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Thermodynamics of fractal spectra: Cantor sets and quasiperiodic sequences
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We study the properties of the specific heat derived from fractal spectra, for which we extend and generalize
some previous known results concerning the log-periodic oscillations of the specific heatC(T). For the
monoscale case, we obtain analytically the behavior ofC(T) for a two-branch general spectrum, and we show
that the oscillatory regime becomes nonharmonic if there exist different gap sizes. In the multiscale case, we
connect the role of the spectral dimension as the average value ofC(T) with the multifractal properties of the
sets, and we give a condition for which the oscillatory regime disappears. Finally, we study the thermodynam-
ics of tight-binding Fibonacci spectra, which are not strictly invariant under changes of scale, and then many
of the properties found in Cantor sets become in this case just approximated.

PACS number~s!: 05.20.2y, 61.44.Br, 61.43.Hv
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I. INTRODUCTION

The experimental discovery of quasicrystals by Shec
manet al. @1# produced a great interest in the understand
of the properties of these systems, as is shown by the g
amount of theoretical and experimental work that followe
In general, quasicrystals present intermediate properties
tween pure periodic structures~Bloch systems! and random
materials, in spite of the purely deterministic rules used
generate them. To gain a physical insight into the gen
properties of these materials, the case of one dimensi
sequences have been extensively studied, such as Fibon
Thue-Morse, prime numbers, and many others. They
known in general as quasiperiodic sequences, and have
been realized experimentally in superlattices@2,3#. The be-
havior of electrons, photons, phonons, and other particle
quasiparticles has been and is currently being studied in
siperiodic sequences@4–12#, and interest is still increasing.

The general property, and perhaps the most character
one, shared by all quasiperiodic sequences is afractal energy
spectrum. These spectra, however, tend to be very comp
and simplified fractal models have been used to explain t
properties. In a recent paper, Tsalliset al. @13# studied the
triadic Cantor set~a monoscale fractal! in order to clarify the
thermodynamic properties of these kind of spectra, and t
centered the study in the properties of the specific h
which presents oscillations around the fractal dimensiona
of the spectrum. After that, Vallejoset al. @14# extended the
study to a two-scale fractal set, showing that in this case,
specific heat also exhibits log-periodic oscillations arou
the spectral dimension of the system.

In this paper, first we explain how to construct gener
ized Cantor sets, which can be monoscale or multiscale
After that, we center our attention in general monoscale g
eralized Cantor sets, for which we study numerical and a
lytically the properties of the specific heat, generalizing
monoscale results of@13#. Then, we analyze the multisca
case by showing first the results obtained in@14#. We con-
nect these results with the properties of the multifractal sp
trum of the system, and we include some additional resu
indicating in which conditions the oscillatory regime disa
PRE 611063-651X/2000/61~3!/2281~9!/$15.00
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pears. Once the results for these idealized spectra are kn
we study the specific heat obtained from a ‘‘realistic’’ fract
spectra: we diagonalize Fibonacci tight-binding models, a
by starting from the eigenvalues spectra as we have d
before with Cantor sets, we calculate the specific heat and
interpret the results according to the properties previou
found in the Cantor sets case.

II. GENERALIZED CANTOR SETS

In the following, we consider a bounded energy spectr
ranging from 0 toD, the bandwidth. Without loss of gene
ality, we take the caseD51. A generalized Cantor Set ca
be generated iteratively as follows. In the stepn50 of the
generation process we have the continuous segment@0,1#.
To generate the set~note the nomenclature! S( j ,m), in the
step n51 we divide the initial segment intoj ( j integer!
identical subsegments of lengthj 21, labeled from 0 toj
21. Then we eliminatej 2m segments, thus leavingm sub-
segments (m, j ) in the spectrum. In order to maintain th
total widthD of the spectrum, the segments 0 andj 21 can-
not be eliminated. Note that, givenj andm, there are (m

j
22
22)

different ways of choosing them subsegments@and therefore
(m

j
22
22) different S( j ,m)]. To distinguish between them w

propose the following notation:

S~ j ,m;c1 ,c2 , . . . ,cm!, ~1!

where$c1 ,c2 , . . . ,cm% is the set of labels of the segmen
which are not eliminated. According to the restrictions im
posed above, it is clear that they must verify 05c1,c2
, . . . ,cm5 j 21. Once one of these possible ways is ch
sen, it has to be maintained throughout the generation
cess, in order to get a fractal structure. It is important to po
out here that, when eliminatingj 2m segments, the remain
ing spectra is not necessarily formed bym branches. We will
have a spectrum of total lengthm3 j 21, but some of them
segments could be contiguous. The segments that are
tiguous form a unique spectral branch. In the following st
of the generationn52, we take each one of thebranches
~not segments! resulting from the previous step, and we d
2281 ©2000 The American Physical Society
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vide it into j subsegments, and eliminatej 2m subsegments
in the same orderas we did in the previous step. The proce
continues iteratively to generate the fractal. Note that
have just considered the case in which the length of
spectral branch is given by a rational number~the segment
@0,1# is divided into an integer number of parts!. This is done
for the sake of simplicity, but the results obtained are co
pletely general.

In Fig. 1 we show some Cantor sets in the first three st
of generation, and, at the same time, this figure allows u
define graphically discrete and banded spectra, following
nomenclature of@13#. The banded case corresponds to co
sidering the spectrum as formed by continuous branches~the
solid line segments in Fig. 1! with constant density of states
separated by gaps with zero density of states. In the disc
case, the spectrum is formed just by the extrema of s
branches. The spectra shown in Fig. 1 correspond to the
~a! S(3,2;0,2), ~b! S(5,3;0,2,4), ~c! S(5,3;0,1,4), and~d!
S(8,5;0,1,2,4,5,7). Note that the standard triadic Cantor
is given by j 53, m52, and as (2

3
22
22), this set is the only

S(3,2).

Monoscale and multiscale generalized Cantor sets

In case~b! of Fig. 1, after eliminating (j 2m) segments,
the m (m53) remaining segments of lengthj 21 ( j 55) in
the first step (j 2n in thenth step! arenonadjacents, i.e., they
are separated by gaps. Thus, each segment gives rise
distinct spectral branch, and as a direct consequence, a
branches have the same length. In this sense, we ha
monoscalefractal set: in a general stepn of the generation
process, all the branches forming the spectrum are ident
Clearly, case~a! in Fig. 1 @the triadic Cantor setS(3,2)] is
also a monoscale fractal.

Nevertheless, case~c! is different. Note that althoughm
53 and j 55 as in~b!, now in the stepn51 we eliminate
segments number 2 and 3. Therefore, we have segments
and 4 remaining in the spectrum. But in this case, segm
0 and 1 areadjacent, and therefore both give rise just to
single spectral branch of size 23521, while segment 4 origi-

FIG. 1. Four generalized Cantor sets in the first three step
the generation process. We show the banded~continuous! and dis-
crete case for the sets~a! S(3,2;0,2), ~b! S(5,3;0,2,4), ~c!
S(5,3;0,1,4), and~d! S(8,5;0,1,2,4,5,7).
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nates a branch of size 521. As the generation process repea
the same division and segment selectionin each branch, we
propagate the two different scales forming amultiscalefrac-
tal. As an additional example, in case~d! we form one of the
sets S(8,5;0,1,2,4,5,7) by eliminating segments number
and 6 thus creating three branches of sizes 33821, 2
3821, and 821, respectively. We have now a three-sca
fractal. It is clear that more complicated and multiscale s
can be constructed just by taking appropriate values
j , m and by choosing properly the set$c1 ,c2 , . . . ,cm%.

Finally, we want to include the expression for the frac
dimension ~box-counting dimension! dbox for generalized
Cantor sets. For the general monoscaleS( j ,m;c1 , . . . ,cm),
it is easy to obtain thatdbox5 logm/log j. For multiscale
S( j ,m;c1 , . . . ,cm), it is slightly more complicated. It can b
shown~see, for example,@15#! that if the spectrum is formed
in the first step of generation byn branches, each one o
length l i , the dimensiondbox is given by the solution of the
following equation:

(
i 51

n

l i
dbox51. ~2!

III. ELEMENTS OF THE SETS: ENERGY SPECTRA

In this section, we give an explicit expression for the e
ergy spectrum of the general setS( j ,m;c1 ,c2 , . . . ,cm) for
the discrete case~see Fig. 1!. We restrict ourselves to the
discrete case, because in the limitn→` both cases mus
coincide. The first step is to note that the set formed by
smallest energy of any interval of a generalized Cantor se
thenth step of generation~that we term from now on asEn

2)
can be obtained from the following expansion:

En
25H (

k51

n
ck

j kJ , ~3!

where each of the coefficientsck can take all the possible
values in$c1 ,c2 , . . . ,cm%. Similarly, it is easy to see tha
the set of the highest energies of any interval in a general
Cantor set~termedEn

1) is given by

En
15H (

k51

n
ck

j k
1

1

j nJ . ~4!

Note that the set of numbers$c1 ,c2 , . . . ,cm% determine
completely these energies at all levels of construction of
fractal. In particular, for the triadic Cantor set we haveck
50 or ck52. Value 0 allows the generation of the fir
branch of the spectrum, and value 2 the last one. Valu
would generate the central third of any branch of the sp
trum at all scales, which is eliminated. Moreover, it
straightforward to see that for all monoscale Cantor sets
have

Sn~ j ,m;c1 ,c2 , . . . ,cm!5En
2øEn

1 . ~5!

In the case of multiscale Cantor sets, a little subtlety h
to be taken into account. As two consecutive subsegm
are allowed to be taken together in the generation proc

of
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the end of the first one, which is also the beginning of
second, is eliminated from the spectrum, because these
segments form a unique branch. The same argument ca
applied if more than two subsegments are taken toget
These pointsE1,2 to be eliminated are then the ones whi
satisfy the relationE1,25En

2ùEn
1 . Therefore, the more

general expression for a generalized Cantor set energy s
trum is

Sn~ j ,m;c1 ,c2 , . . . ,cm!5En
2øEn

12En
2ùEn

1 . ~6!

Note that this equation is valid in all cases, because
ed
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e
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monoscale setsEn
2ùEn

15B, and then Eq.~6! is reduced to
Eq. ~5!.

IV. MONOSCALE CANTOR SETS THERMODYNAMICS

In this section, we will calculate analytically the partitio
functionsZ for monoscale Cantor sets energy spectra, fr
which we will obtain the specific heatC(T). For a mono-
scale Cantor set, analytical expressions can be derived fo
thermodynamical functions. Regarding the energy spe
given by Eq.~5!, the partition function for the monoscal
S( j ,m;c1 ,c2 , . . . ,cm) in the nth step of the generation pro
cess can be obtained as
ave

n,

internal
eat

n the
Zn~T!5 (
c1 ,c2 , . . . ,cn5c1 ,c2 , . . . ,cm

H expF2bS (
k51

n
ck

j kD G
1expF2bS (

k51

n
ck

j k
1

1

j nD G J , ~7!

where the expressions for the setsEn
2 andEn

1 given by Eqs.~3! and~4! have been taken into account. In this equation, we h
usedb[1/kBT. From now on, we takekB51. Note that the indexes of the summation are the coefficientsc1 , . . . ,cn , each
of them take them nonconsecutive values of the set$c1 ,c2 , . . . ,cm%. For brevity, from now on we define(ci5c1 ,c2 , . . . ,cm

[(ci
.

After some straightforward calculations, the partition function in Eq.~7! can be factorized in a very compact expressio

Zn~T!5F11expS 2
b

j nD G)i 51

n F(
ci

expS 2
bci

j i D G . ~8!

From this expression for the partition function, the thermodynamic magnitudes can be derived. In particular, the
energy can be obtained asUn(T)5b22d(ln Zn)/dT. Finally, after some long but straightforward calculation, the specific h
Cn(T) can be obtained by differentiatingUn(T). Thus,

Cn~T!5F2 j n

b
coshS b

2 j nD G22

1b2(
i 51

n (
ci

expS 2
bci

j i D(
ci

ci
2expS 2

bci

j i D 2F(
ci

ciexpS 2
bci

j i D G 2

F j i(
ci

expS 2
bci

j i D G 2 . ~9!

Note that the first term of the right-hand side of Eq.~9! can be considered as a finite size correction of the specific heat. I
n→` limit, only the second term is relevant and then we have

C`~T!5b2(
i 51

` (
ci

expS 2
bci

j i D(
ci

ci
2expS 2

bci

j i D 2F(
ci

ciexpS 2
bci

j i D G 2

F j i(
ci

expS 2
bci

j i D G 2 . ~10!
e in
,

ple
This equation, which is general though rather complicat
can be evaluated numerically to obtain the dependence o
specific heat on temperature. It is also easy to construct
merically the desired spectra, and to sum and different
numerically the partition function. Nevertheless, for som
special cases, Eq.~10! can be simplified considerably, as w
,
he
u-
te

see in the following.
The simplest case of a monoscale Cantor set is the on

which, after dividing the spectral branch intoj subsegments
only the first and the last one are selected, i.e.,S( j ,2;0,j
21). Note that the triadic Cantor set is one of these sim
sets. In this case, it is possible to perform the summation(ci

,
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and simplify to some extent Eq.~10!. Finally, we have

C`~T!5(
i 51

` F2 j iT

j 21
coshS j 21

2 j iT
D G22

. ~11!

A similar result was obtained for the particular casej 53
~the triadic Cantor set! in Ref. @13#. However, note that
Eq. ~11! is only valid for monoscale sets of the typ
S( j ,2;0,j 21), while for the general monoscal
S( j ,m;c1 ,c2 , . . . ,cm) Eq. ~10! is needed.

In Fig. 2, we show two finite approximations to the sp
cific heat of two monoscale cantor sets as a function of te
perature in log-scale. Several important features of the s
cific heat deserve to be pointed out. First, the specific hea
low T is an oscillating function, the number of the oscilla
tions being controlled by the ‘‘depth’’ of the fractal, i.e., th
step in the generation process. Note that the number of ‘
riods’’ in each case coincides withn, and whenn increases,
a new period appears in the lowT region. Second,Cn(T)
oscillates around a particular value given by the fractal
mensionality of the set. In the cases shown in Fig. 2, we h
d15 log 3/log 5, andd25 log 2/log 4. In the general case, w
have that the oscillations are aroundd5 logm/log j. Third,
note that in the oscillating regime,Cn(T) is a log-periodic
function. We have marked some special temperatures in
2 to indicate this fact. In general, the period of the oscil
tions for the monoscale setS( j ,m;c1 ,c2 , . . . ,cm) is given
by j, i.e.,Cn(T)5Cn( jT). We discuss on an analytical bas
the reasons for this periodicity following Eq.~14!. This ‘‘pe-
riodicity’’ is only valid in the oscillating regime. In the cas
n→`, this regime extends infinitely~infinite number of pe-
riods! from approximatelyT51 towardsT50. In the highT
limit, the specific heat tends to zero, this is a consecuenc
having a bounded spectrum (E51 is the greatest value of th
energy!.

The limit T→` can be performed in Eq.~10! to obtain
the behavior of the specific heat in this region. In this ca
we obtain

FIG. 2. Finite approximations of the specific heat for the s
S(5,3;0,2,4)~thick lines! andS(4,2;0,3)~thin lines!. In both cases,
the dotted line corresponds ton55 and the solid one ton56. The
horizontal lines represent the correspondent fractal dimensio
ties. The dashed line representsC`

1(T) for the setS(4,2;0,3).
-
-

e-
at

e-

i-
e

ig.
-

of

,

C`~T→`!.
m(

ci

ci
22S (

ci

ci D 2

m2~ j 221!

1

T2
. ~12!

This equation shows how the parameters of the Cantor
j , m, and the set of values$cl ,c2 , . . . ,cm% control not
only the ‘‘average’’ value logm/log j, but also the behavior
in the highT limit, entering as the coefficient ofT22.

For the simplest casesS( j ,2;0,j 21) is easy to see from
Eq. ~11! that in theT→` limit we have

C`~T!.
~ j 21!2

4T2 (
i 51

`

j 22i5
~ j 21!2

4~ j 221!

1

T2
. ~13!

Of course, the same result could be obtained from Eq.~12!
taking into account that in the simplest casem52 and anyc
coefficient just can take the values 0 andj 21.

If we generate the fractal also towards higher scales
energy instead of restricting ourselves to the interval@0,1#,
we can avoid the behaviorC`→0 in theT→` limit. Note
that to achieve this, it is enough to consider not only nega
integer powers ofj ~i.e., propagating the fractal to sma
scales! but also positive ones. In this case, we propagate
fractal structure to the whole positive real axis. All the equ
tions we have seen in this section remain valid just by cha
ing the summation( i 51

n by ( i 52n
n for the finite n step of

generation, or equivalently in the infinite case,( i 51
` by

( i 52`
` . From now on, we will term asC`

1 the specific heat
obtained by considering that the spectrum without an up
limit. We will study C`

1 in order to explain the oscillations
around the fractal dimension and the log-periodicity. For
sake of simplicity in writing the equations, we will restric
ourselves to calculatingC`

1(T) for the simplest case
S( j ,2;0,j 21), although the results obtained are general
monoscale sets.

The log-periodicity can be seen easily. Note that wh
consideringC`

1(T), Eq. ~11! transforms simply to give

C`
1~T!5 (

i 52`

` F2 j iT

j 21
coshS j 21

2 j iT
D G22

. ~14!

This equation shows the log-periodicity, because we h
directly C`

1( j kT)5C`
1(T), for k integer. In this case, the

periodicity is valid in the whole real positive axis, and n
only in the lowT region.

In order to show analytically the reason for the oscil
tions around the fractal dimension, we can try to sum E
~14! by using Poisson’s summation rule:( i 52`

` f ( i )
5(k50

` *2`
1`exp(2ikx)f(x)dx. After some calculations, with

the change of variableh5( j 21)/2j iT and taking into ac-
count for thek50 term that*0

`h cosh22h dh5ln 2, we arrive
at

C`
1~T!5

ln 2

ln j
1

2

ln j (
k51

`

$akcos@2pk f~ j ,T!#

2bksin@2pk f~ j ,T!#% ~15!

with the definitions

s
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ak[E
0

` h

cosh2h
cosS 2pk ln h

ln j Ddh, ~16!

bk[E
0

` h

cosh2h
sinS 2pk ln h

ln j Ddh, ~17!

f ~ j ,T![
ln@2T/~ j 21!#

ln j
. ~18!

The first two terms of Eq.~15! are very precise to describ
the behavior ofC`(T). For example, forj 54 while a1
53.002 328 . . .31023 and b152.908 951 . . .31022, we
have thata2 ,b2;10214, and so on for higher order coeffi
cients. It is clear than the first harmonic is the unique sign
cative contribution, and then, finally one can write

C`
1~T!.

ln 2

ln j
1

2

ln j
$a1cos@2p f ~ j ,T!#

2b1sin@2p f ~ j ,T!#%. ~19!

This equation contains the main information about mo
scale Cantor sets specific heat: the oscillations around
fractal dimensionality logm/log j (log 2/log j in the case we
have calculated!, and the log-periodicity ofC`

1(T), i.e.,
C`

1(T)5C`
1( j kT). To illustrate the properties ofC`

1(T), in
Fig. 2 we also show for the setS(4,2;0,3) the function
C`

1(T) given by Eq.~19! as a dashed line.
The analytic result~19! has been obtained for the gener

monoscale setS( j ,2;0,j 21) formed by two spectra
branches. If a monoscale with more than two spec
branches is considered, the specific heat oscillates
arounddbox, with a period given byj. But in this case, the
analytical calculation becomes much more complicated
in the following we study some properties of the proble
numerically.

One can construct easily different monoscale Cantor
with the same fractal dimensionality~and then with the same
number and size of spectral branches! just by changing the
size of the gaps between these branches. For instance,
consider the two setsS(9,3;0,2,8) andS(9,3:0,4,8). Both
sets share the same fractal dimensionality (dbox5 log 3/log 9
51/2), but their correspondent specific heats behave dif
ently. In Fig. 3 we plot the specific heat for a finite appro
mation (n56) to the setsS(9,3;0,2,8) ~solid line! and
S(9,3:0,4,8) ~dotted line!. The main difference betwee
them is the amplitude of the oscillations arounddbox51/2
~horizontal line in Fig. 3!. This amplitude depends on th
value of the sum(ci

, which reflects the different structure o
the sets.

But the amplitude of the oscillations is not the only d
ference between the two sets. The setS(9,3:0,4,8) is in some
sense more symmetric thanS(9,3;0,2,8), because in th
former both gaps and branches have the same size, whi
not true in the latter. These geometric differences appear
in the ‘‘harmonicity’’ of the specific heat. When the set
symmetric, the oscillatory regime is very harmonic, and o
the first harmonic presents a significative contribution. T
fact generalizes the analytic result~19! ~obtained for the sim-
-
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plest symmetric case!. On the other hand, when the set pr
sents asymmetries, higher harmonics begin to contribut
the oscillations. This is the case ofS(9,3;0,2,8), where the
two gaps have different size. In Fig. 4 we plot the numeri
Fourier transform of the oscillatory regime of the two sp
cific heats of Fig. 3. It can be seen in part~b! that the second
harmonic becomes relevant for the oscillations of the spec
heat ofS(9,3;0,2,8). These results are general: with incre
ing asymmetries, higher harmonics contribute to the osci
tions.

In the construction of a monoscale Cantor set, we h
not considered the possibility of taking together two co
secutive segments of lengthj 2n in the nth step of the gen-
eration process in order to avoid multiscales. Thus, the
are formed bymn branches of sizej 2n. But even if consecu-
tive segments are allowed to form a spectral branch
monoscale set can arise if the same is done to generate a
branches. In this case the size of any spectral branch isnot
given by j 2n, and then this is not the smallest scale of t
allowed spectrum, but it can be the size of the smallest g
if in the generation process we start by groupingl segments
of length j 21 to generatem/ l identical branches of length
l j 21 ~note thatm/ l must be integer to have a monosca

FIG. 3. Plot of the specific heat obtained for a finite approxim
tion (n56) of the setsS(9,3;0,2,8) ~solid line! and S(9,3;0,4,8)
~dotted line!. The horizontal line corresponds todbox51/2.

FIG. 4. Plot of the Fourier transform obtained numerically fro
the oscillatory regime of the specific heats of the sets~a!
S(9,3;0,4,8) and~b! S(9,3;0,4,8).
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Cantor set!, in the nth step of the generation we will hav
identical branches of sizel n/ j n. The roles ofj andm are now
played byj / l andm/ l . As a consequence, the oscillations
the corresponding specific heat have a periodicity given
j / l . It is also straightforward to see that the fractal dime
sionality is given bydbox5 log(m/l)/log(j/l), and this is also
the value around which the specific heat oscillates.

V. MULTISCALE CANTOR SETS THERMODYNAMICS

It is clear that multiscale fractal spectra can be easily c
structed by generating appropriate setsS( j ,m) @see cases~c!
and ~d! in Fig. 1#. Unfortunately, although a formal expre
sion can be written for the energy spectrum@Eq. ~6!#, it is not
possible to sum analytically the partition function, and t
study of the specific heat has to be done numerically.

In a recent paper, Vallejoset al. @14# studied the proper-
ties ofC(T) for a two-scale fractal spectra, i.e., they cons
ered a spectrum with two branches of sizesl 1 and l 2 corre-
sponding to the low and high energy region, respective
They gave a scaling argument for the form of the partit
function, which led them to obtain the following conclu
sions: the specific heat presents oscillations around the
tral valueD52 log 2/logl1, and the period of these oscilla
tions is given by 1/l 1. They found a nice interpretation forD.
It can be shown that if the integrated density of statesN(E)
is of the form

N~E!}ED, ~20!

then the average value of the specific heat is given by^C&
5D. This is a generalization of the equipartition princip
For the fractal spectra they studied, the valueD5
2 log 2/logl1 is the exponent of a power-law fit of the inte
grated density of statesN(E), also calledspectral dimen-
sion. Then, it is natural forD to be the ‘‘average’’ value of
C(T) in the temperature range corresponding to the ene
range for which Eq.~20! is valid.

Here, we are going to generalize this result for multisc
fractal spectra as follows. When generating a generali
Cantor set, all the branches give rise to the same numbe
points of the set in the division process. As a conseque
all of these branches have the same weight, given bys21

~wheres is the number of branches appearing in the sp
trum!. Then if l 1 is the length of the leftmost branch of th
spectrum, it has a measure~in the multifractal sense! given
by dleft5 logs21/log l1. When the functionN(E) is plotted in
a double log-scale, the low energy behavior represented
dleft domains always in the power-law fit, soD5dleft5
2 logs/log l1. Note that, in particular, for the sets studied
@14#, s52.

As an example, in Fig. 5 we show the functionN(E) for
the three-scale setS(8,5;0,2,3,5,6,7) (s53). The dotted line
represents a power-law fit, with exponent given byD
5 log 3/log 850.528 . . . . In theinset, we represent the spe
cific heat for a finite approximation (n58) of the same set
showing the oscillations around the spectral dimensionD
~see below!. This example illustrates how in general th
spectral dimension is given byD52 logs/log l1, wheres is
the number of branches appearing in the spectrum.
y
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One can also arrive at that value ofD by considering the
information of the multifractal spectrum of the correspon
ing set@15#. If the first spectral branch is the biggest or th
smallest one, then the measure will be most rarified or m
concentrated exactly in this region. Therefore, the spec
dimensionD will coincide with one of the limiting dimen-
sions of the multifractal spectrum,D` or D2`, respectively.
This can be seen also in the inset of Fig. 5, where the do
line represents the multifractal spectrum obtained
S(8,5;0,2,3,5,6,7). Actually, the oscillatory regime aroundD
is a direct generalization of the monoscale case. In this la
case, all the spectral branches are identical, and then, in
ticular, we will have dleft5D5 logs21/log l15logm/log j
5dbox, so the role ofD is performed bydbox, as we saw in
the preceding section.

As can be seen in Fig. 5,N(E) can be considered as
log-periodic oscillating function superimposed to the pow
law behavior. The oscillations are strictly log-periodic b
cause the fractal sets we are considering are exactly inva
under changes of scale. Although the oscillations pres
sharp borders due to the gap structure of the spectrum, V
jos et al. @14# modeled successfully this oscillatory functio
by a log-harmonic one in the two-scale fractal set, which
directly to the oscillations inC(T). Nevertheless, when a
more general multiscale case is considered, we have che
numerically that this approach is not so exact. The reaso
the same we found in the general monoscale case: w
more than two spectral branches are considered then se
gaps exist. If the size of the gaps is different, higher harm
ics begin to contribute to the oscillatory regime inC(T), ~as
was shown in Fig. 4!, and therefore these harmonics shou
be included in the log-periodic oscillatory function that mo
els the spectrum.

Finally, we have encountered numerically a general re
concerning the existence or not of the oscillatory regime.
have found a strong dependence of the amplitude of the
cillations on D. As D increases, the oscillations becom
smaller, and they eventually disappear exactly whenD51.
For the caseD.1, no oscillations exist anymore. If

FIG. 5. The function N(E) for the three scale se
S(8,5;0,2,3,5,6,7)~solid line!. The dotted line represents a powe
law fit, with exponent given byD5 log 3/log 850.528 . . . . In the
inset, we represent the specific heat for a finite approximationn
58) of the same set~solid line!. The dotted line represents th
multifractal spectrum of the same set.
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s-branches multiscale Cantor set is considered, withl 1 the
length of the first one, it is straightforward to see thatD
>1 when l 1>1/s. Then, the exact critical point where th
oscillations disappear is given by the condition

l 151/s. ~21!

In Fig. 6 we show three examples ofC(T) for Cantor sets
with D smaller ~solid line!, equal~dotted line!, and greater
than unity~dashed line!. Note that even when the oscillation
disappear,D gives an average value ofC(T) in the appro-
priate range of temperature.

The meaning of Eq.~21! becomes more transparent
monoscale Cantor sets. In this case, it is trivial to see tha
l 151/s, and as all thes branches are equal, then the spe
trum becomes continuous~not fractal!, formed by the whole
segment@0,1#.

VI. THERMODYNAMICS OF FIBONACCI SPECTRA

Until now, we have been studying the thermodynamics
‘‘exact’’ and idealized fractal spectra, derived from the co
struction of Cantor sets. In this section we study the therm
dynamics of ‘‘real’’ spectra obtained from quasiperiodic s
quences. These spectra are just approximately fractal, s
will see how the specific heat is affected by this fact a
which is the relation with the ‘‘exact’’ spectra. We are goin
to consider the Fibonacci sequence as the typical quasi
odic sequence, which is formed by arranging properly t
basic building blocks~generically calledA andB). The Fi-
bonacci sequenceS` is obtained by the recursion relatio
Sl5$SlSl 21% for l>1 with S05$B%, andS15$A%. The Fi-
bonacci numberFl is the total number of building blocksA
and B in Sl , and obeys the recursion relationFl 115Fl 21
1Fl for l>1 with F05F151. It is straightforward to see
that S25AB, S35ABA, S45ABAAB, and so on. In
our case, we are going to consider a nearest-neighbor t
binding model with the following Hamiltonian for the Fi
bonacci sequenceSn :

FIG. 6. C(T) for three different sets:S(5,3;0,1,4), for which
D50.756 . . . ~solid line!, S(4,3;0,1,3), for whichD51 ~dotted
line!, andS(5,4;0,1,2,4), for whichD51.356 . . . ~dashed line!.
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Fn

«A(B)u i &^ i u1(
^ i , j &

tu i &^ j u. ~22!

In this Hamiltonian, the diagonal energies form a F
bonacci sequence with two basic energies,«A and «B . The
symbol^ i , j & means thati andj are nearest neighbors, and th
hopping termt is considered to be constant. Numerically, w
set t51, thus fixing our energy scale. The spectrum of t
Hamiltonian~22! is obtained by exact diagonalization of th
correspondent matrix.

An appropriate way to see the fractal structure of t
spectrum is by using the integrated density of statesN(E)
@9#. In Fig. 7, we plot three different curvesN(E) for three
values of the differenceu«A2«Bu for a Fibonacci system
with 987 atoms. All the spectra are normalized to the inter
@0,1#. As can be seen, the curves resemble very much
shape of the devil staircase, also very similar to the functi
N(E) obtained from Cantor sets. The parameteru«A2«Bu
controls the shape of the spectrum. Ifu«A2«Bu,t, the hop-
ping term domains, and the spectrum is still very ‘‘contin
ous.’’ On the contrary, ifu«A2«Bu.t, the quasiperiodicity is
stronger, and the spectra are more fractured: the gaps
bigger, and the regions with states smaller. These facts
accentuated asu«A2«Bu increases. We will restrict ourselve
to the caseu«A2«Bu.t, to appreciate the effects of quas
periodicity.

Once the set of eigenvalues$ei% is known, we compute
the partition function through the usual expressionZ(T)
5( i 51

Fn exp(2ei /kT). From Z(T), we obtain C(T) in the
standard way. The specific heat for three different values
u«A2«Bu is shown in Fig. 8, corresponding to the spec
shown in Fig. 7. The main feature that can be observe
that the Fibonacci specific heat also presents oscillations~in
log-scale! around a certain value, although not in the sa
exact and regular way as it was found for Cantor sets. T
number of oscillations depends on the number of points
the spectra~on the number of atoms in the chain!: the bigger
the system, the greater the number of oscillations. This
equivalent to the behavior found in generalized Cantor s

FIG. 7. Integrated densities of statesN(E) for a Fibonacci se-
quence with 987 atoms, andu«A2«Bu51.5 ~thick line!, 3 ~thin
line!, and 6~dotted line!.
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where the oscillations increase with the step of the gen
tion process~the hierarchy of the spectrum!.

The horizontal lines in Fig. 8 correspond to the spec
dimensions of the three spectra. The spectral dimensionD
depend on the parameteru«A2«Bu: as it increases and th
spectra become more fractured, the spectral dimensions
crease. Note that these dimensions give a good average
of C(T). The reason is that the functionN(E) is fitted fairly
well in general by a power-law, and thenD remains signifi-
cative. Nevertheless, the ‘‘oscillations’’ ofN(E) around the
power law are not as exact and repetitive as the one foun
Cantor sets~represented in Fig. 5!. The reason is that the
spectra are just approximately fractal: they are not stric
invariant under changes of scale~as it happened for Canto
sets!. This fact is reflected inC(T), where different ‘‘peri-
ods’’ and different ‘‘amplitudes’’ can be seen. A general fa
is that the first and last oscillations are more irregular, but
central ones are very similar in amplitude and almost p
odic. In addition, Fig. 8 shows a clear dependence of
‘‘period’’ and ‘‘amplitude’’ of the oscillations onD: both
increase asD decreases. AsD is controlled byu«A2«Bu, this
is the key parameter of the problem.

In Fig. 9, we show the behavior of all the interestin
magnitudes of the problem (D, and period and amplitude o
the oscillations! as a function ofu«A2«Bu. In part ~a!, the
solid thick line represents the value ofD, and with circles, a
solid thin line, and crosses, we represent the amplitude
three central consecutive oscillations ofC(T). Note that, al-
though the amplitudes are not identical, they are very sim
and the three curves almost overlap. As expected,D de-
creases, while the amplitudes increase. It is interesting to
that in the region of very high values ofu«A2«Bu, the limit
value of the amplitudes coincide withD. This is logical: asD
is the average value, the amplitudes are bounded byD in
order to prevent negative values ofC(T). In part ~b!, we
present the behavior of three periods~corresponding to the
same central oscillations as the previous amplitudes,
with the same symbols! as a function ofu«A2«Bu. Of course,
they are periods in ‘‘log’’ sense: they are obtained as
quotient between temperatures for which consecu
maxima are reached. As before, the periods are not ident
but very similar, and therefore the curves almost overlap

FIG. 8. The specific heat for the spectra shown in Fig. 7, rep
sented with the same type of lines.
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the periods are almost the same, in some sense we could
that C(T) is quasi-log-periodic in this region. In addition
there exist a fairly linear dependence of the periods a
u«A2«Bu. Therefore, for very high values ofu«A2«Bu, the
oscillations extend over many orders of magnitude, even
the case of small systems.

VII. CONCLUSIONS

In this paper, we have studied the properties of the s
cific heat derived from fractal spectra. First, we have cons
ered both monoscale and multiscale Cantor sets, for wh
we have extended and generalized some previous known
sults concerning the log-periodic oscillations of the spec
heatC(T). For the monoscale case, we have obtained a
lytically the behavior ofC(T) for a two-branch general spec
trum. By using numerical calculation, we have shown th
even in the monoscale case the oscillatory regime beco
nonharmonic if there exist different gap sizes. In the mu
scale case, we have studied numerically the case os
branches in the spectrum, where nonharmonicity effects
even more relevant. We have connected the role of the s
tral dimensionD as the average value ofC(T) with the mul-
tifractal properties of the sets, and we have found a condi
for which the oscillatory regime disappears. After that, w
have studied the thermodynamics of tight-binding Fibona
spectra. These spectra are just approximate fractals~not
strictly invariant under changes of scale!, and then many of
the properties found before in Cantor sets become here
approximated. This fact is specially relevant in the mean
of D, and in the periodicity and amplitude of the oscillatio
that we have found in the Fibonacci specific heat.

Finally, we would like to connect our results here wi
some previous works. Examining the vibrational proble
Petriet al. @16# and Petri and Ruocco@17#, when considering
a chain with hierarchical couplings, found integrated den
ties of states of Cantor sets type. Therefore, some of

- FIG. 9. In ~a!, the solid thick line represents the value ofD, and
with a solid thin line, circles, and crosses we represent the am
tudes of three central consecutive oscillations ofC(T) both as a
function of u«A2«Bu. In ~b!, we plot the behavior of the three
‘‘periods’’ of the same three oscillations used in~a! with the same
type of symbols.
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properties found for generalized Cantor sets, derived
from the fractal and scaling properties of the spectra,
expected to be found in their results. For example, altho
Petri and Ruocco@17# studied the Debye vibrational specifi
heat, they found small oscillations in the lowT region, con-
nected with the results obtained in this paper.

In addition, when studying quasiperiodic spin chain
Luck and Nieuwenhuizen@18# found that the specific heat o
a Fibonacci chain oscillates log-periodically with the te
perature, which is clearly connected with our results he
Also, Badalianet al. @19#, when considering a Heisenber
model with quasiperiodic exchange couplings, obtained
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some circumstances extra peaks in the specific heat
function of the temperature in the lowT region, also related
with the results presented in this paper.

ACKNOWLEDGMENTS

We would like to thank Dr. J. Chalker~Oxford! for a
critical reading of the manuscript. P.C. and P.B.G. also th
the Spanish Ministerio de Educacio´n y Cultura for economic
support by Grant Nos. PFE-029069359G and PR
0025095592, respectively.
A.

lis,

nd

.

nd
@1# D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Ph
Rev. Lett.53, 1951~1984!.

@2# R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bha
charya, Phys. Rev. Lett.55, 1768~1985!.

@3# T. Hattori, T. Noriaki, S. Kawato, and H. Nakatsuka, Phy
Rev. B50, 4220~1994!.

@4# M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Le
50, 1870~1983!.

@5# M. Kohmoto and J. R. Banavar, Phys. Rev. B34, 563 ~1986!.
@6# M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B35,

1020 ~1987!.
@7# C. S. Ryu, G. Y. Oh, and M. H. Lee, Phys. Rev. B48, 132

~1993!.
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