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Exactly solvable path integral for open cavities in terms of quasinormal modes
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We evaluate the finite-temperature Euclidean phase-space path integral for a scalar field in a leaky cavity. If
the source is confined to the cavity, after integrating out the environment one can expand the ensuing effective
cavity action in terms of theuasinormal mode$sQNMs)—the exact, damped eigenstates of the classical
evolution operator, known to be complete for a large class of models. Dissipation makes the effective-action
matrix nondiagonal in the QNM basis. Its inversion in the Gaussian path integral for the generating functional
thus is nontrivial, but feasible using a novel QNM sum rule. The results are consistent with those of canonical
guantization.

PACS numbgs): 05.30.Ch, 02.30.Mv, 11.10.Wx, 42.60.Da

[. INTRODUCTION the environment in a way guaranteed to be consistent with
guantum mechanicgi.e., not merely phenomenologigal
Open systems have been amply studied both in classicdlhis is a convenient starting point for approximations, quali-
and quantum physics: e.g., optics—cavity QEL appli- tative analysis, or numerics.
cable to laser physic2] or microdroplets, the spherical ~ This paper synthesizes the QNM and path-integral ap-
analog—and solid-state physics, where Joseph8prand  proaches to open wave systems. In Sec. Il we review the
Kondo phenomen{4], etc., all allow a “system-bath” de- classical QNM series. In Sec. Ill we present the path integral;
scription. The concept is also relevant to acoustiegy., since our ultimate interest is in the cavity fields, the source is
sound emanating from musical instrumerasmd on a very chosen to couple to those only, facilitating the elimination of
different scale to gravitational astrophys|é&. the bath. The form of the ensuing effective action’s damping
In several papers, we have studied open wave systenigrm is still well known, and QNM expansion in Sec. IV
(Eqg. (2.1) with a nontrivial mass density(x) below or, combines the merits of an effective action with those of a
equivalently [6], the Klein-Gordon equation[atz—a)z( discrete basi§10]. If not only the bath but also the cavity is
+V(x)]#=0). The waves propagate in a “universe”: an harmonic, a sum rule, also derived, now enables the cavity
open “cavity” plus an infinite “outside” (the bath. Dissi- integral over the expansion coefficients to be perforniieadr
pation is caused by leakage from the former to the 14#er nonlinear actions, this step is the starting point for perturba-
Under conditions specified later, the discrete set of cavityion theory; see Sec. VISince the action is bilinear and the
resonances oguasinormal mode$QNMs)—exponentially ~QNMs are not orthogonal in the usual sense, this means in-
decaying eigensolutions of théon-Hermitian evolution verting a nondiagonal infinite matriin contrast to the bath
operator—is complete in the cavity and hence can be useiitegral, which can be done for each degree of freedom sepa-
for exact expansions. This eliminates the outside from théately). The result agrees with that of canonical quantization:
description, and one no longer has to deal with the dense spth yield the same correlators. While the systems in Refs.
of modes of the univers@U). In terms of these QNMs, one [3.4,17 typically havefew degrees of freedom, only their
can establish a formalism which closely parallels the usuaPaths being essentially infinite, this paper carries out the
one for conservative, Hermitian systems. Applications in-analogous program for a dampfeld. In Sec. V we consider
clude perturbation theory and, of particular interest h@ra, @ source coupling to the field but not to its momentum. Then,
nonica) second quantizatiofi8,9]. For a review, see Ref. the action matrixcan be made diagonal; this parallels the
[10]. canonical approach. While the resulting formulas look sim-
Of course, there are many other ways to eliminate theler, some pitfalls are pointed out. Closing remarks are made
bath, leading to, e.g., Langevin and master equafigris].  in Sec. VI.
Especially suited for open quantum systems is the path inte-
gral [4,12], which one first writes down for the generating Il. CLASSICAL FIELDS
fun_ctional(or density matrix (_)f th.e universe. The pertinent For closed linear systems, eigenfunction expansions,
action follows from the Hamll_tonlar?. One then perform_s thepased on the normal modésMs) of the evolution operator,
integral over the bath only, in which the system variables, o 3 yital tool. However, in open systems, any state will
figure as constants. Since the bath is usually taken harmon&cay, so NMs do not exist. Consider the real scalar one-

(in fact, for a meaningful separation into system _plus bathyimensional wave equation in a cavity=x=<a,
one needs this or some other simplifying propgrthis can

be done exactly. In the remaining path integral over the p(X) 32 =3¢, (2.1
damped system variables, tledfective actionaccounts for

with a node
) d(x=0;t)=0 (2.2
*Present address: Dept. of Physics and Astronomy, SUNY Stony
Brook, Stony Brook, NY 11794-3800. at one end but with the outgoing-wave conditi@WC)
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b'(a*t)=—d(at) (2.3 By Ietti_ng t/0 in Eq. (2.6 one_obtains awo-component
expansionfor any ¢eI', proving completeness of the
at the other. The OWC means that, just outside the cavityQNMs. With
d(x,t)=p(x—1); itis stated at™, since for many models a
singularity in p(x=a) can cause a jump im’(x) [13]. (0 1p
Equation(2.3) renders the cavity leaky but not absorptive. H=1 2 0
The QNMs readp(x,t)=f;(x)e™'“i', with §

Eq. (2.1) becomes d,p="H e, in analogy with quantum me-
chanics. Equatiori2.4) for f; then readsifj=w; f;. Even
though the system is operi{ is symmetric: ¢ Hy)
=(H¢ x) for any ¢, xeI'. This yields “orthogonality”

[a>2<+p(x)wj2]fj=0, f;(0)=0, fj,(a+):iwjfi(a)‘
(2.9

One easily verifies that Im; <0, soe “i is indeed decay-
ing. The frequencies; , ordered according to increasing real
parts, are spaced yo~ mr/a, roughly as for closed systems

of size a. They occur in palrss?,jz—'w}‘ (unless R@;  y the usual proof, leading to uniqueness of the expansion
=0), and one can choode ;=fj". While ¢ is real, thew;  [Eq. (2.6) for the first component alone would not be
andf; are complex, hence the pairing of modes. uniqué. In Eq. (2.8), we have already implemented the nor-

Usually, eigenfunction expansions rely on Hermiticity of malization used in Eq€2.5),(2.6); in general the right-hand
the evolution operator, which only holds for closed systemssjde (RHS) is not real, stressing the difference between Eq.
One way out is to embed the cavity into a universex) (2.7 and a standard sesquilinear scalar product. The bilin-
<A with a node atX:A*)OC, and use the MU. Namely, earity of Eq(28) also fixes the phase dg .

Egs. (2.1)-(2.3) are the restriction tx<a of Eq. (2.1) on Instead of as an “orthogonal” expansion using a bilinear
0=x<oo, if p(x>a)=1 and ¢'(x>a,t=0)=—@(x>a,t map, Eq.(2.6) can also be regarded as a biorthogonal expan-
=0). However, then one has to deal with a continuumsion involving the standard inner product. This becomes use-
(Aw~m/A—0) instead of a discrete set of states in theful when several QNMs mergel5]; we will only consider
closed case. Also, the self-contained E1)—(2.3) show this briefly in Appendix A.

that even for a damped cavity tlihermgdynamics can be

studiedwithoutexplicit reference to the outside, which is the Il. ELIMINATION OF THE OUTSIDE

main goal when second quantizing the open system.

A QNM expansion in terms of the cavity variables only, ~We shall express the generating functional for the cavity
avoiding the disadvantages of the MU and exact for anyfield in terms of the QNMs. We want results for finite tem-
amount of dampingdoesexist if (a) p(x=a) has at least a Perature, so a Euclidean formulation is advantageous. Since
step discontinuity, demarcating a cavip) p(x>a)=1, so  EQ. (2.6 mv_olves two components, we must use a phase-
that the outside does not backscatter outgoing waves, efPace path integral
abling its complete elimination. See REL0], and references

(fj ,fk)=2wJ 5”( (28)

; B
therein. =T ex J d 31
First, one shows that the retarded Green function has the St < ! o (@) X(7)) 33
representation
B
f(x)f; . :Z’lfD X,7) €x f dr{ (@,
GR(x,y;t)=2 %w'(y)e*'“’it (0=x,y=a,t>0), ¢x.7) W’ 0 (¢
] j
2. atA 1. 1 -
29 —f dX<2—¢2+ §¢'2—i¢¢)H, (3.2
where thef;’s are normalized as in Ed2.8) below. Thus, 0 p

the dynamics is contained entirely in the QNMs. Second, .
since Eq.(2.1), as with any Hamiltonian problem, involves With D¢=D¢D¢p, A—c, andp=1/T (h=ks=1). By Eq.
both position and momentum, one introducpairs ¢ (2-83]' the fom:(zlg) ofbt/(he COUD'"’;Q OIfI ttf)le redlL6] sourcey
(b TR S _ ; to the cavity field only(see Sec.)lwill be convenient upon
=(¢, )" with ¢=p¢, so thatf;=(f,,—ipwf;)T. The : . . T
space of all outgoing-wave pairs] satJisfying IJEC]{&Z) and QNM expansion(2.6). Imaginary-time ordering’, is needed
(2.3, will be denoted ag" [14] ' in Eq. (3.1), whereg is an operator, but not in thenumber
Using these pairs, the time evolution generated by Eqiormula(3.2). Below, the meaning o will follow from the
(2.5) can be recast in the form context. The normalizatiod formally equals the path inte-
' gral with y+—0; in fact both are infinite, only their ratio is
meaningful. In the following we shall cancel all
d(1)=2 a(0f;, 2w;a()=(f;, (1)), (260  y-independent factors against their counterparg iithout
! reflecting this in the notation. The boundary conditions are
with aj(t):aj(o)e—iwjt and thebilinear mapfor LXE r ¢(0,T)= ¢(a+A,T)=O and, due to the trace |mp|IC|t in the
expectation(3.1), ¢(x,0)=¢(x,8). No conditions can be

imposed ong, which typically is completely discontinuous

at . .
=j + + . N
(& I( fo dx [LOOXCO+L(Ix 0]+ ((a)x(a) as the action does not contagy’. This also means that
(2.7  phase-space path integrals can be tritky,18. However,
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this in general matters only beyond the semiclassical apever, unlike Eq.(2.3), the action (3.4 is necessarily
proximation, which is exact for our linear probldrh9]. (imaginaryjtime reversal invariant.

Let us split the integral into a cavity and a bath factor:  Substituting Eq(3.4) back into Eq.(3.2) and using Bose
Z Y Dp=2_'[De¢. Z, [ D, where the latter runs over frequencies also in the cavity, one gets
fields on @,a+A) with a given boundary valueb(a,r).

The integral over bath momenta is trivial since it can be don _ 71f _ l 2
for each space-time grid point separately; introducin;S{X} z Do exp[TEm‘, {(d’m’x_m) 2|Vm”d’m("’1)|
é=x—a and using p(x>a)=1, one is left with 1 1
. : , a o n
25 Dby xSy}, where Sy=[Edrfide H(#2+ '), - dx(—|¢m|2+—|¢r’n|2—vm¢m¢m> ] 35
Expanding Po(&, ) =TE e " {Gr(@) (A~ €)/A o 12 2
+37_ i i i . L . .
:ig_rﬁ?u%znz(;ruglnzé)}h;;/vnh the Bose frequenciesy, This form completes the elimination procedure in that it
' ' manifestly involveseg. only.
T A2V2+3 “ [AZ2 + 72U
Sp=73 > |;+|¢m(a)|2+ > {%Mumﬁ IV. PERFORMING THE CAVITY-FIELD INTEGRAL
m u=1 IN THE QNM BASIS
AVE, Substituting ¢, == .a,, f, and x,==ib;, f; into Eq
JZm m JEIm ) :
+— Rebumd-n(a)] ] (3.5 [21], the “orthogonality”
a’ fi(a)f(a)
T A%12+3 “ A%+ 7Pu? f dxpf f =68 —i ——, 4.2
=5 2 | | m(P+ X |5 bunl? 0 e o)+ oy
2% 3A = 2A

which follows from Eqs(2.7) and(2.8), leads to

20 %] pm(@)]?
T2 2,a2.2 2 2| (3.3 _
TU(A“v,+ m7u%) Sixt=2"1| D¢,
where bum= bumt 2v2,bm(@)/{ Ul V2 + (Ul A)?]}. -
Changing tod,, does not alter the domajespecially not in XX szm jm| ; A, -mSjkm T 20jbj, —m
a ¢(a)-dependent walysince both¢>um_and Pum run over 4.2
all C, subject only tog, = ¢y _,, and dym= &} - Upon '
completing the square in E@3.3), the integral thus yields a .
#(a)-independent constant which cancels agast =Z f Dee
Dépy, T A%2+3 T w ~
Z—bexp{—Sb}zexp{Ezm: |¢m(a)|2 —# X ex T%[ ajmak,—msjkm bjmbk,—mﬂ]km] :
w 4.3
2/\31/?1n
u=1 772U2(A2Vr2n+ m2u?) Here,
~ Vil O(M) 0 — 0(— M) w; ]+ i w; wy
Sikm= = ] — f(a)f (@),

wj-l-wk

1
~ex{ T3, Sl onial]

for A—oo, (3.4 ~ by, O(-me;] fi@)f (@)

Nikm=—

iotv,  ioj—vn | ojtog
where to arrive at Eq(3.4) we useds;_,u”?(1+¢€%u?) ! 5
= m216— 7| €|/2+ O(€?) for e=m/Av,,, leading to the can- a—a +3 Bkm7jk;—m
cellation of theO(A) terms in the exponent on the first line. Im-Hm 4

The Caldeira-Leggett typel] exponent in Eq(3.4) is the
quantum finiteT equivalent of an Ohmic-damping term. Its and #(0)=3. In Eq. (4.2), the djx term in Eq.(4.1) has
emergence is expected, given the correspondence betweeanceled bym parity. Thus, it is the second term in Ed.1)
our transmission-line environmeh20] and the oscillator which contributes; this makes E(#.2) nondiagonalcf. the
baths used Ol’iginalliﬁl.Z]: if A—>OC, waves escaping into the double Sunﬁjk)' The surface Va|ues(a)fk(a) in 3,’% are a
homogeneous outside string will never be scattered back, speasure of dissipation, since they would vanish if the field
that the outside acts as a sink. Since E4j) is dispersion-  pad a node also at=a [22]. Using a basis adapted to the
less, this damping is frequency independent. Classically thigpen system, the free-cavity and damping terms in the action
yields Eq. (2.3, where ¢’ is precisely the string tension; of Eq. (3.5) have been combined nicely in Eg.2).
apparently, this force equals ¢. This velocity proportion- The nontrivial ingredient in the completion of the square
ality is reflected by the first power aof,, in Eq. (3.4); how- (4.3 is the QNM sum rule

wj
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S‘jkm’;lk/mzz ’;ljkm:ék/mz fj(a)fﬁ(a)f/(a) S{X}:eXp( _TE bJ'mbk 7m';ljkm . (4.9
kK oo K ooy x (0jt o) (ot o,) jkm '
—0j/; (4.4

see Eq(4.8) and further. We thus obtain the final answer for lts relation to the Je[r‘g)]erature Green functid@(7)
S{x} in terms of theb;, [23], =—(T{aj()ay}) reads

07b by, mS{XHX 0= O"b abk |X O<T EX[{TE 2wi bjmf dre” [R7 al(T)]>

= 4w T f drydr, e7m(2" (T {a; (1)) a(m2)}) = — 400 TGk —m. (4.6)

where it is a standard result of path integrati@b] that [9], and compare residues on both sides. The value of the
differentiation (in our case ordinary partial differentiations first term on the RHS of Eq4.9) is irrelevant for the deri-
with respect to theliscreteset{b;,}) of S{x} automatically  vation of Eq.(4.4); in Appendix B it will be shown that, if
yields time-ordered expectation valysge below Eq(3.2)]. p(x=a) has a step, 3, fﬁ(a)/(wkjuwj):i[p(a*)
Substituting Eq(4.5) into Eq. (4.6), one obtains +1)/[p(a”)—1].
i _ 2 N2
ijwkajkm:%jk;im. @7 For ~]R /,. we nesad >k fk(a)/(wkl+ wj)
=24,[wG (a,a,w)]w:_wj. With f(w) [g(w)] solving Eq.
Quite generally, G is related to the real-timeGHi(t)  (2.4) (with wj—w) under the leftright) boundary condition
=—i0(t)([a;(1),a]) by Gum=Gf(ivy) for m=1 [26].  only, one has
Evaluating the analytically continu@i at the frequencies
ivym, EQ.(4.7) thus is readily seen to agree exactly with the
results found in Refl9] by canonical quantization.
Equation(4.4) will now be derived. Expanding into par-
tial fractions if j # /, one sees that the sum indeed vanishes
if 2y fﬁ(a)/(war ;) is independent of. This follows from

f(X,w)g(y,w)

GR(x<y;w)= W)

(4.10

where one can choosf w)=f(—w), and with W=fg’

fe(a) fe(a) ~ —gf’ the position-independent Wronskian oand g [10]
_ +20.8R(aa — o g p p g [10].
¥ ot o) 2 wy G (2.8~ ;) Together with the OWC forf(w;)=f; and g, Eq. (4.10
f2(a) yields
= @) 4.9
kK o
o
where the last step is valid because more generally one has 4oj fj(@)d,[0G (a’a’“’)]w?w,-

~ =iwd, f(a,0)+if (a)—d,f' (a7, 0;). (4.10
20, f(2)GR(x,a;— ) =if;(x). 4.9 J v :
For a proof, letw— = w; in the purely classical identity ¢ | \ere a double QNMIL5],i.e., iff satisfied the OWC up
BRIy @) — BR(X,y: — to O(w—w;j), the RHS w_ould vanish. However, excep_t in.
(x.yio) (xyi~ ) Appendix A we assume simple poles, so further evaluation is
needed. SOlV@?2+pwz]r9w f|wj= —2wjpf; by varying the

constantd,, f|w =h;f,, leading to

2w -
-2 BR(x,a;0)5 (.2 - 0)
1)

i—(f,f) (fj, )

hj’(x)sz(x)z—ij Xdyp(y)sz(y)=>hj’(a+)= > =iwjd, f(a,0)+ifj(a)-4a, f'(a",0)= ;
0 ff(a) fi(a)

since Eq.(4.11) vanishes for a double QNM one could have expected an ans\fer f;) [15], which here equals &, .
Substition into Eq(4.11) yields
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Zaw[a)éR(a,a;w)]w:_wjzfj‘z(a), (412 The a;, are now given by ajm=%f8‘+pr¢m f;
+(i/2a)])q§m(a)f (a)= (1/2w12)fg‘+dx<j§r’n i implying

completing the proof of the sum rulg.4) and therefore of k[wk/(w +wk)]f (a)f(@)aym=—iwja;,. Also using
Eqg. (4.3. 2 f(a)/w =2a [see Eq. (B2)] and ¢m(a)¢ m(@)

——|(¢m,¢_m)— 2i3wj@jmaj,—m, S{x} can be written
V. ONE-COMPONENT FORMS as

The canonical analysi®] suggests tha${x} also has a R
diagonal form(see Appendix Cif y couples only to the first S{x}=2_1] D¢ eXW’ T_E Ajm[20;bj —m—aj, —majm] |,
componentp. In this section we thus sgt=0, and consider im 5.5
S{x}. Then Eq.(4.4) implies [ (@) fu(a)/(wj+ wi) Tom '
=—ibjn, at once yielding With ajm=1v2+ 0 —iw;(|vyl+avd). Thealrn are no more
mdependenlisee Eq(5 D] as, up taaj,=a*; _, they were
w
S{X} exp[ TE Bjmb;. (5.1) in Sec. I\( Thus, eva!uatmgl E¢.5 dlrle-ctly |§ Ehfﬂcult, and
I| Vil Eqg. (5.1) is best obtained via the auxiliary fiell as before.
One can again write out th&, :
However, thef; are overcomplete for the one-component

expansion ofy, so theb. jm are no more independent, see . Do, a’
= f —Sexp T, f dx

above Eq. (5 D. It is thus better to write outbjy, i dmX -m

—(|/2wJ)f0 dx fJXm

at ajmf () (y)
. at — |7 dygp(x) ¢ n(y) > 1 ]
S{X}=eXP[—TJZm |7 axayator ay) ) ¥ el
56
f(0f(y) 5.6
TN Pt (5.2
wj(@;=i|vm|) V1. DISCUSSION

at 1. R 5 As mentioned in Sec. |, this work in a sense complements
=exp[ TE f dxdyi Xm)X—m(Y)Gm(X,y) ;. (5.3 [4,12] for the field modelg2.1)—(2.3). Comparing Secs. IV

m Jo and V clarifies why phase-space integration is essential in
Eq. (3.2). Another typical feature of our dissipative system is
- . . ) the nontrivial step needed to proceed from Eg2) to (4.3
Whﬂe it looks simple, Eq(5.3) [in particular the form(5.2) and thus to Eq(f.S). Also, thg analysis of sgfi&ﬂ has
of G] is hard to derive from Eq(3.5 without using the now been extended to critically damped excitations—the
power of the two-component expansion in the intermediatgordan-block modes of Appendix A.
steps, see below Eq(5.5. Using Eq. (5.2) for S{)}} By path-integral quantizing the open wave system, we
=(T. exp[ifgdrf‘gdx)A((x,r)fp(x,r)}}, $-¢ correlators follow have met the challenge set out in REd]. This leaves that

by functional differentiation with respect tp, without the papers second fphalleng(re]: the |.nclui|onlpf'magﬂa7r]. Fpr
problems of Eq(5.1). interactions confined to the cavity, the elimination ¢f in

. . . . Sec. Il is not affected; one simply has an extra term in the
Also the effective cavity action has a diagonal form, pos- ; .
. . . . .~ exponent of Eq.3.5). Section IV contains two stepSee
sibly useful when, e.g., numerically studying an interacting

) ) - Sec. ): the first, QNM expansion of the effective action,
ixtenglon(see Ref[9], Secs. VI and VI). Integrating ouly  goes through for any interaction since the QNMs are com-
if x=0,

plete. One obtains a generalization of E42), and any fur-
) ther analysis now benefits from the discrete basis. While the
a . ; . ) .
" S second step of exact evaluation will typically be impossible,
Sixt=2 f Dée exp[ T% {fo dX(l¢me by settingaj,— d/d(2w;Tb; ) in the interaction term one
can writeS{ x} as a functional of the fre8q{x} of Eq. (4.5
} [25]. With a toy actionS,= f5d73dx\ (x) p*(x,7), we get

1 1 1
- 3ol 3104k ol bl

:ZilJA D¢C eX[{ TE a]m 2wl'bj’—m S{X}:ZleX;{ _BmIZ.n'M 5m1+'”+m4
V +(y) 4
—2 ax,—m . ]5jk ! i
2 < 2 M il 54 2wy oy | A (6D
i —i
4 (@il (e |vm|>fj(a)fk(a)) | | | |
2(wj+ wy) with Aj =[5 dxnfj ---f;,. This form is useful when

(5.4  doing perturbatlon theory
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The final result(4.5 can also be found indirectly even
without using the canonical theory: its kern@.7) is the
analytic continuation oG k(). TheG (1) are the unique
QNM coefficients ofGR(x yit)=—i 0(t)([¢(x t), d(y)1),

a+d fnfr_5jk0(n+r+%—|\/|j)
ij - _wj)n+r+1—Mj

n r n,p r,q
obtainable by trivial time differentiations from it4,1) com- 4+ S p+a) i "(@fy (@)
ponent, the latter being the classical propagd®b) (see =0 g= p (—wj—wk)"““l
Ref.[9], Secs. Il and VIB, and Appendix)328]. Yet, the

o . o . . (A4)
present explicit path integration is of considerable interest,
since so few of them can be done in closed form unless they s 0( nar4+ 2o M-)
trivially factorize into ordinary integrals over NMs. Also, the L 2 !
calculation has uncovered new results on QNMs—e.g., Eq. (=) THTM
(4.49—which are useful already on the classical level.
(9 wloj uloy f(a,0)f(a,n) A5)
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APPENDIX A: JORDAN-BLOCK PATH INTEGRAL Six}=2"~ ngbc exp{T;;1 ; A mShm
In the main text we have assumed that all pole&ffw) .
are simpl€cf., e.g., the Fourier transform of E@.5)]. Here +2wjbj,im nH (AB)
we study the general case, following RgL5] throughout
[29]. For each QNM pole of ordeW; in GR(w) atw= wj, ", d
introduce ](x)=(n!) %90, f(x,@) for 0O=n=M;-1, T "% f(a,0)f(a, )
with f(Xx, w) defined above Eq(4 10. The conjugate mo- '
menta read O(Mm)—wd(—m)]+i
va[ﬂ (M) —wf(—m)] op (A7)
N wt+u
fl=—ip[off+71] (A1)

The first term of Eq(A5) cancels inS, see below Eq4.3).
(f’=0 forn<—-1), so than‘O f, is the QNM eigenvector, We claim that the resuit of EdA6) is

Wh|ch together witHf ”} I spans a so-called Jordan block ML 1r
of the Hamiltonian of Sec. Il S{X}:eXP{ 2T ,z 0jobfnbl G M
One main result of Ref.15] now reads: if one choosds (A8)

andg such that, for ali,

(9 j -1- n| aMk*l*I’| f f

(X, 0)=f(X,0) + O (0— w)M] o = ©p w o flanf(ap)
' ' e A2) km= (M, — 1=l (M—1-1)! 200\ + )

g(mN  O(—m)u
iNtrv, dp—vg

W(w) =200~ o)Mi+0[(0—w;)*M]

(A9)

(note the orders of the errgrsvhich is readily achieved, one

has the biorthogonality relation To verify this claim, it suffices to show th&af3] UJ/m

2:krSnkmg/km 5/5nu EkrSk]mgk/m; since Snkm
(f?, fl)=20;00nsrm 1 (0=N=M;—1,0=r<M,—1). = nandg ka g , these two relatinns are equiva-
! (A3) Ient To evaluat J/m, flrst for v,>0, substitute Eq9A7)
and(A9), doing X, by the product rule:

Expanding =2 al,f] and Xm= Sibi (2 n M,—1-u _
% n in*j ! ﬂw|wj 0")\ |w/ vm+|w A
=xM Jo ) in Eq. (3.5), the term withf ;' can again be inte- = —
Irme ol (M,=1-u)! vy +iN o,

grated by parts, usingd;+pw?]f]= p[Zw]fn l+fn 2]
and the OWCf | (at)=—1" l(@).In generalf0 prf M |y wi(a,pm)?

is not reduced to surface terms by EA3) in one step as in xf(a,w)f(a, )\)E (M "1 Zogato)atn)
Eq. (4.1), because of the second term in E41); iteration K

leads to (A10)

Mkl
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Rewriting w/[(p+ o)(pw+N)]=[o/(p+ o) =N (u+N\)]/
(w—N\) in Eqg. (A10), one recognizefl5]

Mk—ll f(X
~n o “ o ,M)f(y!ﬂ“)
CHYiO=2 D 2en—p)

(A11)

Replace Eq.(All) by Eg. (4.10, and in the latter use
f(w)=1(—w) to  write GR(x,a;—w):—f(x,w)/
[f'(a",w)+iof(a,w)]. With f'(a’,0)=ief(a,w)
—_zwj(w—w,-)Mi/f(a,w)+0[(w—wj)2Mj] [see Eq.(A2)],
this leads to

if (X, )
2f(a, )

wjf(X,w)(w—wj)Mi
2wf3(a,w)

+O0[(w— wj)ZMi],

wGR(x,a;—w)=
(A12)

generalizing both Eq$4.9) and(4.12. The error term of Eq.
(A12) does not contribute in E¢A14) below, and from now
on will be omitted. Substituting EqA12) [with x—a, and
(w,j)—(\,7) in the second partial fraction above Eq.
(A11)] into the upshot of Eq(A10), one finds

n M, —1-u
nu _&w|wj a)\/ |w/
mTnl (M,—1—u)!

voptio N f(a,w)f(a,N)
w, w—A\

v tiN @,

w,N—w, )M B wj(w—wj)Mi
27\ f%(a,\) 2wfi(a,w)

(A13)

This vanishes if #/, since then ¢—\) ! is regular while
n<M;—1 andu=0. If j=/, in the first term of Eq(A13)
use Yy tio)f(a,0)/[(va+tiN)f(a,N)]=1+O(w—N\); the
error term does not contribute as it cancals-(\) %, upon
which ()\—wj)'\"i yields zero in the final differentiation.
Handling the second term of E¢A13) analogously, one is
left with

n Mi—1-u . ,
w_oloy N o) (V= w)Mi— (0= )M
m-=nl (Mj—1-u)! 2(w—N\)

n Mjflfu
1l AT
2 nl (Mj=1-u)!

X@’ (0= )P\ =M~ 1P

1

_Eanua

(A14)

proving our claim forv,,>0; v,,<0 is similar, but factors
with v, cancel from the outset.
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For a check on the algebra and a closer look at the un-
usual Jordan-block excitations, comparison with canonical
quantization is instructive. Expand the Heisenberg field
d(1)==a](1)f]; the operatorsa] satisfy a coupledfor
differentn) system of Langevin equatiof8,9], from which
they may be solved in terms of the thermal and quantum
noise incoming from the outside, having a simple Planck

distribution (we omit the details Since Gﬁ(“’(t)
=—i6(t)([a](t),a;]) turns out to be related to thg of Eq.
(A9) as below Eq(4.7), the path integral and canonical ap-
proaches indeed agree for arbitrary QNM pole configura-
tions.

APPENDIX B: QNM SUM RULES

In Ref. [10], 3; f;(x)f;(y)/@;=0 (Z;=limy_..Z}L )
follows from GR(x,y;t=0)=0 in Eq.(2.5). However, point-
wise this only holds ifx#y. Settingp(X)= p(X)+ nd(x—a)
with finite p;, countour integration o6R(w) in the upper
half w-plane(only the large semicircle contributes, on which
one can use WKB method$30]) gives GR(x,x;0)=
—3n(x7)+n(x")]"* (n=p) if x<a or u=0, while
GR(a,a;0)=0 if u>0. This agrees with a real-time analysis
showing that  GR(x,x;0")=—[n(x")+n(x")]?
[GR(a,a;0")=0, u>0] while of courseGR(t=0")=0.
Now integrateGR in the lower half plane; comparison yields

0, O=sx<a or u>0,

f,(x)f;(x)
> | 2il[p(a)—1],

] Vi

x=a,u=0, (B1)

leading to the result for Eq4.8) quoted below Eq(4.9) if
u=0; for u>0,2,fi(a)/(w+ wj) =i.

For another sum, solve the trivial differential equation for
GR(w=0). One finds

Z fj(X)ij(y):

I w

—2GR(x,y;0)=2min(x,y)

(B2)

Clearly, ai(BZ) reproducesp(x)2; fi(x)fj(y)=2d(x—y)
for 0<x,y<a[10]. Forp(x<a)=const, Eqs(B1) and(B2)
become conventional Fourier ser{&y.

APPENDIX C: DIAGONAL TWO-VARIABLE QNM
EXPANSION

Motivated by “diagonal” series such as Eg&.2) and
(5.6) (also found in Ref[9]), we study theone-component
expansion

¢mw=§qnumw> (C1)
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for symmetric ¢: [0a]?>—C. Since [p (x)d>
—pfl(y)a§]¢(x,y)zo, ¢ is determined by a set of bound-

ary conditions specifying a unique solution to a hyperbolic

equation. Hencejf;(x)f;(y)} is grossly undercomplete in
the space of functions onOx<y<a. However, the expan-
sion (C1) is unique if X; a; converges absolutely. For a
proof, supposep=0, i.e.,

; a; f;00f;(y)=0. (C2)

Operating on(C2) with f8+pr(x)fk(x) shows that] ;i
=y —ifj(a)f(a)/(w;+wy)]

; a; f;(y)7x=0, (C3
while —id,(C3)|,- yields
; aj(wj—ipo’)f(@)yx=0 (C4
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(see Appendix B fom) and —pfl(a*)03(03)|af gives

Finally,
reads

wk(C3)|y=a+ (CH+iu(CH+if(a)(C x=y=a

2wkfk(a)ak=O = ak=0. O (C6)

The summability offa;} enables takinga behindX; to
arrive at Eqs(C4)—(C6): for u>0,y;,=0(j ~2) and this is
multiplied at most Withajwjzfj(y) wheref;(y) is bounded.
Hence,X; converges uniformly with respect o If ©=0,
'yjk=(9(j_1), but now the prefactor is at mostw; f;(y)
since EQ.(C5) is not needed. While we have not exhaus-
tively examined slowly converging or distributional series
(C1), the above suggests strongly that the only freedom then
is the addition oft/w; to a; if u>0; since we also supposed
convergenceat x=y=a, by Eqg. (B1l) even this freedom is
absent ifu=0 (step discontinuity.
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