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Event-by-event fluid dynamcis
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Coarse grained Langevin-type effective field equations may provide some guidance for the analysis of
mesoscopic or microscopic molecular systems exhibiting fluctuations, or for systems of hundreds to thousands
of atomic or subatomic particles produced in atomic or high-energy nuclear collisions. Suggestions for con-
sistent realization of random fluctuations in discretized fluid dynamics will be presented.

PACS number~s!: 05.40.2a, 47.11.1j
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I. INTRODUCTION

Mesoscopic systems are of increasing importance, for
ample, in low-dimensional condensed matter or in hig
energy nuclear collisions. The latter reactions provide a g
application of the problem. Surviving macroscopic signals
quark-gluon plasma~QGP! formation such as entropy pro
duction and directed flow have been studied extensiv
Critical fluctuations might also survive the subsequent
namics@see the cosmic background explorer~COBE! experi-
ments#. However, we need a well described prediction; o
erwise we are just shooting randomly in the da
Disoriented chiral condensate~DCC! fluctuations have been
extensively discussed by now, but these should not be
only observable fluctuations we might be able to dete
Other quantities might also exhibit critical fluctuations. D
ferent fluid-dynamical flow patterns are certainly candida
in which signs of critical fluctuations may be detected. Fo
more explicit example we have to study fluid dynamical flu
tuations.

The size of a system where fluctuations become impor
is the order of the mean distance between the constit
particles, and the characteristic time of the dynamics of
system is comparable with the microscopic time scale. Th
are situations when the inclusion of fluctuations has a d
matic effect on the result. A good example is high-ene
nuclear physics. As long as the matter of the expanding fi
ball is interacting, fluid dynamical or transport calculatio
can be applied, and they yield satisfactory explanations.
the other hand, fluid dynamical calculations or the solutio
of kinetic models such as Boltzman-Uehling-Uhlenbe
~BUU!, Vlasov-Uehling-Uhlenbeck~VUU!, or Landau-
Vlasov models cannot reproduce some fundamental feat
of the data. An example of such a feature is the fragm
mass distribution. Averaging is done during the dynam
and the resulting force fields are smooth. Therefore, no r
istic clusterization is possible, and the only mass distribut
emerging from such calculations is the one consistent w
the law of mass action.

Unlike the above calculations, quantum molecular d
namical descriptions and solutions of Langevin-type dyna
PRE 611063-651X/2000/61~1!/237~10!/$15.00
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cal equations do allow for more realistic clusterization.
both cases the averaging is done after the whole dynam
meaning that the time evolution of all the elements of t
ensemble occurs under the influence of fields that are dif
ent for each configuration. These fluctuating fields are
sponsible for the nontrivial fragment distributions.

Another phenomenon where fluctuations are crucial
sonoluminescence@1#. A micron-sized bubble in wate
driven by ultrasound can periodically collapse and revi
each time emitting one short blue flash coming from t
bubble’s very center. This light emission is due to extrem
high temperatures~up to 105 K!, which means a concentra
tion of energy density by a factor of 1012. Sonoluminescence
has already gained applications in chemistry and med
physics, and some physicists have speculated about the
sibility of achieving nuclear fusion. The sphericity of th
collapse imposes the most serious limitation on the temp
ture, density, and size of the scorching central spot. The
cusing mechanism can fail because of instabilities deve
ing in both the liquid-gas interface and the surface of
converging shock wave. The instabilities are partly of mic
scopic origin, i.e., as time goes on, the shrinking shock s
face ‘‘senses’’ more and more the effect of molecular flu
tuations.

The goal of this work is to show how fluctuations can
consistently included into fluid dynamical equations. Sin
the problematics is complex, we shall use several simplify
assumptions. The range of applicability of the method
scribed below is limited, but has all the essential ingredie
emerging from the general considerations presented h
and allows for easy extension to more realistic problems

II. FROM LANGEVIN EQUATION TO NAVIER-STOKES
EQUATION

The inclusion of fluctuations into dynamical equations
not a new idea. Langevin’s equation for the damped mot
of a Brownian particle can be found in ordinary textboo
@2#. Certain aspects of fluctuations in fluid dynamics ha
been discussed as well@3#.

The motion of a fluid is determined by the interactio
237 ©2000 The American Physical Society
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238 PRE 61L. P. CSERNAIet al.
between its fluid elements. If these fluid elements are la
but not macroscopic, the force they exert on each other
be separated into a smoothly varying average force an
fluctuating force due to the random thermal moment
transfer.

A. Langevin equation for external heat bath
„Brownian motion…

Let us first take the simple example of Brownian motio
We can conceive it as the thermal interaction of a sm
system with an external heat bath~Fig. 1!. There is a random
momentum exchangeF8 between the system and the he
bath. Randomness does not exclude the presence of co
tions. The dynamics of the Brownian particle is given
Langevin’s equation

m@v~ t1t!2v~ t !#5F~ t !t2av~ t !t1E
t

t1t

F8~s!ds,

~1!

wherem and v are the mass and velocity of the Brownia
particle. WhileF is an external force,F8 fluctuates, satisfy-
ing the condition@2,4#

^F~s!&05^F8~s!&50.

The averaging is done over the whole ensemble of the gaa
is a dissipative coefficient which is related to the ensem
average of the fluctuating force over the local thermal eq
librium ensemble

a[
1

2kTE2`

1`

^F~0!F~s!&0 ds. ~2!

Equation~2! is the so-calledfluctuation dissipation theorem.
For Eq.~1! to apply, one has to stipulate thatt is larger than
the relaxation time in the gas; that is, the collision time b
tween the gas particles.

B. Langevin equation for internal heat bath

Let us imagine many small systems in contact with ea
other via both conservative forces and random momen
transfer~Fig. 2!. Let us denote the random momentum r
ceived fromm by elementn as pm,n in a time interval be-
tween t and t1t. Due to the fact that we have an intern
heat bath, where the subsystems are not negligibly sm
compared to each other, the random thermal momen
transfers are correlated:

pm,n52pn,m .

FIG. 1. A small systemS interacting with an external heat bat
with random thermal interaction forces. This is the case for
Brownian motion.
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This leads to a coupling among random forces in the m
dium. We can exploit this inversion symmetry with respe
to the gridpoints, or fluid cells. The random force acting on
fluid cell labeled bym by its sth neighbors is

Fm
(s)5

pm2s,m2pm,m1s

t

and, so,

Fm5(
s

Fm
(s) , ~3!

where the sum(s runs overs from s1 , s2 , s351 to `.
Thus, exploiting the inversion symmetry, we constrain t
summation to the positive quadrant of thes space. If we
know these random momentum exchanges for an ensem
we can evaluate averages and correlation functions am
them. The ensemble average ofFm

(s) for the actual ensemble
of microstates does not vanish,^Fm

(s)&Þ0, and it can be ex-
pressed via the correlation function ofFm

(s) taken over the
equilibrium ensemble. This average force leads then to
viscous term in the ensemble-averaged equation of state

We can replace summations over our fluid cells, labe
by s or n, by integrals overy or r, where, e.g.,y
5sDxcell . After some calculation@5#, in the continuum limit
we find the Navier-Stokes equation with a fluctuating for
density,

]M

]t
52“~M+v !2“P1h¹2v1S z1

1

3
h D“~“•v !1f8,

~4!

where M[rv is the momentum density and (M +v) i j
[Miv j . f8 is the fluctuating part of the force density arisin
from random thermal interactions~so that for an ensemble o
actual microstateŝf8&50), and the smooth part results i
the dissipative viscous terms. In the limit of large subsyste
f8 vanishes not only for the ensemble average but also
every element of the ensemble. This shows that the inclus
of fluctuations for small subsystems is necessary, and
magnitude depends on the selected cell size. Thus, if
intend to discuss the fluctuations explicitly and quanti
tively, we must use the discretized equations of fluid dyna
ics with well defined finite fluid cells. The magnitude o
fluctuations will depend on the choice of size of the flu
cells, so the scale invariant feature of the fluid dynamics w

e

FIG. 2. A series of small systems,Sm21 , Sm , Sm11, . . . ,
interacting with each other with random thermal momentum tra
fers ~thin lines!. The resulting random forces are classified in
forces interacting with nearest neighbor volumes of about 1 m.
distance from the fluid element in discussionFm

(1)(t), with second
nearest neighbor volumes of about 2 mean free path distance
the fluid element in discussion,Fm

(2)(t), . . . , and so on. Further-
more, our small volume elements also interact with their nea
neighbors via nonrandom, harmonic forces~heavy lines!.
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PRE 61 239EVENT-BY-EVENT FLUID DYNAMICS
not hold. The cell size, consequently, should be chosen
cording to the physical problem.

Let us now see how fluctuations manifest themselves
the coarse-grained Navier-Stokes equation. After discret
tion, the right-hand side of Eq.~4! will be the sum of all
forces acting on a certain fluid cell. The nonequilibrium pa
Fm

ne, of these forces can be separated into a dissipative t
Fm

diss, and a purely fluctuating term,Fm8 :

Fm
ne5Fm

diss1Fm8 ,

where ‘‘purely fluctuating’’ means that̂Fm8 &50 while the
ensemble average of^Fm

diss& gives the usual viscous term
@terms 3 and 4 in Eq.~4!#. Note that one of main assumption
in Ref. @5# when deriving Eq.~4! was that the fluctuations o
the flow velocityv are small. This can be assured only if th
fluctuating force,Fm8 , does not have too large amplitude e
ther. From Ref.@5# @Eqs. ~15! and ~41!#, we have for the
dissipative term

Fm
diss~ t !5

1

kTEt

t1dtdt8

dt E0

`

ds(
n

Qmn~s!vn~ t82s!, ~5!

where Qmn(s)[^Fm(t)+Fn(t2s)&0 is the correlation be-
tween forces acting on different cells at different times, a
the summation runs over all the fluid cells. Naturally, th
correlation depends only on the relative distance of the
cells. This form represents the fluctuation-dissipation th
rem for the coarse-grained Navier-Stokes equation. The
sorial structure ofQmn(s) will yield both viscous terms in
Eq. ~4!. In Appendix A we show that the continuum corr
spondent ofQmn(s) is the second time derivative of the mo
mentum density correlation,Cmom

D , which can be connecte
with the second space derivative of the momentum cur
correlationCmom

C . In one dimension this can be written as

Q~x,t !5
]2

]t2
Cmom

D ~x,t !5
]2

]x2
Cmom

C ~x,t !,

where

Cmom
D ~x,t ![^dM ~y,s!dM ~y2x,s2t !&0 , ~6!

Cmom
C ~x,t ![^dP~y,s!dP~y2x,s2t !&0 ,

are the density and current density correlation functions
the momentum, respectively.dM anddP are the density and
current density deviations from the ensemble averages
the current density in its general multidimensional form
given byP i j 5Miv j1d i j P1s i j , wherev i is the flow veloc-
ity P the pressure ands i j is the dissipative stress tensor. A
the moment we are not concerned with the complica
physics of the momentum current density, we just assu
that it is known, and in practical applications we will have
ansatz for it. Since the first integral with respect todt8 in Eq.
~5! is a simple averaging, it has no effect ifdt is sufficiently
small, and therefore can be omitted. The dissipative fo
density will be then
c-

in
a-

,
m,
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o
-
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f
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e

e

f diss~x,t !5
1

kTE0

`

dsE
2`

1`

dy
]2

]y2
Cmom

C ~x2y,s!v~y,t2s!.

~7!

Note, that the integral form~7! exhibits advantages com
pared to the differential one in Eq.~4!, provided that an
ansatz for the momentum current correlation is available
this way the instabilities can be handled in a viscous rela
istic fluid dynamical approach. This formalism also enab
us to present the dissipation fluctuation theorem in a con
tent and transparent form. Assuming that the correlat
function Cmom

C vanishes fast enough with distance, a dou
partial integration will yield

f diss~x,t !5
1

kTE0

`

dsE
2`

1`

dyCmom
C ~x2y,s!

]2

]y2
v~y,t2s!.

~8!

When the flow velocity field changes smoothly in time a
space~near-equilibrium condition! the derivative of the ve-
locity v can be taken outside the integral, and we are
with the usual viscous term in the one-dimensional cor
spondent of Eq.~4!. Only the first dissipative term exists i
this case, and the relation of the corresponding viscous c
ficient to the equilibrium correlations is

h5
1

kTE0

`

dsE
2`

1`

dyCmom
C ~x2y,s!. ~9!

III. CONTINUUM FORMALISM

Landau and Lifshitz@3# approached the problem of hydro
dynamical fluctuations. A rather concise, and from a form
point of view, simple formulation was presented for the flu
tuation dissipation theorem. Using the published result,
fining a fluctuating stress tensorsil , we can write the corre-
lation function of fluctuating force densities as

^ f i8 , f l8&5^]ksik~r,t !]mslm~r1y,t1s!&

52Td~s!„h$d i l ¹
2d~y!1“@“d~y!#%

1~z1 1
3 h!“@“d~y!#…. ~10!

One can see that integrating the equation of motion wit
fluctuating force density@5#, satisfying this correlation func-
tion, would yield the Navier-Stokes equation. The ‘‘co
tinuum limit’’ of Eq. ~5! would lead to the same tensoria
form if we would go to zero with the correlation length b
keeping the values of the correlations constant@5#. However,
by going to thed function limit, we lose the possibility of
distinguishing between longitudinal and transverse corre
tion functions. Unfortunately, the usual choice ofd function
for the shape of the correlation function leads to a vanish
fluctuation in this case even if we integrate this equation
motion over a locally equilibrated fluid cell. Thus for qua
titative fluctuation studies, and to generate fluctuating for
for a discretized fluid dynamics this approach cannot
used.

The physical reason for this problem is that when mak
a ‘‘continuum limit’’ we should not go to zero with the cor
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240 PRE 61L. P. CSERNAIet al.
relation length or mean free path, because we will tend t
perfect fluid. Then this very unphysical continuum limit ca
not be easily reversed, and unfortunately the intermed
discretized model results are not given in the publicati
Similar conclusions were found by Mansouret al. @6#. This
result otherwise is equivalent to ours, and shows that
fluctuating force in fluid dynamics should have a comp
tensorial structure.

IV. GENERATION OF FLUCTUATING TRANSPORTS
FOR EXTERNAL HEAT BATH

A. Simplest case. Dirac delta correlation function

For a one-dimensional Brownian motion one can gene
a force which has a fixed magnitude and random direction
points either to the left or to the right. Obviously, such
fluctuation has a zero average. One can also fix the ma
tude of the force from the fluctuation dissipation theore
@Eq. ~2!#, since the time correlation will bêF8(0)F8(s)&
5uF8u2d(s), yielding uF8u52kTa. In conclusion, we gained
a fluctuating force which, used in the Langevin equati
produced Brownian motion and was useful for studying c
tain aspects of the phenomenon. But while the damping
the velocity is described this way, correlation features of
fluctuations are lost.

B. Fluctuating force exhibiting time correlation

We can construct a more realistic approach by usin
force acting on the Brownian particle. At a certain mome
this force is determined by the state of the heat bath, whic
in a causal relation with its foregoing states. Thus when g
erating the force we should be aware of at least two of
properties: stochastic character and memory. Let us
cretize the time such thatf (t)5 f (nDt)[ f n , where n
50,1,2, . . . ,̀ . A simple ansatz for the force could be

f n5jnf n211~12jn!r n ,

wherejn andr n are uncorrelated random variables with va
ues jn5$0,1%, and r n5(2`,1`) and probabilities such
that Pj(0)[12Dt/tcoll , Pj(1)5Dt/tcoll , ^r n

2m&5const,
^r n

2m11&50, n,m50,1,2, . . . ,̀ . tcoll is the collision time of
the molecules in the gas. Summarizing the results,

^ f ~ t !&50, ^ f 2m~ t !&5const, ^ f 2m11~ t !&50,

K~ t,s!5^ f ~ t ! f ~ t1s!&5^ f 2~ t !&e2s/tcoll,

K~ t,s!5K~s!5K~2s!.

Using this more realistic approach, all statistical moments
the fluctuation have the expected behavior, and also sho
time correlation which exhibits the right properties.

V. GENERATION OF FLUCTUATING TRANSPORTS
FOR INTERNAL HEAT BATH

The consistent generation of random transports for an
ternal heat bath is not as trivial as for Brownian particles,
it is feasible. In this section we shall apply the ideas dev
oped in the previous sections, and describe the steps ne
a
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sary for the practical implementation of these ideas. The c
crete task is to solve the discretized Navier-Stokes equa
for an ideal gas with an extra random force term. We impo
the following requirements.

~1! The extra term should have zero average.
~2! It should have a finite correlation time and length, t

latter covering several numerical cells.
~3! The correlation function should satisfy the fluctuatio

dissipation theorems~5! and ~9!.
~4! The conservation laws should not be violated by t

fluctuations.
~5! The amplitude of the fluctuations should be relative

small in accordance with the assumptions made at the d
vation of Eqs.~4! and ~5!. This also serves for avoiding
nonlinearities arising from the fluctuations, i.e., the ensem
average of the solution should give back the result of pl
calculation not including the fluctuating termf8 in Eq. ~4!.

Presently, there are several methods to solve fluid
namical problems. In this paper we shall concentrate on
inclusion of fluctuations into Eulerian numerical metho
wherein the fluid is divided into cells by a fixed grid. Th
fluid is flowing through the walls separating the cells. For t
sake of simplicity we only take a one-dimensional gas
scribed by the flow variablesr(x,t), M (x,t), and E(x,t),
denoting the mass, momentum, and energy densities
given location and time. The set of coupled partial differe
tial equations to be solved is

]r

]t
1

]rv
]x

50, ~11!

]M

]t
1

]Mv
]x

52
]B

]x
1 f 8 ~12!

]E

]t
1

]Ev
]x

52
]Bv
]x

, ~13!

e5E2
M2

2r
, ~14!

P5P~r,e!, ~15!

wheree is the thermal energy density.B[P1Bdissyields the
usual pressureP, and it has also a dissipative termBdiss,
depending on the flow velocityv[M /r in nonequilibrium
situations. In most descriptions this term is similar toBdiss

5h]v/]x, whereh is the viscous coefficient. The dissipa
tive force @Eqs. ~5! and ~8!# is related toBdiss as Fdiss

5(]/]x)Bdiss. Note that that fluctuation is included only i
the momentum equation. No particle and heat diffusion
taken into account.

When discretizing Eqs.~11!–~15! we shall go back to the
derivation of the Navier-Stokes equation from the intern
heath-bath concept, and conceive the fluctuating force t
as a result of random momentum transfers between c
There are two possibilities: we can either generate unco
lated transfers between all cells or correlated transfers
tween neighboring cells.

The first alternative is closer to the procedure of Sec II
since the momentum arriving at a cell has the informat
about where it came from. This, together with proper ret
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PRE 61 241EVENT-BY-EVENT FLUID DYNAMICS
dation effects, will yield the expected space-time corre
tions. It also has the advantage that the method allows f
relatively easy extension to more realistic modeling of ra
dom transports.

In the second case the information about the source of
incoming momentum is lost, and the correlations have to
enforced on the random transfers. On the other hand, th
also an advantage, since if one finds a good way of gene
ing correlated random numbers the properties of the fluid
be effectively included in the random number generati
This approach maintains the general advantage of fl
dynamical descriptions over molecular dynamical ones, in
far as only local information is needed for the solution.
this work we shall use the second alternative; that is,
shall generate space-time correlated random transports e
sively between neighboring cells.

A. Generation of a set of correlated random numbers

Our task is to generate an array~or grid! of random num-
bers, Ai , which all have a vanishing mean value and a
correlated in the required way:

^Am&50, ^AmAn&[Cum2nu , ~16!

i.e., the correlation of two elements in the array depends o
on the ‘‘distance’’ between the two. One way to achieve o
goal is to use auxiliary arrays. The main idea of the auxilia
array is the following: usually, the random number gene
tors provide a sequence of uncorrelated numbers that
uniformly distributed within some interval. This can alwa
be transformed so that the mean value will be zero and
distribution symmetrical about the origin. Let us denote th
random numbers byRm . Formally, their properties can b
written as

^Rm&50, ^RmRn&5dmn . ~17!

This array of uncorrelated random numbers will be the a
iliary array. Schematically, our purpose is to find a line
transformation which creates the required array,Am , from
Rm :

Rm ——→
linear transformation

Am . ~18!

Concretely,Am should be written as a weighted sum over t
auxiliary grid,Rm .

Am5(
n

cnRn2m , ~19!

where cn are a set of weights that depend on the desi
shape of the correlation,Cusu . In order to see how this
simple idea works, we shall resort to the continuum case.
R(y) be our continuum random function, which has a diffe
ent ~random! value at each point of then-dimensional space
In accordance with Eq.~17!

^R~y!&50, ^R~x!R~y!&5d~x2y!. ~20!

This function is discontinuous at all points. Another disco
tinuous functionA(x) is written as
-
a
-

e
e
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at-
n
.
-

o-
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A~x![E dyR~y!c~y2x!, ~21!

where the weight functionc(x) is a regularly behaving con
tinuous function, and the integral is performed over t
n-dimensional space of real numbers. Thus the averag
A(x) is zero, and its correlation function becomes

^A~x1!A~x2!&5E dyc~y!c~x12x21y![C~x12x2!.

~22!

Obviously,C(x) is also a continous regularly behaving fun
tion. Theoretically, our task is to find the weight functio
c(x) from the desired correlation functionC(x) using Eq.
~22!. The general solution will not be discussed here,
note that this problem does not have a solution for an a
trary C(x).

Let us now restrict ourselves to the one-dimensional ca
and take a Gaussian correlation function. We assume th
physical correlation extends to a distancel, the correlation
length. One can easily see that in order to obtain

C~x!5C0e2(x/l)2
, ~23!

we need to take a set of weights that also has Gaussian
file:

c~x!5A2C0

Apl
e22(x/l)2

. ~24!

We can verify easily that, by choosingcm5ADxc(mDx), the
discretized version of Eq.~22! takes the form

Cm2n[^AmAn&5(
s

cscs1m2n . ~25!

This is the discretized trapezoid approximation of integ
~22! with an error, which is proportional to (Dx)2.

B. Implementation of the correlated random array technique
for conserved quantities

The simple Gaussian in Eq.~23! is not applicable as a
correlation function of conserved densities, since th
should obviously also show negative correlations. Moreov
having generated fluctuating densities in this way, their in
gral over the whole system will not stay constant but w
fluctuate, though a lot less than for one cell. Such a met
may respect conservation laws only on the average and
event by event, which is not satisfactory. These deficienc
are automatically remedied by using the above method
generating random currents instead of densities. Ano
strong argument for using random currents instead of de
ties is that, as shown at the end of Sec. II, in Eq.~7!, it is
sufficient to know the current correlation functionCmom

C to
obtain the fluctuations and damping. One can show that if
fluctuating current of a conserved quantity shows correlat
~23!, the corresponding density correlations will also ta
negative values. More importantly, no matter what curre
may occur among the cells, what is lost from one cell
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gained by another one; thus the total momentum will
conserved. Below we summarize all the simplifications us

~1! The fluid is one dimensional, with an ideal gas equ
tion of stateP5rcs

2 , whereP, r, andcs are the pressure
mass density, and sound velocity, respectively.

~2! Random currents are considered between neighbo
cells.

~3! Only momentum currents are generated random
particle and energy currents are neglected.

~4! Only spatial correlations are considered. Time cor
lations beyond one time step are neglected.

~5! All parameters entering the distribution function of th
fluctuating term come from the equilibrium properties of t
gas, assuming global equilibrium in our domain of compu
tion. That is, we simulate an equilibrium fluctuation for th
description of near-equilibrium processes~e.g., weak shock
waves!.

~6! The fluctuations are independent of the bulk dyna
ics, i.e., there is no feedback from the dynamics to the r
dom transfers. This is reasonable as long as the relative
plitude of the fluctuations is small.

~7! The correlation length,l correlation timet, and other
properties of the gas are considered as independent in
though they are connected by the relationl5vTt, wherevT
is the thermal velocity of the gas.

~8! The method described here deals consistently with
first and second moments of the fluctuating quantiti
Higher moments should not be studied with this method.

~9! The ansatz we used for the correlation function of
random momentum currents@Eq. ~23!# is a simple Gaussian
but shows many of the essential features of a correla
function arising from kinetic theory.

There are three tasks: First, one should find an Eule
fluid dynamical method to solve Eqs.~11!–~15! for the
‘‘equilibrium’’ case. Second, the dissipative nonequilibriu
part of Eqs.~5! and ~7! is included in the force termB in
addition to the pressure. Third, the fluctuation is added to
~12!.

C. Inclusion of dissipation

One can see in Eq.~7! that the differentiation with respec
to y can be changed tox, and taken outside the integra
Therefore, the nonequilibrium force termBdiss can be identi-
fied as

Bdiss~x,t !5
1

kTE0

`

dsE
2`

1`

dy
]

]y
Cmom

C ~x2y,s!v~y,t2s!.

~26!

The ansatz for the correlation function can in principle
extended for time correlations as

Cmom
C ~x,t !5C0e2(x/l)22(t/t)2

, ~27!

wherel andt are direct inputs. The amplitude of the flu
tuations,C0, can be found by connecting the fluctuatio
dissipation theorem~9! to elementary kinetic consideration
Performing the integrals in Eq.~9!, and being aware that

h5 1
3 rvTl, ~28!
e
d.
-

g

;

-

-

-
-

m-

ts,

e
.

e

n

n

q.

wherer is the density of the gas@2#, we obtain

C05
2

3p

rvT

t
kT. ~29!

Once we haveC0 we haveCmom
C , and taking its derivative

analytically, we can plug it into the kernel of the integral in
Eq. ~26!. This can then be carried out numerically in th
form of a sum over all fluid cells. When the system is co
siderably larger than the correlation lengthl, the summation
should be done only over those few cells that are close to
cell under consideration, and the Gaussian of the correla
function makes an important contribution. The discretiz
form of Eq. ~26! will be

Bm
diss~ t !5 (

n5m2Nx/2

m1Nx/2

ApC0

t

l2
~xm2xn!e2(xm2xn)2/l2

vn~ t !,

whereNx is the number of fluid cells where the correlation
cut off ~see Appendix B!. We used a numerical time ste
exceedingt, so time correlations beyond one time step we
neglected.

D. Inclusion of fluctuations

In this work we considered near-equilibrium fluctuatio
conceived as equilibrium fluctuations superimposed on n
equilibrium dynamics. Therefore, fluctuations were hand
independently from the bulk dynamics of the fluid. The tim
sequence of the necessary steps is the following.

~1! Calculate the dissipative force termBdiss as it was
described in Sec. V C, and plug it into the fluid dynamic
equations~12! and ~13!.

~2! Proceed with the solution of Eqs.~11!–~15! one time
step.

~3! Add to the momentum of each cell a random val
generated as described below.

~4! Start again from~1!.
The random value added to the momentumPm of a cell at

position m is calculated as the difference of two curren
Am21/2 and Am11/2, entering the left side and leavin
through the right side, respectively. Naturally, the outgoi
current on the right will be the ingoing one for the cell
right neighbor atm11 ~see Fig. 3!. The change of the mo
mentum,DPm , will be

DPm5Am21/22Am11/2,

where the correlated array of random transfersAm11/2 is gen-
erated as described in Sec. V A. The easiest way of hand
the boundaries is to consider the gas inside a large b

FIG. 3. The momentumPm of the fluid cellm fluctuates because
of the random momentum transfersAm21/2 and Am11/2 between
neighboring cells.
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closed at both ends, and then no special considerat
should be given to cells next to the boundaries. There wil
a random momentum flow through the boundaries as w
since momentum is not conserved in this case. Howeve
one also includes random energy or mass transfers betw
the cells, which is not done in this work, their flow throug
the boundaries should be set to zero in order to maintain
energy and mass of the fluid constant.

VI. APPLICATION FOR WEAK SHOCKS

As an illustration we will study the effect of fluctuation
and dissipation on weak shocks. The advantage of sho
for example, is in the dependence of the shock front width
viscosity. The front width and viscous coefficient show
linear interdependence@7#. The weakness of the shock
necessary for satisfying the near-equilibrium requireme
which was a basic assumption in the derivation of Eq.~5!. In
addition, the description of shocks exhibits an acute need
consistent inclusion of dissipation which has a dominant r
in the study of flow discontinuities. For the outcome of ce
tain fluid dynamical phenomena, the width and structure
shock fronts is of great relevance. A good example is son
minescence. The self-collision of a converging spheri
shock yields infinite temperature and pressure in the v
center of the bubble if the shock front is modeled as a sh
discontinuity ~Sec. II, Chap. XII, of Ref.@7#!. However, if
viscosity is included and the shock front has a finite wid
the central temperature becomes finite as well, but its am
tude continuously being hypersensitive to the shock wi
@8#. The gradients are enormous and the number of parti
involved in the light emission are only of the order of 106.

Unfortunately, in numerical hydrodynamical codes v
cosity is not easy to control. This is partially due to t
presence ofnumerical viscosityinherent to all numerica
methods. It increases with increasing numerical cell sizeDx,
and the width of shock fronts is proportional to it. We w
use Dx as length unit in our calculations presented in t
examples below. Including dissipative terms in the equat
of motion, while decreasing the cell size to a level where
numerical viscosity is negligible compared to the physi
one, may yield other problems, such as instabilities aris
from the derivatives in the viscous terms. Therefore, in ma
cases numerical viscosity is advantageous.

In our example we consider a one-dimensional ideal
enclosed in a box and moving with a relatively low veloc
v0 to the right. A weak shock propagates in the oppos
direction. Formallyv0 /cs!1, wherev0 is the velocity with
which the gas hits the right wall andcs the sound velocity in
the noncompressed gas. (r12r0)/r0!1, wherer0 and r1
are the densities of the noncompressed and compressed
respectively. If we ignore the fluctuations and zoom in t
shock front region, we obtain a set of density profiles
different correlation lengths~Fig. 4!. This means increasing
viscosity in accordance with Eq.~28!. Note that since there is
no fluctuation included, by correlation length we mean
distance within which the integrand in Eq.~9! is not negli-
gible. The solid line with the steepest slope corresponds
zero viscosity parameter. The effect of numerical viscosity
remarkable if we compare this profile with the dashed o
The latter one represents the exact perfect fluid dynam
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solution by a step function. Such a solution could in princip
be obtained by decreasing the cell size below any limit.
the correlation lengthl increases, more and more cells a
involved in the calculation of the dissipative term~5!. There-
fore, the smoother and smoother shock profiles correspon
increasing physical viscosities. Including fluctuations sho
not cause a deviation of the ensemble average from the
fluctuating profiles, as shown in Fig. 5. However, Fig.
shows easily noticeable deviations of the mean values f
the nonfluctuating solutions in Fig. 4. It reports significa
nonlinearities arising because of the finite amplitude of
fluctuations.

FIG. 4. Increase of the local density in shock front profiles
different correlation lengths,l, i.e., different viscosities,h @Eq.
~28!#. On the horizontal axis the numbers label the numerical fl
cells included in the window delimiting the front region studie
The dashed line corresponds to the perfect fluid solution,h50.
This is not a result of a fluid dynamical calculation but a simple s
function. The solid curves represent numerical results. The stee
front corresponds toh50, manifesting numerical viscosity, while
the rest corresponds to increasing correlation lengths,l
50.6, . . . ,3.6Dx. The number of cells involved in the summatio
in the dissipative term~5! is cut off at 1, 2, 4, 5, 7, 8, and 10~see
Appendix B!.

FIG. 5. The ensemble average of fluctuating hydrodynam
calculations of a shock. The thin lines are members of the
semble, the circles are the average of the ensemble, and the
dashed line is the nonfluctuating profile.
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Structural entropy as tool for studying shock front profiles

In order to have a more quantitative description of wh
we can see in Figs. 4 and 6, we shall use the concep
structural entropy employed in the study of superstructu
in extended systems@9#. Following the notation from this
reference, let us consider a normalized, positive definite
tribution Qi over a one-dimensional lattice ofN cells:

(
i 51

N

Qi51, Qi>0.

We can introduce the so called delocalization measureD,
defined as

D[F(
i 51

N

~Qi !
2G21

, ~30!

and the well-known Shannon entropyS, defined as

S[2(
i 51

N

Qi ln Qi . ~31!

The definition of the structural entropy is

Sstr[S2 ln D. ~32!

The study of different shapes of the distribution,Qi , in the
(r ,Sstr) diagram, wherer[2 ln D/N, has important advan
tages. One remarkable feature of the structural entrop
that, unlike the Shannon entropy, it does not diverge as
cell size goes to zero. Practically, it is independent of
discretization of the distribution.

For the study of the shock front shape, we fixed a ‘‘wi
dow’’ on the x axis of a given width which was roughly o
the size of the largest expected front width, and studied
evolution of the density profile. Note that the structural e
tropy Sstr of a step-function-like shock front is sensitive
the location of the front with respect to the window.

Figure 7 shows the structural entropy as a function of ti
~or position of the front! as the front passes through the wi

FIG. 6. Same as Fig. 4, with fluctuations included. The so
lines represent the ensemble averages. Slight deviations from F
are due to nonlinearities arising because of the finite amplitud
the fluctuations.
t
of
s
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dow. The different curves stand for the different viscositi
Sstr is zero as long as the front is outside the window, and
a maximum around the middle. Generally, the position of
maximum for a step function strongly depends on the ratio
the maximum and minimum for that function. However,
our case the weakness of the shock makes the maxim
deviate negligibly from the midpoint of the window. W
shall compare the shapes of the different fronts at this p
because here the error, due to a possible slight shift betw
the fronts, will be minimal. Figures 4 and 6 are also ‘‘pi
tures’’ taken through the above mentioned window, at
moment whenSstr is at maximum.

As we can see in Fig. 8, the higher the viscosity a
smoother the profile, the moreSstr approaches the origin in
the (Sstr,r ) diagram. The rightmost point~a! corresponds to
the ideal nonviscous shock front, described by a step fu
tion, while the second~b! shows the effect of numerical vis
cosity in our calculation for a given grid sizeDx. Beyond
that, starting from~c!, we can see the effect of physical vis
cosity which dominates the numerical one.

With the help of Fig. 9, we can estimate the value of t
numerical viscosity. As in Fig. 8, point~a! corresponds to
zero physical viscosity, while~c! and further points stand fo
increasing physical viscosities which dominate the numer
one. We fit the calculated points with a curve that emerg
from density profiles approximated by the function

r~x!5r01
rmax2r0

2
$tanh@ahq~x2xcentr!#11%, ~33!

where we used the valuesa50.18 andq520.4. a is given
in units of (rkTDx/3)2q/Dx. Numerical calculations with
this method and gridsize should be used in cases when
structural entropySstr!7.431026 at point~b! in Fig. 9. This
means that such numerical calculations involve a numer
viscosity which can be estimated based on the fitted curv
hnum'0.1rvTDx/3. Only problems with viscosity exceedin
hnum should be handled with this method. Here, as we o

. 4
of

FIG. 7. Dependence of the structural entropySstr on the position
of the front relative to the window~see Fig. 4!. xcentr is the position
of the center of the shock. The maximum of structural entropy
obtained when the front is in the middle of the window. Differe
curves correspond to the different viscosities (top→ largest).
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provided a few points, the exact determination ofhnum is not
feasible, but the principle can also be used with more pre
calculations.

VII. SUMMARY

The method presented here provides us with an ensem
of fluid dynamical solutions, where fluctuations are includ
While fluctuations are averaged out within each fluid ce

FIG. 8. Structural entropySstr vs r @Eq. ~32!# for the shock front
profiles in Figs. 4 and 6. The discretized distribution in Eqs.~30!
and~31! is Qi[r i /(krk , wherer i is the density at thei th cell and
the summation is done over cells within the window containing
shock front profiles. The circles stand for the nonfluctuating cal
lations ~Fig. 4!, and the triangles for ensemble averages includ
the fluctuations~Fig. 6!. The first point ~a! corresponds to zero
physical and zero numerical viscosity. Points at~b! represent zero
physical and finite numerical viscosity. Starting from~c!, physical
viscosity dominates. No points can exist above the solid line~see
Ref. @9#!.

FIG. 9. Structural entropySstr vs the viscosity. For a perfec
fluid @point ~a!#, i.e., l50 andh50, the step function yieldsSstr

57.831026. The numerical viscosity with the sameh andl pa-
rameters@point ~b!# yields fronts of finite width and structural en
tropy of Sstr57.431026. hnum'0.1rvTDx/3 is the approximate
value of the numerical viscosity that can be inferred from the
@Eq. ~33!# along the physical viscosity points.~c! and further points
represent physical viscosities~see Fig. 8!.
se

le
.
,

the fluctuations among the cells are taken into account. T
is an important improvement in the description of mes
copic and/or very dynamical systems for two reasons:~i!
fluctuations and their consequences can be described re
tically, and ~ii ! viscous effects are treated more realistica
via the fluctuation-dissipation theorem. Physically this is a
parent in cluster formations and surface instabilities. Also
will be possible to study mesoscopic correlations, toget
with the corrections these effects cause for collective fl
dynamical observables.

APPENDIX A: DENSITY AND CURRENT DENSITY
CORRELATION RELATIONS

Let us consider the scalar density of some conser
quantity,r, and its corresponding three-dimensional curre
density vector,j i , i 51, 2, and 3. Imagine that for som
reason they fluctuate without violating the conservation la
Their mean values arêr& and^ j i&, and their deviations from
the means aredr andd j , respectively. The continuity equa
tion should hold:

]r

]t
1¹ i j i50. ~A1!

Taking the ensemble average of Eq.~A1!, we find the same
equation for the mean values. After subtracting the la
from Eq. ~A1! we again obtain a similar equation for th
deviations:

]

]t
dr1¹ id j i50.

Therefore, it is true that

]2

]t1]t2
CD~r12r2,t12t2!5¹1i¹2 jCi j

C~r12r2,t12t2!,

~A2!

where CD(r12r2,t12t2)[^dr(r1,t1)dr(r2,t2)& and Ci j
C(r1

2r2,t12t2)[^d j i(r1,t1)d j j (r2,t2)& are the autocorrelation
functions of the deviations at different points and time
They depend only on the relative positions and time diff
ence. Consequently, Eq.~A2! can be written as

]2

]t2
CD~r,t !5¹ i¹ jCi j

C~r,t !. ~A3!

In one dimension Eq.~A3! reduces to

]2

]t2
CD~x,t !5

]2

]x2
CC~x,t !.

The generalization for nonscalar densities is trivial.

APPENDIX B: DETAILS OF THE NUMERICAL
CALCULATION

We use a one-dimensionalSHASTA algorithm @10# for
propagating the flow variablesr, M , andE @Eqs.~11!–~15!#
@Sec. V B, item ~1!#. The correlated random momentu
transfers are generated according to Sec. V A, for all time
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the very beginning of the calculation@Sec. V B, items~5!
and~6!#. In our case this is possible because we discuss w
shocks, so that global equilibrium is a good approximation
predict thermal fluctuations.SHASTA and the momentum
transfers are performed successively in each time step.
low, we indicate the parameters necessary to reproduce
results. Since we only studied the shock front through a n
row window, the actual number of numerical cells for t
whole fluid is irrelevant. It can be anything as long as it is
more than the maximum number of cells involved in t
front profile and the front is far enough from the boundary
the fluid. An important parameter of theSHASTA algorithm is
vDt/Dx, a quantity which must be less than 1/2 in order
assure that the conservation laws hold. Herev is the flow
velocity, andDt and Dx are the time step and cellsize, r
spectively. In this work the length scale is given in terms
Dx in concrete examples. Since in our case the shock is v
weak, the maximum velocity is equal to the sound veloc
cs , which is chosen to becs50.21Dx/Dt in our calculation,
presented as an example. Similarly, the other parameter
v0 /cs51/85, t50.035Dt, andDN511000, wherev0 is the
initial velocity of the gas at which it runs into a wall som
where at the right,t is the correlation time, andDN is the
number of particles in one cell. The correlation length of t
ics

ir
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t

f
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ry
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are

e

fluctuations,l, was varied~and as a consequenceh was also
varied!, taking values of l50.6, . . .,3.6Dx. One may
chooseDx andDt and the mass of a particle,m, to be suit-
able for the particular problem studied. From the followin
relations one can find the rest of the quantities,r
5mDN/Dx andC052/3pr/mcs

2/t, whereC0 is the ampli-
tude parameter in the correlation function@Eqs. ~27! and
~29!#. Note that we assumed that the thermal velocityvT
equals the sound velocitycs .

We also assumed that the spatial correlation function
cut off at a number of cells,Nx , given by the condition
exp„2(NxDx/l)2

…,1023. This is meant to include thos
and only those cells where the correlation function make
significant contribution to integral~9!. In addition, the ran-
dom array technique presented in Sec. V A can produce
desired effects if the weight functionc(x) in Eq. ~24! is not
allowed to decrease sufficiently.
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