolution of all the elements of the
ample, in low-dimensional condensed matter or in high.ensemble occurs under the influence of fields that are differ-
energy nuclear collisions. The latter reactions provide a goo@nt for each configuration. These fluctuating fields are re-
application of the problem. Surviving macroscopic signals ofsPonsible for the nontrivial fragment distributions.
quark-gluon plasm#QGP formation such as entropy pro- Anoth_er phenomenon Where fI_uctuatlons are crucial is
duction and directed flow have been studied extensivelySonoluminescencgl1]. A micron-sized bubble in water
Critical fluctuations might also survive the subsequent dydriven by ultrasound can periodically collapse and revive,
namics[see the cosmic background explof€OBE) experi- each time emitting one short blu_e f_Iash coming from the
mentg. However, we need a well described prediction; oth_bgbble’s very center. This light emission is due to extremely
erwise we are just shooting randomly in the dark.high temperaturegup to 16 K), which means a concentra-
Disoriented chiral condensat®CC) fluctuations have been tion of energy density by a factor of 0 Sonoluminescence
extensively discussed by now, but these should not be thgas already gained applications in chemistry and medical
only observable fluctuations we might be able to detectPhysics, and some physicists have speculated about the pos-
Other quantities might also exhibit critical fluctuations. Dif- Sibility of achieving nuclear fusion. The sphericity of the
ferent fluid-dynamical flow patterns are certainly candidate$ollapse imposes the most serious limitation on the tempera-
in which signs of critical fluctuations may be detected. For afure, density, and size of the scorching central spot. The fo-
more explicit example we have to study fluid dynamical fluc-cusing mechanism can fail because of instabilities develop-
tuations. ing in both the liquid-gas interface and the surface of the
The size of a system where fluctuations become importargonverging shock wave. The instabilities are partly of micro-
is the order of the mean distance between the constitue®COPIC origin, i.e., as time goes on, the shrinking shock sur-
particles, and the characteristic time of the dynamics of thdace “senses” more and more the effect of molecular fluc-
system is comparable with the microscopic time scale. Ther/ations. . _ _
are situations when the inclusion of fluctuations has a dra- The goal of this work is to show how fluctuations can be
matic effect on the result. A good example is high-energyconsistently |r_lclu.ded into fluid dynamical equations. Sm_ce
nuclear physics. As long as the matter of the expanding firethe problematics is complex, we shall use several simplifying
ball is interacting, fluid dynamical or transport calculations@ssumptions. The range of applicability of the method de-
can be applied, and they yield satisfactory explanations. Ofcribed below is limited, but has all the essential ingredients
the other hand, fluid dynamical calculations or the solution®merging from the general considerations presented here,
of kinetic models such as BoItzman—UehIing-UhIenbecka”d allows for easy extension to more realistic problems.
(BUU), Vlasov-Uehling-Uhlenbeck(VUU), or Landau-
Vlasov models cannot reproduce some fundamental feature§ -noy L ANGEVIN EQUATION TO NAVIER-STOKES
of the data. An example of such a feature is the fragment EQUATION
mass distribution. Averaging is done during the dynamics,
and the resulting force fields are smooth. Therefore, no real- The inclusion of fluctuations into dynamical equations is
istic clusterization is possible, and the only mass distributiomot a new idea. Langevin’s equation for the damped motion
emerging from such calculations is the one consistent witlof a Brownian particle can be found in ordinary textbooks
the law of mass action. [2]. Certain aspects of fluctuations in fluid dynamics have
Unlike the above calculations, quantum molecular dy-been discussed as wé8].
namical descriptions and solutions of Langevin-type dynami- The motion of a fluid is determined by the interaction
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S FIG. 2. A series of small system§,_1, S,, S,41, ...

interacting with each other with random thermal momentum trans-

fers (thin lines. The resulting random forces are classified into

FIG. 1. A small systen§interacting with an external heat bath forces interacting with nearest neighbor volumes of about 1 m.f.p.

with random thermal interaction forces. This is the case for thedistance from the fluid element in discussiBf}(t), with second

Brownian motion. nearest neighbor volumes of about 2 mean free path distance from
the fluid element in discussiof{?)(t), ... , and so on. Further-

between its fluid elements. If these fluid elements are largenore, our small volume elements also interact with their nearest

but not macroscopic, the force they exert on each other cameighbors via nonrandom, harmonic fordegavy lines.

be separated into a smoothly varying average force and a

fluctuating force due to the random thermal momentuniThis leads to a coupling among random forces in the me-

transfer. dium. We can exploit this inversion symmetry with respect
to the gridpoints, or fluid cells. The random force acting on a

A. Langevin equation for external heat bath fluid cell labeled byu by its oth neighbors is
(Brownian motion)

Let us first take the simple example of Brownian motion.
We can conceive it as the thermal interaction of a small
system with an external heat bdffig. 1). There is a random
momentum exchangg’ between the system and the heat
bath. Randomness does not exclude the presence of correla-
tions. The dynamics of the Brownian particle is given by F,FZ Fu (©)]
Langevin’s equation i

F(a.) _ pn—(r,p._ p[.l,,ﬂ+0’
M T

and, so,

thr where the sunkt , runs overo from oy, o,, o3=1too.
miv(t+7)—v(t)]=Ft)7— av(t)r-l—f F’(s)ds, Thus, exploiting the inversion symmetry, we constrain the
t summation to the positive quadrant of tleespace. If we
@) know these random momentum exchanges for an ensemble,
wherem andv are the mass and velocity of the Brownian We can evaluate averages and correlation functions among
particle. WhileF is an external forcef’ fluctuates, satisfy- them. The ensemble averagefdf” for the actual ensemble

ing the condition[2,4] of microstates does not vanisti\”)#0, and it can be ex-
) pressed via the correlation function Eﬁ’) taken over the
(F(s))o=(F'(s))=0. equilibrium ensemble. This average force leads then to the

L viscous term in the ensemble-averaged equation of state.
_The averaging 1S don_e over th_e whole ensemble of theqgas. We can replace summations over our fluid cells, labeled
is a dissipative coefficient which is related to the ensembl_eby o or v, by integrals overy or r, where, e.g.,y

ﬁ‘gﬁ;ﬁ’igg;gﬁ%{gcwmmg force over the local thermal equi-_ oAX . After some calculatioh5], in the continuum limit

we find the Navier-Stokes equation with a fluctuating force
o density,

1
afm _M<F(0)F(S)>0d5. (2) oM
W: —V(MOV)—VP+ 7]V2V+

§+%n)V(V-v)+f’,
Equation(2) is the so-calledluctuation dissipation theorem @)
For Eq.(1) to apply, one has to stipulate thats larger than
the relaxation time in the gas; that is, the collision time be-here M=pv is the momentum density andMev);

tween the gas particles. =M,v;. f" is the fluctuating part of the force density arising
_ _ _ from random thermal interactioriso that for an ensemble of
B. Langevin equation for internal heat bath actual microstate¢f’)=0), and the smooth part results in

Let us imagine many small systems in contact with eacﬂhe diSSipative viscous terms. In the limit of Iarge SubsyStemS
other via both conservative forces and random momenturh’ vanishes not only for the ensemble average but also for
transfer(Fig. 2). Let us denote the random momentum re-€very element of the ensemble. This shows that the inclusion
ceived fromu by elementr asp,,, in a time interval be- of fluctuations for small subsystems is necessary, and its
tweent andt+ . Due to the fact that we have an internal Mmagnitude depends on the selected cell size. Thus, if we
heat bath, where the subsystems are not negligibly smaiitend to discuss the fluctuations explicitly and quantita-

compared to each other, the random thermal momenturiively, we must use the discretized equations of fluid dynam-
transfers are correlated: ics with well defined finite fluid cells. The magnitude of

fluctuations will depend on the choice of size of the fluid
Ppr= — Py cells, so the scale invariant feature of the fluid dynamics will
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not hold. The cell size, consequently, should be chosen ac- 1 (o b g2

cording to the physical problem. fd'ss(x,t)z—f dsf dy—zcﬁqom(x—y,s)v(y,t—s).
Let us now see how fluctuations manifest themselves in kTJo -y

the coarse-grained Navier-Stokes equation. After discretiza- )

tion, the right-hand side of Eq4) will be the sum of all

forces acting on a certain fluid cell. The nonequilibrium part,

F;‘f of these forces can be separated into a dissipative ter

Ff)ss, and a purely fluctuating ternf; ,:

Note, that the integral forni7) exhibits advantages com-
ared to the differential one in Eq4), provided that an
nsatz for the momentum current correlation is available. In

this way the instabilities can be handled in a viscous relativ-

. istic fluid dynamical approach. This formalism also enables

Fne= FdISS+ E’ . . . . .

pa o us to present the dissipation fluctuation theorem in a consis-

tent and transparent form. Assuming that the correlation

where “purely fluctuating” means thafF,)=0 while the  function C%om vanishes fast enough with distance, a double
ensemble average QF?"SS> gives the usual viscous terms partial integration will yield

[terms 3 and 4 in Eq4)]. Note that one of main assumptions

in Ref.[5] when deriving Eq(4) was that the fluctuations of

_ 1 [(= [+~ 2
_ C
the flow velocityv are small. This can be assured only if the fdlss(x't)_ﬁ . dsﬁw dyCmom(x—y,s)a—yzv(y,t—s).

fluctuating forceF,, does not have too large amplitude ei- ®)
ther. From Ref[5] [Egs. (15) and (41)], we have for the
dissipative term When the flow velocity field changes smoothly in time and
space(near-equilibrium conditionthe derivative of the ve-
dis 1 (t+adt’ (= , locity v can be taken outside the integral, and we are left
Fu S(t):ﬁ—J’t 5t o ds; QuiSIVut'=S), (5 with the usual viscous term in the one-dimensional corre-

spondent of Eq(4). Only the first dissipative term exists in
this case, and the relation of the corresponding viscous coef-

where Q,,(8)=(F ,(t)°F,(t—s))o is the corelation be- Jicient to the equilibrium correlations is

tween forces acting on different cells at different times, an

the summation runs over all the fluid cells. Naturally, this 1 (= oo

correlation depends only on the relative distance of the two n= k_Tf dsf dyCSon(X—Y,S). 9

cells. This form represents the fluctuation-dissipation theo- 0 -

rem for the coarse-grained Navier-Stokes equation. The ten-

sorial structure ofQ,,,(s) will yield both viscous terms in I1l. CONTINUUM FORMALISM

Eq. (4). In Appendix A we show that the continuum corre- o

spondent 0RQ,,,(s) is the second time derivative of the mo- _ Landau and Lifshit{3] approached the problem of hydro-

mentum density correlatior€®._, which can be connected dynamical fluctuations. A rather concise, and from a formal

mom? . . . .

with the second space derivative of the momentum curren‘i’o'n.t of VIEW, 5|_mple formulann was preseqted for the fluc-

correlationC%om. In one dimension this can be written as t_ua_ltlon dlSSlpatl_on theorem. Using the publl_shed result, de-
fining a fluctuating stress tenssg, we can write the corre-
lation function of fluctuating force densities as

_0’)2 D _ § C
Q(X,t)—ECmom(x,t)—ﬁcmom(x,t), (F 1) =(Sik(r,t) ISim(r +y,t+))
=2T8(s) ({8, V?8(y) + V[V S(y) ]}
where
+({+3pVIVEYD). (10
CRon(X,)=(M(y,5) SM(y—x,5—1))q, (6)

One can see that integrating the equation of motion with a
c fluctuating force densit}5], satisfying this correlation func-
Crom(X,1)=(61L(y,s) SII(y —x,5—1))o, tion, would yield the Navier-Stokes equation. The “con-
tinuum limit” of Eqg. (5) would lead to the same tensorial
are the density and current density correlation functions oform if we would go to zero with the correlation length by
the momentum, respectivelyM anddll are the density and keeping the values of the correlations cons{amtHowever,
current density deviations from the ensemble averages aray going to theés function limit, we lose the possibility of
the current density in its general multidimensional form isdistinguishing between longitudinal and transverse correla-
given byll;j=M;v;+ ;P+ o;;, wherev; is the flow veloc-  tion functions. Unfortunately, the usual choice &function
ity P the pressure and;; is the dissipative stress tensor. At for the shape of the correlation function leads to a vanishing
the moment we are not concerned with the complicatedluctuation in this case even if we integrate this equation of
physics of the momentum current density, we just assumenotion over a locally equilibrated fluid cell. Thus for quan-
that it is known, and in practical applications we will have antitative fluctuation studies, and to generate fluctuating forces
ansatz for it. Since the first integral with respecttd in Eq.  for a discretized fluid dynamics this approach cannot be
(5) is a simple averaging, it has no effectdf is sufficiently  used.
small, and therefore can be omitted. The dissipative force The physical reason for this problem is that when making
density will be then a “continuum limit” we should not go to zero with the cor-
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relation length or mean free path, because we will tend to &ary for the practical implementation of these ideas. The con-
perfect fluid. Then this very unphysical continuum limit can- crete task is to solve the discretized Navier-Stokes equation
not be easily reversed, and unfortunately the intermediatéor an ideal gas with an extra random force term. We impose
discretized model results are not given in the publicationthe following requirements.

Similar conclusions were found by Manscefral. [6]. This (1) The extra term should have zero average.

result otherwise is equivalent to ours, and shows that the (2) It should have a finite correlation time and length, the
fluctuating force in fluid dynamics should have a complexlatter covering several numerical cells.

tensorial structure. (3) The correlation function should satisfy the fluctuation-
dissipation theorem&) and (9).
IV. GENERATION OF FLUCTUATING TRANSPORTS (4) The conservation laws should not be violated by the
FOR EXTERNAL HEAT BATH fluctuations.
(5) The amplitude of the fluctuations should be relatively
A. Simplest case. Dirac delta correlation function small in accordance with the assumptions made at the deri-

For a one-dimensional Brownian motion one can generat®ation of Egs.(4) and (5). This also serves for avoiding

a force which has a fixed magnitude and random direction. Ifonlinearities arising from the fluctuations, i.e., the ensemble
points either to the left or to the right. Obviously, such aaverage of the solution should give back the result of plain
fluctuation has a zero average. One can also fix the magngalculation not including the fluctuating terfhin Eq. (4).

tude of the force from the fluctuation dissipation theorem Presently, there are several methods to solve fluid dy-
[Eq. (2)], since the time correlation will béF’(0)F'(s)) namical problems. In this paper we shall concentrate on the
=|F’|25(s), yielding |[F'| =2k Ta. In conclusion, we gained inclusion of fluctuations into Eulerian numerical methods
a fluctuating force which, used in the Langevin equation’Wherein the fluid is divided into cells by a fixed grid. The
produced Brownian motion and was useful for Studying Cer.ﬂUid is ﬂowmg through the walls Separating the cells. For the
tain aspects of the phenomenon. But while the damping ofake of simplicity we only take a one-dimensional gas de-

the velocity is described this way, correlation features of thescribed by the flow variablep(x,t), M(x,t), and E(x,t),
fluctuations are lost. denoting the mass, momentum, and energy densities at a

given location and time. The set of coupled partial differen-

B. Fluctuating force exhibiting time correlation tial equations to be solved is

We can construct a more realistic approach by using a dp dpv
- jan part i —o+—=-=0, (11
force acting on the Brownian particle. At a certain moment gt ox
this force is determined by the state of the heat bath, which is
in a causal relation with its foregoing states. Thus when gen- IM  dMv JB
erating the force we should be aware of at least two of its i T T KJrf' (12

properties: stochastic character and memory. Let us dis-
cretize the time such thaf(t)=f(nAt)=f,, wheren = 9BV

0,1,2 ... . A simple ansatz for the force could be = + - o (13
fr=E&nfn1t(1=&)rn, 2
M
where¢, andr, are uncorrelated random variables with val- e=E- 2p’ (14
ues £,={0,1}, and r,=(—,+) and probabilities such
that P,(0)=1—At/7., Po(1)=At/7ey, (ri™=const, P=P(p,e), (15

(r2™1=0,n,m=0,1,2 ... ®. 7o is the collision time of

. . — d .
the molecules in the gas. Summarizing the results, whereeis the thermal energy densitg=P+B“*yields the

usual pressurd®, and it has also a dissipative terBf'sS

(f(1))=0, (f2M(t))=const, (f2™*1(t))=0, depending on the flow velocity=M/p in nonequilibrium
situations. In most descriptions this term is similarB&°

K(t,s)=(f(t)f(t+s))=(f3(t))e 5 con, =ndv/dx, where 5 is the viscous coefficient. The dissipa-
tive force [Egs. (5) and (8)] is related toBYsS as Fdiss

K(t,s5)=K(s)=K(—s). = (a/9x)BYSS Note that that fluctuation is included only in

the momentum equation. No particle and heat diffusion is

Using this more realistic approach, all statistical moments ofaken into account.
the fluctuation have the expected behavior, and also show a When discretizing Eqg11)—(15) we shall go back to the

time correlation which exhibits the right properties. derivation of the Navier-Stokes equation from the internal
heath-bath concept, and conceive the fluctuating force term
V. GENERATION OF FLUCTUATING TRANSPORTS as a result of randpm_ momentum tr_ansfers between cells.
FOR INTERNAL HEAT BATH There are two possibilities: we can either generate uncorre-

lated transfers between all cells or correlated transfers be-
The consistent generation of random transports for an intween neighboring cells.
ternal heat bath is not as trivial as for Brownian particles, yet The first alternative is closer to the procedure of Sec Il B,
it is feasible. In this section we shall apply the ideas develsince the momentum arriving at a cell has the information
oped in the previous sections, and describe the steps necebout where it came from. This, together with proper retar-
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dation effects, will yield the expected space-time correla-

tions. It also has the advantage that the method allows for a A(X)EJ dyR(y)c(y—x), (21)
relatively easy extension to more realistic modeling of ran-

dom transports. where the weight functior(x) is a regularly behaving con-

In the second case the information about the source of thgnuous function, and the integral is performed over the
incoming momentum is lost, and the correlations have to b@-dimensional space of real numbers. Thus the average of
enforced on the random transfers. On the other hand, this i&(x) is zero, and its correlation function becomes
also an advantage, since if one finds a good way of generat-
ing correlated random numbers the properties of the fluid can
be effectively included in the random number generation. <A(X1)A(X2)>:f dyc(y)e(x1 =X+ y)=Cx1—Xp).

This approach maintains the general advantage of fluid- (22
dynamical descriptions over molecular dynamical ones, inso-

far as only local information is needed for the solution. In Obviously,C(x) is also a continous regularly behaving func-
this work we shall use the second alternative; that is, wdion. Theoretically, our task is to find the weight function
shall generate space-time correlated random transports excla¢x) from the desired correlation functioB(x) using Eq.

sively between neighboring cells. (22). The general solution will not be discussed here, but
note that this problem does not have a solution for an arbi-
A. Generation of a set of correlated random numbers trary C(x).

) ) Let us now restrict ourselves to the one-dimensional case,
Our task is to generate an arréy grid) of random num- 54 (ke a Gaussian correlation function. We assume that a
bers, A, which all have a vanishing mean value and areppyical correlation extends to a distancethe correlation
correlated in the required way: length. One can easily see that in order to obtain
i.e., the correlation of two elements in the array depends only ) )
on the “distance” between the two. One way to achieve ourVe need to take a set of weights that also has Gaussian pro-

goal is to use auxiliary arrays. The main idea of the auxiliaryfile:

array is the following: usually, the random number genera-

tors provide a sequence of uncorrelated numbers that are 2C, —2(x/n)2
uniformly distributed within some interval. This can always c(x)= =N :
be transformed so that the mean value will be zero and the

distribution symmetrical about the origin. Let us denote thesgye can verify easily that, by choosirg = JAxc(uAx), the

rar_1dom numbers bR, . Formally, their properties can be (iscretized version of Eq22) takes the form
written as

(24)

(R,)=0, (R,R,)=46,,. (17) Cruv=(AA)=2 CoCrr - (25)

This array of uncorrelated random numbers will be the aux- =~ . ) i o .
iliary array. Schematically, our purpose is to find a linear This is the discretized trapezoid e_lpproxmatlzon of integral
transformation which creates the required array,, from (22) with an error, which is proportional taAx) .
R,:
yn
B. Implementation of the correlated random array technique

R, —— AL (18 for conserved quantities

linear transformation . i i . .
The simple Gaussian in E@23) is not applicable as a

Concretely A, should be written as a weighted sum over thecorrelation function of conserved densities, since these
auxiliary grid,R,,. should obviously also show negative correlations. Moreover,
having generated fluctuating densities in this way, their inte-
gral over the whole system will not stay constant but will
Auzg CRy—us (19) fluctuate, though a lot less than for one cell. Such a method
may respect conservation laws only on the average and not
wherec, are a set of weights that depend on the desire@Vent by event, which is not satisfactory. These deficiencies
shape of the correlationG),. In order to see how this are automatically remedied by using the above method for
simple idea works, we shall resort to the continuum case. Ledénerating random currents instead of densities. Another
R(y) be our continuum random function, which has a differ- Strong argument for using random currents instead of densi-

ent(randon value at each point of the-dimensional space. ties is that, as shown at the end of Sec. Il, in Eq, it is

In accordance with E(17) sufficient to know the current correlation functi@f,, to
obtain the fluctuations and damping. One can show that if the
(R(y))=0, (RMXR(y))=38(x—Y). (200 fluctuating current of a conserved quantity shows correlation

(23), the corresponding density correlations will also take
This function is discontinuous at all points. Another discon-negative values. More importantly, no matter what currents
tinuous functionA(x) is written as may occur among the cells, what is lost from one cell is
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gained by another one; thus the total momentum will be Aﬂ_1/2A#+1/2
conserved. Below we summarize all the simplifications used.
(1) The fluid is one dimensional, with an ideal gas equa-

tion of stateP=pc§, whereP, p, andcg are the pressure, j2 P |P
mass density, and sound velocity, respectively. p=1 H ptl
(2) Random currents are considered between neighboring
cells. FIG. 3. The momentur® , of the fluid cellx fluctuates because
(3) Only momentum currents are generated randomlypf the random momentum transfess, 1, and A, 1, between
particle and energy currents are neglected. neighboring cells.
(4) Only spatial correlations are considered. Time corre-
lations beyond one time step are neglected. wherep is the density of the ga], we obtain
(5) All parameters entering the distribution function of the
fluctuating term come from the equilibrium properties of the 2 pvr
Co=5——KkT. (29

gas, assuming global equilibrium in our domain of computa- 37 7

tion. That is, we simulate an equilibrium fluctuation for the

description of near-equilibrium processisg., weak shock Once we haveC, we haveC$,,, and taking its derivative

waves. analytically, we can plug it into the kernel of the integral into
(6) The fluctuations are independent of the bulk dynam-Eq. (26). This can then be carried out numerically in the

ics, i.e., there is no feedback from the dynamics to the ranform of a sum over all fluid cells. When the system is con-

dom transfers. This is reasonable as long as the relative amsiderably larger than the correlation lengththe summation

plitude of the fluctuations is small. should be done only over those few cells that are close to the
(7) The correlation lengthy correlation timer, and other  cell under consideration, and the Gaussian of the correlation

properties of the gas are considered as independent inpufsinction makes an important contribution. The discretized

though they are connected by the relationvr, wherevy  form of Eq.(26) will be

is the thermal velocity of the gas.

(8) The method described here deals consistently with the wt Ny /2
first and second moments of the fluctuating quantities. BY*Yt)= 2 \/_Co 5 Xv)e*(xufxu)zlxzvv(t),
Higher moments should not be studied with this method. v=p—Ny2 A

(9) The ansatz we used for the correlation function of the
random momentum currenfi&q. (23)] is a simple Gaussian whereN, is the number of fluid cells where the correlation is

but shows many of the essential features of a correlatioff"! off _(see Appendlx B W_e used a numenc_al time step
function arising from kinetic theory. exceedingr, so time correlations beyond one time step were

There are three tasks: First, one should find an Euleriaf€9/€cted.
fluid dynamical method to solve Eq$11)—(15) for the

“equilibrium” case. Second, the dissipative nonequilibrium D. Inclusion of fluctuations
part of Egs.(5) and (7) is included in the force ternB in In this work we considered near-equilibrium fluctuations
addition to the pressure. Third, the fluctuation is added to Egconceived as equilibrium fluctuations superimposed on near-
(12. equilibrium dynamics. Therefore, fluctuations were handled
independently from the bulk dynamics of the fluid. The time
C. Inclusion of dissipation sequence of the necessary steps is the following.

(1) Calculate the dissipative force terBS as it was
described in Sec. VC, and plug it into the fluid dynamical
equationg12) and (13).

(2) Proceed with the solution of Eg&l1)—(15) one time

One can see in Eq7) that the differentiation with respect
to y can be changed t® and taken outside the integral.
Therefore, the nonequilibrium force ter@#'sS can be identi-

fied as
step.
i (3) Add to the momentum of each cell a random value
BUS(x,t)= kTJ dsf dy Cmom(X y,s)v(y,t—s). generated as described below.

(4) Start again fron(1).
The random value added to the momentBinof a cell at
The ansatz for the correlation function can in principle bepOSItlon # is calculated as the difference of two currents

: ; A, 1 and A entering the left side and leaving
w—1/2 ut+1/2s
extended for time correlations as through the right side, respectively. Naturally, the outgoing

c N2 (U2 current on the right will be the ingoing one for the cell’'s
Cron(X:t)=Coe 1 (27 right neighbor atw+ 1 (see Fig. 3 The change of the mo-

mentum,AP,,, will be

where\ and 7 are direct inputs. The amplitude of the fluc-

tuations, Cy, can be found by connecting the fluctuation- AP, =A, 1A, i1

dissipation theoren®) to elementary kinetic considerations. ” pr e

Performing the integrals in Eq9), and being aware that where the correlated array of random trans#ys 1/, is gen-
erated as described in Sec. V A. The easiest way of handling

=2pVT\, (28)  the boundaries is to consider the gas inside a large box,

(26)
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closed at both ends, and then no special considerations 0.01
should be given to cells next to the boundaries. There will be
a random momentum flow through the boundaries as well,

. . . . . 0.008}
since momentum is not conserved in this case. However, if
one also includes random energy or mass transfers between
the cells, which is not done in this work, their flow through & 0.006}
the boundaries should be set to zero in order to maintain the 2
energy and mass of the fluid constant. &

VI. APPLICATION FOR WEAK SHOCKS

As an illustration we will study the effect of fluctuations
and dissipation on weak shocks. The advantage of shocks,
for example, is in the dependence of the shock front width on
viscosity. The front width and viscous coefficient show a (X=X o )/A X
linear interdependenck?]. The weakness of the shock is o .
necessary for satisfying the near-equilibrium requirement, FIG. 4. Incree_tse of the Ioca_l denglty in shqck frpnt profiles for
which was a basic assumption in the derivation of &. In different correlat!on Iengths),\, i.e., different viscositiesy [Eq. _
addition, the description of shocks exhibits an acute need fo2d- _On the hprlzontal_axs the r_1ur_n_bers label the nu_mencal .ﬂu'd
consistent inclusion of dissipation which has a dominant rol ells included in the window delimiting the front region studied.

in the study of flow discontinuities. For the outcome of cer-. "¢ dashed line corresponds to the perfect fluid solutip,0.
This is not a result of a fluid dynamical calculation but a simple step

tain fluid dynamical phenomena, the width and structure OFunction. The solid curves represent numerical results. The steepest

shock fronts is of great relevance. A good example is sonol front corresponds te;=0, manifesting numerical viscosity, while

minescence. The self-collision of a converging spherical he rest corresponds to increasing correlation lengths,

shock yields infinite temperature and pressure in the very.gg 3 @x. The number of cells involved in the summation
center of the bubble if the shock front is modeled as a sharg, ihe dissipative ternt5) is cut off at 1, 2, 4, 5, 7, 8, and 1Gee

discontinuity (Sec. Il, Chap. XII, of Ref[7]). However, if  appendix B.
viscosity is included and the shock front has a finite width,
the central temperature becomes finite as well, but its ampli

0

10 20

Solution by a step function. Such a solution could in principle
X . hbe obtained by decreasing the cell size below any limit. As
.[8]' The gradlen'ts are enormous and the number of partlcleﬂ;]e correlation lengtix increases, more and more cells are
involved in the light emission are only of the order of10 . ued in the calculation of the dissipative te(s). There-
L_Jnfqrtunately, in numerical hy_drqdynamcal codes VIS“fore, the smoother and smoother shock profiles correspond to
cosity Is not easy to C(.)erI.' Th|s is partially due to theincreasing physical viscosities. Including fluctuations should
presence ofnumerical viscosityinherent to all numerical . c5use a deviation of the ensemble average from the non-
methods. I_tincreases with incr_easing nu_merical (_:eII Aixe_ fluctuating profiles, as shown in Fig. 5. However, Fig. 6
and the width of shock fronts is proportional to it. We will g,s easily noticeable deviations of the mean values from
use Ax as length unit in our calculations presented in theye nonfluctuating solutions in Fig. 4. It reports significant

examples below. Including dissipative terms in the equation, jinearities arising because of the finite amplitude of the
of motion, while decreasing the cell size to a level where thefluctuations.

numerical viscosity is negligible compared to the physical
one, may vyield other problems, such as instabilities arising a
from the derivatives in the viscous terms. Therefore, in many 10X10
cases numerical viscosity is advantageous.

In our example we consider a one-dimensional ideal gas
enclosed in a box and moving with a relatively low velocity
Vg to the right. A weak shock propagates in the opposite
direction. Formallyvy/cs<1, wherev, is the velocity with
which the gas hits the right wall ard the sound velocity in
the noncompressed gas (- pg)/po<<1l, wherepy and p,
are the densities of the noncompressed and compressed gas,
respectively. If we ignore the fluctuations and zoom in the
shock front region, we obtain a set of density profiles for
different correlation lengthéFig. 4). This means increasing ‘ ‘ ‘ ‘ .
viscosity in accordance with E¢R8). Note that since there is T -10 0 10 20
no fluctuation included, by correlation length we mean the (XX, /A X
distance within which the integrand in E€) is not negli- cent
gible. The solid line with the steepest slope corresponds to a FIG. 5. The ensemble average of fluctuating hydrodynamical
zero viscosity parameter. The effect of numerical viscosity isalculations of a shock. The thin lines are members of the en-
remarkable if we compare this profile with the dashed onesemble, the circles are the average of the ensemble, and the thick
The latter one represents the exact perfect fluid dynamicalashed line is the nonfluctuating profile.

(P-py)ip,
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0.01— - . x10°

o e oo

10 20 0
r)/A X

20 10 0 10 20

(x—xcent

(X—Xcentr)/ Ax
FIG. 6. Same as Fig. 4, with fluctuations included. The solid
lines represent the ensemble averages. Slight deviations from Fig. 4 FIG. 7. Dependence of the structural entr&y on the position

are due to nonlinearities arising because of the finite amplitude obf the front relative to the windowsee Fig. 4. X.eniS the position

the fluctuations. of the center of the shock. The maximum of structural entropy is
obtained when the front is in the middle of the window. Different
Structural entropy as tool for studying shock front profiles curves correspond to the different viscosities (telprgest).

In order to have a more quantitative description of what ) ) ) -
we can see in Figs. 4 and 6, we shall use the concept gfow. The different curves stand for the different viscosities.
structural entropy employed in the study of superstructureSstiS Zero as long as the front is outside the window, and has
in extended systemg9]. Following the notation from this @& maximum around the middle. Generally, the position of the

reference, let us consider a normalized, positive definite dish@ximum for a step function strongly depends on the ratio of
tribution Q; over a one-dimensional lattice of cells: the maximum and minimum for that function. However, in

our case the weakness of the shock makes the maximum
N deviate negligibly from the midpoint of the window. We
2 Qi=1, Q=0. shall compare the shapes of the different fronts at this point
=1 because here the error, due to a possible slight shift between
the fronts, will be minimal. Figures 4 and 6 are also “pic-

We can introduce the so called delocalization mea$re : .
= tures” taken through the above mentioned window, at the

defined as . .
moment wherSg, is at maximum.
N -1 As we can see in Fig. 8, the higher the viscosity and
D= E (Qi)z} , (30 smoother the profile, the moi®,,, approaches the origin in
=1 the (Ss,r) diagram. The rightmost poirfe) corresponds to

the ideal nonviscous shock front, described by a step func-
tion, while the secondb) shows the effect of numerical vis-
N cosity in our calculation for a given grid sizex. Beyond
= _2 Qi InQ;. (31) that, starting from(c), we can see the effect of physical vis-
=1 cosity which dominates the numerical one.
_ . With the help of Fig. 9, we can estimate the value of the
The definition of the structural entropy is numerical viscosity. As in Fig. 8, poira) corresponds to
S,=S-InD (32 zero physical viscosity, whiléc) and further points stand for
tr ' increasing physical viscosities which dominate the numerical

The study of different shapes of the distributia®,, in the one. We fit the calculated points with a curve that emerged

(r,S,) diagram, whera =—InD/N, has important advan- from density profiles approximated by the function
tages. One remarkable feature of the structural entropy is

that, gnlike the Shannon entropy, it_dpeg not diverge as the p(X)=po+ Pmax po{tanr[anq(x—xcem,)]Jr 1}, (33
cell size goes to zero. Practically, it is independent of the 2

discretization of the distribution.

For the study of the shock front shape, we fixed a “win- where we used the values=0.18 andq= —0.4. « is given
dow” on the x axis of a given width which was roughly of in units of (okTAx/3)"9Ax. Numerical calculations with
the size of the largest expected front width, and studied thé¢his method and gridsize should be used in cases when the
evolution of the density profile. Note that the structural en-structural entropyB,,<7.4x 10" at point(b) in Fig. 9. This
tropy Sy, of a step-function-like shock front is sensitive to means that such numerical calculations involve a numerical
the location of the front with respect to the window. viscosity which can be estimated based on the fitted curve as

Figure 7 shows the structural entropy as a function of timen,,,,/~0.1pv1AX/3. Only problems with viscosity exceeding
(or position of the frontas the front passes through the win- #,,,, should be handled with this method. Here, as we only

and the well-known Shannon entrofydefined as
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x 1078 the fluctuations among the cells are taken into account. This
is an important improvement in the description of mesos-
copic and/or very dynamical systems for two reasais:

0.8¢ " 1 fluctuations and their consequences can be described realis-

% a tically, and (i) viscous effects are treated more realistically
0.6+ 2° | via the _fluctuation-dissipation theorem. P_hysica_d_ly this is ap-
5 st parent in cluster formations and surface instabilities. Also, it
2] a will be possible to study mesoscopic correlations, together
0.4 with the corrections these effects cause for collective fluid
dynamical observables.
0.2}
APPENDIX A: DENSITY AND CURRENT DENSITY
0 ) CORRELATION RELATIONS
0 1 2
r X107 Let us consider the scalar density of some conserved
quantity, p, and its corresponding three-dimensional current
FIG. 8. Structural entrop$;, vsr [Eq. (32)] for the shock front  density vector,j;, i=1, 2, and 3. Imagine that for some

profiles in Figs. 4 and 6. The discretized distribution in E@€) reason they fluctuate without violating the conservation law.
and(31) is Q;=p; /Zypx, Wherep; is the density at théth celland  Their mean values akg) and(j;), and their deviations from

the summation is done over cells within the window containing thethe means arép and 8j, respectively. The continuity equa-
shock front profiles. The circles stand for the nonfluctuating calcution should hold:

lations (Fig. 4), and the triangles for ensemble averages including

the fluctuations(Fig. 6). The first point(a) corresponds to zero ap .

physical and zero numerical viscosity. Points(lat represent zero ot +Viji=0. (A1)

physical and finite numerical viscosity. Starting fraqo), physical

viscosity dominates. No points can exist above the solid (gee Tak|ng the ensemble average of qu)’ we find the same

Ref. [9)). equation for the mean values. After subtracting the latter
from Eg. (A1) we again obtain a similar equation for the

provided a few points, the exact determinatiorvgf,,is not  deviations:

feasible, but the principle can also be used with more precise

] Jd
calculations. 55p+vi5ji:0.

VIl. SUMMARY Therefore, it is true that

The method presented here provides us with an ensemble 2
of fluid dynamical solutions, where fluctuations are included.
While fluctuations are averaged out within each fluid cell, It1dt,

CP(ri—rt—t5) = Vi V5, CH(ri—raty —ty),
(A2)

x 10°° where CP(r;—ry,t; —tp) =(p(ry,ty) Sp(ratz)) and CS(ry

' ' ' — I3t~ ) =(8ji(ry,t1) 8j;(raty)) are the autocorrelation
functions of the deviations at different points and times.
They depend only on the relative positions and time differ-
ence. Consequently, EGA2) can be written as

&2
EcD(r,t)zvivjcﬁ(r,t). (A3)

In one dimension Eq.A3) reduces to

32 52
—CP(x,t)= —Cx,b).
ot oX

2
n [p v;A X/3] o o
The generalization for nonscalar densities is trivial.

FIG. 9. Structural entropys, vs the viscosity. For a perfect

fluid [point (a)], i.e., A\=0 and =0, the step function yieldS,; APPENDIX B: DETAILS OF THE NUMERICAL
=7.8x107°. The numerical viscosity with the samgand\ pa- CALCULATION

rameterd point (b)] yields fronts of finite width and structural en- ) ] .

tropy of Sg=7.4X107%. 5,,~0.lpvrAX/3 is the approximate We use a one-dimensionaHASTA algorithm [10] for

value of the numerical viscosity that can be inferred from the fitpropagating the flow variablgs M, andE [Egs.(11)—(15)]
[Eq. (33)] along the physical viscosity point&) and further points  [Sec. V B, item (1)]. The correlated random momentum
represent physical viscositiésee Fig. 8. transfers are generated according to Sec. V A, for all times at
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the very beginning of the calculatidisec. V B, items(5)  fluctuations )\, was variedand as a consequengewas also
and(6)]. In our case this is possible because we discuss weakaried, taking values ofA=0.6,...,3.6Ax. One may
shocks, so that global equilibrium is a good approximation tachooseAx and At and the mass of a particle, to be suit-
predict thermal fluctuationssHASTA and the momentum able for the particular problem studied. From the following
transfers are performed successively in each time step. Beelations one can find the rest of the quantitigs,
low, we indicate the parameters necessary to reproduce ow¥rmAN/Ax and CO:2/37-rp/mc§/7-, whereCy is the ampli-
results. Since we only studied the shock front through a nartude parameter in the correlation functiEgs. (27) and

row window, the actual number of numerical cells for the (29)]. Note that we assumed that the thermal velogity
whole fluid is irrelevant. It can be anything as long as it is lotequals the sound velocity .

more than the maximum number of cells involved in the e also assumed that the spatial correlation function is
front profile and the front is far enough from the boundary ofcyt off at a number of cellsN,, given by the condition
the fluid. An important parameter of tleeiasTA algorithm s exp(— (N, Ax/\)2)<10"3. This is meant to include those
VAt/Ax, a quantity which must be less than 1/2 in order toand only those cells where the correlation function makes a
assure that the conservation laws hold. Heres the flow  significant contribution to integral9). In addition, the ran-
velocity, andAt and Ax are the time step and cellsize, re- dom array technique presented in Sec. V A can produce un-
spectively. In this work the length scale is given in terms ofdesired effects if the weight functior(x) in Eq. (24) is not

Ax in concrete examples. Since in our case the shock is veryliowed to decrease sufficiently.

weak, the maximum velocity is equal to the sound velocity,

Cs, Which is chosen to be,=0.21Ax/At in our calculation, ACKNOWLEDGMENTS
presented as an example. Similarly, the other parameters are
vo/cs=1/85, 7=0.035At, andAN=11000, wherey, is the One of the author$J.P) wishes to thank the Orsgas

initial velocity of the gas at which it runs into a wall some- Tudomayos Kutatai Alap (OTKA) (Grant No. T02413p
where at the rights is the correlation time, andN is the  for financial support and Professor L. P. Csernai for kind
number of particles in one cell. The correlation length of thehospitality.
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