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Path-ensemble averages in systems driven far from equilibrium

Gavin E. Crooks
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720

~Received 30 August 1999!

The Kawasaki nonlinear response relation, the transient fluctuation theorem, and the Jarzynski nonequilib-
rium work relation are all expressions that describe the behavior of a system that has been driven from
equilibrium by an external perturbation. In contrast to linear response theory, these expressions are exact no
matter the strength of the perturbation, or how far the system has been driven away from equilibrium. In this
paper, I show that these three relations~and several other closely related results! can all be considered special
cases of a single theorem. This expression is explicitly derived for discrete time and space Markovian dynam-
ics, with the additional assumptions that the unperturbed dynamics preserve the appropriate equilibrium en-
semble, and that the energy of the system remains finite.

PACS number~s!: 05.70.Ln, 82.20.Mj, 05.20.2y
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I. INTRODUCTION

If a system is gently driven from equilibrium by a sma
time-dependent perturbation, then the response of the sy
to the perturbation can be described by linear respo
theory. On the other hand, if the system is driven far fro
equilibrium by a large perturbation then linear response,
other near-equilibrium approximations, are generally not
plicable. However, there are a few relations that describe
statistical dynamics of driven systems which are valid eve
the system is driven far from equilibrium. These include t
Jarzynski nonequilibrium work relation@1–4#, which gives
equilibrium free energy differences in terms of nonequil
rium measurements of the work required to switch from o
ensemble to another; the Kawasaki relation@5–9#, which
specifies the nonlinear response of a classical system t
arbitrarily large perturbation; and a group of relations th
can be collectively called ‘‘entropy production fluctuatio
theorems’’@10–26#. I will specifically consider the transien
fluctuation theorem of Evans and Searles@11,14# which deals
with entropy production of driven systems that are initially
equilibrium. The Gallavotti-Cohen@12,13# fluctuation theo-
rem addresses entropy production in nonequilibrium ste
states, and will not be considered in this paper.

The relations listed above have been derived for a w
range of deterministic and stochastic dynamics. Howe
the various expressions and applicable dynamics have
eral commonalities: the system starts in thermal equilibriu
it is driven from that equilibrium by an external perturbatio
the energy of the system is finite, the dynamics are Mark
ian, and if the system is unperturbed then the dynamics
serve the equilibrium ensemble. In this paper, it will
shown that these conditions are sufficient to derive the
from-equilibrium expressions mentioned above. Indeed, t
can all be considered special cases of a single theorem:

^F &F5^F̂e2bWd&R . ~1!

Here, ^F &F indicates the average of the path functionF.
Path functions~such as the heat and work! are functionals of
the trajectory that the system takes through phase space
average of a path function is implicitly an average ove
PRE 611063-651X/2000/61~3!/2361~6!/$15.00
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suitably defined ensemble of paths. In this paper, the p
ensemble is defined by the initial thermal equilibrium and
process by which the system is subsequently perturbed f
that equilibrium. The left side of the above relation is simp
F averaged over the ensemble of paths generated by
process. We arbitrarily label this the forward process~sub-
script ‘‘F’’ !.

For every such process that perturbs the system f
equilibrium we can imagine a corresponding reverse per
bation ~subscript ‘‘R’’ !. We shall construct this process b
insisting that it too starts from equilibrium, and by conside
ing a formal time reversal of the dynamics. The right side
Eq. ~1! is F̂, the time reversal ofF, averaged over the re
verse process, and weighted by the exponential ofbWd .
Here,b51/kBT, T is the temperature of the heat bath,kB is
Boltzmann’s constant, andWd is the dissipative work. The
dissipative work is a path function and is defined asWd
5W2Wr , whereW is the total work done on the system b
the external perturbation andWr is the reversible work, the
minimum average amount of work required to perturb t
system from its initial to its final ensemble.

In summary, Eq.~1! states that an average taken over
ensemble of paths, which is generated by perturbing a
tem that is initially in equilibrium, can be equated with th
average of another, closely related quantity, averaged ov
path ensemble generated by the reverse process. This rel
is valid for systems driven arbitrarily far from equilibrium
and several other far from equilibrium relations can be
rived from it. It is sufficient that the dynamics are Marko
ian, preserve the equilibrium ensemble, and that the ene
of the system is finite. In the next section, I derive from the
conditions that such a system is microscopically reversib
Eq. ~13!, in a sense that will be made precise.~This deriva-
tion is somewhat more general than that given previou
@4#.! The path ensemble average, Eq.~1!, is an almost trivial
identity given that the dynamics satisfy this condition. Th
derivation is given is Sec. III, and various special cases
considered.

II. MICROSCOPIC REVERSIBILITY OF DRIVEN
SYSTEMS

Let us consider a classical system that can exchange
ergy with a constant temperature heat bath, and which h
2361 ©2000 The American Physical Society
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2362 PRE 61GAVIN E. CROOKS
finite set of states,xP$1,2,3,...,N%. The energies of the state
of the system are given by the vectorE. If these state ener
gies do not vary with time then the stationary probabil
distribution,p, is given by the canonical ensemble of equ
librium statistical mechanics;

r~xub,E!5px5
e2bEx

(xe
2bEx

5exp$bF2bEx%. ~2!

In this expression, the sum is over all states of the sys
andF(b,E)52b21 ln Sx exp$2bEx% is the Helmholtz free
energy of the system.

In contrast to an equilibrium ensemble, the probabil
distribution of a nonequilibrium ensemble is not determin
solely by the external constraints, but explicitly depends
the dynamics and history of the system. Let us conside
stochastic dynamics with a discrete time scale,t
P$0,1,2,3,...,t%. The state of the system at timet is x(t), and
the path, or trajectory that the system takes through this s
space can be represented by the vectorx5@x(0),x(1),
x(2),...,x(t)#. We make the assumption that the dynam
are Markovian@27#. This implies that the probability of mak
ing a transition between states in a particular time step
pends only on the current state of the system, and not on
previous history. The single time step dynamics are de
mined by the transition matrixM (t) whose elements are th
transition probabilities;

M ~ t !x~ t11!x~ t ![P@~ t !→x~xt11!#. ~3!

A transition matrixM has the properties that all elemen
must be nonnegative and that all columns sum to 1 due to
normalization of probabilities:

Mi j >0, for all i and j ,

(
i

M i j 51, for all j .

Let r(t) be a ~column! vector whose elements are th
probability of being in statei at time t. Then the single time
step dynamics can be written as

r~ t11!5M ~ t !r~ t !, ~4!

or equivalently as

r~ t11! i5(
j

M ~ t ! i j r~ t ! j . ~5!

The state energiesE(t) and the transition matricesM (t)
are functions of time due to the external perturbation of
system, and the resulting Markov chain is non-homogene
in time @28#. The vector of transition matricesM
5@M (0),M (2),...,M (t21)# completely determine the dy
namics of the system. We place the following additional co
straints on the dynamics; that the state energies are alw
finite ~this avoids the possibility of an infinite amount o
energy being transferred from or to the system!, and that the
single time step transition matrices must preserve the co
sponding canonical distribution. This canonical distributio
Eq. ~2!, is determined by the temperature of the heat bath
m
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the state energies at that time step. We say that the trans
matrix is balanced, or that the equilibrium distributionp(t)
is an invariant distribution ofM (t),

p~ t !5M ~ t !p~ t !.

Essentially this condition says that if the system is already
equilibrium @given E(t) and b#, and the system is unper
turbed, then it must remain in equilibrium.

It is often convenient to impose the much more restrict
condition of detailed balance,

M ~ t ! i j p~ t ! j5M ~ t ! j i p~ t ! i . ~6!

In particular, many Monte Carlo simulations are detailed b
anced. However, it is not a necessity in such simulatio
@29#, and it is not necessary here. It is sufficient that t
transition matrices are balanced.

Each time step of this dynamics can be separated into
distinct substeps. At timet50 the system is in statex(0)
with energyE(0)x(0) . In the first substep, the system mak
a stochastic transition to a statex(1), which has energy
E(0)x(1) . This causes an amount of energy,E(0)x(1)
2E(0)x(0) , to enter the system in the form of heat. In th
second substep, the state energies change fromE(0) to E(1)
due to the external perturbation acting on the system. T
requires an amount of work,E(1)x(1)2E(0)x(1) . This se-
quence of substeps repeats for a total oft time steps. The
total heat exchanged with the reservoir,Q, the total work
performed on the systemW and the total change in energ
DE are therefore

Q@x#5(
t50

r 21

@E~ t !x~ t11!2E~ t !x~ t !#, ~7!

W @x#5(
t50

r 21

@E~ t11!x~ t11!2E~ t !x~ t11!#, ~8!

DE5E~t!x~r !2E~0!x~0!5W`Q. ~9!

The reversible work,Wr5DF5F@b,E(t)#2F@b,E(0)#, is
the free energy difference between two equilibrium e
sembles. It is the minimum average amount of work requi
to change one ensemble into another. The dissipative w
Wd@x#5W @x#2Wr , is defined as the difference betwee
the actual work and the reversible work. Note that the to
work, the dissipative work and the heat are all path fun
tions. In this paper, they are written with script letters, squ
brackets and/or as functions of the pathx to emphasize this
fact. In contrastDE is a state function; it depends only on th
initial and final state.

Now, we will consider the effects of a time reversal o
this Markov chain. In many contexts a time reversal is imp
mented by permuting the states of the system. For exam
in a Hamiltonian system a time reversal involves inverti
the momenta of all the particles. However, it is equivale
and in the current context much more convenient, to ap
the effects of the time reversal to the dynamics rather t
the state space. Thus, the time-reversed trajectory,x̂, is a
simple reordering of the forward trajectory;x̂(t)5x(t2t)
and Ê(t)5E(t2t).
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We can derive the effect of a time reversal on a transit
matrix by considering a time homogeneous Markov cha
Let p be the invariant distribution of the time-independe
transition matrixM, given by the equilibrium canonical en
semble. If the system is in an equilibrium ensemble the
time reversal should have no effect on that ensemble, and
probability of observing the transitioni→ j in the forward
chain should be the same as the probability of observing
transition j→ i in the time-reversed chain. Because the eq
librium probability distribution is the same for both chains
follows that

M̂ ji p i5Mi j p j , for all i , j . ~10!

In matrix notation this may conveniently be written as

M̂5diag~p!MT diag~p!21.

Here, diag~p! indicates a matrix whose diagonal elemen
are given by the vectorp. M̂ is referred to as the reversal o
M @27#, or as thep dual of M @30#. If the transition matrix
obeys detailed balance, Eq.~6!, thenM̂5M .

It is easy to confirm thatM̂ is a transition matrix; all
entries are nonnegative because all equilibrium and trans
probabilities are nonnegative, and all rows sum to 1,

(
j

M̂ j i 5
1

p i
(

j
M i j p j5

p i

p i
51, for all i .

Further, we can demonstrate thatM̂ and M have the same
invariant distribution,

(
i

M̂ j i p i5(
i

M i j p j5p j .

For the nonhomogeneous chain the time reversal of
vector of transition matrices,M , is defined as

M̂ ~ t !5diag@p~t2t !#M ~t2t !T diag@p~t2t !#21.
~11!

The time reversal operation is applied to each transition
trix, and their time order is reversed. Note that for the tra
sition matrices of the reverse chain the time index runs fr
1 to t, rather than 0 tot 21. Therefore,M (t) is the transition
matrix from timet to time t11 @see Eq.~4!#, but M̂ (t) is the
transition matrix from timet21 to time t,

r̂~ t !5M̂ ~ t !r̂~ t21!. ~12!

This convention is chosen so that the time indexes of
various entities remain consistent. Thus, for the reverse c
at timet the state isx̂(t), the states energies areÊ(t) and the
corresponding equilibrium distribution isp̂(t), which is an
invariant distribution ofM̂ (t).

Another consequence of the time reversal is that the w
and heat substeps are interchanged in the reverse chain
heat, total work and dissipative work are all odd under a ti
reversal: Q@x#52Q@ x̂#, W @x#52W @ x̂#, and Wd@x#5
2Wd@ x̂#. The total change in energy, and the free ene
n
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change are also odd under a time reversal, but to avoid
biguity a ‘‘D’’ always refers to a change measured along
forward process.

We are now in a position to prove an important symme
for the driven system under consideration. LetP @xux(0),M #
be the probability of the trajectoryx, given that the system
started in statex(0). The probability of the corresponding
reversed path isP̂ @ x̂ux̂(0),M̂ #. The ratio of these path prob
abilities is a simple function of the heat exchanged with
bath,

P @xux~0!,M #/P̂ @ x̂ux̂~0!,M̂ # 5exp$2bQ@x#%. ~13!

At the risk of ambiguity, a system with this property will b
described as microscopically reversible@4,22,25#.

We proceed by expanding the path probability as a pr
uct of single time-step transition probabilities. This follow
from the condition that the dynamics are Markovian,

P @xux~0!,M #

P̂ @ x̂ux̂~0!,M̂ #
5

)
t50

t21

P@x~ t !→x~ t11!#

)
t850

t21

P̂@ x̂~ t8!→ x̂~ t811!#

.

For every transition in the forward chain there is a tran
tion in the reverse chain related by the time reversal sym
try, Eq. ~11!. The path probability ratio can therefore be co
verted into a product of equilibrium probabilities,

P @xux~0!,M #

P̂ @ x̂ux̂~0!,M̂ #
5)

t50

t21
p~ t !x~ t11!

p~ t !x~ t !

5)
t50

t21
r@x~ t11!ub,E~ t !#

r@x~ t !ub,E~ t !#

5expH 2b(
t50

t21

@E~ t !x~ t11!2E~ t !x~ t !#J
5exp$2bQ@x#%.

The second line follows from the definition of the canonic
ensemble, Eq.~2!, and the final line from the definition of the
heat, Eq.~7!.

The essential assumptions leading to this condition of
croscopic reversibility are that the state energies are alw
finite, and that the dynamics are Markovian, and if unp
turbed preserve the equilibrium distribution. These con
tions are valid independently of the strength of the pertur
tion, or the distance of the ensemble from equilibrium. T
extension to continuous time and continuous phase sp
appears straightforward, although it is technically more d
ficult to be completely rigorous. However, Jarzynski@26# has
recently demonstrated that deterministic Hamiltonian sys
coupled to many heat baths are also microscopically rev
ible.

III. PATH ENSEMBLE AVERAGES

We are now in a position to consider the path ensem
average@Eq. ~1!# detailed in the introduction. A system tha
is initially in thermal equilibrium is driven away from tha
equilibrium by an external perturbation, and the path fun
tion F @x# is averaged over the resulting nonequilibrium e
semble of paths. The probability of a trajectory is determin
by the equilibrium probability of the initial state, and by th
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vector of transition matrices that determine the dynam
Therefore, the average ofF over the ensemble of trajectorie
can be explicitly written as

^F &F5(
x

r@x~0!ub,E~0!#P @xux~0!,M #F @x#.

The sum is over the set of all paths connecting all poss
initial and final states. Given that the system is microsco
cally reversible it is a simple matter to convert the abo
expression to an average over the reverse process. We
note that

r@x~0!ub,E~0!#P @xux~0!,M #

r@ x̂~0!ub,Ê~0!#P̂ux̂~0!,M̂
5e1bDE2bDF2bQ@x#

5e1bW @x#2bDF

5e1bWd@x#. ~14!

The first line follows from the condition of microscopic re
versibility Eq. ~13!, and the definition of the canonical en
semble, Eq.~2!. Recall thatDF is the reversible work of the
forward process, and thatWd@x# is the dissipative work. The
set of reverse trajectories is the same as the set of forw
trajectories, and we defineF @x#5F̂ @ x̂#.

Therefore,

^F &F5(
x̂

r@ x̂~0!ub,Ê~0!#P̂ @ x̂uM̂ #F̂ @ x̂#e2bWd@ x̂#

5^F̂e2bWd&R .

It is frequently convenient to rewrite Eq.~1! as

^Fe2bWd&F5^F̂ &R , ~15!

where F has been replaced withFe2bWd, and F̂ with
F̂e1bWd.

A. Jarzynski nonequilibrium work relations

A variety of previous known relations can be consider
special cases or approximations of this nonequilibrium p
ensemble average. In the simplest case we start with
~15!, and then setF5F̂51 ~or any other constant of th
dynamics!. Then,

^e2bWd&F5^1&R51. ~16!

The right side is unity due to normalization of probabili
distributions. We are now taking an average over a sin
path ensemble, and the remaining subscript, ‘‘F,’’ becomes
superfluous. The dissipative work,Wd can replaced byW
2DF, and the change in free energy can be moved out
the average since it is path independent. The result is
Jarzynski nonequilibrium work relation@1–4,22#,

^e2bW&5e2bDF ~17!

This relation states that if we convert one system into
other by changing the energies of all the states from an in
s.

le
i-
e
rst

rd

d
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set of values to a final set of values over some finite length
time, then the change in the free energies of the correspo
ing equilibrium ensembles can be calculated by repeating
switching process many times, each time starting from
equilibrium ensemble, and taking the above average of
amount of work required to effect the change. In the limit
instantaneous switching between ensembles,~we change the
energies of all the states in a single instantaneous jump! this
relation is equivalent to the standard thermodynamic per
bation method that is frequently used to calculate free ene
differences by computer simulation@31#.

It is possible to extend Eq.~17! to a more general class o
relations between the work and the free energy change@32#.
Suppose thatF5 f (W ) wheref (W ) is any finite function of
the work. Then,F̂5 f (2W ), because the work is odd unde
a time reversal. Inserting these definitions into Eq.~1! and
rearranging gives

e2bDF5
^ f ~1W!&F

^ f ~2W!e2bW&R
. ~18!

Recall thatDF is defined in terms of the forward proces
Suppose that we have obtainednF independent measure
ments of the work required for the forward process, a
nR-independent measurements from the reverse process
interesting question is what choice off (W) leads to the
highest statistical accuracy forDF. For instantaneous
switching this question was answered by Bennett@33,31# in
his derivation of the acceptance ratio method for calculat
free energy differences. For finite time switching Bennet
derivation can be followed almost line for line. We therefo
omit the details, and simply record the conclusions in
present notation. The least statistical error will result if w
take F5(11exp$1bW1C%)21, and F̂5(11exp$2bW
1C%)21. Then

e2bDF5
^~11exp$1bW1C%!21&F

^~11exp$1bW2C%!21&R
exp$1C%. ~19!

The optimal choice of the constantC is 2bDF1 ln nF /nR.
This relation must be solved self-consistently, sinceDF ap-
pears on both sides.

B. Transient fluctuation theorem

Another interesting application of the path ensemble
erage is to replace the finite function of the work used ab
with a d function, F5d(bWd2bWd@x#), F̂5d(bWd
1bWd@ x̂#). Plugging theseF’s into Eq. ~1! gives

^d~bWd2bWd@x# !e2bWd&F5^d~bWd1bWd@ x̂# !&R

or

PF~1bWd!e2bWd5PR~2bWd!,

Here,PF(1bWd) is the probability of expending the spec
fied amount of work in the forward process, andPR
(2bWd) is the probability of expending the negative of th
amount of work in the reverse process. IfPR(2bWd)Þ0
then we can rearrange this expression as
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PF~1bWd!

PR~2bWd!
5e1bWd. ~20!

The system of interest starts in equilibrium and is p
turbed for a finite amount of time. If it is allowed to rela
back to equilibrium then the change in entropy of the h
bath will be2bQ, and the change in entropy of the syste
will be bDE2bDF. Therefore, the total change in entrop
of the universe resulting from the perturbation of the syst
is 2bQ1bDE2bDF5bW2bDF5bWd , the dissipative
work. Thus, Eq.~20! can be interpreted as an entropy pr
duction fluctuation theorem. It relates the distribution of e
tropy productions of a driven system that is initially in equ
librium to the entropy production of the same system driv
in reverse. As such, it is closely related to the transient fl
tuation theorems of Evans and Searles@11,14#. The connec-
tion between this fluctuation theorem, the Jarzynski none
librium work relation and microscopic reversibility wa
originally presented in Ref.@22#.

C. Kawasaki response and nonequilibrium distributions

All of the above relations were derived from Eq.~1! by
inserting a function of the work. Another group of relatio
can be derived by instead settingF to be a function of the
state of the system at some time. In particular if we aver
a function of the final state in the forward proces
F5 f @x(t)#, then we average a function of the initial state
the reverse process,F̂5 f @ x̂(0)#:

^ f @x~t!#e2bWd&F5^ f @ x̂~0!#&R .

Therefore, in the reverse process the average is over the
tial equilibrium ensemble of the system, and the subsequ
dynamics are irrelevant. We can once more drop referenc
forward or reverse processes, and instead use labels to
cate equilibrium and nonequilibrium averages:

^ f @x~t!#e2bWd&neq5^ f @x~t!#&eq . ~21!

This relation~also due to Jarzynski@32#! states that the av
erage of a state function in a nonequilibrium ensemb
weighted by the dissipative work, can be equated with
equilibrium average of the same quantity.

Another interesting relation results if we insert the sa
state functions into the alternative form of the path ensem
average, Eq.~15! ~this is ultimately equivalent to switching
F and F̂ !:

^ f @x~t!#&F5^ f @ x̂~0!#e2bWd&R . ~22!

This is the Kawasaki nonlinear response relation@5–9#,
applied to stochastic dynamics, and generalized to arbit
forcing. This relation can also be written in an explicit
renormalized form@8# by expanding the dissipative work a
2DF1W, and rewriting the free energy change as a wo
average using the Jarzynski relation, Eq.~17!.

^ f @x~t!#&F5^ f @ x̂~0!#e2bW&R /^e2bW&R . ~23!
-

t
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Simulation data indicates that averages calculated with
renormalized expression typically have lower statistical
rors @8#.

The probability distribution of a nonequilibrium ensemb
can be derived from the Kawasaki relation, Eq.~23!, by set-
ting the state function to beF5 f @x(t)#5d @x2x(t)#, a d
function of the state of the system at timet ,

rneq~x,tuM !5r@xub,E~t!#
^e2bW&R,x

^e2bW&R
. ~24!

Here, rneq(x,tuM ) is the nonequilibrium probability distri-
bution andr@xub,E(t)# is the equilibrium probability of the
same state. The subscript ‘‘x’’ indicates that the average i
over all paths that start in statex. In contrast the lower aver
age is over all paths starting from an equilibrium ensemb
The nonequilibrium probability of a state is, to zeroth ord
the equilibrium probability, and the correction factor can
related to a nonequilibrium average of the work.

There are several other far-from-equilibrium relations th
have been derived from, or are related to the Kawasaki
sponse. The transient time correlation function~TTCF!
@34,35# gives another set of relations for the nonlinear
sponse of a system, and are reputable of greater prac
utility than the Kawasaki response relation. Unfortunately
appears that TTCF cannot be applied to the systems con
ered in this paper, since a crucial step linking the two f
malisms @7# makes the assumption that the dynamics
deterministic, and therefore that only an average over ini
conditions is needed. Similarly, Evans and Morriss have
rived several interesting relations for the heat capacity o
nonequilibrium steady state@7#, but again these relations ar
not generally applicable because it is assumed that the p
ability of a trajectory is independent of the temperature
the heat bath.

IV. CONCLUSIONS

All of the relations derived in this paper are directly a
plicable to systems driven far from equilibrium. These re
tions follow if the dynamics are microscopically reversible
the sense of Eq.~13!. This relation was shown to hold if the
dynamics are Markovian and balanced. Although I have c
centrated on stochastic dynamics with discrete time
phase space, this should not be taken as a fundamental
tation. The extension to continuous phase space and
appears straightforward, and deterministic dynamics can
taken as a special case of stochastic dynamics.
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