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Statistical mechanics of random two-player games
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Using methods from the statistical mechanics of disordered systems, we analyze the properties of bimatrix
games with random payoffs in the limit where the number of pure strategies of each player tends to infinity.
We analytically calculate quantities such as the number of equilibrium points, the expected payoff, and the
fraction of strategies played with nonzero probability as a function of the correlation between the payoff
matrices of both players, and compare the results with numerical simulations.

PACS numbegps): 05.20-y, 02.50.Le, 64.60.Cn

The adaptation to the behavior of others and to a complex The condition for a NE with @iven setof expected pay-
environment is a process central to economics, sociologyffs v* and ¥ may be written as
international relations, and politics. Game theory aims to
model problems of strategic decision making in mathemati- o x ol .
cal terms: Two or more interacting participants, called play- EJ: &y~ v'<0, x=0, X EJ: aiyi—v )_O v
ers, make decisions in a competitive situation. Each player 2
receives a reward, called the payoff, which not only depends
on his own decision, but also on those of the other players. In2 b y_ _ D v _ i
the generic setup a number of players choose between dif<« Xi9%j~ <0, y;=0, v, : xibjj—»"|=0 'V |,
ferent strategies, the combination of which determines the
outcome of the game specified by the payoff to each playefiyhere we have dropped tHeindices for simplicity. The first
Each player strives to achieve as large a payoff as possiblgolumn ensures that there are no pure strategies thus
One of the cornerstones of modern economics and gamgso no mixed strategigsvhich will yield a payoff larger
theory is the concept of a Nash equilibriddy; for an intro-  than »* to playerX and »¥ to playerY. Thus no player will
duction, also see Ref2]. A Nash equilibrium(NE) de-  have a reason to deviate from his mixed strategy. The second
scribes a situation where no player can unilaterally improvesolumn ensures that the mixed strategies may be interpreted
his payoff by changing his individual strategy given that theas probabilities and the third ensures tat ; ;x;a;;y; and
other players all stick to their strategies. However, this conanalogously for playel. In this situation there exists no
cept is thought to suffer from the serious drawback that inmixed strategy which will increase the expected payofKto
most games there is a large number of Nash equilibria withf v does not alter his strategy, and vice versa¥oNash'’s
different characteristics but no means of telling which onetheoren{1] states that for any bimatrix game there is at least
will be chosen by the players, as would be required of agne NE.
predictive theory. The third column in Eq(2) states that wheneve; is

This conceptual problem already shows up in the paradigstrictly positive, 3;a;;y;= " and whenevei;a;jy;— v* is
matic model of a bimatrix game between two play¥rand  strictly negativex; is zero. Thus for a given set of strategies
Y, where playerX chooses a so-callegure strategy X  played with nonzero probabilitout of 4V possible choices

€(1,... N) with probability x;=0, and playerY chooses the values of all nonzero components of a mixed strategy can
strategyY; e (1, . .. N) with probabilityy;=0. The vectors pe determined by solving the resulting linear equations
x=(Xg, ... Xy) and y=(yy,...,yy) are calledmixed =.a,y;=»*V i:x;>0 and Z;x;b;;=1¥ ¥ j:y;>0 subject
strategies and are constrained to thé\{1)-dimensional to the normalization condition.

simplex by normalization. For a pair of pure strategies)( Apart from applications in economics, politics, sociology,

the payoff to playeiX is given by the corresponding entry in and mathematical biology, there exists a wide body of math-
his payoff matrixa;; , whereas the payoff to play#tis given  ematical literature on bimatrix games concerned with funda-
by bj;. The expected payoffo player X is thus given by mental topics such as exact bounds for, e.g., the number of
v(X,¥) =2 jxja;;y; and analogously for playeY. A Nash  NE [3] and efficient algorithms for locating thefd]. For
equilibrium (x*,y*) is defined by games even of moderate size a large number of NE are
found, forming a set of disconnected points. In general
the different NE all yield different expected payoffs to the
players.

However, many situations of interest are characterized by

V(X*,y*) =max*(X,y*)
X

@ a large number of possible strategies and complicated rela-
(X% ,y*)=max¥(x*,y). tions between the strategic choices of the players and the
y resulting payoffs. In such cases it is tempting to model the

payoffs by random matrices in order to calculaypical
properties of the game. This idea is frequently used in the
*Electronic address: johannes.berg@physik.uni-magdeburg.de statistical mechanics approach to complex systems such as
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spin glasse$5,6], neural network$7], evolutionary models ces, and«=1 is the so-called symmetric casg;=bj;,
[8,9], or hard optimization problemfsl0,11]. Recently this where the two players always receive identical payoffs.
approach has been used to investigate the typical properties Thus the parametex describes the degree of similarity

of zero-sum gamelsl 2] obeyinga;; = —b;; . A partial analy-  between the payoffs to either player, and can be used to
sis of bimatrix games using the so-called annealed approxeontinuously tune the game from a zero-sum game to a
mation was given in Ref.13]. purely symmetric game. In the former case, the gain of one

In this paper we investigate the properties of Nash equiplayer is the loss of the other, so generally negakivarre-
libria in bimatrix games with a large number of pure strate-sponds to a competitive situation, whereas for positive
gies and random entries of the payoff matrices. In this apthere are many pairs of strategies which are beneficial to both
proach characteristics of the game are encoded in thplayers.
distribution of payoff matrices—with only a few
parameters—instead of the payoff matrices themselves. Us-
ing techniques from the statistical mechanics of disordered
systems such as the replica trick we calculate the typical

number of NE with a given payoff. _ In this section we construct an indicator function which is
The paper is organized as follows: Having set up the;erg at a NE with payoffs* and +¥ to playersX and Y,

probability distribution of payoffs to be considered, we CoN-respectively, and nonzero everywhere else. This function
struct an indicator function for NE which will allow us to \yill be made the argument of a properly normalized Digac
count the number of NE. Then the average of the logarithmyynction. Integrating the Dirad function over the mixed

of the nu_mbe_zr qf NE over the_ disorder will b_e Ca|CU|at9d-strategies of both players, we are effectively counting the
The solution is discussed both in game theoretic and geomefymber of NE with the specified payoffs. From the resulting
ric terms, and is compared with the results of numericalpectrum of NE the statistical properties of NE in bimatrix
simulations. Finally, we give a summary and an outlook togames may be deduced. Since we expect the number of NE

Il. ENTROPY OF NASH EQUILIBRIA
AND THE INDICATOR FUNCTION

future developments. to scale exponentially with the size of the game our central
tool of investigation will be theentropy of Nash equilibria
. DISTRIBUTION OF PAYOFF MATRICES defined byS(v*,7Y) = (1/N)In M(#*,+Y), whereM(v*,1Y) is

] ] ) ] _ the number of NE with the specified payoffs per unit interval
We consider bimatrix games with square payoff matricesyithin a small interval around* and ¥ . SinceN (%, 1)

{aij,bjj} wherei,j=1,... N, where the thermodynamic s expected to be an extensive quantity, we may assume that
limit consists ofN—. We assume that the entries of the g(,x vy is self-averaging, and in the thermodynamic limit
payoff matrices at different sites are identically and indepenihe ayerage value of the entropy will be realized with prob-
dently distributed. Since the two payoff matrices may begpjlity 1. Hence the central goal of our calculation will be to
multiplied by any constant or have any constant added t‘évaluate((S(vx M)

them without changing the properties of the game in any |, this framework the total number of NE is given by
material way, there is no loss of generality involved in con-

sidering payoffs of ordeN~ %2 and of zero mean. In the

thermodynamic limit one finds that only the first two mo- N:f d*dpYeNsS ) (4)
ments of the payoff distribution are relevant, as is generally '

the case in fully connected disordered systems described by

mean-field theories. Hence the entries of the payoff matricesg i the thermodynamic limit the NE will be exponentially
may be considered to be Gaussian distributed. Then the onlyyminated by the maximum of the cun®=max3(1*,1V).
property of the distribution of payoffs which is not fixed by Thjs implies that a randomly chosen NE will yield the pay-
these specifications is the correlatiometween entries atthe ffs where the maximum occurs with probability 1. On the
same site of the two payoff matrices. other hand, the line whet®(*, 1Y) =0 delimits the smallest

We thus choose the entries of the payoff matrices to bgng the largest values of,+¥ for which there is still an
drawn randomly according to the probability distribution exponential number of NE.

The three expressions may be encoded in a single condi-

N tion [14] by introducing the variables andy with
p({ay} by =11 ——— [14] by g y
ij 2mV1—«k
2 2 X, Xi>0
< expl — N(aij_ZKaijbij+bij) (3) ,;(.:
2(1- k?) ’ T 2 Ay x=o

®

i.e., a Gaussian distribution with zero mean, variandg¢ 1/

and correlation((a;; by ))= x 6 8; /N for all pairs (,j) and Y y;>0
(k,1). Here and in the following, the double angles denote V.=

the average over the payoff distributi¢8). For k=—1, Eq. ! E xibjj—vY, y;=0.
(3) includes a Diracs d(a;;+bj;) corresponding to a zero- :
sum game and we recover the situation of Ha2] as a
special casex=0 corresponds to uncorrelated payoff matri- Condition (2) may be written as
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o expression is the absolute value of the normalizing determi-
; ai;y;0(y;) — VX) =0, nant, i.e., the Jacobian matrix bf and1¥ given by

(6)

=%0(=%)~

a1 [ 8iO(=x) —a;0(y)
axy) \=by®G)  8;O(-y))

'Jy=§j®(—§j)—(; ;(i®(;(i)bij_vy):0’ . (10

so for positivex; , X;=x;, whereas for negative, we have

Xi=Z2j2;;y;0(y;) —v*. Furthermore we have;=0 if X;  which arises from the coefficients afandy in I* and 1.

<0 and Zja;;y;0(y;) —v*=0 for x;>0. The condition Since we are only interested in the absolute value of the
xi(Zja;y;—v*)=0 is thus satisfied automatically. Analo- determinant, we are free to interchange rows and columns of
gous relations hold for playef. The new variables therefore this matrix. Rearranging the rows and columnsDbfsuch
serve as a convenient tool to encode the “complementary’ihat the p,N strategies withx;>0 and thep,N strategies

quantitiesx; and=;a;jy;— v* in a single variable. Analogous . V> . )

rexlationsy hold for playel. _The density of NE with payoffs \;vlljzn)g q?J gfaggogﬂgfn;ﬁitﬁr’s?zng (2:d+sptyf)1atb§nll\3|/ (tprle e

v andy” may thus be written as +p,) contributes to the determinant B. From Eq.(2) one
finds that the distinction betweem, and p, is immaterial,

, since the number of strategies played by playet any NE
always equals that played byand the determinant d is
zero for py#py. In the following we will assume that

where the mixed strategies are rescaledtg==;y;=N so  (1/N)In(detD) is a self-averaging quantity depending on

a(1%,1Y)

a(xy)

N WY) = f du&mm’&)fi[ 5(%)111 a(1%)

we define the measutu as px= Py . Splitting off the normalizing determinant, the aver-
age over the payoffs may now easily be performed, details of
du) =11 dx 5( > X0(%)— N). (8)  the calculations are given in Appendix A. The average over
! ! the disorder introduces a coupling between the replicas, and

Qne introduces the symmetric matrix of the overlaps between

This scaling of the mixed strategies assumes that the exten-. ;
mixed strategies of each player as order parameters,

sive number of strategies are played with nonzero probabil
ity, so the individual terms; andy; are all of orderO(1). 1
The mtegrals.ovex_zindy effecgvely amOL_mt to choosw?g a ngzﬁ E X0 (xH)XPO (XP),

set of strategies with;>0 andy;>0, solving the resulting :

linear equations for the components played with nonzero

probability, and checking if this candidate for a NE fulfills y 1 ~a ~a~pe ~p

conditions(2). It may thus be viewed as performing the so- dav=7 PIRGCIIGCIR (11
called support enumeration algorithm analyticdHy. .

IIl. CALCULATION OF THE TYPICAL NUMBER as well as their conjugateg’y . At nonzero values ok we

OF NASH EQUILIBRIA also obtain terms which couple the phase-space variables

In this section we calculate the averageS¢b, ,vy) over  to the auxiliary variable%i and similarly for playery, so we
disorder(3). In order to represent the logarithm of E@) we  also introduce the order parameters
use the replica-trick Ixzkleim%()(d/dn)/\/n and compute

the average oveN™ for integern taking the limitn—0 by 1 1

. . . . . X soavbm ob y ohTan va
analytic continuation at the end. Using integral representa- RabZN 2 IXPx O (x7), Rab=ﬁ 2 yiy;oy)).
tions of the Diracé function we obtain : ! 12

du&a>d“x?H f du(y?)dy?
2w )] 2@ Similarly, in order to include the normalizing determinant we
introduce the order parameters

n.N
NV )= H

Xexp( —i> XFO(—x¥)x?
a,i 1 1
N ) Pl > 0, pi=w > 0%, (13
+iY x{a;; YO (y? i X8 N4 N 7]
a,l,] a,i

—i2 YIO(=Y)y i 2 XO(XMbyy? giving the fraction of strategies played at a NE.
&) Al Anticipating the limith— 0, the quenched average of the
] ~ . normalizing determinant may be computed using results
—Wy; % ] (|[detD)|h", (9 from the theory of random matrices as outlined in Appendix
! A, giving ((In(/[det()|})))=Np(In p—1).
wherea runs from 1 ton. The most awkward term of this We finally obtain
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ddaRy [ ORuIRY, PP, BV a
(X YY) )=
(AGA ) al;[bj 2imIN g, 2l (kN) L
Xy Xy EXY—EY V¥ a,
dpades” | el f ore ’ )
2i7/N a 2i7/N

><exp{ NE aayay - KNE RabRab

N3 NS
X exp{N[G*+GY]}{(|[detD)[|)),  (14)

where

G*=In[] fdxzix exp{LX({x® x%)}

a

:=In];[ f ddx exp[ E 0% x20 (x2)xPO (XP)

+ K% RY,ix%%°0 (x°) — > ;) Q2 x2xP

—ig 7<a®(—§<a)§<a—iyx; %a—g EXX20 (x)
—; |5§®(7<"")], (15)
g

dyady
—InHJ y*dy

GY=In exp{LY({y2,y?))}

exp{ 2 YOIy er”)
X 2@ (vayivgb 1 X Gagb
+ 12 Ry O(YiY*— 5 2 iy
S YOy iy ¥ X By

—E p ®(ya)]

In the thermodynamic limiN— o the integrals over order
parameters in Eq(14) may be performed by saddle point
integration. In order to be able to analytically continue the

saddle point t;m—0 we choose the replica-symmet(RS)
ansatz for the order parameters

G-, G-—5 v a
G=ay. GY=a v asb
Rga:R)l(v Rga:R{ V a,
(16)
Rgb:Rx, Rgb:R%l) V a#b,

=(1/N)X;x;x; denotes the self-overlap of the mixed strat-
egies of playerX, Whereasq6=(1/N)2ixi1xi2 characterizes
the overlap between the mixed strategies corresponding to
two distinct NE, and analogously for play¥r

The integrals ovek?, x2, y?, andy? may be evaluated,
and the limitn—0 may be taken as outlined in Appendix
A 1l. G* and GY evaluated at the RS saddle point are sym-
metric with respect to an interchange of the playé@andy.
Thus the maximum o8(+*,+Y) occurs at equal payoffs and
in the thermodynamic limit NE with any other combination
of payoffs will be exponentially rare by comparison. Hence
we may restrict our discussion to the case= v¥= v, where
all order parameters are symmetric under interchange of the
players.

We thus obtain the average entropy of the number of NE
within the RS ansatz,

1
S,(»)= 5 (INA»,»)))

- 2
A i di01 Codo «Ri1
:2 eXtrql,quqquoleYRO’E‘p[—z + _2 - _2

KR%
+T+E——+f da db p(a,b)InL(a,b)]|,

17

wherepz(a,b) with k= kRy/Vqe0, denotes

. (18

1 a?—2kab+b?
px(a,b)= ——

——eX =
2m\1— 2 2(1-%2)

and thus echoes the original distribution of the payoffs, and

V—\/%b
R
q1—do
\/ p
+ = =
(d1—0o) (01 + o) + k*(R; —Rp)?
v—\/q—ob)
XG| — ———
Va1~ o
K<R1—R0>(Fb—v> _ aasE
X K

2 2
(R Ro)
\/Q1+QO e
—do

where K(x) is a shorthand forH(x)/G(x) with G(x)
=(1\2m)exp(-x?2), andH(x)=[;dy G(y). The extre-
mum is to be taken over all order parameters, The saddle-

(19
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point equations corresponding to E@.7) may be solved v*=1Y it is sufficient to calculate these distributions for a
gumencally, their solutions will be discussed in detail in gingle player only. We make use of the set of variabies
ec. v introduced in Sec. II, since the distributipR(X) is equal to
A. Distribution of the strategy strengths and px(X) for x>0 and equal th)\X()\— V%) for x<0. By the
the potential payoffs same token, the fraction of strategies with0 is equal to
R N A ) .

In this section we calculate the distribution of strategy.-=dX pPx(x)=1—p and the fraction of potential payoffs
strengthg,(X) = {((1/N)=; 8(x;— X))} and the potential pay- with \{'= 2" is [gdXx px(X)=p.
offs phx()\)=(<(1/N)2i5(2jaijyj—)\)>) at NE. Due to the Since all pure strategies are equivalent after averaging
symmetry of Eq.(14) under an interchange of players for over the payoffdtranslation invariandg we calculate

~ -~ o~ o~ a(x 1y
f du()du(y) 80— ] 1 6(|?>1J] (1) ;& ;))
px(X)= — PRERIS
Jdﬂ(x,y)ﬂ sUPIT s |l—== ‘
i j A(X,Y)
. ( | xa |ya
—I|m<< fdﬂ(x y) 8(x x)H 5(|Xa)1'[ 5(|ya)1'[ H 7 >> (20)
n—0 ( !y )

In order to be able to perform the average over payoffs occurring in both the numerator and the denominator, we have
represented the denominator by- 1 replicas. The average over payoffs now proceeds exactly as in Sec. Il. Introducing the
matrices of order parameteqg, again, thei=1 term may be split off from the saddle point integral without distorting the
saddle point in the thermodynamic limit. Taking the replica symmetric ansatz, one obtains

aXa

px(x)=lim [ explL X({x®,x*})}8(x" = X)

n—0 a

1 (X+v— \/qob)z] -
fda db p(a.b) 2mw(q1—qg)L(a,b) exp{ 2(9:—-0qo) J° x<0
Jp
=¢{ [ da db p(ab (21)
J P )\/Zw(ql—qo)L(a,b)

—k(Ry—Ro)X+v—ygeb)? 1 . . . — | ~
><exp{—( <Ry~ Ro)x+ v \/q—O) ——(ql+q0)x2+a\/%x—Ex}, x>0,
\ 2(91—do) 2

where £*({x2,x2}) was defined in Eq(15), the order parameters take on their saddle-point values, and we have dropped the
player indices of the order parameters. These functions have to be evaluated numerically, and will be discussed in Sec. IV C.

The same procedure may be used to calculate another quantity of interest, namely, the irattpure strategies which
areboth played with nonzero probability in two randomly chosen Nash equilibria. bikethis quantity is a measure of the
degree of similarity of two randomly chosen NE. Howewerdoes not directly depend on the self-overlap of the mixed
strategies, and may serve to test if there are strategies which are more likely to be played at a NE than others. Ftdm Egs.
and(16) one obtains

~a Sa

w=lim ][]

n—0 a

—expLX({x* )0 (xH O (x?)

:f da db g(a,b) P V_—Jq—(’b)

— GZ(—
[(d1—do)(g1+ Qo) + k*(R;—Rg)?IL%(a,b) Vadi1—do
K(Rl—Ro> Fb—v) _ fatE
X K2 . (22

q+a K(Rl Ro)
1% "
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B. Stability of the replica-symmetric saddle point

The results for the quenched average were derived on the

basis of the replica-symmetric ans@Eq. (16)]. In this sec-

J. BERG

PRE 61
A. S,(v) and the number of NE

Expression(17) for SXX») defines a family of curves

tion we investigate the stability of this ansatz with respect to%ith @ pronounced maximum shown exemplarily for0 in

small fluctuations around Eq16) in order to check if this

Fig. 1. As argued in Sec. Il in the thermodynamic limit the

ansatz is at least locally stable. We restrict ourselves to thB1aximum ofS,(») dominates the spectrum of NE.
special cas&=0, where the payoff matrices are uncorrelated Another point of interest is the value of where S, (v)

and the order parametelRs, andRY, do not arisg15]. We

crosses theS=0 axis. Due to the symmetry doB(v*,1Y)

consider small transversal fluctuations around the RS saddinder an interchange of the players this point indicates the

point, and expand Ed14) to second order in these fluctua-
tions to obtain

1
S=SRS+§ATMA+O(A3), (23

where A denotes a vector of small fluctuations in the off-
diagonal elements of the order parametgls, ., o',
andg’,, andM is given by

*GY

99369984

*GY
S
995p005q
9*G* P*GX
905p90sd  I9ap90tq
J*G* 9G¥
IWpIqsg  IApIAYg

—1 0

P*GY

99490
(24

P*GY

= -1
Iq%p99cq

Due to the symmetry of Eq14) under an interchange of the

players at the RS saddle point, only three different nontrivia
submatrices need to be evaluated. The criterion for the R
ansatz to be locally stable needs to be determined by worli)

ing out the paths of integration in the complex planeqdf
and @’. Denoting the replicon eigenvalues
9*GaqL, 00y, 9°GY130%,09%y, and d°GY/9qk,dqYy by
N1, Ay, and g, respectively, one obtains the criterion for
the local stability of the RS ansatz;

of

1
—[N A= (A3—1)?]<0,
A2
(25

1
—[Nh— (A g+ 1)2]<0.
N2
For details of the calculation, see Appendix B.

IV. DISCUSSION OF THE RESULTS

The quantityS,(») contains a wealth of information. We
begin by discussing the general shap&gfr) and the num-
ber of NE as a function ok, then turn to the statistical

NE with the maximum sum of the payoffs. Fa=—1 it
takes on the value 0 and increases monotonously svitht
k= K. it diverges to infinity;S,(v) no longer crosses th®
=0 axis. In this case there is an exponentially large number
of NE offering an arbitrarily large payoff to either player,
where an arbitrarily small fraction of strategies are played.
From the annealed approximation one obtais- —0.59,
the corresponding result from the RS expression for the
guenched average is.;~—0.58. This effect may be ex-
plained as follows: At large values &f players may pick a
few of the pairs of strategies, (), which offer a large payoff
to both of them and play them with a large probability. An
exponential number of NE may be constructed in this way,
even though their number is exponentially small compared to
the total number of NE. The entropy of NE given by the
maximumsS, of S, (v) is shown in Fig. 2.

We find S,_ _;=0, since there is only a single equilib-
rium point for zero-sum games, increases withk, so for
all k>—1 the typical number of NE scales exponentially
with N. The maximum of the typical number of NE is
reached for the case of symmetric games, wh8e,
~0.358. This result may be compared with a rigorous upper
bound for the maximal number of NE in a bimatrix game
derived using geometric methof4]: For any nondegener-
|ate NXN bimatrix game with largeN there are at most
095N equilibrium points. As expected, the typical-case sce-
nario does not saturate this bound, at least not for the distri-
sution of payoffs considered here. Nevertheless for—1

0.3 T T

0.2 r J

0.1 B

FIG. 1. The results of the quenched averagesSgfv) for

properties of NE and give a geometric interpretation of thex=-0.8 and 0, respectivelybottom and top, respectivelyFor
results, and finally discuss the distribution of potential pay-«=0 replica symmetry is locally stable for>0.67 as indicated by

offs and the strategy strengths.

the black dot.
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0.3
2 |
S 02 v,p
1k
0.1 |
L 1 L 96‘ * * -
) 0.05 N 0.4 0.15 T S 56 e e e 3 M Mo e 3 e e e
0 1 1 L
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K -1 -0.5 0 0.5 1

FIG. 2. The RS entropy of NB, as a function ok (solid line). *

The numerical results stem from enumerations with systemfsize FIG. 3. The payoffv (solid line) and the fractiomp (dashed ling
=18 averaged over 100 samples, and the error bars denote tlod strategies played with nonzero probability of the typical NE. The
statistical error. The inset shows the finite-size effects for the casanalytic results are compared with numerical simulations Nor
x=0. S is plotted against ¥, and the analytic result fdd—« is =50 averaged over 200 samples.

indicated by the filled diamond.

whereas the self-overlap of mixed strategigsand the over-

the typical number of NE investigated here and the maxima'ap 0o between the mixed strategies of different NE are
number of NE both scale exponentially with shown in Fig. 4.

The increase of the number of NE with the correlation A+ .—_1 we recover the results for zero-sum games with
between the payoff matrices may be explained as follows: Aalzqoz 7, v=0, andp=1/2 [12]. As « rises, the payoff

will be discussed in Sec. IV B, the payoffto bo)fh p!/ayers increases. This effect may be understood as follows: At in-
increases withw. For increasing values ob=yp*=y" the creasingx the outcome of a pair of strategieisj() which is
necessarybut not sufficient conditions for a NE, beneficial to playeK say, tends to become more beneficial to
playerY. As a result players focus on these strategies and the
2 ajy;<v* x;=0 Vi, payoff at a NE to both players rises. By the same token, the
! fraction p of strategies which are played with nonzero prob-
(26)  ability at a NE decreases witk and the self-overlag; of
the mixed strategies increases.
> xib;=<1" y;=0 V]
1

become increasingly easy to fulfill. In fact far=0 only a

single point on the simplexes of the two players fulfills Eq.

(26), whereas for larger a correspondingly large section of

the simplexes qualify as a candidate for equilibrium points 4
[12]. As a result the number of points which apart from Eq.

(26) obey (;a;;y;— v)x;=0 and Ex;b;; —»¥)y;=0, and

thus constitute NE increases wiikh 7o

B. Statistical properties of Nash equilibria

In the thermodynamic limit not only the number of NE
will be dominated by the maximum & (v), but a randomly

chosen NE will also give the payoffv=v*=1Y I\IIJ;I:L

: 2 55 5 s e e g e s g e S
=argmaS,(v) with probability 1, because the number of 0 | + e it
NE with this payoff is exponentially larger than the number -1 -0.5 0 05 1
of all other NE. Similarly, the self-overlap, the mutual over- ¥

lap, and the fraction of strategies played with nonzero prob- FiG. 4. The self-overlap of mixed strategias (solid line), the
ability will take on their saddle-point values evaluated at thegverlap g, between the mixed strategies of different Ndashed
maximum ofS,(») with probability 1. Figure 3 shows the line), and the ratiog,/q; (long-dashed line The analytic results
payoff dominating the spectrum of NE and the correspondare compared with numerical simulations fé=50 averaged over
ing fractionp of strategies played with nonzero probability, 200 samples fog, andN= 18 averaged over 100 samples tgy.



2334 J. BERG PRE 61
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FIG. 5. The fraction of strategies (top) played in both mixed p()?)
strategies of two randomly chosen NE and the squetr@f the 01 L |
fraction of strategies played at a single Nibttom againstx. The
analytic results are compared with numerical simulations Nor
=50 averaged over 200 samples fo, andN= 18 averaged over
100 samples fow. 0 ‘
-10 -5 0 5 10
The geometric structure of the set of NE may be eluci-
dated by considering the mutual overlgg=(1/N)=;x'x? ' '
between mixed strategies of different NE. &+ —1, where
) . 0.2 1
there is only a single NEg, equals the self-overlap; .
After an initial increasey, decreases with increasing The
initial increase ofqy is due to the rapid increase of the ~
: . o p(x)
lengths of the mixed strategy vectors, and is thus not seen in
the ratio between the overlaps. This result may be interpreted 0.1 ¢ i
geometrically in that the NE become more and more sepa-
rated with increasing, and fork— +1 they end up in nearly
uncorrelated positiongx*x2) — (x!)(x?)=0.21. At the same

time an increasing fraction of components of the mixed strat- 0_10 5
egies have;;=0, i.e., lie on an edge of the simplex.
Even though the NE spread over the simplex with increas-

ing «, players still tend to focus on specific strategies. This FIG. 6. The distribution of the potential payoffs<0) and the
may be seen by comparing the fraction of strategigsayed  strategy strengthsx¢0) for k=—1, 0, and 1 from top to bottom.
in both mixed strategies of two randomly chosen NE with
the corresponding resufi?, which would result if players
chosep strategies to be played with nonzero probabilities a
random. From Fig. 5 one finds that althoughdecreases
with « consistent with the spread of NE over the simplex, it
always remains abovp?. This behavior is consistent with

5 10

»Xto+r

- Thus we may conclude that for a typical NE &t0 the
replica-symmetric ansatz is self-consistent. Since we know
from the results of Ref{12] that replica symmetry is mar-
ginally stable atx=—1, one may in fact speculate that for
the idea that with increasing players focus on pairs of the typical NE the RS scenario holds across the entire range

strategies which are beneficial to both, of which there is aof K. Nevgrtheless there may Wel.l b.e d!stributions of the
large number for large values af payoffs which lead to nonuniform distributions of NE and to

Since NE are isolated points, replica symmetry describe eplica-symmetry bre_aking, pre_sumably distributiong with
a set of equilibrium points which are distributed uniformly arge values ok, or with correlations between the entries of

over a part of the simplex with opening angle arcese;). e Payoff matrices at different sites.

A replica-symmetry-breaking scenario would involve clus- o _

ters of NE, and maybe even clusters of clusters, so an ansafz Distribution of potential payoffs and the strategy strengths
explicitly including more than two overlap scales would  Figure 6 shows the distribution of strategy strengths
have to be employed along the lines of the Parisi sché&he () = (((LINY S, 8(x— X)) (x>0) and the potential pay-

However, at least fok=0, we found that replica symmetry B B ~
is locally stable for»>0.67 and most importantly at the °TS P () ={(IN)Z5(2ja5y;—\))) (x<0) calculated

maximum of the curve. Replica symmetry remained locallyin Sec. IllA. The decrease of the fraction of strategies
stable across the range »investigated; nevertheless it may played with nonzero probabilityf sdx px(X)=p with « is
become locally unstable again at sufficiently large values otlearly visible. One also finds a marked tendency for both
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players to use large values xfandy; for decreasing values tively compared with extensive numerical simulations, and
of p, as is demanded by the normalization condition. good agreement was found.
One also observes the formation of a “shoulder” in the  Another point of relevance is that for a sufficiently large
distribution of p(X) = p, (A — »*) (Xx<0) centered at-v. It correlation between the payoff matrices, an exponentially
X

P . large number of NE appears which offer arbitrarily large
shows that the distribution &f;a;;y; remains peaked at zero payoffs (on the statistical mechanics scate both players.

leading to the formation of the shoulderat —v asvin-  The number of such NE is of course exponentially small

creases. compared to the total number of NE; nevertheless these equi-
librium points may be relevant if players are free to choose
D. Comparison with numerical results equilibrium points.

A number of generalizations and extensions of these sce-
- . - narios may be envisaged at this stage, including the investi-
win Fig. 5 were obtained by using so-called vertex enumeragaiion of himatrix games with rectangular payoff matrices or
tion to enumerat_e all NE. Slrjce the computational _effort forpayoff matrices with correlations between the elements at
vertex enumeration scales with2.598', the system size had giferent sites. Furthermore, a scenario of games of several
to be restricted tdN=18 and averages were taken over 100p|ayers might be extended to describe cooperative games,
samples, resulting in pronounced finite-size effects. Neveryhere coalitions of players pool their payoffs and seek to
theless the increase of the number of NE withs clearly  maximize the gain of their respective coalition. In this con-
confirmed by the simulations. text it may also be interesting to consider the cas©(@N)

The numerical results for Fig. 8 in Fig. 4,pin Fig. 5,  players choosing betwedd(1) strategies.
and Fig. 6 were obtained by using an iterated variant of the
Lemke-Howson algorithni16,4] to locatea single NE and
by averaging the results fad=50 over 200 different real-
izations of the payoffs. Although some finite-size effects re- | would like to thank A. Engel, M. Opper, and M. Weigt
main, there is good agreement between the analytical and tfier fruitful discussions and the Studienstiftung des Deut-
numerical results. schen Volkes for financial support.

The numerical results for Figs. 2 anddy, in Fig. 4, and
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V. SUMMARY AND OUTLOOK APPENDIX A: QUENCHED AVERAGE

We analyzed the properties of Nash equilibria in large In the following we give a derivation of the quenched
random bimatrix games. To this end we constructed an indiaverage of the entropy of NE. In order to represent the loga-
cator function which was used to count the number of NErithm of A we replicaten times the expression for the num-
with given payoffs to both players. We found that the num-ber of NEA [Eq. (7)] to obtain Eq.(9).
ber of NE is exponentially dominated by NE with a certain ~ Treating the normalizing determinant as a self-averaging
payoff to both players, and a certain set of order parameterguantity, we may split off Ifjdet(D)|| with
This implies that for a randomly chosen Nash equilibrium
quantities such as the fraction of strategies played with a (5ii,®(—7(i) —aij@@j) )

= ~ ~ (A1)
—bijO(x)  §;:0(-y))

given probability, the self-overlap, and most importantly the =
payoff to either player take on a specific value with probabil-
ity 1.

We considered square payoff matrices and argued that fdfom Eg. (9), andseparatelyaverage the normalizing deter-
large games and identically and independently distributedninant over the disorder. Leaving out all the rows and col-
elements of the payoff matrices at different siteg), the ~ umns which have only the entry 1 along the diagonal and do
only relevant parameter of the probability ensemble is theot contribute to _the determinant, we are left with the deter-
correlation between elements of the same site of the payoffinant of a matrix
matricesa andb. We then calculated the quenched average
of the number of Nash equilibria, from which one may also ) 0 —-a’
deduce quantities such as the payoff, the self-overlap, and D'= “b' 0
the mutual overlap of mixed strategies at NE, and the distri-
bution of the strategy strengths and the potential payoffs. L, , .

We found that both the number of equilibrium points andWhere the matr|ce§ andb ar.e'thepN by pN submgtnces
the payoff to both players increase with the correlation be©f the payoff matrices containing the elements wit-0
tween the payoff matrices: With increasing correlation theandy;>0. We thus calculatg||In det(D)|])) as a function of
number of pairs of strategies which are beneficial to bothp,=p, exploiting the block-structure of the matri2 and
players grows. Players may focus on these pairs and achiewsing results from the theory of random matri¢2g]. Since
a larger payoff; the fraction of strategies played with nonzerove have Ifjdet(D)||=In||det@")||+ In||det(b’)]|, the correla-
probability decreases accordingly. From the values of thdion between the elements of these matrices has no effect.
saddle-point parameters one may also deduce information di¥e may thus use the circular theor¢@@], which gives the
the geometric properties of NE: With increasing correlationaverage density(w) of eigenvalues» of a pN by pN matrix
between the payoff matrices the NE spread out over widewith identically and independently Gaussian distributed en-
regions of the simplex. These analytic results were quantitatries with zero mean and variande *

: (A2)
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{(Wp)—l ||w||<\/5 where the indicesa and b denote the replicasa,b

plw)= . (A3) =1,..., n, and the average has been taken over the distri-

0 otherwise, bution of payoffs[Eq. (3)]. In order to obtain expressions

giving which factorize ini andj, we introduce the matrices of order
parameters

(0nldexD) )= 2Np | dap(w)]lo]l=Np(inp-1)
(A4)

where the integral is over the region in the complex plane

with ||w||</p. After this step, the only terms in Eq9) ngzi > V2O (yHYPe (YD), (AB)
where the disorder is present are N5 7 I .
QO ma ~ae ~an O ~a ~al - 1 et~ 1y me -
<<1|_J[ eXP['; X?aijy?@)(ﬁ)ﬂg X?(Xia)bijyja]>> AN Z ix3%Pe (xP), Rib=N 2 iy e (yd),
=exp[ —1U(2N) 2, (Ei X2 Ve Dy ew)) 1 1

Pa=y 2 OGN, Pi=g 2 00

zZ

- ix3%PE (X2 ivivae (va
ZKZ X0 (x )zj: YO )) using integrals ovep functions. The last pair of order pa-

rameters is introduced so the normalizing determinant may
~ ~ ~ ~ A A 1 H y H
+> %20 (xXPO (xP agh| | A5 be included as a function @ andp) . This procedure turns
Ei: TOODXO( I)Ej: YiYi (A5 Eq. (A5) into

dojpdasy ARG ARy [ dpYdpy” | -

_nY 1 X, YAXY X \

azbf 20N Lk f 277/(KN)1;IJ 22N (P pa)ex"[ IN 2, QA —ieN2, RuRL,

- Ay~~~ e~ 1 nn ~ ~ o~

+iN§ p;’ypg'y] ex azb ngxa®(xa)xb®(xb)+if<;) Rgbixaxb(a(xb)—z ;) q{a’bxaxb—i; x20 (—x?)x?
: fa O A A A= b ~ac ~aviAp L ~an
RO > p§®(xa)+exp[ 2 Ay OO+ Ry O (Y)Y 5 2 aay™y’

S VPO v 6;@@%]. (A7)

All order parameters have been introduced via conjugatetegrals overy; andy}. Anticipating saddle points of the
variables, excepRy, andRY,, which are conjugate to each integrals over conjugate order parameters along the imagi-

other. Care must be taken to scale all order parameters $& . L
. R ) ry axis, we also perform a change of variablegy
they are ofO(1) in the thermodynamic limit. Expression Ay P 9 3

(A7) may now be substituted back into B§). The simplex ~ —dab - and analogously foRy,, EZ”, a_ndﬁg'y. Including
constraint is incorporated by including yet another set ofthe normalizing determinantA4), we finally obtain Egs.

integrals (14) and (15).
dE);’y . X . X Tan oa Repli tri t
1;[ fZW/NeX ,Ng Ea'y_'é EaEi X20 (%) eplica-symmetric ansatz
In the thermodynamic limiN— oo the integrals over order
_iE EgZ yia@(yia)}_ (A8) parameters are dominated by their saddle point. Yet in order
a i to carry out the replica limesa—0 we have to make an

_ R ansatz for the values of the order parameter matrices. The
The integrals ovex? andx® now factorize and form a prod- simplest ansatz is the replica-symmetric one given by Eq.
uct of N identical terms and may thus be written as N~ (16). SinceG* andGY are symmetric under an interchange of
power of a single such term. The same point applies to théhe players we may drop the superscriptndy. We obtain
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d3d>@ 1 L The derivatives ofG* and GY are evaluated at the RS
G=In 5. &P 5 > (G414 Go)XAX2O (X?) saddle point. Due to the symmetry &* and GY under an
a ™ a interchange of the players we have to find the replicon ei-
1 S genvalues of three different submatrices Mf beginning
t3 g gox?0 (x¥)X°0 (x°) with 92G/30,pd0cq: At the replica-symmetric saddle point

there are three different entries in thgn—1)/2Xn(n
—1)/2 matrix of derivatives with respect to the off-diagonal

_ NENCI S ab@ (Yb :
+r(Ry RO); |xaxa®(xa)+KR0a2’b iX*x°0 (x°) elements ofy,, with a>b. These are

1 a1 nn P, for a=c,b=d
N _ aga__ _ ayb 2
Z(ql %); " ZquEb o i: Q; for exactly one pair of indices equal
. ) Mab%ed | R for azc,bd,
—iY X0 (- x)xe—ivy, X? (B1)
a a
where
—E>, X0 (X¥)-p> @)(}a)]. (A9)
a a P1=<X§Xg>_<xaxb><xaxb>v

A particularly efficient way to disentangle the three sums = XX — (XX (XX B2
over the replica-replica couplings is to use two coupled Q1= {XaXeXe) = (XaXo) {XaXo), B2)
Gaussian integrals over variables ternaeghdb echoing the

original average over the payoff matrices, which yield Ry= (XaXpXeXa) = (XaXp) {XcXa),

the angular brackets denote the normalized averages over

dxadx?
G=InJ dadbg;(a,b)Ia[J 5 Sedse o
11 f 5 expLX (XX )
T o moe _ @ 7
xexp =35 X (Gr+ 40X X0 (x%) (C-n)= e — :
1 f > ——explC (X))}
+k(Ry—Rg) Y, ix¥X20(X?) (B3)

and £* is defined in Eq(15) and the order parameters take
_ E(ql_qo)z ;(a)“(a_,_a\/ag %20 (x?) on their saddle-point values. In the limit—0 the replicon
2 a a eigenvalue of this matrix equals

+ibygeD, X*—i > X0 (~ X)X - i K@ M=PIm 201 Ry
a a a
f D(X,x)x?0(X)
—E>, X*0(X¥)-p>, (xa)} :f da db p(a,b)
: : f D(X,X)
==|nf dadb p(ab)[] fp&a,%a), (A10) L\ 272
a fD(x,x)x@(x)
wherepz(a,b) with k= kRy/ V00, is defined by Eq(18). B -
The resulting expression factorizes, givingdentical inte- jD(X’X)
grals overx andx, which may be easily performed by con- ) )
sidering the casex<0 andx>0 separgtely. The limin :f da db p(a,b) &—In L(ab)| , (B4)
—0 of Eq.(14) may now be taken, yielding Eq&L7)—(19). JE2
APPENDIX B: STABILITY OF THE REPLICA- whereD(x,x) is defined in Eq(A10) andL(a,b) is defined

SYMMETRIC SADDLE POINT in Eq. (15).
The replicon eigenvalue oG/ dq,,d0.q is evaluated in

In this section we outline the calculation of the eigenval-the same fashion. We obtain

ues of the Hessian matrix of E¢l4) in order to check if

ansatz(14) is locally stable against small fluctuations of the P, for a=c,b=d

order parameters. We focus on the so-called replicon modes  5°G o

[19], and restrict ourselves to the cageO. In this case the 5o~ 50— = Q. for exactly one pair of indices equal
Hessian matrix of fluctuations of E¢L4) around Eq(16) is R, for a#c,b#d,

given by Eq.(24). (BS)
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where A3=P3—2Q3+R3
o= (X252) — () (), [ pixse®)
=—f da db p(a,b)
Q2:<)A(§)A(b;(c>_<;(a;(b><;(a;(c>v (BG) D(X’X)
2
Ry~ (Rakokeka) — (Reko) (Reka). [ pisro) [ ok
In the limit n—0 the replicon eigenvalue of this matrix fD(?(,)A() fD(?(,)A()
equals
&2 2
No=P,—2Q,+R, =J da db p(a,b) é’w?Eln L(a,b)]| . (B10)

j PX)
A 27 2
D(X,X)X
) JD&,?()

2
. (B7)

az
—2In L(a,b)
v

zf da db p.(a,b)

The matrix9?G/dq,,dq.4 also consists of three different
entries. These are

- P, for a=c,b=d
J . -
—— =4 Q3 for exactly one pair of indices equal
99avbd¥cd R; for a#c,b#d,
(B8)
where
Py=— <XaXb;(a;(b> + <Xaxb><;(a;(b>!
Q3 == <Xaxb;(a;(c> + <Xaxb><;(a;(c>1 (Bg)

Ry=— <Xaxb;(c;(d> + <Xaxb><;(c;(d> .

In the limit n—0 the replicon eigenvalue of this matrix
equals

Since the replicon eigenvectors of these three matrices are
parallel, the eigenvalues of ER4) are those of the matrix

Ao —1 0 g
1 N\ N3 O
0 Az A, —1[ (B1D
Ag 0 —1 A

and we denote the coefficients of replicon-fluctuations as
59%, 89%, &9Y, andsqY . In order to determine the criterion
for local stability of the RS saddle point, we first eliminate
the fluctuations in the conjugate order paramet&ié and
59” near the saddle point. Frods/989"=0 anddS/d8q”
=0 one obtains 69*=(1/\,) (89— \38q’) and &g
=(1I\5)(89Y—N\359%), respectively.

This allows us to write the matrix of replicon fluctuations
in terms of 5g* and 5g” only yielding after some algebra

1 X
_ ’ 3
S=Srst E(ﬁqxéqy)l\/l (5qy +0(5%, (B12)
with
1 (MAo—A3—1 2,
= 5 . (B13)
A2\ 2N3 AAo—A5—1

Since the integrals over the variablgsandg¥ are now over
a real function, the criterion that the RS ansd#) is locally
stable is that both eigenvalues M’ are negative, giving

1
—[N A= (N3—1)?]<0,
A2

1 (B14)
)\—[)\1)\2—()\34— 1)?]<0.
2
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