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Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions
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The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated
under various bias conditions. The model of two particles on a ring with four sites is solved explicitly; the
resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consist-
ing of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and
values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approxi-
mation for the current in the case of strong bias acting against the highest barriers in the system is made and
compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.

PACS numbd(s): 05.40—a

[. INTRODUCTION been devoted to the TASEP with disordered potentibfs-
20]. For the general asymmetric case one has to resort to

The motion of particles in potentials that do not havenumerical simulations; we are going to present simulation
mirror reflection symmetry has attracted much attention inesults for the stationary current of lattice-gas particles in
the last years for several reasons. The interest extends froRPnsymmetric potentials, for various concentrations and val-
fundamental problems concerning the validity of the second!€s of the bias.
law of thermodynamicg1,2] to applications in biological _ Nonetheless, some analytical treatment can be given.
[3—7] and chemical systemi8], as well as for solid-state First, the case of very small periodic systems can be treated
deviceq9,10]. Major efforts have been devoted to an under-explicitly: the motion of two particles on a ring of period 4
standing of molecular motors, where proteins move in noncan be solved by elementary means. Although this is a very
symmetric potentials under the influence of stochastic and/cfimple system, conclusions can be drawn in the limit of very
other forces. One specific observation for transport in nonStrong bias that are of interest for the totally asymmetric
symmetric potentials is the possibility of rectification effectss'te'ex_dUS'On_ process. The nonlinear current of site-
if the forces on the particles are beyond the regime wher&xclusion lattice gases in extended systems with periodic
linear-response theory is applicatlel]. Rectification ef-  repetitions of nonsymmetric segments can be derived in a
fects have been discussed in continuplig] as well as in mean-field approximation for strong bias conditions. Inter-
hopping system§4,11]. If applications of effects of particle €Sting symmetry properties have been pointed out for the
motion in nonsymmetric potentials are envisaged, then thd ASEP in disordered hopping potentids8—20. While a
question arises as to the influence of many-particle effectdarticle-vacancy symmetry is also present in our model, the
The limit of single-particle motion is rarely realized; in real case of inversion of the bias direction is different here.
systems many particles are present that compete about the In the following section the hopping motion of two par-
sites that can be occupied. Many-particle effects have bedlitles on aring of period 4 is solved and analyzed. In Sec. Il
studied in continuous nonsymmetric periodic potentials in@ mean-field approximation for the stationary current of lat-
Ref. [13], where interesting dependencies of the current ofice gases under strong bias in nonsymmetric hopping poten-
particle concentration and size were found. In this paper wéials is presented and compared with simulation results in a
will investigate hopping motion of lattice-gas particles in Sawtooth potential. The symmetry properties of the model
nonsymmetric hopping potentials under the influence ofre discussed in Sec. IV and concluding remarks are given in
strong bias. We utilize the simple site exclusion model where>€c. V.
multiple occupancy of sites is excluded and direct our atten-
tion to nonlinear effects on the particle current. [l. TWO PARTICLES ON RING WITH FOUR SITES

The stationary current of a single particle performing a
hopping motion in a nonsymmetric potential under an arbi-
trary bias is known exactlj11]. The calculation of the sta- A very simple yet nontrivial model is given by a ring with
tionary current of site-exclusion lattice gases in nonsymmetfour sites and two particles; cf. Fig. 1. The basic quantities
ric potentials that lead to rectification effects in the single-for the description of the system are the joint probabilities
particle case is a difficult problem. Extensive work has beerP(i,j;t) (i#]) of finding one particle at siteand the other
devoted to the asymmetric site-exclusion process includingarticle at sitej, at timet, for specified initial conditions.
the totally asymmetric site-exclusion proce$$ASEP  Since the particles are considered as indistinguishable,
where the particles can only hop in one direction, correP(i,j;t)=P(j,i;t). There are six different joint two-particle
sponding to very strong bias. The case of uniform hoppingprobabilities on the ring consisting of four sitgenerally
potentials is now well understodd4], but the case of non- L(L—1)/2 on rings withL siteg. Higher-order joint prob-
uniform potentials is not generally solved. Recent work hasabilities do not occur for two particles.

A. Solution of the stationary master equations
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(b) consistent with the relatiof8) given above.

We are interested in the stationary solution of the system
of master equation&t). The stationary valueB(i,j;t— )
will be denoted byP;; . The stationary joint probabilities for
adjacent sites, e.gR4,, can all be expressed by the station-
ary joint probabilitiesP 3 andP,,. For instance, the first line
of Eq. (4) yields

Pio=—— (03P 131+ v4P24). 6
FIG. 1. (a) Ring of four sites with two particlegb) Sawtooth 12 Y2t 51( 3P1st 74P2d ©
potential with period 4 without biadE 1) with two transition rates )
indicated. Three analogous relations follow from Ed4); they can be

obtained by cyclically increasing the indices in E@). If the
The probabilitiesP(i;t) of finding a particle at sité at  joint probabilities for adjacent sites are eliminated from the

time t are given by stationary master equations, two homogeneous equations re-
main that are equivalent. We write this equation as
P(i:)=2, P(i,j5t). ) a11P 15+ a10P24=0, 7)

J#F1

For two particles they are normalized to with the coefficients

4 S 0163 Y173 6163 Y173
.21 P(i;t)=2. (2 " Yot 61 v3t 6y vat s yitéa)’
=
. e 050, 650,
This condition implies A= Y2%4 27 Y2¥a 2 €))
Y2+ 61 y3t Sz yat 3 yit s
> P(i,jit)=1. (3) The second equation fdét,; andP,, is obtained from the

1=l normalization condition, Eq(3), after elimination of the

The master equations for the joint probabilities are easil)}oInt probabilities of adjacent sites. It reads
written down, ay P13t ayPa=1, 9

d . -
FP(L20=8P(131)+ 7aP(240 — (y,+ 6)P(12p), Wi the coefficients

03 Y1 01 Y3
ay= + + + +1,
d - . o . 2yt 81 y3t Oy yat S it o,
EP(2,3,’[)—54P(2,4,t)+'y1P(1,3,’[) (y3+ 82)P(2,311),
) o
ay,= Ya 4 Y2 2 +1. (10

d +5+ +5+ +5+ + 0,
P340 = B1P(L3D + 72P(241) — (y4+ 32 P(3,41), YaTor YsmO2 YaT o3 Mo

The solution of the two linear equations is

d
gt P(1,4;t)=0,P(2,4;1) + y3P(1,3;t) — (y1+ 64) P(1,41), .
13 a1182— 1281

d
—P(1,3;t) = y,P(1,2;t) + 5,P(2,3;t) + y4P(3,4}t) _ a1
dt 24= — ‘ (11
aj180— 812821
+6,P(1,4t) = (y1+ 81+ ya+ 83)P(1,3;t), . . . . .
aP( )7 (71 01 vt 0 P ) Since the joint probabilities for adjacent sites are obtained

from the P53, P,4, and the one-site stationary probabilities

d
aP(2,4;t):51P(1,2;t)+ v3P(2,3;t) + 55P(3,4;) P;=P(i;t—x) from Eg. (1), Eq. (11) represents the com-
plete solution of the stationary problem.
+ 91 P(1,4:t) = (y2+ 8o+ yat+ 84)P(2,41). We derive the stationary current in the system by consid-

ering the bond connecting sites 1 and 2. The stationary cur-
4) rent is given by

tTiQr? Izsvm of the six master equations leads to the conserva- J=y,(Py—P1p)— 8,(Py— Pyy). (12)

The joint probabilities in Eq(12) ensure exclusion of double
%(E P, j ;t)) -0, (5) occupancy of sites. Using E¢l) the current is expressed in

i< terms of the joint probabilities,
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J=y1(P13t P14g) = 62(P2st Pay). (13 10°
Insertion of the stationary solution for the joint probabilities 107
gives
J= ( Pi3— 8:64P24).  (14)
(y1+8a)(ya+3y) V173718 208724 -
10
The current may also be derived by considering the other
bonds of the ring. Two equivalent forms of the current result; 0
the secondequivalent form reads
Yot Y4t 61+ 53 10°
= ( Pos— 8163P13). (15
(y2t+ 61)(y4t 53) v274P24 0195P19 b, 1/b
It can be shown that the current vanishes if the right and left FiG. 2. Particle currend (arbitrary unit as a function of the
transition rates fulfill the following condition: dimensionless bias parameter. Upper curves, bias to the right, ab-
scissa indicateb; lower curves, bias to the left, abscissa indicates
Y1Y2Y3Y4= 01626364, (16) 1/b. Dashed lines, two particles on the ring with four sites; full
. . . . lines, single particle on the ring. Inset, behavior for small liias
corresponding to a detailed balance relation over the ring. o, axes
B. Solution for the sawtooth potential =1,...,4. Hence forb>1 all stationary site occupation
The sawtooth potential including bias on a four-site ringProbabilities become equa; = 1/2 for the four-site ring and
is defined by choosing P;=2/L for a ring withL sites. In the limit of a strong bias to
the right all stationary joint probabilities also become equal,
V1= Y2=7Y3= y4=bv, i.e., V;j Pjj=1/6 for the four-site ring and, generall®;
s =2/L(L—1) (see Ref[21]). Using expressioril2) we thus
01=b" ", (17 expect that, fob>1,

8,=83=8,=b"", 2 2
o 1o
whereb represents the bias and<1 is a constant represent-
ing a transition rate to the right in the absence of a bias; cf
Fig. 1(b). Note that the right transition rates are explicitly
multiplied by the bias factob and the left transition rates by
b~1, respectively. Physicallyg=exp(AU/2kgT), whereAU

represents the potential drop between two neighboring sites

For L=4 there is thug,=b+/3, which should be compared
with the single-particle curreni;=bvy/4. Similarly, in the
general case of ab-site ring we have

under the influence of the bias. Ao 1 the system satisfies li ‘]_2 = M (19)
the detailed balance condition and the curr&mtinishes. In bse J1 L-1

what follows the current obtained in a system withpar-

ticles will be denoted ady, . For the four-site ring this limiting behavior can be easily

In Fig. 2 we present a plot af; andJ, as functions of the derived from the exact formulél5). Actually, for L=4, y
biasb for the ring with four sites ang=exp(—2). The result =exp(-2), andb=10 there isJ,/J;~1.3337, in agreement
for the two-particle system was obtained using Bdp), and  with the above considerations.
for a single-particle system we employed the exact solution Figure 2 also shows that, becomes almost identical to
derived in Ref.[11]. We can see that the behavior of the J; in the case of a strong bias to the laftc1. To under-
currents of one- and two-particle systems are qualitativelystand this phenomenon assume thatl, so thatd;<é,
similar. Of course, the currerd, of two particles is larger =g§;=4,, i.e., site 1 acts as a “bottle-neck.” h<1 the
than the one-particle curredj. The inset shows the behav- particles are driven against the high barrier at site 1, which
ior of the current for smaller bias. The curves for the bias tohas a relatively very small transition ra#g to the left. The
the right and to the left become equal in the lifit-1, i.e.,  second particle on site 2 has to wait until the first particle has
in the linear-response regime for two particles on the ringumped over the high barrier, and only then can it make an
with four sites and also for one particle on this ring. How- attempt to jump over that barrier. Soon after the first particle
ever, the two-particle current is about 17% larger than thénas managed to pass the bottleneck at site 1, the second
one-particle current. particle will jump from site 2 to 1 and the first particle will

In the case of a strong bias to the right>1, the two-  quickly line up behind the second particle, waiting for it to
particle currentd, differs fromJ; by a constant factor. For jump over the high barrier. Consequently, the current be-
the sawtooth potential this behavior can be understood asomes practically equal to that of a single-particle system. It
follows. If b>1, only transitions to the right are important, is evident that in the limit of a large bias to the left the
and backward transitions can be neglected. In our model theystem behaves as a TASEP on a ring with one defect. If the
transition rates to the right are all equal;=by for i defect is characterized, in a discrete-time dynamics, by the



2322 K. W. KEHR AND Z. KOZA PRE 61

transition probabilityp<1, the current oM particles on a ignored and the system essentially behaves like a TASEP
ring with L sites M <L) will approach the one-particle cur- with transitionsy;=bvy, i=1, ... N. The current for such a
rent. The above reasoning is confirmed by an explicit calcusystem read21]

lation of the currend, in the limitb—0. Using Eq.(15), we

conclude, after some algebra, that~2b *(1+ y*)(5y* J=byM ——. (21)
+2y~*+5)~ L. Since for a single-particle system the current N-1

J,, for b<<1, is approximately equab~1y*(1+39%) (see _ _ ,
Ref.[11]), we find that For large system sizéd>1 this formula can be rewritten as

J(p)=byp(1l-p). (22)
CJy 2(1+9H(1+3yY
lim —=
b—o J1 598+5y%+2

(20 2. The case 1

For b<1 we can neglect transition rates to the right, and
so the system behaves like a TASEP with transition rates
For y—0, i.e., for a growing asymmetry of the sawtooth 6=b~'y* if i=1(modL) and §=b~* otherwise. If addi-
potential, this limit actually approaches 1. In particular, fortionally y=1, all 5; are equal to each other and the current is
the value of y=exp(-2) used in Fig. 2 there is given simply by Eq(21).
”mbao J,/J,~1.0005. A more complicated situation appears fg<1, a condi-
tion that will be assumed henceforth. In this case, sites
i=1L+1,...N—L+1 act on the flow of particles as
“bottlenecks,” for the mean time necessary to leave them is
much larger than the time to leave any other site. Therefore
the system, which consists efsimilar segments of length,
effectively behaves like a ring made up of similar
equals 4/3 irrespective of the bibgsee[21]). “boxes,” each able to contain up to particles. A transition
from a segmenitto j — 1 occurs with a rateé~1y*, irrespec-
tive of the number of particles in each of the segments, pro-

Note, however, that in contrast to the cdse 1, for b
<1 the current depends on the paramegecharacterizing
the inhomogeneity of the sawtooth potential. In particular,
for y=1, which corresponds to a fully homogeneous system
lim, ., J2/3;=4/3. Actually, for y=1, the ratio J,/J;

lll. EXTENDED NONSYMMETRIC POTENTIALS vided, of course, that there is at least one particle in segment
A. The model j and at most. —1 particles i_n segmer]'t— 1.
) ] ) . ) Let Q, denote the probability that in the steady state there
In this section lattice gases in extended potentials are conyre ny particles in a given segmenn €0, ... L). Let Q, ,

sidered that _consist Qf pe_riodic repetitions of_ nor_wsyr_nmetrlqjenote the joint probability of finding, in the steady state, 0
segments. First the situation of very strong bias is discussed < particles at a given segmenand O<n<L particles

and a mean-field approximation is given for the case wheredtj +1. Of courseQ, andQ,, , do not depend oy and the
the particles experience periodically arranged high barriersy ' sagisfy " mn

The analytical results are then compared with numerical

simulations of the motion of lattice-gas particles in nonsym- L

metric hopping potentials for different concentrations and E Qn.=1, (23
under various bias conditions. The hopping potential that is n=0

used in this section is the sawtooth potential shown in Fig. L

1(b), except that it is periodically repeated with periad 2 B o4
The nearest-neighbor transition rates from &ite [ =1 are =0 NQn=Lp. (24
I’y 1=1. As a short notation we usg=1I" ., for the “right”

and 6 =I"| |_ for the “left” transition rates. Without addi- Let us assume a mean-field approximatio@,,

tional bias, the transition rates between neighbor sites fulfil=Q,Q,. In the stationary state the mean numbér of
detailed balance. Bias is introduced by multiplying all right segments occupied hy particles does not depend on time.
transition rates by, y,—bvy,, and all left transition rates by As the particles hop between segmems§, can decrease

b~ §—b 15. when one of the particles jumps from or to a segment occu-
The linear chain on which the model is defined shall havepied by n particles. The corresponding rates a@g(1
N=vL sites where we considaer>1 in this section. Peri- —Q,) and Q,(1—Q,), respectively. The number of seg-

odic boundary conditions are introduced and the sites arments containingn particles can also increase owing to
occupied by M particles. The concentration is them  jumps ending at segments containimg 1 particles or origi-
=M/N. Multiple occupancy of the sites is excluded; no fur- nating at segments with+ 1 particles; the corresponding
ther interactions of the particles are taken into account.  transition rates ar®,_;(1—Q,) andQ, . ;(1—Q,), respec-
tively. Consequently, the appropriate balance conditions read

(Qn=Qn+1)(1-QU)=(1-Q0)(Qn-1—Qn), (25

B. Strong bias
1. The case &1

Forb>1 we can apply essentially the same reasoning as Q1(1-Qp)=(1-Q0)Qo, (26)
in the case of the two-particle system considered in Sec. Il.
In this limit transitions to the left are so rare that they can be QL(1-0Q)=(1-QyQL_1, (27)
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wheren=1, ... L—1 in Eq.(25), and in Eqs(26) and(27) 10— .
we have taken into account the fact that neither jumps from . O S
a segment containing 0 particles nor transitions to a segment 100 r ° ]

with L particles are possible. Together with E¢23) and

(24) these relations fornh + 3 equations fot. + 1 variables
Q,, n=0,... L, with the concentratiop being the only
free parameter. This system of equations is easily shown to
have a unique solution

aﬂ

Qv ———— (28)
" 1+a+...+a"
where the parametex can be determined using
L b, 1/b
> na" _ _ . .
n=0 FIG. 3. Current] (arbitrary unit$ as a function of the dimen-
Lp=—T . (29 sionless bias parameter for the concentratier0.5. Upper curves,
an bias to the right, abscissa indicatedower curves, bias to the left,
n=0 abscissa indicatesd/Full lines, single-particle currert; of Ref.

[11] multiplied by the number of particlesl. Symbols, result of
The concentratiop is a monotonic function o, increasing  numerical simulations fo=400,L=4, y=exp(-2),t=1C. The
from O fora=0 to 1 in the limita—oc. The valuea=1 (semilogarithmig inset shows the ratid/MJ;.

corresponds tp=3 and, generally, ] ) )
We first present simulation results for the current at a

p(a)y=1—p(1/a). (300  fixed concentrationp=0.5, or forM =200, as a function of
the bias parametdr for bias to the right, ant ! for bias to
Having obtainedQ, we can calculate the current as the left, respectively. Figure 3 shows the currémbserved
in simulations(symbolg together with a simple approxima-
J=b"'y*(1-Qo)(1- Q) tion obtained by multiplying a single-particle curreht[11]
- ) by the numbem of particles in the systenffree particle
. approximation. One observes that the current in the case of
a ~— a a system with a hard-core interactions is reduced as com-
=b Iyt — >. (31)  pared to the case of noninteracting particles, but the general
( E a”) behavior as a function of the bias parameter is practically the
=0 same. In particular, the rectification effects for particle mo-
tion in nonsymmetric potentials are qualitatively the same in
Using (30) it is easy to see that both cases. The inset in Fig. 3 depicts the rdiiblJ, as a
function of the bias. Owing to Eq21) we expect that for
J(p)=J(1—-p). (32 b>1J3/MI;=(N—M)/(N-1)~1—p. Forb=20 we found

. o _ J/IMJ,~0.5014+0.0001, in excellent agreement with the
Because forp<; Eq. (29) implies a~p/L, using our for-  theoretical value 200/399050125. Fob<1 our mean-field
mula (31) we conclude that for small concentrations of par-approximation (34) predicts J/MJ;=L2/2(L+1)?=0.32;

ticles the currend grows linearly withp, for b=1/20 our simulations yielded a slightly smaller value
a1 0.305+ 0.001.
J=b= "L p. (33 We now discuss the dependence of the current on concen-

tration for selected values of the bias 1, orb<1, respec-

tively, and compare the results with the theoretical consider-
b-14L 2 ations of Sec. Illl B. In Fig. 4 we present results of our

J(0.5)= Y (34) simulations for a bias to the righb& 30, 10, and 2 For a

For p=1 the mean-field theory31) predicts

(L+1)2° strong bias §=30) the agreement with the theoretical pre-
diction, Eq.(22), is very good.

The results obtained for a bias to the lelft=0.001, 0.1,
0.5, and 0.9 are depicted in Fig. 5. We can see that if the

In our simulations we used a lattice witd=400 sites  bias is strong If<0.1), the agreement between the mean-
consisting ofu=100 segments, each of length=4. We field theory(solid line) and the simulation datécircles and
used a sawtooth potential witly=exp(—2)~0.135. The crosseyis very good for concentrations close to 0 and 1.
number of particles in the system varied frdvh=1 to M However, forp~3 we observe that the mean-field theory
=399. We carried out our simulations fare=10° Monte  tends to overestimate the actual valueldfy approximately
Carlo time steps per particle and the results were averagesbo, which is much more than the statistical errors of our
over ten different realizations of the process, which enabledata (the relative standard deviation at=0.5 is about
us to estimate the statistical errors. 0.33%. We repeated our simulations for larger number of

C. Numerical simulations
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p=0.5. This phenomenon is not observed in our case be-
cause the transition rates in our model are not random.

IV. SYMMETRY PROPERTIES

In this section we discuss the symmetry properties of our
lattice-gas model with nonsymmetric potentials and of re-
lated models. In the simulations, as well as in the mean-field
approximation, the current exhibits a particle-vacancy sym-
metry,

J(p)=I(1-p). (35

The symmetry properties of the TASEP have been analyzed
in [18—2Q and the relation, Eq.35), has been established in
. . this context. However, the model employed in those refer-
0.0 0.2 0.4 0.6 0.8 10 ences differs in important aspects from our model. Hence a
P detailed discussion is in order.
The particle-vacancy symmetry of the current for the
FIG. 4. The dimensionless curredi,by, as a function of the ~TASEP has been shown in Ref$8-20 for disordered hop-
dimensionless concentratiop for the biasb=30 (crossey 10  Ping potentials where the transition rates are associated with
(circles, and 2(squares The solid line was computed using Eq. the bonds between the sites. If the motion of the particles is
(22). The parameters afé=400, L=4, y=exp(-2), andt=10F.  reversedsymmetry operatiof according to Refs[18,20,
Results were averaged over 10 Monte Carlo simulations. The errdhe particles experience the same set of transition rates as
bars are shown only fdv=30; for other values ob they are simi-  before, only the order of the rates has been changed. If the
larly small. vacancies are interpreted as particlesgmmetry operation
C), they experience the same transition rates as the particles

Monte Carlo time stepst €5x 10°) and for different values after Fh_e operatiod. The symmetry undeCTis evident; the
nontrivial statement is the symmetry of the currémp to a

of the biasb, but the difference between simulations and the'’. der th tione. or T tel
theory remained practically the same. We thus conclude thaqtjgn) under the operations, or 1, separately. :
The class of models for the hopping potential that are

it is not a numerical artifact. A similar discrepancy was ob- . ;
served by Tripathy and Barmfds], who considered a cons_ldered her_e_do not co_rres_pond to bond disorder. The set
' of “right” transition rates is different from the set of the

TASEP with rand.om transition  rates. prever, n the'r‘.‘left” transition rates. If a strong bia®>1 to the right is
model the mean-field gppro_ach_ unde_restlmated the m""gr‘é{pplied, leading approximately to a TASEP, the current is
tude of the current obtained in simulations for0.5. More-  jitterent from the case of strong bias to the left whih*
over, they found thai(p) has quite a broad plateau around 5.1 |n other words, the symmetry under reversal of motion
T does not exist for the class of models leading to rectifica-
tion, by their definition. If the vacancies are considered as
particles, they experience the same set of transition rates as
the original particles, see also below. We conjecture that
symmetry under the operati@halso exists for our models, if
the limiting case of the TASEP is considered. Hence we
expect Eq(35) to be approximately valid for the models that
lead to rectification effects, in the limit of very strong bias.

The sawtooth potential that is investigated in this paper
has a special symmetry, which will be described now. In the
limit of concentration of the lattice gas approaching 1, the
particle problem is equivalent to the problem of hopping
motion of single, independent vacancies. The hopping tran-
sitions of an isolated vacancy are reversed in comparison to
the transitions of the particle that makes an exchange with
the vacancy, e.g.,

0.8 T T T T

— MFA
Xb = 0.001

0.0 0.2 0.4 0.6 0.8 1.0 Y=l (36)

P Using the rates, Eq(36), it is easy to reconstruct the
FIG. 5. The dimensionless curredtby 4, as a function of the hopping potential for single vacancies. If this construction is
dimensionless concentratignfor the biasb=10"3 (crossey 0.1  done for the the extended sawtooth potential of Figp),1a
(circles, 0.5(squares and 0.9diamonds. The solid line was com-  sawtooth potential is obtained for the vacancy that is mirror-
puted using Eq(31). The parameters are the same as in Fig. 4. Thesymmetric with respect to the original sawtooth potential;
error bars, shown only foo=10"2, are of similar order for other see Fig. 6. If a bias is applied to the particles, expressed by
values ofb and represent the standard deviation. the factorb in the transition rates to the right, the factor
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(a) particular the effects of exclusion of multiple occupancy of
sites under various bias conditions. We first studied the case
of two particles on a ring of four sites with a sawtooth po-
tential. The explicit solution of this simple system can be
given and interesting conclusions emerge in the limits of
large bias to the right or to the left. We point out that the ring
with four sites is a model case for the treatment of two site-
exclusion particles on a finite ring; larger systems can be

b X L ; .
® solved in a similar manner, e.g., by using symbolic formula

o 7

I~ LY A Pl manipulation programs.
MR VANV B U A NN B We then investigated the case of many particles on ex-
~ g Y. tended systems that consist of periodic repetitions of saw-

- . ) _ tooth potentials. These systems behave, for strong bias in one
FIG. 6. (a) Repetition of the sawtooth potential of Fig. 1 with gjrection, as uniform systems where the result for the current
lattice-gas particles |nd|cate(_ﬂb) Effective potential for a single  of |attice gases is known. For strong bias in the reverse di-
vacancy, constructed according to E86). rections, the extended sawtooth potential acts as a periodic
. - .arrangement of weak links. A mean-field expression for the
appears in the t_ransmoln rate; of the vacancy to the left. It 'Turrent can be derived for this case from the cluster dynam-
e"'der?‘ f_rom _th|s consideration that the_ parthle current fofieg of the particles on the segments, which shows similarities
p—0 is identical to the one fop—1. It is obvious that & 4 yhe cluster dynamics of the bosonic lattice gases of Refs.
particle-vacancy symmetry pertains for the problem of mo 24]. Good agreement with the numerical simulations was

tion of lattice gase;hln a sawtooth potential ‘l’)‘”th tlhg fabov ound for both cases under strong bias; deviations appear for
symmetry property; hence we expect E8f) to be valid for  ga116r pias values. The results for the current exhibit a

all values of the bias. article-vacancy symmetry as a consequence of a special

_ We point out that the sawtooth potential represents a spesa icie_hole symmetry of the hopping processes in the saw-
cial case; general nonsymmetric potentials do not provid ooth potential used

mirror-symmetric pot(_antials for the_ vacancies in t_he linit Generally, the current per particle of a site-exclusion lat-
—1. For instance, if the potential corresponding t0 anjce gas shows the same qualitative behavior, as a function of
Ehrlich-Schwoebel barriesee, e.9.[22]) is transformed by o syrength and the direction of the bias parameter, as the
using Eq.(36) in the corresponding hopping potential of & ¢, rent of independent particles. This observation is impor-
single vacancy, a different potential is obtained. As a consegny for possible applications; for instance, for transport
quence, the mobility of a single particle is different from the ok channels in membranes or through layered structures
mobility of a single vacancy. Hence for this examplp) it suitable potential structures. It means that qualitative or

#J(1—p) for b close to 1. This example is sufficient 10 gyen semiquantitative predictions of the effects of strong
show that the particle-vacancy symmetBp) cannot be gen-  pias on the current can already be obtained from the single-
erally valid for arbitraryb. Another counterexample is pro- particle description.

vided by the random-trap model; see RgR3)).
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