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Exact results for a fully asymmetric exclusion process with sequential dynamics
and open boundaries

Jordan BrankoV, Nina Pesheva, and Nikola Valkov
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 4, 1113 Sofia, Bulgaria
(Received 2 June 1999; revised manuscript received 13 Octobej 1999

An exact and rigorous calculation of the current and density profile in the steady state of the one-dimensional
fully asymmetric simple-exclusion process with open boundaries and forward-ordered sequential dynamics is
presented. The method is based on a matrix product representation of the steady-state probability distribution.
The main idea is to choose a suitable representation in which the scalar products describing the current and
local density profile for a chain of arbitrary finite size depend only on the elements in a finite number of rows
and columns. This makes possible the use of a truncated finite-dimensional representation of the matrices and
vectors involved. After performing the calculations, we lift the truncation by letting its dimensionality go to
infinity. In this limit the results become exact for any size of the chain. By rescaling one of the infinite-
dimensional matrix representations found in the work of Derdtlal. [J. Phys. A26, 1493(1993] for their
algebra, we obtain a symmetric “propagator” matrix. Its truncated version is diagonalized by orthogonal
transformation for easy calculation of the relevant scalar products. An interpretation of the phase transitions
between the different phases is given in terms of eigenvalue splitting from a bounded quasicontinuous spec-
trum. A precise description of the local density profiles is given for all values of the parameters. It is shown
that the leading-order asymptotic form of the position-dependent terms in the local density changes within the
low- and high-density phases, signaling the presence of a higher-order transition.

PACS numbgs): 05.60—k, 02.50.Ey, 05.70.Ln, 64.60.Ht

[. INTRODUCTION sentation. When each lattice site can be in eithanastates,
the general matrix-product representation is based wn 2
We consider the current and density profile in the steadynatrices which obey a quadratic algebra. In contrast, the
state of a one-dimensional fully asymmetric simple-more special case of the DHEP algebra uses anbenera-
exclusion proces§ASEP on a chain ofL sites, with open tors. Fock representations of the general quadratic algebra
boundaries and forward-ordered sequential dynamics. Eadkave been studied by Essler and Rittenbidy who have
site can be empty or occupied by exactly one particle. Afound —explicit representations in terms of infinite-
each time step a particle is injected with probabitinat the ~ dimensional tridiagonal matrices.
left end (=1). Then each pair of nearest-neighbor sites is W€ follow here all the steps, except the last one, of the
updated sequentially from the left to the right. A particle mapping of the algebra for the ordered-sequenngl update
hops with probabilityp one site to the right, provided that onto t_he DEHP algebra, suggested by _Rajewsk|, Schad-
S : S . ... schneider, and Schreckenbédd. Then, starting from one of
site is empty. Finally, a particle is removed with probability

. ol ; the infinite-dimensional matrix representations for the solu-
B at.the r.'ght end i(=L). Note th"."t the dynam|c§ under tion of the DEHP algebra given ifl], namely,D5; and Eg,

consideration can transport a particle by many sites to the btain th di idi | L~ dE
right during one update of the chain. Lete{0,1, i }[ﬁeto tijn :he (t:)ohr(eslpor;rln? J;”thlag?gar rg‘:’lt”cbﬁ?‘?i | 8 dat
=1,2,... L, be the random occupation variable of site a at solve the bulk algebra for the ordered-sequential upaate
. : ) . o : . and satisfy the boundary conditions. The propagator matrix
given time step:r;=1 if the site is occupied by a particle, —~ ~ =~ 2 ) . o
C3;=D3+E3 has a special property which makes possible its

and 7;,=0 if it is empty. LetP_ (71,75, ...,7.) be the ¢ ‘ fon t i f b o i
steady-state probability of finding the chain in configuration’ 21> 0rmation o a Symmetric form by a simple renormaliza-
(71,72, 7L tion of the basis vectors.

. . . To be more specific, let us consider an auxiliary infinite-
In the case of random-sequential dynamics, & malrixzy o, conal vector spac8 and its dual spacsT. We are
product representation of the steady-state probability dlstrll—ookin for two matricesP andE, acting on the -vectors of
bu;ion has been founq by Derrida,_Evans, Hakim, and Pass, ang two vectors|V) e S and,(W| e?ST such that the
quier (DEHP) [1]. Their representation involves two square t dv-state prob bilit ’i iven by th
matrices,D and E, infinite dimensional in the general case, > ea|1 y-s ade F: obabilitf_ (71,72, . ...7) is given by the
which satisfy a quadratic algebra, called DEHP algebra.Sca ar produc
Krebs and Sando\2] proved that the stationary state of any
one-dimensional system with random-sequential dynamics
involving nearest-neighbor hoppings and single-site bound-P_ (71,75, . ..,7)=2Z { W V).

1.9

ary terms can always be written in a matrix-product repre-

L
I1 [7D+(1-7)E]

*Electronic address: brankov@bas.bg Here Z, is a normalization constant. It is convenient to
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choose the following column vectors as a basis in the conin the basis formed by column vectors of the type

figuration spac€0,1} of theith site |7, Tiv1)=|7)®|74+1), see Eq(1.2), the matrix7; ;,, has
. 0 the explicit representation
|Ti:0>:(0), |Ti:1>:<1>a (1.2 10 0 O
' . . 01 p O
and define a column vectdx with the matricesE andD as Tii1= , (1.11
components, ' 0 0 1-p O
0 O 0 1
E
A= ( D) =E|0)+D[1). (1.3 wherep is the hopping probability.
Matrix-product representation of the stationary state of
By using the orthonormal basis of vectdrs,, 75, ...,7) the asymmetric simple-exclusion procé8$SEP with open
=|7)®|m)®---|®|7.) in the configuration spac®,}®",  boundaries and sequentials well as sublattice-paraljalip-
one can define a stationary state vector date has been constructed #, see alsg5], on the basis of
the canceling mechanism. The general importance of the lat-
[P)_.=Z (WA V)) (1.4  ter for one-dimensional stochastic processes with nearest-
neighbor interaction has been recognized6h According
such that to the canceling mechanism, the fikat our case the left

(11,79r . 7|P) =P (71,70, ... 7). (1.5 boundary interaction produces a defe@ty| CA=(W|A, A

=E|0)+DJ1), which is transported through the system by
Here the vector$r,, 75, ..., | form an orthonormal basis the sequential action of the particle-hopping matrices,

in the space dual to the configuration space, ke!|7) 7., ,(A®@A)=A®A, until it reaches the opposite boundary

:n?s’irt'eTcrc])ifcijgi]ﬁergtiggoiggfe;n Egéglln':)dii;atﬁeenvoevczge where it disappears due to the boundary interactivA|V)
) ; ; ! =A|V). Explicitly this leads to the followi t of -
Therefore, the matriA®" is considered as a-2component . | .> Xplcitly this feads 1o the Toflowing set of equa

column vector in the configuration space, each component O*ons
which represents a usual matrix product lofcofactorsE [E,E]=[D,D]=0
and/orD. The symbol({W]|- - -|V)) denotes the vector ob- ’ ’ ’
tained by applying the scalar produ¢®|---|V) to each R . R

component ofA®". The normalization constar#, in Eq. ED+pDE=ED,
(1.4) can be written as R R
(1-p)DE=DE,
Z, =(W|C"|V), C=E+D. (1.6)
The master equation for the stationary st _, now (1= a)(WIE=(WIE, (112

takes the form|P)_ =T_|P)_ , where the transfer matrix .
T_ has the following structure: (W|(«E+D)=(W|D,

T =RT_ g1 ---Taalsa. (1.7 (1-B)D|V)=D|V),

Here the matricek andR describe the boundary conditions.
They are nondiagonal only in the one-site subspace of con-

figurations of the first, respectively the last, site of the chain, . . .
for the four unknown matriceg, E, D, andD, and the two

(E+BD)|V)=E|V)

L=LR1l®- - -®1l®1, unknown vectors{W| and |V). Rajewsky, Schadschneider,
and Schreckenberfd] have suggested a reduction of the
R=1®91® --®1®R. (1.9 number of unknown matrices by setting
By 1 we have denoted the>X22 unit matrix. In the one-site E=E+\l, D=D-\I, (1.13
basis(1.2) the boundary conditions are represented by the
matrices wherel is the identity matrix and is some real number. We
choosex = —1 and reduce the s€t.12) to one equation for
l1-a O 1 B the bulk algebra,
L= , R= . (1.9
a 1 0 1-8
pDE=D+(1-p)E, (1.149

The matricesT; ;.q, i=1,2,... L —1, describe the particle

hopping between the pair of nearest-neighbor sitesH1); ~ and two equations for the boundary conditions,
hence they are nondiagonal only in the corresponding two- .

site configuration space: (WE=a" W[,

Tiiv1=1l® - ®187;,,91®---®L  (1.10 DIV)=(B~1=1)|V). (1.15
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By taking into account that=C, whereC=E+D, stan- The main idea of our method is to choose a suitable rep-
dard arguments lead to expressions for the stationary currefgsentation Wh|9h renders a symmetric matrix for'the opera-
J_ and particle density, (i) at sitei, tor C=E+D. Since the elements of the upper diagonal in

D’ ared? times the elements of the lower diagonalEn,
=2 117, this can be achieved by renormalization of the basis vectors.
Indeed, in the new orthonormal badi®,),|e,), ...}, de-
pL)=Z{WICIDCY V), (116  fined by
which have the same form as in the case of the DEHP alge- &0 =d""“[eq), (ed=d““el, k=12,...,
bra[1]. HereZ, is defined by Eq(1.6). (1.2

A crucial point of our further consideration is the exis-
tence of a nontrivial infinite-dimensional solution of Egs.
(1.14 and(1.15 under the choice of the vectors

the diagonal elements of any tridiagonal matAxremain
unchanged, while its nonzero off-diagonal elements change
according to

! (el Al 1)=d " e(lAlef.. ),
V)= o] WI=W'=(100...). (17 (sl Ale) =d(ep. 1| Ale). (122

ThuskE’ andD’ are transformed to

Consider the infinite orthonormal basfge;),|e}), ...} in d+¢ o0 0 0

the.vector space, where|e;) are column vectors with co- Ji—éy dt 0 0

ordinates|ey),= 3y, k,n=1,2,.... Let usstart with the 1

matricesD5; and E5 given by Eq.(36) in [1], which are E=— 0 1 d 0

chosen to satisfy the standard DHEP algebrgE;=D, 0 0 1 dt

+Es, and the boundary conditiori®;|V)=8"1|V), (W|E;
=a~YW|. By suitable rescaling of the operatoi®; =[ (1

1.2
—p)/p]D3, E'=(1/p)E3, and redefinition of the parameters (.23
a, B that enter intdD5 andEs, and
P Bﬂﬁ(l—p) d+7 V1-¢én O 0
p’ (1-B)p’ . 0 d 1 0
we obtain the matrices D= B 0 0 d 1
0 0 0 d
1+&d 0 0 0
e 0o (1.24
E'= p 0 1 1 0 Hence, the lattice “translation operato€ [7] is represented
0 0 1 1 by the symmetric infinite-dimensional matrix
(119 até+n Jl1-¢én O 0
V1—&n a 1 0
and c=e+D=_| 0 1 a 1 ,
1+7d™t J1-¢&5 O 0 0 0 1 a
2 0 1 1 0 .
D'=— 0 0 11 , (1.25
0 0 0 1 where
. 2-p
(1.19 a=d+dl=——. (1.26
Vi-p
where

Now it is obvious that due to the choice of the vectdrs

o , P _p—B and(W| the quantities of interest_andp, (i), see Eqs(1.6)

d=vl-p, &= ad * 71T Bd - (1.20 and(1.16), depend on the elements of the matriGeandC
only in the first{ L/2]+ 1 rows and columng &] denotes the

Obviously, E' and D’ satisfy the bulk algebrél.14 and entire part oix=0). Therefore, for any finite. and a suffi-
boundary condition$1.15). ciently large integeM, M=[L/2]+1, we can use a trun-



PRE 61

EXACT RESULTS FOR A FULLY ASYMMETRC . ..

2303

catedM-dimensional representation of the matrices and vecd,,. This makes possible the explicit calculation of the rel-

tors involved (distinguished by the subscrigtl). After

performing the calculations, we lift the truncation by letting

its dimensionality go to infinity. In the limiM — o the re-

sults become exact for any size of the chain. Since the matrix

Cyu is (real or complex symmetric, and, as it will be shown

evant scalar products.

II. SPECTRAL PROPERTIES OF THE TRUNCATED
PROPAGATOR

below, with real nondegenerate spectrum, it can be diagonal- Let C,, be theM XM matrix obtained by truncation of
ized by a similarity transformation with an orthogonal matrix Eq. (1.25 up to theMth row and column:

atétn J1-¢épy
V1i—én a
0 1

d
CM(&W):B

and let|Vy) and({Wy| be theM-component column and row
vectors obtained by truncation of the vecto6tsl?), respec-
tively.

The eigenvalue problem for the symmetric mat¢1)

can be solved by using a method similar to the one describeNich leads to the representation

in [8]. Let Ay(k), k=1,... M, be the eigenvalues of
Cwm(é,m). Forp#0,1 it is convenient to set

A= (d/p)(a+2x) (2.2

and write the secular equation for the mat@iy (&, ) in the
form
d M
de{Cm(f,n)—Mm]E<5> [(§+n—2x)Py_1(X)
—(1=&n)Py-2(x)]=0, (2.3

wherePy,(x) is the polynomial inx of degreeM defined as

Pu(x)=def(p/d)Cy(0,0) —(a+2x)1y]. (2.9

Since the matrix /d)Cy(0,0) has eigenvaluesa
+2 cogmk/(M+1)], k=0, ... M, one can readily show that

M
PM<x>=2MkHl {cog mk/(M+1)]—x}=(—1)MUy(x),

(2.9

0
2 ! (2.1
a 1
1 a
|
cos¢, [x|<1
:[cosh¢, Ix|=1, .7
B sif(M+1)¢]/sing, [x|<1
Un(x)= sinf(M+1)¢]/sinhg, |x|=1 28

Assuming first thatix|<1 and én#1, we rewrite Eq.
(2.6) as an equation for the unknown varialbe

Si(M+1)¢] &+ y—2éncose
sinM¢)  1-é

=fr(#:£,7).
(2.9

Due to Eq.(2.7) we need to consider only the roots in the
interval ¢ €[0,7]. Note that when the probabilitiea, 8
take values in the interval (0,1), then the parametery
range in the interval{d, +«). One can readily see that the
number of real-valued solutions of E@®.9) depends on the
values of¢ and » (or p, «, and B8). Obviously, the case
&n=1, which in terms ofp, «, and B reads
(1-a)(1-p)=1-p, (2.10

defines a special line in the parameter space — this is the line

on which the mean field approximation becomes exact. A
remarkable feature of the spectral problem on the mean field

kind. With the aid of the recurrence relationsHif, ., 1(Xx)
—2xU(x) +U,,_1(x) =0, the secular equatiof2.3) can be
cast in the form

(1=&nUn(X) +(2xEn—E=n)Uy-1(X)=0. (2.6

It is convenient to substitute the varialdéy a new variable

¢

for p=&"1 Eq. (2.6) has the obvious roat=cosh¢ which
yields the largest eigenvalue of the mean field matrix

Ci(e)=Cu(&,e7h:
AM(1)=(d/p)(a+&+£7Y). (2.19)

For £#1 this eigenvalue singles out from the rest of the
spectrum given by th! —1 zeroes olUy,_1(X):
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FIG. 1. The phase diagram in the 8 plane forp=0.75. Re-
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2 M+1-1)(k—1
|umf(k)>lzumf(|,k)—\/;sinw( - M>( )

for 1=2,... M. (2.149
Two other special lines in the space of parameters are

defined by the equations

a=a.=1-1-p, B=B.=1-1-p, (2.15

which correspond toé=1 and =1, respectively. The
analysis of the secular equatid8.9) shows that there are
four regions in the square,Be[0,1] see Fig. 1, distin-
guished by different sets of eigenvalues and eigenvectors.
Below we consider these four regions separately. For the
sake of simplicity, in the remainder we omit the explicit
dependence on the parametprsé, and % (or p, «, and83)

from the notation of the matriXC,,, its eigenvalues and

gions A, B, C, and D are distinguished by different spectral prop-€igenvectors. The eigenvalues are labeled in the order of

erties of the matrixCy,. The maximum-current phase occurs in

decreasing magnitude.

region A. Regions B, C, and D correspond to the low-density phase

for a< B and the high-density phase fat> 3; the coexistence line
a= B inregion D is shown by dashed line. The curved solid line is
the mean-field line (+ a)(1-B)=1—p.

:| , k

The eigenvector otmf(f) corresponding to the largest ei-
genvalue(2.11) has the components

m(k—1)
a+ZCosT

AM(k)=(d/p) =2,...M

(2.12

luli(1)),=ul(1,9=1, Juf(1))=ul(1,2)=0,

for 1=2,... M, (2.13
and the remaining eigenvectds)(k)), k=2, ... M, with

eigenvalueg2.12), are given by

lup(k)),=ufi(1k)=0,

A. Region A: e¢.<a=<1 and g.<pB=<1

In terms of & and # this region is defined by-J1—p
=¢<1 and—+/1—p=%<1. Since then the right-hand side
of Eq. (2.9 is a monotonic function ofb, ranging between
f(0;¢,7)<1 andf(m;& n)>—1; for sufficiently largeM
this equation has exactl¥l simple real roots¢y(k), k
=1,... M, in the interval (Oz); see Fig. 2. These roots
satisfy the inequalities

7(k—1)IM<py(K)<mkIM, k=1,... M. (2.1

According to Egs.(2.2) and (2.7), the eigenvalues of the
matrix Cy, are
Av(K)=(d/p)[a+2cospy(k)], k=1,... M.
(2.17)

A complete set of orthonormal eigenvectorsQ@yj is given
by the column vectorsuy (k)), k=1, ... M, with compo-
nents

f

L

, f

FIG. 2. The behavior of the left-hand sidg
(solid line) and the right-hand sidéy (different
broken lineg of Eq.(2.9) atM =10 is shown as a
function of ¢. The broken lines depictinfy are:
dotted (region A), short-dashed(region B,
dashedregion Q, and dashed-dotte@egion D.

(rad)
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sifM ¢y (k)] o
K)),= K)=Dby(K) —— ——— by(k)=2"4M+[1+E&n—(E+n)
|uM( )>l UM(:I-! ) bM( ) \/1_—577 ’ M n 7
SIP[M (k)] | 12

| X cosbu =g s ()
lup (k)1 =up (1K) =by (K)sif(M+1-1) gy (k)]
(2.19
Since ¢y (k) satisfies Eq(2.9), we have
for =2,... M, (2.18 (1— En)sindy(K)
M= e T encosgu 220
whereb,, (k) is the normalization constant and from inequalitie$2.16) it follows that
|
. (—D*H(1-én)singy (k)]
M kK)]= . 2.2
S oS (k) + €217 1— 27 Cosdy(K) + 7112 220
With the aid of the above equalities, the normalization congtaid®9 can be written as
— _ —-1/2
b (k=212 4 (LT EMILT En—(E+ m)cosdy(k)] (222

[1-2&cosey(k)+E2][1— 27 cospy (k) + 7°]

Equations(2.21) and (2.22 are convenient for taking the +M™!at ¢=0, while the right-hand side is a monotonically
limit M— oo, decreasing function o with a maximum at$=0,
Thus, the real symmetric matrig,, is diagonalized by

the similarity transformation
(0= 128y (2.25
() 0 L. 0 RS =" "¢y ‘ '

- 0 Am(2) ... 0
Cu=Uy'CuUy= : N . .
cee cee ce Hence, for large enougM there is a unique positive solution

0 0 oo Am(M) of Eq. (2.24); see Fig. 3. Its asymptotic form a4 —oo at
(223 fixed£>1 andp<é'is

where Uy, is the real orthogonal matrix with elements — T
(Un)i=um(,k), 1,k=1,... M, and Uy'=Uy,, the 2 At
transposed ob) ), . c\
B. Region B: (1—a)(1—B)<1—p and a<a. or B<B. !
In this regionén<1 and eitheré>1 and —\1—p<7y B D,
<&l or p>1 and — J1—p=é<y i Sincefr(0:£,7) o B e e PN
>1 andfg(7; £, 7)>—1, for sufficiently largeM Eq. (2.9 et L T
hasM —1 simple real rootspy(k), k=2, ... M, in the in- - e h
terval (0O7); see Fig. 2. These roots satisfy inequalities I I
(2.16. The missing eigenvalue @), is provided by the pair [ | L~
of complex conjugate imaginary solutiors= =i¢y (1) of 2 %
Eqg. (2.9 or, equivalently, by the pair of real solutions T o e e e i A o 13\ 20
==+ ¢\u(1) of the equation o T o o T T
sinf(M+1)¢] - &+ n—2£7coshe =fr(ih;&,7) FIG. 3. The behavior of the differendg, between the left-hand
sinh(M ¢) 1-¢&n R side f, and the right-hand sidég of Eq. (2.24 at M=10, as a

(2.249  function of the dimenshionless argumept The lines are labeled
according to the regions: dottgdegion A), short-dashedregion
which follows from Eqs.(2.6) and (2.8) when|x|=1. Note  B), dashedregion O, and dashed-dotte@egion D); the latter case
that for =0 the left-hand side of the above equation is ais represented by two lines: at a symmetlice D), and asymmetric
monotonically increasing function ap with a minimum 1 (line D,) point in region D.
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E-EDA—ED)
F € Mo,
(2.26

In the case whem>1 andé< ! the asymptotic form of
¢dnu(l) asM—oo follows from Eq. (2.26 by exchanging
places of¢ and #.

It is easily seen thath= ¢\, (1) yields the largest eigen-
value of the matrixC,, ,

Am(1)=(d/p)[a+2 coshpy(1)],

ém(1)=In¢—

(2.27)
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where the normalization constant
bm(1) =24 [(£+ n)coshey (1) —1— 7]
sink[ M 1 -2
Mu(D] (229

X A= &nsinfhn(1)

is the analytical continuation to imagina, (1) of expres-
sion(2.19 atk=1. One can readily check that on approach-
ing the line¢n=1 from region B the eigenvalues and eigen-

which singles out from the rest of the spectrum. The remainyectors ofCy,(¢,7) tend to the corresponding eigenvalues

ing M—1 eigenvalues are given by Eq2.17 with
2,..., M, satisfying Eq.(2.9). The eigenvector
of the matrixC,, with eigenvalug2.27) is the column vector
[um(1)) with components

sinfM ¢y (1)] 0

AT(k) and eigenvectorsul(k)) of the mean field matrix
CW(§)=Cu(£&,¢ 1), see Eqs(2.10—(2.14).

Note that as a direct consequence of E2124) one ob-
tains the equalities; compare with Eq2.20 and(2.22),

lum(1))1=um(1,)=by(1) rl=1, _ (1—¢&p)sinhgy(1)
e M o )= =T+ Emcoshom (D)
U (D)=up(1,D) =by (1SN (M +1—1) dy(1)] (230
for [=2,... M, (2.28 and
|
SNt M oy (1)]= 11~ £nlsinhu() (2.31

Thus, in region B the real symmetric mati@y, is diago-
nalized by the similarity transformatio(2.23, where the
first column of the real orthogonal matrixy, is given by Eq.
(2.28, and the remaining columrns=2, ... M, have com-
ponents of the forn{2.18.

C. Region C: (1—a)(1—B)>1—p and a>a, or B>,
In this regionéz>1 and eithe>1 andé¢ 1< z<1, or

7>1 and 7 '<&é<1. Now the off-diagonal elements

(Cw)12=(Cm)12=iVvén—1, see Eq.2.1), are imaginary.
Nevertheless, the coefficients in the secular equatibf)

[2& coshey (1) — 1— 214 29 coshgy (1) — 1 — 52142

The M — o limit function A..(¢; &, ») first increases from a
positive value atp=0, attains maximum ap=In/éz, then
monotonically decreases crossing the abscissa ¢at
=In(max¢,7}) and tending to—o like —(é7—1) lexp¢
as ¢—o. The perturbative solution of Eq2.24 asM —x
at fixed¢>1 andé 1< »<1 yields

(=& H(éEn—1)
E—n

£M O£ M),
(2.33

dm(1)=Iné+

are real, since they depend only on the product of the above

matrix elements. Therefore, after substituti@n/), the equa-
tion for the spectrum ofC,, takes again one of the forms
(2.9 or (2.24. Sincefg(0;¢,7)<1 andfg(m;é,7)<—1,
for sufficiently largeM Eq. (2.9 hasM —1 simple real roots
du(k), m(k—=2)IM<opy(k)<m(k—1)/M, k=2,... M;
see Fig. 2. The missing eigenvalue®@y, is provided by the
pair of real solutionsp= = ¢\(1) of Eq. (2.24. To show
that for large enougiM this equation has a unigue positive
solution, we consider the difference, see Fig. 3,

sinf(M+1)¢] _2577 coshgp—&é—17n

Au(eié,m)=

sinh(M ¢) En—1
_ e+éne t—E—q
=— E7—1 +[coth M ¢)

—1]sinhé. (2.32

In the case whem>1 andz '<¢<1 the asymptotic form
of ¢\ (1) follows by exchanging places @f and » in Eq.
(2.33. As it is readily seen by comparison with E®.26),
¢nm(1) has the same analytical form in regions B and C. The
largest eigenvalue of the matr®y, is given by Eq.(2.27);
the remainingM —1 eigenvalues have the fornR.17),
where ¢ (K), k=2,... M, are the solutions of Eq2.9).

The eigenvector of the matrig,, which corresponds to
the largest eigenvalug.27) can be obtained by analytical
continuation of Eq.(2.28 from £7<<1 in region B toén
>1 in region C. At that we take into account that the nor-
malization constant2.29 passes through zero on crossing
the mean field lin€»=1, and becomes imaginary in region
C. As a result we obtain the column vectan, (1)) with
components
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sinfM¢y(1)]
uy(1))1=uy(1,)=by(l) ——————,
| M( )>l M( ) M( ) m
lum(D) ) =um(l,1)=iby(1)sinf{(M+1—1)$y(1)]

for 1=2,... M. (2.39

Here the constanby (1) is given by, compare with Eq.

(2.29,

bw(1)=2Y2 [(£+ n)coshpy (1) —1—&7]

sinhZ[M d’M(l)] —1/2
><(577—1)sinhz¢,v,(1) +M , (239
where €+ y)coshey(L)—1-én>0.
The remaining eigenvalues,(k), k=2, ... M, are of
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is shown in Fig. 3. A perturbative expansion of E2.24) as
M—co at fixed > »>1 yields the roots

_¢g1 —
(EEDED oy oy

dm(l)=Iné+

-7
(2.37
and
1 -1
bu(2)=n - ’75_)(5’7 )
(2.38
Note that¢y (1) has the same analytical form as in region C,
see Eq(2.33.

The caseé=7n>1 is a special one, since then the two
roots

m()=Iné+(e—¢ e M+0(e72M),

the form (2.17, and the corresponding eigenvectors are

given by the analytical continuation of E€R.18 across the
mean field line:

B B —isin[M ¢ (k)]
lum(K))1=up (1K) =by (k) —\/gn——l :
lup (k) =up (1K) =by (K)sif(M+1-1) gy (k)]
for 1=2,...| M (2.36

Here the constartiy (k) is given by expressiofR2.22), as it
is in regions A and B.
The diagonalization problem for the mati@, in regions

m(2)=Iné—(é-¢ HeM+0o(e7?M)  (2.39

become degenerate in the linhit— oo,
Now there are two large eigenvalues of the ma@iy,

Av(k)=(d/p)[a+2 coshpy (k)] k=1,2, (2.40
which split off from the rest of the spectrum. The remaining
M—2 eigenvalues have the form(2.17), where

du(K), m(k=2)IM<opy(k)<m(k—1)/M, k=3,... M,
are the solutions of E¢2.9).

To obtain the eigenvectotsy, (k)), k=1,2, of the matrix
Cwm with the two largest eigenvalue®.40 by analytical
continuation from region C, we take into account that §or

C and D(see belowdiffers in one essential aspect from that = ,>1 one has

in regions A and B: forén>1 the matrixCy, is complex

symmetric, with Cy)12=(Cwm)21=1Vén—1, and not Her-
mitian (or real symmetrig Due toC{,Cy,# CyCl, , the ma-

trix Cy cannot be diagonalized by means of unitary trans-

formation. However, sinceC,, has a simple real-valued
spectrum, the similarity transformati@@.23 with the com-
plex orthogonal matrixU,,, U,,*=Uj,, the elements of
which (Uy), k=um(l,k), I,k=1,... M, are defined in Egs.
(2.34 and (2.36), brings it to a diagonal form. Due tU,\_,l1
#U“,:,l, the normalization constants, (k) of the eigenvec-
tors |uy(k)), k=1,... M, do not equal their reciprocal
norm but are determined from the condititi{,U =1 .

D. Region D: a<a, and <.

In this region£é>1 and »>1. The essential difference
from the previous case is that now bdtg(¢;&,7)>1 and
fr(m;€,7)<—1, so that for sufficiently largéM Eq. (2.9
hasM — 2 simple real rootspy,(k), k=3, ... M, in the in-
terval (0g7), see Fig. 2. The two missing eigenvaluegf
are given by the positive solutiors= ¢y, (k) with k=1,2 of
equation (2.24). Indeed, in this region the limit function
A.(p;&,7m), see Eq(2.32), begins to increase from rzega-
tive value at ¢=0, attains apositive maximum at ¢
=In&7, and then monotonically decreases to> as ¢

—o0. Thus, it crosses the abscissa at two positive valges:

=In ¢ and ¢=In 7; the behavior ofA ,(¢; &, 7) for largeM

(&+ m)coshgy (1) —1—En>0>(£+ n)coshey(2)

—1—¢&n.
(2.41

Therefore, the normalization constany;(1) is defined by
the same expressia2.35 as in region C, and the compo-
nents of the eigenvectduy (1)) are given by Eq(2.34).
Since the right-hand side of E.35 with ¢ (1) replaced

by #u(2) becomes imaginary, the components of the eigen-
vector|uy(2)) are

_ o isinMgy(2)]
|uM(2)>l_uM(112)_bM(2) m ’
lum(2))1=un(1,2)=—by(2)sinf{ (M +1—1) py(2)]

for 1=2,... M, (2.42
where the normalization constalny; (2) is
bu(2)=2"4 [1+ &n—(&+ n)coshey(2)]
H —-1/2
sinf{Méu(2)] (2.43

X En—1)sinfn(2)
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The remaining eigenvectotsy(k)), k=3,... M, have lll. CALCULATION OF THE CURRENT
the same analytical form as in region C, 9@e36), with
constanb,, (k) given by Eq.(2.22. It should be noted that at
large but finiteM the eigenvaluex,,(2) and eigenvector
um(2)) defined in region C preserve their analytical form in - LIV = L
LIO(M>*1) neighborhood of the boundary line between C ZUEM=WICTHV) =Wyl Cu(& Vi), 31
and D, on the side of region D. For example, the solution forwhere the last equality holds independentlyMffor all M
dm(2) of Eq. (2.9 is real positive for G n—1<ey(§), & =[L/2]+ 1. By applying the similarity transformatioi2.23
>1, where ey(§)=[M—¢/(é—1)]" ! vanishes atp=1  of the matrixCy,, we obtain
+ epn(€) and becomes imaginary for>1+ €,(£) when the

From Eq.(1.16 it is clear that the basic quantity we have
to calculate is

next to the largest solution of E€R2.24 emerges. Z (&, =(WylUuCu(&mUL VW)
As in region C, the complex symmetric matr®y, in M
region D is diagonalized by the similarity transformation
2 K)uZ,(1k). (3.2

(2.23, where the components in the first and the second
columns of the complex orthogonal mattik, are defined in

Egs.(2.34 and(2.42), respectively, while the remaining In region A, from Eq.(2.17 for the eigenvalued (k)
—2 columns k=3, ... M) are given by Eq(2.36. and expression&.18), (2.22 for the componentsiy; (1),
by using the uniform distribution otp,(k), k=1,... M
E. Summary over the interval 0,7], see inequalitie$2.16), we obtain in

the limit M — o the following exact result{+ 7):
Here we summarize the qualitative features of the spec-

trum of the truncated propagator matfx, at largeM in the d\t
four regions of the parameter space shown in Fig. 1. (&) ( )

(1) Everywhere the spectrum is real and nondegenerate; it
is a symmetric function of the parametegsand . The  where
eigenvectors are real in regions A and B, and some of their
components are imaginary in regions C and D. In the whole (a+2 cose)‘si¢
space of parameters the normalization condition is (&)= f 1-2&£cosgp+é&°
SMoud(Lk)=1,k=1,... M.

(2) In region A the spectrum fills with uniform density the ~ The result forZ{}(¢,£), with |£<1 in region A, can be
interval from @/p)(a—2) to (d/p)(a+2), and becomes obtained by taking the limitj— & in expression3.3):
guasicontinuous in the limi1 — oo, giL

(3) In regions B, C, and D the largest eigenvahug(1) _ L 2
splits from the “quasicontinuous” part of the spectrum; in L(g’g)_(ﬁ [ L(§)+§ L(g)} (d/p)=(1=£9)KL(£),
region D so does also the next-to-the-largest eigenvalue (3.5

Am(2).

(4) The spectra in regions B, C, and D, excluding the linewhere
&+ 7 in region D, have an important feature in common with
the mean field caseéfy=1): except at the pointg, ») K (&)= J
=(1,1), the whole spectrum is dominated by the single larg-
est eigenvalue

T L(§)+ § ()|, (3.3

(3.9

(a+2 cosp)-sirt o
(1—2&cosp+&%)?

(3.6

One can perform the integration in E&.4) for |£]<1 to

(d/p)(a+é+&EH+0(e™M) for £¢>79 obtain the finite sum
MO @prat 0™ for p>¢, L [
(2.44 —2k
WO=516= 77| 2 | 512 mE (2m+1)
which differs from the mean field one, see Eg.11), only okt 1 (D2 (| 4 q
by exponentially small inVl corrections. The point§, ») > £2my
=(1,1) is a boundary point of all the four regions and be- k—m k=1 2k
longs to the mean field line as well. K
(5) On the line&= 7 in region D the two largest eigen- ><a‘2k+12 om 2k om—1 37
values become asymptoticalllas M —o0) degenerate, see k—m 3 ' '
Eqg. (2.39.

As is known[9], in the thermodynamic limiM —o re- A similar representation foK (£) follows from Egs.(3.5
gion A corresponds to themaximum current phaseegions and (3.7). As expected, Eqs(3.3) and (3.7) imply that
B, C, and D foré>n (a<pB) belong to thelow-density Z, (&,7) is a polynomial symmetric i and 7.
phase and for é<# (a«>pB) belong to thehigh-density In regions B and C one has to take into account the con-
phase The distinction between the latter three regions withintribution of the single largest eigenvalug,(1), see Eg.
a single phase is expected to affect more subtle characteri§2.27), and in region D one has also to take into account the
tics like density profile, correlation functions, rate of ap- contribution of the next-to-the-largest eigenvalyg(2), see
proach to the thermodynamic limit, etc. Eqg. (2.40. The remaining part of the spectrum yields inte-
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grals of the same analytical form as in region A, see Egs.

(3.3 and (3.4). From the explicit expressions far,(1,1),
given by Egs.(2.28 and (2.29 in region B, and by Egs.
(2.34 and(2.35 in regions C and D, we obtain in the limit

M — o

for &>
for n>¢&.
(3.9

((5—5_1)/@— 7)

lim uf(1,1)=
m D= e (-8

M—oo

Similarly, from expression§2.42 and(2.43 for uy(1,2) in
region D we obtain

for &9
for p>¢.
(3.9

lim uZ,(1,2) =

M—oo

[—(77— n Hl(E—n),
— (=& H(n—-9

Thus, by taking the limitV —< in regions B and C af
> 5, we obtain the exact result

d Le 1
ZE"C@,m:(B) gg_gn (a+&+& HE+2Z0E 7).

(3.10

The casen>¢ follows from the above expression by ex-
changing places of and 5. Note that by using the identities

IL(E>D)=E21 (6 =25 (7Y (3.11

and

£28(67h
(3.12

(a+é+E HH1-¢ ) =8(8)~

one can cast Eq3.10 in the form of exactly the same sym-
metric polynomial in§ and » as in region A, namely,

d L
ZE'°<§,77>=(5) priet KU h e T_s(n)|.

& —¢

(3.13

In a similar way, by taking the limiM —« in region D at
&+ 7, we obtain

-1 _ 1

d\[¢-¢ LT

3
X(a+p+n Ht

ZP(&,m) =

+Z0NE 7). (3.14

Obviously, the above expression is a symmetric functioé of
and 7. Since now bothé>1 and »>1, the application of
identities(3.11) and (3.12 brings Eq.(3.14) in the form of
the polynomial(3.13.

Now we consider the limitM —o on the lineé= 7 in
region D. Due to the asymptotic for2.39 of ¢y (1) and
dm(2), which leads to inequalitie€.41) taken até= n, we
obtain from Eq.(2.29
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(£2—1)sinhepy(1)
2£coshgy(1)—1— &2

(£2—1)sinhy(2)
smf‘[M¢M(2)]_1+gZ 2¢écoshgy(2)

sin{M ¢y (1)]=
(3.15

From Egs.(2.35 and(2.43 for the normalization constants
by (1) andby(2), respectively, we obtain at= 7

2 oo | SINAMy(1)] -
bu(D =2 —grhgn@m M|
sty 89
m(2)= sinhey(2) ‘
Hence, it follows that at largi
M 1
uZ(1,0)= ig gzgg +O(Mg™M),
(3.17
S
2 -
uy(1,2= 2§+ T +O(M&™M,

Finally, by rewritingZL(g,g) indentically as

ZP(£,E) =Np(D[U5(L,) +uZ(1,2]- [\ (1)
M
—xkﬂ(2>]u§n(1,2>+k23 A (K)ug (1K),

(3.18
and passing to the limi¥l —«, we obtain
HoL(g-¢7h?
——— 4 1+¢ 2 (até+E D
ZP(&,6)= fatere D) & |(até+ér)

+Z0(£,6), (3.19

WhereZA(g £) is defined in Eq(3.5. Naturally, the same
result follows by taking the limity— ¢ in Eq. (3.14).

A. Current in the maximum-current phase

The exact results for the current follow from Ed..16
and the expressions f@ (&, ) in region A. Thus, from Eq.
(3.3 it follows that whené# 7 the current equals the ratio of
the symmetric in¢é and » polynomials

[P €SL-1(§)— 7S -a(n)

sen=(8) e 00

and for ¢= » we obtain from Eq(3.5
JL(&,E)=(pld)KL-1(E)/KL(&). (3.2)

The asymptotic expressions for the current at ldrggre
most readily obtained by applying the Laplace method to the
integral in Eq.(3.4):

(a+2)L+3/2

mL_S/Z[1+O(L_1)],

€l<1.
(3.22

By substitution of this result in Eq(3.3), we obtain the
asymptotic form ofZ, (&, ) for §# n

1L(§)=
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e 1_§7] d L(a+2)L+3/2 Ld. _ . _1_a(p_a)
= = 77)2(5 o IHEm=(plda+ et i=ra—. (327
X[1+0(L™H]. (3.23 The result for the high-densitih.d) phase follows from

Eq. (3.27 under the replacement gfby 7 (i.e., of @ by B):
From Egs.(3.5 and(3.22 one can easily derive that only

the L-independent prefactor in E(3.23 changes on the line hd. 41 B(P—B)
£=17 I (€ m=(pld)(a+nt 7y ") “p(1-p)
(3.28
e 1+&  [d\“(a+2)-"3? .
Z07(68)= 2\/;(1_5)3 5 32 [1+O(L "] Only on the lineé=%>1 in region D the currenﬂE(g,f)

(3.24 hasO(L ™ 1) corrections to the thermodynamic limit, see Eq.
(3.19.
In the thermodynamic limit the above expressions for the

By substituting the above expressions #ff-°(&,7) in o ) ; .
y g P NG current coincide with the corresponding mean-field results

Eqg. (1.16), we obtain that the largke-asymptotic form of the

current in the maximum-curreitin.c) phase is (9]
1—J1— IV. CALCULATION OF THE LOCAL DENSITY
J’L“-C-:—p[1+O(L—1)] (3.29 . .
1+yJ1-p Due to the choice of the matricBandC, see Eqs(1.24)

and (1.29), respectively, and the vectof¥), (W|, see Eq.

independently of the parametessand 3. In the thermody- (1.17), the expression for the local density (i), i

namic limit one recovers the well-known mean-field result=1, ... L, defined in Eq.(1.16, depends only on the ele-
[9]. ments in the firsfL/2]+ 1 rows and columns. Therefore, for

the calculation of the scalar product one can use the trun-
cated at M=[L/2]+1 representation of the above-

B. Current in the low- and high-density phases . h
mentioned matrices and vectors,

At finite L the exact expression for the current in these

phases is given by the same ratio of polynomials as in the N=z"YwW.lci-1p..cL-ilv
maximum-current phase, see EG8.20 and (3.21). Since pL) =2 (WulCy "DuCyr Vi)
both the low- and high-density phases take place in regions =Z Y Wy|UyCl DuCL UG V). (4D

B, C, and D, the largé- asymptotic form ofZ (¢, 7) for &

# 7 IS given, up to exponentially small corrections, by the
contribution of the largest eigenvalue of the matrix
Cwm(&,7m). Since one of the phases maps on the other under

HereE:M is the diagonal form2.23 of the truncated lattice
translation operato@,\,, , and the transformed truncated ma-

the exchange of argumengs- 7, it suffices to consider the t“X Du=Uy'DuUy has the elementsi(k=1,... M)
case&> 5. Appropriate bounds on the correction terms can
be obtained by using the inequality (¢)<(a+2)"14(&), _4 1-p
wherelo(€) =1 for |£|<1 andl (&) =¢ 2 for |£|=1. Thus, (Owmi= [QL(m k) U (Lmum(Li)]+ p Omk:
for ¢£>1> 7 in regions B and C, we obtain from E¢3.10 4.2
the following bounds orZ><(¢,7):
. where
E-¢t én a+2
(p) g BTETE l){ §2—1(a+ vel S
¢re QUMK = V1= Enuy(Lmuy(2K)+ X, uya(n,m)
<ZP%¢ )< (p) gf (a+g+eht XUy (n+1K). 4.3
. For the sake of simplicity, here we omit the indication of the
1 / a+2 explicit dependence of the eigenvalues and eigenvectors on
X[ 1+ 52_1\a+§+§’1 the parameterg and 7, see Eq.(1.20, as well as on the

(3.26 hopping probabilityp.
' By straightforward calculation of the scalar product in Eq.
(4.1), we obtain the following general expression for the lo-

In region D, from Eq.{(3.14) for &> 5>1 and Eq(3.19 for cal density:

&=n>1 it follows that the correction terms are also expo-
nentially small inL.

' Th'us, everywhere in thg Iow-densi@/d.). phase the con- pL(i)= i[QL(i)+ pZi_1Z, _;+dzZ 1], (4.9
tribution from the largest eigenvalue dominates over the one Z
from the rest of the spectrum. Hence, up to exponentially
small inL corrections where
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EM‘, ' d F(i
QU= 2, Ny (myum(Lm) o ;A')
m= A
S .
><k§:‘,lxkﬂ—i(k)uM(l,k)QL(m,k)_ (4.5 L32q L2 .

A1+ d) 0 (L—i—k—1)¥%(i + k—1)%?
In Sec. Ill we have found different analytical representa-
tions for Z, in the parameter space shown in Fig. 1. It re- L-12/d

mains to find the corresponding representationg¥pi) by ~ J o o
using the explicit knowledge of the eigenvalugeg (k), k aJm(1+d)Jo  (1-r—x)¥r+x)%
=1,... M, and the components of the eigenvectors 1
uy(m,n), mn=1,... M, of the matrixCy,. Since their _ L \/a 1-2r (4.10
analytical form depends on the valueséénd », the deri- Jm(1+d) Jr(l=r) '
vation is given in Appendix A for region A, and in Appendix
B for regions B, C, and D. The last position-dependent term in E4.6) yields higher-
order correction®©(L " %?).
A. Local density in the maximum-current phase From the above results it follows that within corrections

_1/ . .
This phase appears in region A after taking first the IimitOf orderO(L"*?), the density profile (6:r<1)
M— d then the limitL—co. For finite L and M th
© an en the limi o, For finite L an e \/rp L*1’2\/5(1—2r)

eigenvalues of the matriy, are given by Eq(2.17), and m.c, _
pL(rL)= + (4.11
1+V1-p Vm(1+d)vr(1-r)

the components of the eigenvectors by E¢2.18 and

(2.22. After somewhat lengthy transformations, the sums in

the right-hand side of Eq4.5) can be cast in a form conve- g jndependent of the parametarsand 8 and has the same

nient for taking the limitM — <. As it is shown in Appendix  ghane as in the case of stochastic-sequential dynamics, see

A, the final exact resuIF for the particle density in the Eq. (53) in [10]. The above asymptotic form is compared

maximum-current phase is with results of computer simulations in Fig. 4. In the ther-
modynamic limitL—o the particle density equals exactly

1 d . e : )
pL(i)= E(l_J/L%)Jr E[FL(I)_@_ mzh z8 . the mean-field result for the maximum-current phase.
L
(4.6) B. Local density in the low-density phase
HereZ,(&,n) is defined in Eq(3.3) for £+ 5 and Eq.(3.5) The low-density phase exists in regions B, C, and D at

for é=5; J (&, 7) is the current in that phase, see E320  £> 7, where the contribution from the eigenvector with the
for €+ » and Eq.(3.21) for &é= n; the termF | (i;&,7) is an singlg largest eigenvalu@.44) dqminates in the general ex-
antisymmetriwith respect to the center of the chafinc- ~ Pression(4.4) for the local density.

tion of the integer coordinate The evaluation OQL(I) in the limit M —oo is given in

Appendix B. By inserting Eq(B13) into the general expres-
FL(i;é&n)=—F.(L=-i+1;¢7), (4.7) sion (4.4), we obtain the exact result for the local density in

the low-density phase in regions B and Céat 7:

defined for ki<[L/2] by the equation

. : E—¢t _
d\t-1 L2 P = —gg| Fm(d+ & HNTHD —(6-¢7H
FL<i;§,n>=(5) (A=€m) 3 imaea(E)lanoa(n). pz2eL &7
“48 XA HDZE - ét2_7]Zt\7iZiA71"' %Zf\
To obtain the particle density profile on theacroscopic

scale r=i/L, asL—c, we assume that the lattice sites far P _A 1 )

from the two ends of the chain, i.é31 andL—i>1. Then, N EZL—l+ EFL(') . (4.12

for the calculation ofp| (i;¢,7) one can use the asymptotic

form (3.23 of Z,,(¢,7) for §# », and(3.24 for §= 5. Thus, As expected, the asymptotic form of the local density pro-

by taking into account the asymptotic form of the currentijle at largeL differs from the one in the maximum-current

(3.29, we obtain that the position-independent term in thephase. The first term in the right-hand side of E4.12

right-hand side of Eq(4.6) yields the contribution yields, up to exponentially small ih corrections, the bulk
density

[1+O(L™YH]. (4.9 drél a(l-p)
a+erel p(l-a)

1+V1-p

For the contribution of the asymmetric functidf (i) we
obtain asL — The leading-order contribution of the second term

1
5[1—JT'C'(§,77)]=

(4.13
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I e LI B clearly sees that even for a rather small system the shape of
iy 1B L pL(rL;&,7) as a function of the scaled distancei/L dras-
06fi,-iC T tically changes on crossing the phase boundary. In the
P L D ] maximum-current phase the profile has power-law deviations
04l A J from the bulk value, which are of opposite sign near the left
and right ends of the chain, and vanish@&.~*?) when

AAAAAAAAAA \’% - L—co. In the low-density phase, the profile is constau to
e c Y

°e2r T exponentially small i termg near the left end of the chain,
[ . . . . B E___I__:' (a) and changes exponentially fast with the distance near the
00 e 0z o4 o8 o5 10 right end. To analyze the sign of that exponential change, we
r note that, as follows from Ed3.5),
(b) (c)
P p ——T—T
072 |- - |
B 0.14 | c: A d
[ ! —[E1,(H]=(1-E)K(&) (4.17
0.70 |- . / 9€
| 0.12 | D4
0.68 |- - [
- 010 7 changes sign a=1. Since in the low-density phase>1
e 1 oosl ] > 7, we use the relationshi8.11) to write
0.64.- :: c ’ ooe- B ]
go Lt 1 .1 . ) P PR B glL—i(g)_nIL—i(n):gillL—i(gil)_77|L—i(77)'
0.00 0.05 0.10 0.15 0.85 0.90 095 1.00 1.05
r r

_ _ _ _ Obviously, this expression is positive in region B¢
FIG. 4. Particle density profiles versus the scaled distance > 1), and negative in region C§(1< 7). Therefore, the
=i/L in the different regions of Fig. 1. The results of computer bending of the profile near the right end of the chain is
simulations for a chain of length=300 are shown in pafa) by downward in region B and upward in region C
solid squaregregion A), solid triangles(on the coexistence line in The exponential approach to the bulk deﬁsityLasi

region D), and dashed linegegions B and § all lines are labeled k L .
by the letter of the corresponding region. The solid line shows the|_> ?:]’ p;eﬁlcrfd bry tl‘;ﬁ %?S\/I\t;?hntﬂeprendint t?rmrlr? E?lrayim
asymptotic behavior described by Ed.10 in region A. Partgb) S In exelient agreeme € results of computer simu-

and(c) of the figure show the enlarged portions of pi@tenclosed lations; see Fig. 4: Note that the bulk densﬂy coincides with
in dashed squares close to the left and right ends of the chaifif® known mean-field resuie]. The asymptotic forni4.16
respectively. The asymptotic behavior describied by @dql6 in can be checked against th_e exact relatlon§h|ps between_the
the low-density phase and E.27) in the high-density phase is current and the local density at the end-points of the chain.
shown by solid lines in region B and dashed lines in region C; theSuch relationships follow directly from the general expres-

results of computer simulations in region B are shown by solidsions (1.16 for J_ and p (i) and the boundary conditions
squares. (1.15, see, e.g[9]. Thus, by setting=1 and using the left

boundary condition one obtains

(i)

(atgrg D vl (419 pL(LiE ) =1-a N (E 7). (418
is exponentially small i, except close to the right bound- o, the other hand, by settifig: L and using the right bound-
ary. o . . ary condition one finds

All the remaining terms are uniformly in=1,... L
bounded from above by an exponentially smalLiquantity .
of the order pL(L;Em)=(B""=1)I (& n). (4.19
L
at2 £+1 (4.19 By substituting the asymptotic forit8.27) of the current in
atere) ' ' Eq. (4.18 one obtaingup to exponentially small i cor-

rectiong that p:;d'(l)=p:fj'|k. In a similar way, from Eq.
By collecting the above results we obtain that up to expo<{4.19 one has
nentially small inL corrections the local density of the low-
density phase in regions B and C is given by

a(l-B)(p—a)

Bp(1-a) (4.20

l.d.
(L)=
«(1-p) E (O 7l i(n) ot

p(1—«) (a+§+§—l)L—i+l '

pr (i) = (4.16

The above result coincides with the right-hand side of Eq.

The qualitatively different behavior of the particle density (4.16) ati=L.
profile in the maximum-current and low-density phases is In region D we obtain from Eqg4.4) and(B17) the fol-
illustrated by results of computer simulations in Fig. 4. Onelowing exact expression for the local densigA 7):
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1-p d [1—¢g2 density phase, see E@.12), taken with theopposite sign
pL(i)=——3(&n)+ —5 A1) Note thatF (i;&,7), see Eqs(4.7) and(4.9), is a symmetric
P pzol &7 function of £ and #, but changes sign under the coordinate
(=&Y (p—7pY) _ transformationi< L —i+1. This fact explains the antisym-
+ PO B) Sl 623 metry in the bending of the density profiles in the two phases
=7 at the opposite ends of the chain, see also the computer simu-
2_q d lation results shown in Fig. 4.
_ —MLcl(Z)} b —[—(&— 571))\51(1)264 By ignoring the exponentially small ds— o corrections,
§&—n ZE one obtains that the first term in the right-hand side of Eq.
- n_l)?\';c_i(Z)Zf\_l-i- Zh 70 0A)] (4.12 yields the bulk density
(423 Lﬂ_l=1—é. (4.24
The part of region D occupied by the low-density phase cor- atntn P

responds toé>7%>1. Hence, by taking into account Eq.

(3.14 for ZP and Eq.(3.27 for the current, after neglecting The leading-order contribution of the second term

terms which are uniformly ini=1,... L exponentially
small asL—o, we obtain that the local density in region D nli—1(m)—&li—1(8) 425
s (atp+n Y '
_ g\ L
D(j)~ a(1-p) I/ 'latgtayt is exponentially small i, except close to the left boundary.
PL p(l—a) g+ e+ arere? All the remaining terms are uniformly in=1,... L
bounded from above by an exponentially small quantity of
_A@ =) a2y heorder
(a+§+§fl)Lfl+l L
at2

A comparison with Eq(4.16) reveals an important new fea- (m » m#l. (4.26

ture: the leading-order analytic form of the density profile
changes on passing from region C to regionmhin the
low-density phase. Nevertheless, the density profile has fe
similar shape in regions C and D, since it is constait to
exponentially small irL correction$ near the left end of the
chain, and tends to the bulk value exponentially feedt
though with different rateas the distance from the right end pBC(i)=1— §+ 7li-1(7)— €li-1(8) _ (4.27)
increases; the bending of the density profile near the right - p (at+p+n Y
end of the chain is upward in both regions C and D. One can

readily check that ait=L the local density4.22) also satis- Thus, in the high-density phase the profile is constapt
fies the boundary conditio®.20. to exponentially small irL term9 near the right end of the
chain, and changes exponentially fast with the distance near
C. Local density in the high-density phase the left end. The profile bends upward in region B and down-

The high-density phase exists in regions B, C, and D ayvard in region C. This behavior is in excellent agreement

; ; - with the results of computer simulations; see Fig. 4. Note
> £, ) - .
glacgesTchef zﬁzris?ﬁog"&%) [LtzltZV\{[sr]attzAt(agc;)a?g w;g that the bulk density4.24) coincides with the known mean-
. L(¢&,

symmetric polynomial ir¢ and »]. By inserting the result in field result[9]. : .

the general Eq(4.4), we obtainnthe exact expression for the Thg asymptotlp forn('4.27) agrees(up tp exponenﬂally

local density in tHe ,high-density phase in regions B and C mall inL correction$ with the exact relationships between
he current and the local density at the end-points of the

By collecting the above results we obtain that up to expo-
ntially small inL corrections the local density of the high-
density phase in regions B and C is

n>¢& chain, see Eq94.18 and (4.19. Indeed, from Eqs(3.28
1 and(4.18 one obtains at the left end of the chain
B.C iy _ n—n L-1 o
ZLY 7 h.d. ﬂ(p_ﬂ)
pri=1-———r, (4.28
i n—§ P ap(1-p)
XN (DZE 5220+ 55 2
which coincides with Eq(4.27) ati=1. At the right end
p_, 1 (L) = ik
~ogét1t R (4.23 The asymptotic form of the density profile in the high-

density phase occupying region D, i.e., wher ¢>1, fol-

The symmetry transformatiof—» and i—L—i+1 lows directly from the exact expressio@#21) for pE(i) and
brings all the position-dependent ternis the local density (3.14) for ZP, after neglecting terms which are uniformly in
(4.23 to the form of the corresponding terms in the low-i=1, ... L exponentially small ak —o°:
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. 8 -t até+et i-1 matrix D.MEM . Firstly, we find an infinite-dimensional rep-
pr(i)=1——-— — — resentation for the operatof3 and E, such that the lattice
P atpty “latnty translation operato€=E+D is (real or complex symmet-
ric. Secondly, we exploit the fact that for a finite chain of
+ 7li-af ”)_fli#@) _ (4.29 sizeL the quantities of interest depend only on the elements
(a+tnp+p Y in the first[L/2]+1 rows and columns o€ and D. This

makes possible the use of truncaMetdimensional matrices,
As in region C, the profile bends downward near the left endyith M =[L/2]+ 1, for the calculation of the finite-size cur-
of the chain and satisfies the boundary conditiér28 at i rent,J, , and density profilep, (i), i=1, ... L. Thirdly, we
=1. Similarly to the case of the low-density phase, theperform the calculations after diagonalization of the trun-
leading-order asymptotic form of the position-dependentcated propagato€, by means of similarity transformation
terms changes on passing from region C to regiowihin  with a symmetric(real or complex matrix. At this step the

the high-density phase; compare EG&27) and(4.29). spectrum ofCy, reveals the crucial role of the parametérs
and 7 in the mathematical mechanism of the phase transi-
D. Local density on the coexistence line tion: if at least one of¢ and 5 exceeds unity, the largest

eigenvalue singles out from the bounded quasicontinuous

The conditioné= »>1 defines the coexistence line be- : oo .
tween the low- and high-density phases in region D. By in-Spectrum and its contribution becomes dominant at large
Fourthly, we lift the truncation by passing to the linit

serting Eq.(B19) for 0, (i:£,¢) into the general expression —oo. In this limit the expressions obtained simplify essen-

(4.4) for the local density, we obtain the exact result tially and become valid for allL. The resulting integral rep-
resentations clearly show that for any finitehe current and

p&Ni;&,6)= DL (- HINLT (D)2 (8,8 the local particle density are real analytical functions of the
PZ (§.6) parameters. Only in the thermodynamic lirhit- do these
i1 A 3 L-1 quantities develop different analytical forms in the
Ao {(DZL(£)]+(E+E N (D) maximum-current, low-density, and high-density phases.
d When botha and B8 are less than & 1—p, two large ei-
—-1\2 L-2 —2\2 . X
—(E—€7) 5)\30 (D)+(1-¢&9) genvalues appear. This causes a change of the leading-order

asymptotic form of the position-dependent part of the local
d density within a single phase. The two largest eigenvalues
X[L+(§2—l)i]5?\i72(l) become degenerate on the coexistence lire8 between
the low- and high-density phases, which manifests itself in
A A Al the appearance of a linear profile of the local density.
T2 1(6,6)ZL (£, +Q(1:£,8) The exact expressions for the bulk current and bulk den-
sity are found to coincide with the analytic continuation of
P the corresponding mean-field results from the line (1
+ T‘]L(f'f)' (4.30 —a)(1—B)=1-p to the entire parameter space. This has
been conjectured ifB] on the basis of computer simulations.
By assumingmacroscopic scalef distance, i.e., considering On the grounds that the above liteuchesall phases, and
i/L=0(1) asL—ox, and by ignoring theD(L™1) correc- that the analytic form of the current and bulk density does
tions we obtain the linear density profile not change within a phase, the validity of the corresponding
expressions for the whole phases has been conjeci@ted
N . . However, these arguments do not have the status of a proof,
prorL;€,6) = F[CH% +(E=&)r]. especially for the maximum-current phase which is touched
£+e 4.31) by the mean-field line just at one corner point of the phase
' boundary. In our work, in addition to the above-mentioned
It is readily seen that, up t®(L 1) corrections, the local bulk quantities, we have calculated exactly the density pro-
density on the coexistence line changes linearly from thdiles in all the phases. We have shown that the asymptotic
bulk density of the low-density phase at the left end of theform of the profile changes whem or 8 crosses the value
chain =0), to the bulk density of the high-density phase at1— V1—p in the high- or low-density phases, respectively.

the right end (=1); see Fig. 4. A similar fact has been established in the case of random-
sequential dynamickl1]. To our knowledge, the results for
V. DISCUSSION the density profiles found here for the ordered-sequential dy-

namics are new.

For the FASEP with open boundary conditions we have
calculated' Qxactly Fhe current and the local partlple'dejnsny, APPENDIX A
both for finite chains and in the thermodynamic limit. It
should be emphasized that our results are not based on a Here we derive an exact expression for the site-dependent
finite-dimensional representation of the relevant algebrajuantityQ (i), i=1,... L, defined in Eq(4.5), by taking
given by Eqgs(1.14 and(1.15. The truncated matrice3, the limit M—o in the maximum-current phase, region A.
and Ey, do notsolve the bulk algebr#&l.14 because of a First we perform the summation in E¢.3) for Q,(m,k)
defect in the last element on the main diagonal of the producind after some transformations cast the result in the form
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QL(M,K)=Q(m,k)+Q®(m,k). (A1)

Here Q{¥(m,k) is the symmetriqwith respect tom and k)

part of Q, (m,k), the explicit expression for which depends

on whethem##k or m=k. For m#k

1 é+ny
Q(S)m == 7
L (mk) 21-¢&n

XSINM ¢y (m)JsinM ¢y (k)]

by (m)by (k)

1
== S(EF puumun(lk).  (A2)

In deriving the second equality we have used 2q18. For
m=k we obtain

sin2M ¢m(k)]}

Q¥ (k k):sz(m .
LA 2°M 2 singy (k)

M cosgpy (k) —

M cosap (k)

1
= 5bi(k)

A= éplét -1+ 577)003¢M(k)]}
Ru(k; )Ry (k; 7) ’
(A3)

where

Ru(k;&)=1—2¢cosgy (k) + &2, (A4)

The antisymmetri¢with respect to the exchange wfandk)
part of Q_(m,k) is defined form#k by

singy(m)sin gy (k)
COS¢y (M) —cosgy (k)
~ Ru(m;&Ru(k; 7) + Ru(m; 7)Ru(k; £)

4(1-¢n)
up(Lmup (1K)

cospy(m)—cospy (k)

<a>mk=3b m) by, (k
Qr*(m,k) > Pm(m)by(k)

(A5)

In the limit M — the contribution of the ternfA2) into
Q. (i) is

1
—S &z Z. (A6)
The term(A3) appears in the single sunm& k)
M
2 M 0uR (LK k), (A7)

and only the part ofQ{®(k,k) which is proportional to
M cosg¢y(K) yields the nonvanishing in the limil — o con-
tribution
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(a+2 cosp)-~Isirt ¢ cose
1+ £2—2&cose

d L—12 -
(5) ;fod¢

1
Szt m-azt y(em)|

5 (A8)

Consider now the contribution of the antisymmetric term
(A5) into Q(i). By using the antisymmetry (Q(La)(m,k)
with respect tom andk, we write

(@) i 15 M' i-1 L—i
0f)=7 2 2" Dy (mng (k)

=Ny O (M) Ju(Lm)uy (LK) QP (m k).
(A9)

The primed summation means that the term witk-Kk is
excluded from the double sum. As one can readily see,
Q(,_a)(i) changes sign under the coordinate transformaition
—L—i+1; if L+1 is even thenQ{®(i) vanishes at the
center of the latticej=[(L+1)/2]. To take the limitM

—o0 we assume <L +1 and write

L—2i
0@ )y=— =
Co() D

M M ‘ -
=0 mzzl IZII )\k/l_l_n_l(m))\u—n_l(k)
X Up(1,m) Uy (1K)[coShy(m)
—cospu (k) 1QP (m,k).

Now the first term in the right-hand side of E@\5) yields

(A10)

L-2i M M

1-énd A .
s S S L  mpa )

2 P Aso me1k=1

b (m)sir? ¢y (m)
VRu(m; &) Ry (m; 7)
y b2, (K)sir? ¢y (K) |

VRu(k; &)Ry(k; 77)

Due to the factor ¢ 1)™"X in the summand, this part of
Q@(i) vanishes asM—= since the leading asymptotic
forms form+k even and odd integer cancel. Far2L + 1,

the contribution of the second term in the right-hand side of
Eqg. (A5) in the limit M —o is

1— d L—1L—2i
f”( ) 2 Ticn-a(@lisnoa(m)=
n=0

X(—l)m+k

(A11)

0 FL(i; & m).

(A12)

N| =

By collecting the above results one obtains in region A

1 . p
Qﬁ(u>=§{ﬁ(u>—(§+ n)zi‘\_12’é_i+32’é—azt‘_l}-
(A13)
Finally, by inserting this result into Eq4.4), one obtains

expression(4.6) for the local particle density in the maxi-
mum current phase.
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APPENDIX B

Here we evaluaté€), (i) in regions B, C, and D. First we

consider explicitly region B; the results for region C have the
same analytical form. Then, in region D we take into account

the contribution of the next-to-the-largest eigenvalyg2),
see below.

By singling out the contributions of the eigenvector with
the largest eigenvalue, we write

QL =Ny H(1uZ(1,)Q.(1,D)
M
+wl<1>uM<1,1>k§2 My (K upm(1K)QL(L1k)
M

+Ah*‘(1>uM(1,1>n§2 Ay H(m)uy(1,m)Q,(m,1)

+Q/(i). (B1)

In region B we have the explicit expressions

M-1

QL(1,1)=bZ(1) ngl Sin{ (M +1-n) ¢ (1)]

X sinq (M —n)¢n(1)],

M-1

QL(1K)=by(1)by(k) n; SinH (M+1n) ¢ (1)]

Xsin(M—n)gu(k)], (B2)

M-1

QL(mM,1)=Dby(1)by(m) n; Sin{(M+1—n) ¢yu(m)]
X sin{ (M —n) ¢y (1)].

The last term in the right-hand side of E@B1), namely
Q[ (i), differs from Q (i) defined in Eq.4.5 only in that
the sums ovem andk run from 2 toM. Therefore, in the
limit M —co this term yields in regions B and C the same
result as in region A, see EGAL3),

lim Q[ (i)=Q0).

M— o

(B3)

By direct evaluation of the sums in Eq®82) we obtain

1 sin2M ¢ (1)]
Qu(1D= Ebﬁll(l) W_M COSh(ﬁM(l)},
(B4)
1
QP(1=5[QuLk)+Qu(k.1)]
1
:_§(§+ n)uM(lvl)uM(llk)r (BS)

JORDAN BRANKOV, NINA PESHEVA, AND NIKOLA VALKOV
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1
Q¥(Lk)=5[Qu(Lk) - Qu(k.D]
_bu(Dby(K)sinhgy(1)sin (k)
~ 2[coshgy(1)—cosgy(k)]

~ Ru(L;&Ru(k; ) +Ru(L;m)Ru(k; &)
4(1-¢n)
um(1,Dup (1K)

[COSheb (1) — COSyy (K] (B6)
where
Ru(1;£)=1—2&coshgy(1)+ £ (B7)
With the aid of the limits(3.8) and
. ) 1-¢é9
llm d)M(l):ln g! “m QL(111)= g_ (§> 7])1

M — oo M— o n

(B8)

we evaluate the contribution of the first term in the right-
hand side of Eq(B1) for {&> 7

(E—&hH-én) |,
)\oo
(£—1n)?

By using Egs(B5) and(B6) we reorganize the contributions
of the second and third terms in the right-hand side of Eq.
(B1) into symmetric and antisymmetric parts. The straight-
forward evaluation of the symmetric part yields in the limit
M—oo (§>7)

(1). (B9)

E—¢t
&—n

NS HDZP+NET(D)Zh ]
(B10)

1
—§(§+ 7)

Turning to the antisymmetric part, we first notice that the
contribution of the first term in the right-hand side of Eq.
(B6) vanishes in the limitM — . The contribution of the
second term is easily obtained with the aid of the limits

lim Ry(1;¢)=0,

M — o0

lim Ry(L;m)=¢ X1—&n)(é—n) (£>7). (B11)

M — o

As a result, the antisymmetric part yields
1 -1 i—1 A L—i A
—5(EE N T (DZE i —h (DZi,]. (B12)

By collecting the above terms we obtain f&r 7

_ E—&11-¢9
E—mn | &7

QP

AN -ad ozt

=T (DZE |+ Q). (13
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The result forp> ¢ follows by exchanging places &f and 2 M _ _
7. > 2 [N Oy ()
In region D we single out the contributions of the eigen- =1 k=3
vectors|uy (1)) and|uy(2)) in the general expressid#.5) kn (J)A (k)]uM(l,j)uM(l,k)Q(LS)(j,k)

for Q,(i). The evaluation of the kern&) (m,k), see Eq.

(4.3), is performed by using the explicit form of the eigen- 2

vectors in region D. For the part &, (i) which involves Z 2 (DA (k)

only the eigenvectors with eigenvalueg (1) and/or\,(2) “lk=s

we obtain =N (DN 0 Tu (L) um (10 QP () k).
Ay HDOUR(LDQUL Y+ Ay H(2)uf(1,2Qu(2,2) (B15)

i—1 L—i
A (DA (2) HereQ®(1k) andQ®(1k) (k=3, ... M) are defined in

AL (DAL 22) Tup(1,)un(1,2Q19(1,2) Egs. (B5) and (B6), respectively;Q{¥(2k) and Q{*(2k)
- Lo follow under replacement oy, (1) by ¢\ (2). Thecontri-
A (DAy (2) bution of these terms in the lim1— o is readily obtained

—Xk/fi(1)Kﬁl(2)]um(l,1)um(1,2)Q(La)(1,2)- (B14) by taking into account the limit€3.8), (3.9), (B11), and

Here Q,(1,1) is defined by the first equatiofB2), and im R (2:8) = n~ Y én—1)(é— lim R (2:7) =
Q.(2,2) follows from the latter by replacing,,(1) with MITOO w2 =7 (&n=1(E=n), Mlinx w(2im)=0.
éu(2); Q¥(1,2) andQ(¥(1,2) are the symmetric and an- (B16)
tisymmetric(with respect to the labels 1 and 2) parts of

M-1 All the remaining terms i}, (i) involve only eigenvalues
QL(1,2=—iby(1)by(2) Z sinf(M+1—n)énu(1)] belonging to the quasicontinuous part of the spectrum of the
n=1 matrix C,, ; they yield in the limitM — oo the same analyti-
X sinf (M —n)éu(2)]. cal expressioriA13) as the one fof), (i) in region A(how-
ever, with¢ and » larger than unity.
The part ofQ) (i) which involves one of the two largest As a result, by taking the limiM—c at é>#%>1 we
eigenvalues and the bounded quasicontinuous spectrum isobtain the exact expression

En—1
(-

e _ -1

+(§ EN(n—nh
(£—n)?

QPG €)= e YASHL) + (p— 7 INEH2)]

[ENL HONLT'(2)+ S (DAL H(2)]

1 . )
—g_—n[@z—l)x;l(l)—wz—1>x:1<2>]ztti<é,n)

1 i
— 7 E N (W= g I (212 (6 ) + QLG E ). (B17)
The same result holds also fgi>£>1, since the right-hand side of E@®17) is invariant under the transformati@r- 7,
which impliesh.(1)—\.(2).
Note that the singularity a§= # in the right-hand side of EqB17) can be removed with the aid of the equality

d (§—n)(En— 1)
w(l)—Np(2)= - —F——
Noe(1)=Nee(2)= o 2
Thus, by taking into account E¢3.14) for ZE(f, 7), we can rewrite Eq(B17) in the equivalent form
. _ §—¢& d(7°—1)(én—1)
Q2isgm) == nZ2 (£ MZ(Em+| € n= = )xL H+ T”

L-2

E AN (2) -

n=0

—(E— €I DZR_(Em+(p—n OIANET(2)ZR 1(E,m)

52_ L—i—-1
T ngo x;‘“‘z(mzm}
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QL6 )+ 9zl (£ mZE (£, (B18)
The above expression is convenient for the study of the coexistencé=ine>1: by settingn= ¢ we obtain
d d
OR(156,6) == €271 (£HZ0 (£ + (E+E NI D= (6= D ATH D+ & 2L+ (E- DI (D)

H(E-EHINETDZ (EH AT HDZE(EOTHONE,6) + €20 (92 (£,8). (B19)

This completes our derivation of exact representationd¥pfi) in the four regions of the phase diagram characterized by
different spectral properties of the truncated lattice propadagpr
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