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Path-ensemble averages in systems driven far from equilibrium
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The Kawasaki nonlinear response relation, the transient fluctuation theorem, and the Jarzynski nonequilib-
rium work relation are all expressions that describe the behavior of a system that has been driven from
equilibrium by an external perturbation. In contrast to linear response theory, these expressions are exact no
matter the strength of the perturbation, or how far the system has been driven away from equilibrium. In this
paper, | show that these three relatigand several other closely related resuétan all be considered special
cases of a single theorem. This expression is explicitly derived for discrete time and space Markovian dynam-
ics, with the additional assumptions that the unperturbed dynamics preserve the appropriate equilibrium en-
semble, and that the energy of the system remains finite.

PACS numbgs): 05.70.Ln, 82.20.Mj, 05.26-y

[. INTRODUCTION suitably defined ensemble of paths. In this paper, the path
ensemble is defined by the initial thermal equilibrium and the
If a system is gently driven from equilibrium by a small process by which the system is subsequently perturbed from
time-dependent perturbation, then the response of the systeliiat equilibrium. The left side of the above relation is simply
to the perturbation can be described by linear responsé averaged over the ensemble of paths generated by this
theory. On the other hand, if the system is driven far fromProcess. We arbitrarily label this the forward procesisb-
equilibrium by a large perturbation then linear response, angCipPt “F").
other near-equilibrium approximations, are generally not ap- ~Of €very such process that perturbs the system from
plicable. However, there are a few relations that describe th qu_|I|br|umb We can imagine ﬁ (ilorrespondln%.reverse pegur-
statistical dynamics of driven systems which are valid even ilnas,tilsi?n(glihztcir':ptgoRst;rt\év fe}osrnaeqﬁicl)irg)srittrjlﬁr?t ;nlj t?;occc?r?ssi de¥-
the system s dnv_e_n f_ar from eqU|I|b_r|um. These_ '”C'F‘de theing a formal time reversal of the dynamics. The right side of
Jarzynski nonequilibrium work relatiofi.—4], which gives

T ; ; o Eq. (1) is F, the time reversal ofF, averaged over the re-
equilibrium free energy differences in terms of nonequilib-
quiibrit gy o I quit verse process, and weighted by the exponentia3¥; .

rium measurements of the work required to switch from e ore B=1Kk.T, Tis the temperature of the heat bakh, s
[N B! 1

ensemble to another, the Kawasaki relatigh-o], which oltzmann’s constant, ani/; is the dissipative work. The
specifies the nonlinear response of a classical system to %1 o S d ! p: S
issipative work is a path function and is defined)ag

can be collecively called ~entropy’ producton fluctuation Y- W - WHETeW s the ota work done on the systern by
y by p the external perturbation and, is the reversible work, the

‘ttlhect)rert‘ns [tﬁO—ZG. I ‘:(V:lzl spemﬁc;llsy co;;uier t?? tr:a(\jnsnlant minimum average amount of work required to perturb the
uctuation theorem of Evans and Seafle$, 14 which deals oy iom from its initial to its final ensemble.

With_ _en';ropy production of_driven systems that are initially in = |, summary, Eq(1) states that an average taken over an
equilibrium. The Gallavotti-Cohefil2,13 fluctuation theo-  gnsemble of paths, which is generated by perturbing a sys-
rem addresses entropy production in nonequilibrium steadyem that is initially in equilibrium, can be equated with the
states, and will not be considered in this paper. average of another, closely related quantity, averaged over a
The relations listed above have been derived for a widgath ensemble generated by the reverse process. This relation
range of deterministic and stochastic dynamics. Howevelis valid for systems driven arbitrarily far from equilibrium,
the various expressions and applicable dynamics have sewnd several other far from equilibrium relations can be de-
eral commonalities: the system starts in thermal equilibriumrived from it. It is sufficient that the dynamics are Markov-
it is driven from that equilibrium by an external perturbation, ian, preserve the equilibrium ensemble, and that the energy
the energy of the system is finite, the dynamics are Markovef the system is finite. In the next section, | derive from these
ian, and if the system is unperturbed then the dynamics presonditions that such a system is microscopically reversible,
serve the equilibrium ensemble. In this paper, it will be EQ. (13), in a sense that will be made precig&his deriva-
shown that these conditions are sufficient to derive the fartion is somewhat more general than that given previously
from-equilibrium expressions mentioned above. Indeed, thel4]) The path ensemble average, 1), is an almost trivial

can all be considered special cases of a single theorem: Identity given that the dynamics satisfy this condition. This
derivation is given is Sec. lll, and various special cases are

(FYe=(Fe Py, (1) considered.

II. MICROSCOPIC REVERSIBILITY OF DRIVEN

Here, (F)¢ indicates the average of the path functigh SYSTEMS

Path functiongsuch as the heat and worire functionals of
the trajectory that the system takes through phase space. An Let us consider a classical system that can exchange en-
average of a path function is implicitly an average over aergy with a constant temperature heat bath, and which has a
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finite set of statesq e {1,2,3,...N}. The energies of the states the state energies at that time step. We say that the transition
of the system are given by the vectér If these state ener- matrix is balanced, or that the equilibrium distributiant)

gies do not vary with time then the stationary probabilityis an invariant distribution oM (t),

distribution, 77, is given by the canonical ensemble of equi-

librium statistical mechanics; m(t)=M(t)m(t).

e~ PEx Essentially this condition says that if the system is already in
P(X|,3,E)=Wx=m:exp{ﬁF—BEx}- (2)  equilibrium [given E(t) and 8], and the system is unper-
% turbed, then it must remain in equilibrium.
In this expression, the sum is over all states of the system Itis often convenient to impose the much more restrictive
andF(B,E)=— B In3,exp{—BE is the Helmholtz free  condition of detailed balance,

energy of the system. _
In contrast to an equilibrium ensemble, the probability M (U3 7(0);=M ()i m(1); . ©)

distribution of a nonequilibrium ensemble is not determined,, o tjcylar, many Monte Carlo simulations are detailed bal-
solely by the external constraints, but explicitly depends Oinced. However, it is not a necessity in such simulations

the dynamics and history of the system. Let us consider fq) and it is not necessary here. It is sufficient that the
stochastic dynamics with a discrete time scale, i ansition matrices are balanced.

€{0,1,2,3,..7}. The state of the system at tirés x(t), and Each time step of this dynamics can be separated into two
the path, or trajectory that the system takes through this stai§istinct substeps. At timé=0 the system is in state(0)

space can be represented by the veoter[x(0)x(1),  yjth energyE(0)y (o). In the first substep, the system makes
X(2),...xX(7)]. We make the assumption that the dynamics

/ S o a stochastic transition to a stai€1), which has energy
are Markoviar{ 27]. This implies that the probability of mak- E(0)y1). This causes an amount of energi(0)y)

ing a transition between states in a particular time step de- E(0)y(). to enter the system in the form of heat. In the

pends Onlﬁ'. on theTchurrent sltat_e of the S%Stem’ and not(;)n & cond substep, the state energies change Ei@) to E(1)
pr_ewgubs r|1story. he sing e'p;;me sLep yr|1am|cs are ﬁterdue to the external perturbation acting on the system. This
mined by t et;[rabrjlg_uor.\ matriki (t) whose elements are the requires an amount of WOrkE(1)y1)—E(0)y1,. This se-
transition probabilities; quence of substeps repeats for a totalrdfme steps. The

_ total heat exchanged with the reserva@, the total work

M (t =P[(t)—x(xt+1)]. 3 ’ :
(Ot 0= PLO = X( )] ® performed on the systei and the total change in energy

A transition matrixM has the properties that all elements AE are therefore
must be nonnegative and that all columns sum to 1 due to the 1

normalization of probabilities: Q[X]=Z,O [E(Wxt+1) = E(Oxn)], 0
M;;=0, for all i and j,
r—1
> My=1, for all j. W[X]:Zo [E(t+ Dy~ E(Mxar)ls ®
I
AE=E(7)xr)~E(0)y0)= W+ Q. ©

Let p(t) be a(column vector whose elements are the
probability of being in staté at timet. Then the single time

step dynamics can be written as The reversible workW,=AF=F[ B8,E(7)]—F[B,E(0)], is

the free energy difference between two equilibrium en-
_ sembles. It is the minimum average amount of work required
p(t+)=Mp(V), @ to change one ensemble into another. The dissipative work,
or equivalently as Wil x]=W[x]—W,, is defined as the difference between
the actual work and the reversible work. Note that the total
work, the dissipative work and the heat are all path func-
p(t+1)= E M(D)ijp(t); . ®)  tions. In this paper, they are written with script letters, square
: brackets and/or as functions of the patto emphasize this
The state energieB(t) and the transition matriced (t) fap_t. In contras\ E is a state function; it depends only on the
are functions of time due to the external perturbation of thdnitial and final state. _
system, and the resulting Markov chain is non-homogeneous Now, we will consider the effects of a time reversal on
in time [28]. The vector of transiton matricesv this Markov chain. In many contexts a time reversal is imple-
=[M(0),M(2),... M(7—1)] completely determine the dy- mented by permuting the states of the system. For example,
namics of the system. We place the following additional cond" & Hamiltonian system a time reversal involves inverting
straints on the dynamics; that the state energies are alway8¢ momenta of all the particles. However, it is equivalent,
finite (this avoids the possibility of an infinite amount of @nd in the current context much more convenient, to apply
energy being transferred from or to the systeand that the the effects of the time reversal to the dynamics rather than
single time step transition matrices must preserve the corrdhe state space. Thus, the time-reversed trajectarys a
sponding canonical distribution. This canonical distribution,Simple reordering of the forward trajectory(t) =x(7—t)
Eq. (2), is determined by the temperature of the heat bath andnd E(t) =E(7—t).
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We can derive the effect of a time reversal on a transitiorchange are also odd under a time reversal, but to avoid am-
matrix by considering a time homogeneous Markov chainbiguity a “A” always refers to a change measured along the
Let 7 be the invariant distribution of the time-independentforward process.
transition matrixM, given by the equilibrium canonical en- ~ We are now in a position to prove an important symmetry
semble. If the system is in an equilibrium ensemble then 4or the driven system under consideration. Bix|x(0),M]
time reversal should have no effect on that ensemble, and tH the probability of the trajectory, given that the system
probability of observing the transition—j in the forward Started in state(0). The probability of the corresponding
chain should be the same as the probability of observing theeversed path i®[X|%(0),M]. The ratio of these path prob-
transitionj —i in the time-reversed chain. Because the equi-abilities is a simple function of the heat exchanged with the
librium probability distribution is the same for both chains it bath,

follows that n .
P[x|x(0),M]/P[X|%(0),M] =exp{—BQ[x]}. (13

At the risk of ambiguity, a system with this property will be
described as microscopically reversifpe22,25.

We proceed by expanding the path probability as a prod-
uct of single time-step transition probabilities. This follows

Mjm=M;m;, for all i,j. (10

In matrix notation this may conveniently be written as

M =diag m)M " diag(7) ™. from the condition that the dynamics are Markovian,
Here, diagm) indicates a matrix whose diagonal elements 1
are given by the vectorr. M is referred to as th_e_ reversa_l of PIX|x(0),M] tHO PIx(t)—x(t+1)]
M [27], or as ther dual of M [30]. If the transition matrix - —=— .
obeys detailed balance, E@), thenM =M. PIX|%(0),M] T BLRt)—&(t'+1)]
It is easy to confirm thatM is a transition matrix; all t'=0

entries are nonnegative because all equilibrium and transition

o . For every transition in the forward chain there is a transi-
probabilities are nonnegative, and all rows sum to 1,

tion in the reverse chain related by the time reversal symme-
1 A try, Eq.(11). The path probability ratio can therefore be con-
~ T . . e o L
> Mji:_z M”.T,j:;:L for all i. verted into a product of equilibrium probabilities,
T i

! =1

) PLXO.M] Ty T(Oxern g7 PIX(E+1)BEWD)]
Further, we can demonstrate thdt and M have the same - - -

) . R b Y =0 t =0 t)|B,E(t
invariant distribution, [X[x(0),M] mOxy PLX(V|AE(M)]
7—1
9 =exp — E(t —E(t
S fym=3 Mym =, p{ B2, [EM)xir1)~ E(Dx)]
For the nonhomogeneous chain the time reversal of the =exp{—Bx]}-

vector of transition matricesyl, is defined as The second line follows from the definition of the canonical

R ensemble, Eq2), and the final line from the definition of the

M(t)=diad m(7—t)IM(7—t)" diad w(7—1)] . heat, Eq.(7).

(11 The essential assumptions leading to this condition of mi-

) o ) -~ croscopic reversibility are that the state energies are always
T_he time re\(er_sal operation is applied to each transition Mafinite, and that the dynamics are Markovian, and if unper-
trix, and their time order is reversed. Note that for the trany,rhed preserve the equilibrium distribution. These condi-
sition matrices of the reverse chain the t|me index runs fromions are valid independently of the strength of the perturba-
1tor, rather than O ta—1. ThereforeM(t) is the transition  tion, or the distance of the ensemble from equilibrium. The
matrix from timet to timet+ 1 [see Eq(4)], butM(t) isthe  extension to continuous time and continuous phase space

transition matrix from timeg —1 to timet, appears straightforward, although it is technically more dif-
A ficult to be completely rigorous. However, Jarzyngé| has
p(H)=M(t)p(t—1). (12 recently demonstrated that deterministic Hamiltonian system

coupled to many heat baths are also microscopically revers-
This convention is chosen so that the time indexes of théble.
various entities remain consistent. Thus, for the reverse chain

at timet the state i(t), the states energies a¢t) and the Ill. PATH ENSEMBLE AVERAGES
corresponding equilibriLAJm distribution i&(t), which is an We are now in a position to consider the path ensemble
invariant distribution ofM (t). averagdg Eg. (1)] detailed in the introduction. A system that

Another consequence of the time reversal is that the works initially in thermal equilibrium is driven away from that
and heat substeps are interchanged in the reverse chain. Téguilibrium by an external perturbation, and the path func-
heat, total work and dissipative work are all odd under a tim&ion F[x] is averaged over the resulting nonequilibrium en-
reversal: Q[ x]=—Q[X], W[x]=-WI[X], and Wy[x]=  semble of paths. The probability of a trajectory is determined
— Wyl X]. The total change in energy, and the free energyy the equilibrium probability of the initial state, and by the
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vector of transition matrices that determine the dynamicsset of values to a final set of values over some finite length of
Therefore, the average @f over the ensemble of trajectories time, then the change in the free energies of the correspond-
can be explicitly written as ing equilibrium ensembles can be calculated by repeating the
switching process many times, each time starting from an
equilibrium ensemble, and taking the above average of the
amount of work required to effect the change. In the limit of
instantaneous switching between ensemkles, change the
The sum is over the set of all paths connecting all possiblenergies of all the states in a single instantaneous juhip
initial and final states. Given that the system is microscopirelation is equivalent to the standard thermodynamic pertur-
cally reversible it is a simple matter to convert the abovebation method that is frequently used to calculate free energy
expression to an average over the reverse process. We fitdifferences by computer simulatigB81].
note that It is possible to extend Eq17) to a more general class of
relations between the work and the free energy cha8gg
p[x(0)|B,E(0)]P[x|x(0),M] _ ot BAE- BAF - BOIX] tShupposlt(a E:IEF:’;(VICV() wyr;e)retf)(W) is ?Ey finiti fun((:jt:jon o(;‘
< 2 2 Y e work. Then,F=f(—W), because the work is odd under
p[%(0)| 8,E(0)]P|%X(0),M a time reversal. Inserting these definitions into EY. and
— @t BWIX]-BAF rearranging gives

<f>F=§ p[x(0)| B,E(0)IP[x|x(0),M]F[x].

—e"Px]. (14) e (T

{(f(—W)e Py
The first line follows from the condition of microscopic re- (f( e

versibility Eq. (13), and the definition of the canonical en-  Recql thatA F is defined in terms of the forward process.
semble, Eq(2). Recall thatAF is the re_ver5|bl_e work of the Suppose that we have obtaine@ independent measure-
forward process, and thavy[ x] is the dissipative work. The  ments of the work required for the forward process, and

set of reverse trajectories is the same as the set of for"Varqu-independent measurements from the reverse process. An

(18

trajectories, and we defing[x]=F[X]. interesting question is what choice 6{)V) leads to the
Therefore, highest statistical accuracy foAF. For instantaneous
switching this question was answered by Benhg®,31] in
F)o= %(0)| B,E(0)1P[XIMTF[X]e AV % his derivation of the acceptance ratio method for calculating
(Foe Ex: PIXOBEOIPIHMIZIR] [X] free energy differences. For finite time switching Bennett's

= W derivation can be followed almost line for line. We therefore
=(Fe Dr- omit the details, and simply record the conclusions in the
present notation. The least statistical error will result if we

It is frequently convenient to rewrite E@L) as A
g Y @ take F=(1+exp{+pBW+C}) 1, and F=(1+exp{—pW

<]_-e7/3Wd>F:<j_->R, (15) +C})7l. Then
L A 1+exp{+BW+C}H 1)
where F has been replaced wittFe #Vd, and F with e—BAF:<( Fexp(+Cl. (19
g (T+exp{+ pW—Cp NP+ Cr- (19

The optimal choice of the consta@tis — BAF +Inng/ng.

This relation must be solved self-consistently, sidde ap-
A variety of previous known relations can be consideredpears on both sides.

special cases or approximations of this nonequilibrium path

ensemble average. In the simplest case we start with Eq. B. Transient fluctuation theorem

(15), and then setF=F=1 (or any other constant of the
dynamicg. Then,

A. Jarzynski nonequilibrium work relations

Another interesting application of the path ensemble av-

erage is to replace the finite function of the work used above
(e BWay = (1)z=1. (16) with a & function, F=8(BWy—BWyx]), F=8(BWy
+ BWy[X]). Plugging theseF’s into Eq. (1) gives

The right side is unity due to normalization of probability
distributions. We are now taking an average over a single {8(B8Wa—BWdx])e™Pa)e=(8(BWy+ BW4X]))r
path ensemble, and the remaining subscrifit,”‘becomes
superfluous. The dissipative worky, can replaced byy  Of
—AF, and the change in free energy can be moved outside _Bw,
the average since it is path independent. The result is the Pe(+8Wy)e 9=Pr(—BW),

Jarzynski nonequilibrium work relatigri—4,23, ) B ] ,
Here,Pr(+ BW;y) is the probability of expending the speci-

<e*ﬁW>:e*BAF (17) fied amount of work in the forward process, arRk
(— BWy) is the probability of expending the negative of that
This relation states that if we convert one system into anamount of work in the reverse process.Rg(— B8Wy) #0
other by changing the energies of all the states from an initialhen we can rearrange this expression as
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Pe(+BWy) Simulation data indicates that averages calculated with the
_—=8+BW"- (20) renormalized expression typically have lower statistical er-
Pr(= AWy rors[8]

The system of interest starts in equi”brium and is per- The probablllty distribution of a nonequilibrium ensemble
turbed for a finite amount of time. If it is allowed to relax can be derived from the Kawasaki relation, E2(), by set-
back to equilibrium then the change in entropy of the heating the state function to bg&=f[x(7)]=4J[x—x(7)], a
bath will be — 8Q, and the change in entropy of the systemfunction of the state of the system at time
will be BAE— BAF. Therefore, the total change in entropy
of the universe resulting from the perturbation of the system <e_BW>R,x
is — BO+ BAE— BAF = BW— BAF = BV, the dissipative Pred %, 7IM)=p[X|B.E(7)] o=y = (24)
work. Thus, Eqg.(20) can be interpreted as an entropy pro-
duction fluctuation theorem. It relates the distribution of €N-Here, pned(X, 7|M) is the nonequilibrium probability distri-
tropy productions of a driven system that is initially in equi- pution andp[x|8,E(7)] is the equilibrium probability of the
librium to the entropy production of the same system drivenggme state. The subscripk™ indicates that the average is

in reverse. As such, it is closely related to the transient flucyyer gl paths that start in stateIn contrast the lower aver-

tuation theorems of Evans and Seafl#$,14. The connec-  4ge is over all paths starting from an equilibrium ensemble.
tion between this fluctuation theorem, the Jarzynski nonequirhe nonequilibrium probability of a state is, to zeroth order,
librium work relation and microscopic reversibility was the equilibrium probability, and the correction factor can be

originally presented in Ref22]. related to a nonequilibrium average of the work.
There are several other far-from-equilibrium relations that
C. Kawasaki response and nonequilibrium distributions have been derived from, or are related to the Kawasaki re-

All of the above relations were derived from EG) by ~ SPOnse. ‘The transient time correlation functi()ﬁTCF)
inserting a function of the work. Another group of relations [34,39 gives another set of relations for the nonlinear re-
can be derived by instead settidgto be a function of the SPONse of a system, and are reputable of greater practical
state of the system at some time. In particular if we averagé’t'“ty than the Kawasaki response.relauon. Unfortunately it
a function of the final state in the forward process,@PPears that TTCF cannot be applied to the systems consid-

F=1[x(r)], then we average a function of the initial state in €"€d in this paper, since a crucial step linking the two for-
the reverse proces§:=f[$<(0)]' malisms[7] makes the assumption that the dynamics are

deterministic, and therefore that only an average over initial

(fIx(7)]e” PVaye = (F[X(0) ). c_onditions is needed._ Similarly, Evans and Morriss hz_ave de-
rived several interesting relations for the heat capacity of a

Therefore, in the reverse process the average is over the intonequilibrium steady sta{], but again these relations are

tial equilibrium ensemble of the system, and the subsequemtot generally applicable because it is assumed that the prob-

dynamics are irrelevant. We can once more drop reference tability of a trajectory is independent of the temperature of

forward or reverse processes, and instead use labels to indhe heat bath.

cate equilibrium and nonequilibrium averages:

(fIx(7)1eP"9) neq=(FIX()])eq. (21 V: CONCLUSIONS
All of the relations derived in this paper are directly ap-

plicable to systems driven far from equilibrium. These rela-
tions follow if the dynamics are microscopically reversible in

This relation(also due to JarzynskB2]) states that the av-
erage of a state function in a nonequilibrium ensemble

weighted by the dissipative work, can be equated with aMhe sense of Eq13). This relation was shown to hold if the

equilibrium average of the same quantity. dynamics are Markovian and balanced. Although | have con-
Another interesting relation results if we insert the same

. ; . centrated on stochastic dynamics with discrete time and
state functions into the alternative form of the path ensemblﬁhase space, this should not be taken as a fundamental limi-

average, Eq(19) (this is ultimately equivalent to switching tation. The extension to continuous phase space and time
F and F): appears straightforward, and deterministic dynamics can be
o - taken as a special case of stochastic dynamics.
(F[x(7) )= (f[X(0)]e F"0)g. (22) P y

This is the Kawasaki nonlinear response relatiér9], ACKNOWLEDGMENTS
applied to stochastic dynamics, and generalized to arbitrary ]
forcing. This relation can also be written in an explicitly !t iS @ pleasure to thank C. Jarzynski, D. Chandler, P. L.
renormalized forn{8] by expanding the dissipative work as CGeissler, and T. McCormick for their valuable discussions

— AF+W, and rewriting the free energy change as a workand suggestions. This work was initiated with support from
average using the Jarzynski relation, ELj). the National Science Foundation, under Grant No. CHE-

9508336, and completed with support from the U.S. Depart-
(fIx(7) ) e=(f[X(0) e PV /{e " PM)g. (23)  ment of Energy under Contract No. DE-AC03-76SF00098.




2366

[1] C. Jarzynski, Phys. Rev. Left8, 2690(1997.

[2] C. Jarzynski, Phys. Rev. &6, 5018(1997.

[3] C. Jarzynski, J. Stat. Phys96, 415 (1999;
cond-mat/9802249.

[4] G. E. Crooks, J. Stat. Phy80, 1481(1998.

[5] T. Yamada and K. Kawasaki, Prog. Theor. Phg8, 1031
(1967.

[6] G. P. Morriss and D. J. Evans, Mol. Physl, 629(1985.

e-print

[7] D. J. Evans and G. P. MorrisStatistical Mechanics of Non-

equilibrium Liquids(Academic, London, 1990
[8] D. J. Evans and D. J. Searles, Phys. Re%2F5839(1995.
[9] J. Petravic and D. J. Evans, Phys. Re\a& 2624(1998.

[10] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev

Lett. 71, 2401(1993.

[11] D. J. Evans and D. J. Searles, Phys. Re%0E1645(1994).

[12] G. Gallavotti and E. G. D. Cohen, Phys. Rev. L&d, 2694
(1995.

[13] G. Gallavotti and E. G. D. Cohen, J. Stat. Phg€, 931
(1995.

[14] D. J. Evans and D. J. Searles, Phys. Re%3E5808(1996.

[15] G. Gallavotti, J. Stat. Phy84, 899 (1996.

[16] E. G. D. Cohen, Physica 240, 43 (1997).

[17] G. Gallavotti, Chaos, 384 (1998.

[18] J. Kurchan, J. Phys. 81, 3719(1998.

[19] D. Ruelle, J. Stat. Phy€5, 393 (1999; e-print mp_arc/98-
770.

GAVIN E. CROOKS

PRE 61

[20] J. L. Lebowitz and H. Spohn, J. Stat. Phg&, 333 (1999;
e-print cond-mat/9811220.

[21] C. Maes, J. Stat. Phy85, 367(1999; e-print mp_arc/98-754.

[22] G. E. Crooks, Phys. Rev. BE60, 2721 (1999; e-print
cond-mat/9901352.

[23] E. G. D. Cohen and G. Gallavotti, e-print cond-mat/9903418.

[24] G. Ayton and D. J. Evans, e-print cond-mat/9903409.

[25] C. Maes, F. Redig, and A. Van Moffaert, e-print ngrc/99-
209.

[26] C. Jarzynski, e-print cond-mat/9908286.

[27] J. R. Norris, Markov Chains(Cambridge University Press,
Cambridge, 1997

[28] P. C. G. Vassiliou, Appl. Stochastic Models Data An&B,
159 (1997.

[29] V. I. Manousiouthakis and M. W. Deem, J. Chem. PHyE0,
2753(1999.

[30] J. G. Kemeny, J. L. Snell, and A. W. Knappgnumerable
Markov Chains 2nd ed.(Springer-Verlag, New York, 1976

[31] D. Frenkel and B. SmitJnderstanding Molecular Simulation:
From Algorithms to Applications(Academic, San Diego,
1996.

[32] C. Jarzynski(private communication

[33] C. H. Bennett, J. Comput. Phy22, 245(1976.

[34] G. P. Morriss and D. J. Evans, Phys. Rev35, 792 (1987.

[35] J. Petravic and D. J. Evans, Phys. Re\a@& 1207(1997).



