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Thermodynamics of fractal spectra: Cantor sets and quasiperiodic sequences

P. Carpena? A. V. Coronadd and P. Bernaola-Galvé®
Theoretical Physics, Oxford University, 1 Keble Road, OX1 3NP Oxford, England
2Departamento de Bica Aplicada Il, Universidad de Maga, Mdaga, Spain
3Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 27 May 1999; revised manuscript received 28 Septembe) 1999

We study the properties of the specific heat derived from fractal spectra, for which we extend and generalize
some previous known results concerning the log-periodic oscillations of the specificCli€at For the
monoscale case, we obtain analytically the behavidZ @) for a two-branch general spectrum, and we show
that the oscillatory regime becomes nonharmonic if there exist different gap sizes. In the multiscale case, we
connect the role of the spectral dimension as the average valD€Tgfwith the multifractal properties of the
sets, and we give a condition for which the oscillatory regime disappears. Finally, we study the thermodynam-
ics of tight-binding Fibonacci spectra, which are not strictly invariant under changes of scale, and then many
of the properties found in Cantor sets become in this case just approximated.

PACS numbegps): 05.20-y, 61.44.Br, 61.43.Hv

I. INTRODUCTION pears. Once the results for these idealized spectra are known,
we study the specific heat obtained from a “realistic” fractal

The experimental discovery of quasicrystals by Shechtspectra: we diagonalize Fibonacci tight-binding models, and
manet al.[1] produced a great interest in the understandinddy starting from the eigenvalues spectra as we have done
of the properties of these systems, as is shown by the greb@fore with Cantor sets, we calculate the specific heat and we
amount of theoretical and experimental work that followed.interpret the results according to the properties previously
In general, quasicrystals present intermediate properties bfeund in the Cantor sets case.
tween pure periodic structuréBloch systempsand random
materials, in spite of the purely deterministic rules used to Il. GENERALIZED CANTOR SETS

generate them. To gain a physical insight into the general In the followi id bounded
properties of these materials, the case of one dimensional n the following, we consider a bounded energy spectrum

sequences have been extensively studied, such as Fibonad@n9ing from 0 toA, the bandwidth. Without loss of gener-
Thue-Morse, prime numbers, and many others. They arghty, we take t_he cgsezl. A generalized Cantor Set can
known in general as quasiperiodic sequences, and have evBf 9enerated iteratively as follows. In the step0 of the
been realized experimentally in superlattif@s3]. The be-  9eneration process we have the continuous segiitf}.
havior of electrons, photons, phonons, and other particles of® 9enerate the sehote the nomenclatureS(j,m), in the
quasiparticles has been and is currently being studied in qu&téPn=1 we divide the initial segment intg(j intege)
siperiodic sequencdd—17], and interest is still increasing. identical subsegments of lengih , labeled from 0 toj
The general property, and perhaps the most characteristic 1- Then we eliminatg¢ —m segments, thus leaving sub-
one, shared by all quasiperiodic sequencesfiacal energy ~ S€gmentsih<\j) in the spectrum. In order to maintain the
spectrum These spectra, however, tend to be very complextotal width A of the spectrum, the segments 0 gnell can-
and simplified fractal models have been used to explain theiot be eliminated. Note that, givgrandm, there are "%
properties. In a recent paper, Tsalis al. [13] studied the different ways of choosing the subsegmentsand therefore
triadic Cantor setla monoscale fractain order to clarify the 'ng) different S(j,m)]. To distinguish between them we
thermodynamic properties of these kind of spectra, and thepropose the following notation:
centered the study in the properties of the specific heat,

which presents oscillations around the fractal dimensionality S(j,m;cq,C2, ... Cm), (1)
of the spectrum. After that, Vallejost al. [14] extended the
study to a two-scale fractal set, showing that in this case, th@here{c;,c,, ... Cqy} is the set of labels of the segments
specific heat also exhibits log-periodic oscillations aroundwhich are not eliminated. According to the restrictions im-
the spectral dimension of the system. posed above, it is clear that they must verify=6,<c,

In this paper, first we explain how to construct general-< ...<cp=]j—1. Once one of these possible ways is cho-

ized Cantor sets, which can be monoscale or multiscale setsen, it has to be maintained throughout the generation pro-
After that, we center our attention in general monoscale gensess, in order to get a fractal structure. It is important to point
eralized Cantor sets, for which we study numerical and anasut here that, when eliminating— m segments, the remain-
lytically the properties of the specific heat, generalizing theing spectra is not necessarily formedimbranches. We will
monoscale results dfL3]. Then, we analyze the multiscale have a spectrum of total lengthxj !, but some of then

case by showing first the results obtained 14]. We con-  segments could be contiguous. The segments that are con-
nect these results with the properties of the multifractal spectiguous form a unique spectral branch. In the following step
trum of the system, and we include some additional resultspf the generatiom=2, we take each one of tHeranches
indicating in which conditions the oscillatory regime disap- (not segmenisresulting from the previous step, and we di-
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a) b) nates a branch of size 5. As the generation process repeats
the same division and segment selectioreach branchwe
propagate the two different scales formingnaltiscalefrac-
tal. As an additional example, in cagd we form one of the
sets 5(8,5;0,1,2,4,5,7) by eliminating segments number 3
and 6 thus creating three branches of sizes83!, 2
ettt YT, X871, and 8%, respectively. We have now a three-scale
fractal. It is clear that more complicated and multiscale sets
¢) d) can be constructed just by taking appropriate values of
i, mand by choosing properly the sgt;,c5, ... .Cn}.
Finally, we want to include the expression for the fractal
dimension (box-counting dimensiondy,,, for generalized

. [ o I [ Cantor sets. For the general monoscalg,m;Cy, ... ,Cm),
it is easy to obtain thatl,,,=lognvlogj. For multiscale
— - o == Son T S(j,m;cq, ... ,Cm), itis slightly more complicated. It can be

shown(see, for exampld,15]) that if the spectrum is formed

FIG. 1. Four generalized Cantor sets in the first three steps olfn thtilflrstthst(ejp of g.erssratllon .b'y bré:ln(t:;]wes, Iea:ph O??h()f
the generation process. We show the ban@edtinuou$ and dis- engthl;, the I.me_nS'O box IS glven by the solution of the
crete case for the set&d) S(3,2;0,2), (b) $(5,3;0,2,4), (¢ following equation:
S(5,3;0,1,4), andd) S(8,5;0,1,2,4,5,7).

n

e — 2 11, 2
vide it into ] subsegments, and elimingte- m subsegments =1

in the same ordeas we did in the previous step. The process
contin_ues iterat_ively to generate the _fractal. Note that we || ELEMENTS OF THE SETS: ENERGY SPECTRA

have just considered the case in which the length of any
spectral branch is given by a rational numiéére segment In this section, we give an explicit expression for the en-
[0,1] is divided into an integer number of part¥his is done  ergy spectrum of the general s8&fj,m;c,,c,, ... ,cy) for
for the sake of simplicity, but the results obtained are comthe discrete casésee Fig. 1 We restrict ourselves to the
pletely general. discrete case, because in the limit> both cases must

In Fig. 1 we show some Cantor sets in the first three stepsoincide. The first step is to note that the set formed by the
of generation, and, at the same time, this figure allows us tesmallest energy of any interval of a generalized Cantor set in
define graphically discrete and banded spectra, following théhe nth step of generatiofthat we term from now on &gs)
nomenclature of13]. The banded case corresponds to con-can be obtained from the following expansion:
sidering the spectrum as formed by continuous branthes
solid line segments in Fig.) With constant density of states, _ "oy
separated by gaps with zero density of states. In the discrete En= ' ()
case, the spectrum is formed just by the extrema of such
branches. The spectra shown in Fig. 1 correspond to the s
(@ S(3,2;0,2), (b) $(5,3;0,2,4),(c) $(5,3;0,1,4), andd)
S(8,5;0,1,2,4,5,7). Note that the standard triadic Cantor sgl
is given byj=3, m=2, and as {_3), this set is the only
S(3,2).

k=1 jX

E‘\R?nere each of the coefficienty can take all the possible
alues in{cq,C,, ... ,Cn}. Similarly, it is easy to see that

e set of the highest energies of any interval in a generalized
antor seftermedE,) is given by

n
Ck 1
Monoscale and multiscale generalized Cantor sets E,T =[ —+ —} . (4)

In case(b) of Fig. 1, after eliminating (—m) segments,

them (m=3) remaining segments of lengih* (j=5) in Note that the set of numbe{s;,c,, ... ,c} determine

the first step (" in thenth step arenonadjacentsi.e., they  completely these energies at all levels of construction of the
are separated by gaps. Thus, each segment gives rise tOrgctal. In particular, for the triadic Cantor set we haye
distinct spectral branch, and as a direct consequence, all theg or ¢c,=2. Value 0 allows the generation of the first
branches have the same length. In this sense, we havepganch of the spectrum, and value 2 the last one. Value 1
monoscalefractal set: in a general stapof the generation would generate the central third of any branch of the spec-
process, all the branches forming the spectrum are identicalum at all scales, which is eliminated. Moreover, it is

Clearly, casg@) in Fig. 1[the triadic Cantor se®(3,2)] is  straightforward to see that for all monoscale Cantor sets we
also a monoscale fractal. have

Nevertheless, cagg) is different. Note that althougm
=3 andj=5 as in(b), now in the stem=1 we eliminate Sn(j,M;Cq,Cy, ... Cm)=E, UE . (5)
segments number 2 and 3. Therefore, we have segments 0, 1,
and 4 remaining in the spectrum. But in this case, segments In the case of multiscale Cantor sets, a little subtlety has
0 and 1 areadjacenf and therefore both give rise just to a to be taken into account. As two consecutive subsegments
single spectral branch of sizex5 1, while segment 4 origi- are allowed to be taken together in the generation process,
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the end of the first one, which is also the beginning of themonoscale set§, NE. =@, and then Eq(6) is reduced to

second, is eliminated from the spectrum, because these twixy. (5).

segments form a unique branch. The same argument can be

applied if more than two subsegments are taken together.lV. MONOSCALE CANTOR SETS THERMODYNAMICS
g > A

These point ™ to be eliminated are then the ones which , yis section, we will calculate analytically the partition

satisfy the relationE™~=E, NE, . Therefore, the more fynctionsZ for monoscale Cantor sets energy spectra, from
general expression for a generalized Cantor set energy sp&ghich we will obtain the specific heat(T). For a mono-
trum is scale Cantor set, analytical expressions can be derived for the
thermodynamical functions. Regarding the energy spectra
Sa(j,M;C1,Ca, ... C)=E, UE, —E,NE,. (6) given by Eq.(5), the partition function for the monoscale
S(j,m;cq,Cy, ... Cy) In thenth step of the generation pro-
Note that this equation is valid in all cases, because fotess can be obtained as

|

where the expressions for the sEfs andE, given by Eqs(3) and(4) have been taken into account. In this equation, we have
usedB=1/kgT. From now on, we tak&z=1. Note that the indexes of the summation are the coefficients. . ,c,, each
of them take them nonconsecutive values of the det,c,, ... ,cy}. For brevity, from now on we definECi:Cl,
=3,

After some straightforward calculations, the partition function in &g.can be factorized in a very compact expression,

coud i34 51

n
11
i=1
From this expression for the partition function, the thermodynamic magnitudes can be derived. In particular, the internal
energy can be obtained &k,(T)= B 2d(In Z,)/dT. Finally, after some long but straightforward calculation, the specific heat
C,(T) can be obtained by differentiatind,(T). Thus,

n 2 a2 X —'8—?' ;cizex —B_(I:' _ ;Ciex _/3_?' ’
%cos?‘(% g3 p( J[J;ip(]%c){r p( JH .

Note that the first term of the right-hand side of E®). can be considered as a finite size correction of the specific heat. In the
n—oo limit, only the second term is relevant and then we have

3 o 223 o 203 o

C.(T)= Bzi; - ST . (10)
e )
G j

This equation, which is general though rather complicatedsee in the following.

can be evaluated numerically to obtain the dependence of the The simplest case of a monoscale Cantor set is the one in
specific heat on temperature. It is also easy to construct nwhich, after dividing the spectral branch intsubsegments,
merically the desired spectra, and to sum and differentiatenly the first and the last one are selected, iS£j,,2;0,
numerically the partition function. Nevertheless, for some—1). Note that the triadic Cantor set is one of these simple
special cases, E@10) can be simplified considerably, as we sets. In this case, it is possible to perform the summaiiglxn

Zy(T)= : ®

Cnh(M)=
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10— 2
| | m>, Cf—(E Ci)
N T sT Cj Cj 1
os L /\ o ] ] Co(T—w)= e TRETRR (12
ol VAV AW WA W
0.6 - / , V vV V V i This equation shows how the parameters of the Cantor set,
PN A /\/\/\ AN P j, m, and the set of valuefc;,C,, ... Cm} control not
~ Yl SNV VOV only the “average” value logwlogj, but also the behavior
O 04 | 7 in the highT limit, entering as the coefficient af 2,
o4 For the simplest cased(j,2;0—1) is easy to see from
02 L Eqg. (12) that in theT—ce limit we have
H 2 * i 2
0.0 sl ol el C.(T)= g 12) _ '72i:(1_2—1) iz (13
10° 107 102 107 10° 4T i=1 4(] _1) T

Of course, the same result could be obtained from (E8).

FIG. 2. Finite approximations of the specific heat for the Setstaking into account that in the simplest case: 2 and anyc
S(5,3;0,2,4)(thick lines andS(4,2;0,3)(thin lines. In both cases, coefficient just can take the values O ajné1.

the dotted line corresponds to=5 and the solid one ta=6. The ¢\ e generate the fractal also towards higher scales of
horizontal lines represent the correspondent fractal dimensionali-

. ! ) energy instead of restricting ourselves to the intef\al],
ties. The dashed line represe@s(T) for the setS(4,2;0,3). we can avoid the behavid. 0 in the T limit. Note
that to achieve this, it is enough to consider not only negative
integer powers of] (i.e., propagating the fractal to small
scale$ but also positive ones. In this case, we propagate the
fractal structure to the whole positive real axis. All the equa-
(11 tions we have seen in this section remain valid just by chang-
ing the summatior={_, by =" __ for the finite n step of
o _ . _ generation, or equivalently in the infinite casg;_, by
A similar result was obtained for the particular cgse3 v~ From now on, we will term a€ the specific heat

j=—o "

(the triadic Cantor sgtin Ref. [13]. However, note that piained by considering that the spectrum without an upper

Eq. (11 is only valid for monoscale sets of the type jimit we will study C.. in order to explain the oscillations

S(]_’Z;O'l_l)' while for 'the general  monoscale 5:6nd the fractal dimension and the log-periodicity. For the

S(] M, C1,Ca, ... Cm) EQ. (1.0). IS needeq_ _ sake of simplicity in writing the equations, we will restrict
In Fig. 2, we show two finite approximations to the spe-, . qoes 1o calculatingC;(T) for the simplest case

cific heat.of two monoscale cantor sets as a function of tem—s(j 2:0j—1), although the results obtained are general for
perature in log-scale. Several important features of the spe-

i ; . o onoscale sets.
cific hgat deserye t'o be po'.”ted out. First, the specific heat A The log-periodicity can be seen easily. Note that when
low T is anoscillating function, the number of the oscilla-

. . + . .
tions being controlled by the “depth” of the fractal, i.e., the consideringCy (T), Eq. (11) transforms simply to give

and simplify to some extent E¢10). Finally, we have

2j'T ji—1
—Cosl| ——
-1 2j'T

-2

cxm:;l

step in the generation process. Note that the number of “pe- = [oiiT _q\1°2
riods” in each case coincides with and whem increases, cim= > .J—cos J_ (14)
a new period appears in the loWwregion. SecondC,(T) iZ=w |]—1 2j'T

oscillates around a particular value given by the fractal di-

mensionality of the set. In the cases shown in Fig. 2, we havé&his equation shows the log-periodicity, because we have
d,=log 3/log 5, andd,=log 2/log 4. In the general case, we directly C.(j*T)=C}(T), for k integer. In this case, the
have that the oscillations are aroude-logmvlogj. Third,  periodicity is valid in the whole real positive axis, and not
note that in the oscillating regim&,(T) is alog-periodic ~ only in the lowT region.

function. We have marked some special temperatures in Fig. In order to show analytically the reason for the oscilla-
2 to indicate this fact. In general, the period of the oscilla-tions around the fractal dimension, we can try to sum Eq.
tions for the monoscale s&(j,m;c;,C,, ... ,Cy) iS given  (14) by using Poisson’s summation ruleZ __f(i)

by j, i.e.,C,(T)=C,(jT). We discuss on an analytical basis ==;_,fZexp(akx)f(x)dx. After some calculations, with
the reasons for this periodicity following E(L4). This “pe-  the change of variablé=(j—1)/2j'T and taking into ac-
riodicity” is only valid in the oscillating regime. In the case count for thek=0 term that/h cosh h dh=In 2, we arrive
n—o, this regime extends infinitel{infinite number of pe- at

riods) from approximatelyT = 1 towardsT=0. In the highT

limit, the specific heat tends to zero, this is a consecuence of . In2 2 =2 _
having a bounded spectrur € 1 is the greatest value of the C.(T)= nj + inj k21 {acog 27k f(j,T)]
energy. -

The limit T—« can be performed in Eq10) to obtain — Bysin 27k f(j,T)]} (15)

the behavior of the specific heat in this region. In this case,
we obtain with the definitions
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0 h E{27Tk |n h) 0.8 AL IRULALL LA IRLRALLL IRLRLLLL IR UL IRLALLL BRULLLL B
o= co - dh, 16
g fo costth Inj 19 I Yo e e
0.6
8 J’w h (27rklnh)dh 17
= sin . ,
" Jo costth Inj
& 04
i IN[2T/(j—1)] 0
(G, D= = (18)
J
0.2
The first two terms of Eq.15) are very precise to describe
the behavior ofC,(T). For example, forj=4 while a;
=3.002338...x10 % and 8;=2.9089% ...X10 2, we 0.0 L 1. il cood 1 ,
have thata,,8,~10 4 and so on for higher order coeffi- 10° 107 10° 10° 10"
cients. It is clear than the first harmonic is the unique signifi- T
cative contribution, and then, finally one can write FIG. 3. Plot of the specific heat obtained for a finite approxima-
tion (n=6) of the setsS(9,3;0,2,8)(solid line) and $(9,3;0,4,8)
CH(T)= In_2+ i{a cog27f(j,T)] (dotted ling. The horizontal line corresponds ty,= 1/2.
o InJ |nJ 1 J ’

P . plest symmetric cageOn the other hand, when the set pre-
pasin(2at(j,T)]}- (19 sents asymmetries, higher harmonics begin to contribute to
This equation contains the main information about mono-the oscillations. Th's IS the case .6(9’3;0’2'8)’ where th?
e ) o two gaps have different size. In Fig. 4 we plot the numerical
scale Cantor sets specific heat: the oscillations around thlg

fractal dimensionality logvlogj (log 2/logj in the case we ourier transform of the oscillatory regime of the two spe-
have calculated and the log-periodicity ofC(T), ie., cific heats of Fig. 3. It can be seen in pér} that the second

ok , , n _ harmonic becomes relevant for the oscillations of the specific
C_W(T)_Cw(] T). To illustrate the properties a.. (T), n heat 0fS(9,3;0,2,8). These results are general: with increas-
Fig. 2 we also show for the se$(4,2;0,3) the function 4 asymmetries, higher harmonics contribute to the oscilla-
C2(T) given by Eq.(19) as a dashed line. tions.

The analytic result19) has been obtained for the general | the construction of a monoscale Cantor set, we have
monoscale setS(j,2;0j—1) formed by two spectral not considered the possibility of taking together two con-
branches. .If a m_onoscale with more than two spectrakecytive segments of lengiii" in the nth step of the gen-
branches is considered, the specific heat oscillates alsgration process in order to avoid multiscales. Thus, the sets
arounddyey, with a period given by. But in this case, the gre formed bym" branches of siz¢~". But even if consecu-
analytical calculation becomes much more complicated, s@ye segments are allowed to form a spectral branch, a
in the following we study some properties of the problemmongscale set can arise if the same is done to generate all the
numerically. branches. In this case the size of any spectral branclotis

One can construct easily different monoscale Cantor sel§iven byj ", and then this is not the smallest scale of the
with the same fractal dimensionalignd then with the same  5jj0wed spectrum, but it can be the size of the smallest gaps.
number and size of spectral branchpsst by changing the it in the generation process we start by groupirgggments
size of the gaps between these branches. For instance, |eté'§lengthj‘1 to generatem/| identical branches of length

consider the two set§(9,3;0,2,8) and3(9,3:0,4,8). Both | -1 (note thatm/I must be integer to have a monoscale
sets share the same fractal dimensionaldy,{=log 3/log 9

=1/2), but their correspondent specific heats behave differ-
ently. In Fig. 3 we plot the specific heat for a finite approxi-
mation (=6) to the setsS(9,3;0,2,8) (solid line and
S(9,3:0,4,8) (dotted ling. The main difference between
them is the amplitude of the oscillations aroudg,= 1/2
(horizontal line in Fig. 3 This amplitude depends on the
value of the sunkc, which reflects the different structure of

the sets.

But the amplitude of the oscillations is not the only dif-
ference between the two sets. TheS@,3:0,4,8) is in some
sense more symmetric tha®(9,3;0,2,8), because in the
former both gaps and branches have the same size, which is
not true in the latter. These geometric differences appear also
in the “harmonicity” of the specific heat. When the set is
symmetric, the oscillatory regime is very harmonic, and only  FIG. 4. Plot of the Fourier transform obtained numerically from
the first harmonic presents a significative contribution. Thishe oscillatory regime of the specific heats of the sés
fact generalizes the analytic res(®) (obtained for the sim-  $(9,3;0,4,8) andb) S(9,3;0,4,8).

Amplitude

s HE
0.0 0.5 1.0 15 20 2.5 3.0
Frequency (Hz)
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0

Cantor sef, in the nth step of the generation we will have 10
identical branches of si2é/j". The roles of andm are now

played byj/I andm/l. As a consequence, the oscillations of

the corresponding specific heat have a periodicity given by

j/l. 1t is also straightforward to see that the fractal dimen- 10
sionality is given bydy.=log(m/l)/log(j/l), and this is also
the value around which the specific heat oscillates.

N (E)

V. MULTISCALE CANTOR SETS THERMODYNAMICS

It is clear that multiscale fractal spectra can be easily con-
structed by generating appropriate sgt§,m) [see casek) 10°
and(d) in Fig. 1]. Unfortunately, although a formal expres-
sion can be written for the energy spectr[g. (6)], it is not 10° 10* 107 10°
possible to sum analytically the partition function, and the E
study of the specific heat has to be done numerically.

o
= 8
N] [E
1 1 IIIIIII

10" 3

. - FIG. 5. The function N(E) for the three scale set
In a recent paper, Vallejost al. [14] studied the proper- S(8,5;0,2,3,5,6,7)solid ling). The dotted line represents a power-

ties of C(T) for a two-scale fractal spectrg, i.e., they consid-_ fit, with exponent given by =log 3/log 8=0.5% . . . . In the
ered a spectrum with two branches of sitegnd|; corre- inset, we represent the specific heat for a finite approximation (

sponding to the low and high energy region, respectively_gy of the same setsolid line). The dotted line represents the
They gave a scaling argument for the form of the partitionytifractal spectrum of the same set.

function, which led them to obtain the following conclu-
sions: the specific heat presents oscillations around the cen- One can also arrive at that value Dfby considering the
tral valueD = —log 2/logl,, and the period of these oscilla- information of the multifractal spectrum of the correspond-
tions is given by 1. They found a nice interpretation fér.  ing set[15]. If the first spectral branch is the biggest or the
It can be shown that if the integrated density of staN¢E) smallest one, then the measure will be most rarified or most
is of the form concentrated exactly in this region. Therefore, the spectral
dimensionD will coincide with one of the limiting dimen-
sions of the multifractal spectrur,,, or D _.,, respectively.
This can be seen also in the inset of Fig. 5, where the dotted
line represents the multifractal spectrum obtained for
then the average value of the specific heat is giveq®y  5(8,5:0,2,3,5,6,7). Actually, the oscillatory regime aroud
=D. This is a generalization of the equipartition principle. js a direct generalization of the monoscale case. In this latter
For the fractal spectra they studied, the vallle=  case, all the spectral branches are identical, and then, in par-
—log 2/logl; is the exponent of a power-law fit of the inte- ticular, we will have d,.x=D=logs ¥logl,=lognvlogj
grated density of stateN(E), also calledspectral dimen- =d, . so the role oD is performed byd,,,, as we saw in
sion Then, it is natural foD to be the “average” value of the preceding section.
C(T) in the temperature range corresponding to the energy As can be seen in Fig. 3Y(E) can be considered as a
range for which Eq(20) is valid. log-periodic oscillating function superimposed to the power-
Here, we are going to generalize this result for multiscalgaw behavior. The oscillations are strictly log-periodic be-
fractal spectra as follows. When generating a generalizegause the fractal sets we are considering are exactly invariant
Cantor set, all the branches give rise to the same number @ider changes of scale. Although the oscillations present
points of the set in the division process. As a consequencgharp borders due to the gap structure of the spectrum, Valle-
all of these branches have the same weight, giversby  jos et al. [14] modeled successfully this oscillatory function
(wheres is the number of branches appearing in the spechy a log-harmonic one in the two-scale fractal set, which led
trum). Then ifl, is the length of the leftmost branch of the directly to the oscillations irC(T). Nevertheless, when a
spectrum, it has a measufi@ the multifractal sengegiven  more general multiscale case is considered, we have checked
by dieg=l0gs™Y/logl;. When the functioN(E) is plotted in  numerically that this approach is not so exact. The reason is
a double log-scale, the low energy behavior represented bfhe same we found in the general monoscale case: when

N(E)=EP, (20

dier domains always in the power-law fit, sD=dez=  more than two spectral branches are considered then several
—logs/logl;. Note that, in particular, for the sets studied in gaps exist. If the size of the gaps is different, higher harmon-
[14], s=2. ics begin to contribute to the oscillatory regimeG(T), (as

As an example, in Fig. 5 we show the functidifE) for  was shown in Fig. % and therefore these harmonics should
the three-scale s&(8,5;0,2,3,5,6,7) =3). The dotted line  be included in the log-periodic oscillatory function that mod-
represents a power-law fit, with exponent given By els the spectrum.
=log 3/log8=0.528 . . .. In theinset, we represent the spe-  Finally, we have encountered numerically a general result
cific heat for a finite approximatiomn( 8) of the same set, concerning the existence or not of the oscillatory regime. We
showing the oscillations around the spectral dimendibn have found a strong dependence of the amplitude of the os-
(see below. This example illustrates how in general the cillations on D. As D increases, the oscillations become
spectral dimension is given iy = —logs/logl;, wheresis  smaller, and they eventually disappear exactly wbenl.
the number of branches appearing in the spectrum. For the caseD>1, no oscillations exist anymore. If a
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FIG. 6. C(T) for three different setsS(5,3;0,1,4), for which FIG. 7. Integrated densities of stati¢E) for a Fibonacci se-
D=0.7% ... (solid line), $(4,3;0,1,3), for whichD=1 (dotted  gyuence with 987 atoms, anlgs—eg|=1.5 (thick line), 3 (thin
line), andS(5,4;0,1,2,4), for whictD=1.3% . .. (dashed ling line), and 6(dotted ling.

s-branches multiscale Cantor set is considered, Wtlthe Fn

length of the first one, it is straightforward to see titat H=> eam|i)i|+ > t]i)]. (22)
=1 whenl;=1/s. Then, the exact critical point where the [ aelil (.0 Y

oscillations disappear is given by the condition

In this Hamiltonian, the diagonal energies form a Fi-

l,=1/s. (21 bonacci sequence with two basic energies,andeg. The
symbol(i,j) means thai andj are nearest neighbors, and the
hopping ternt is considered to be constant. Numerically, we

In Fig. 6 we show three examples G{T) for Cantor sets  gett=1, thus fixing our energy scale. The spectrum of the
with D smaller(solid line), equal(dotted ling, and greater Hamijltonian(22) is obtained by exact diagonalization of the
than unity(dashed ling Note that even when the oscillations correspondent matrix.
disappearD gives an average value @(T) in the appro- An appropriate way to see the fractal structure of the
priate range of temperature. ~spectrum is by using the integrated density of StaN¢E)

The meaning of Eq(21) becomes more transparent in [g] |n Fig. 7, we plot three different curves(E) for three
monoscale Cantor sets. In this case, it is trivial to see that i3] es of the differencée ,— eg| for a Fibonacci system
I,=1/s, and as all thes branches are equal, then the spec-yith 987 atoms. All the spectra are normalized to the interval
trum becomes continuoysot fracta), formed by the whole [0,1]. As can be seen, the curves resemble very much the
segmenf0,1]. shape of the devil staircase, also very similar to the functions

N(E) obtained from Cantor sets. The parameief— eg|

controls the shape of the spectrum|df,—eg|<t, the hop-
VI. THERMODYNAMICS OF FIBONACCI SPECTRA ping term domains, and the spectrum is still very “continu-

Until now, we have been studying the thermodynamics ofous.” On the contrary, ifea—eg|>t, the quasiperiodicity is
“exact” and idealized fractal spectra, derived from the con-Stronger, and the spectra are more fractured: the gaps are
struction of Cantor sets. In this section we study the thermobigger, and the regions with states smaller. These facts are
dynamics of “real” spectra obtained from quasiperiodic se-accentuated g ,— eg| increases. We will restrict ourselves
quences. These spectra are just approximately fractal, so W@ the casde,—eg|>t, to appreciate the effects of quasi-
will see how the specific heat is affected by this fact andPeriodicity.
which is the relation with the “exact” spectra. We are going  Once the set of eigenvalugs;} is known, we compute
to consider the Fibonacci sequence as the typical quasipefife partition function through the usual expressibr)
odic sequence, which is formed by arranging properly two=EiF:”1exp(—Q/kD. From Z(T), we obtain C(T) in the
basic building blockggenerically calledA andB). The Fi-  standard way. The specific heat for three different values of
bonacci sequencg, is obtained by the recursion relation |¢,—eg| is shown in Fig. 8, corresponding to the spectra
S={SS -1} for I=1 with Sy={B}, andS;={A}. The Fi-  shown in Fig. 7. The main feature that can be observed is
bonacci numbeF, is the total number of building block&  that the Fibonacci specific heat also presents oscillafions
andB in S, and obeys the recursion relatiéh, ;=F,_; log-scale around a certain value, although not in the same
+F, for I=1 with Fo=F;=1. It is straightforward to see exact and regular way as it was found for Cantor sets. The
that S,=AB, S;=ABA, S,=ABAAB and so on. In number of oscillations depends on the number of points in
our case, we are going to consider a nearest-neighbor tighthe spectrgon the number of atoms in the chaithe bigger
binding model with the following Hamiltonian for the Fi- the system, the greater the number of oscillations. This is
bonacci sequencg, : equivalent to the behavior found in generalized Cantor sets,
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FIG. 9. In(a), the solid thick line represents the value®fand

with a solid thin line, circles, and crosses we represent the ampli-
tudes of three central consecutive oscillationsGgfT) both as a
where the oscillations increase with the step of the genergunction of |ex—eg|. In (b), we plot the behavior of the three

tion procesdthe hierarchy of the spectrym “periods” of the same three oscillations used(& with the same

The horizontal lines in Fig. 8 correspond to the spectrakype of symbols.
dimensions of the three spectra. The spectral dimendions
depend on the parametgs,—eg|: as it increases and the the periods are almost the same, in some sense we could say
spectra become more fractured, the spectral dimensions deéhat C(T) is quasi-log-periodic in this region. In addition,
crease. Note that these dimensions give a good average valtiere exist a fairly linear dependence of the periods and
of C(T). The reason is that the functidfi(E) is fitted fairly =~ |e5—eg|. Therefore, for very high values ¢&,—eg|, the
well in general by a power-law, and th&@remains signifi- oscillations extend over many orders of magnitude, even in
cative. Nevertheless, the “oscillations” &(E) around the the case of small systems.
power law are not as exact and repetitive as the one found in
Cantor setqrepresented in Fig.)5 The reason is that the
spectra are just approximately fractal: they are not strictly
invariant under changes of scdlas it happened for Cantor
setg. This fact is reflected irC(T), where different “peri- In this paper, we have studied the properties of the spe-
ods” and different “amplitudes” can be seen. A general factcific heat derived from fractal spectra. First, we have consid-
is that the first and last oscillations are more irregular, but thered both monoscale and multiscale Cantor sets, for which
central ones are very similar in amplitude and almost periwe have extended and generalized some previous known re-
odic. In addition, Fig. 8 shows a clear dependence of the&ults concerning the log-periodic oscillations of the specific
“period” and “amplitude” of the oscillations onD: both  heatC(T). For the monoscale case, we have obtained ana-
increase a® decreases. AB is controlled byle,— &g/, this Iytically the behavior ofC(T) for a two-branch general spec-
is the key parameter of the problem. trum. By using numerical calculation, we have shown that

In Fig. 9, we show the behavior of all the interesting even in the monoscale case the oscillatory regime becomes
magnitudes of the problen(, and period and amplitude of nonharmonic if there exist different gap sizes. In the multi-
the oscillationg as a function oflep,—eg|. In part(a), the scale case, we have studied numerically the cases of
solid thick line represents the value Bf and with circles, a branches in the spectrum, where nonharmonicity effects are
solid thin line, and crosses, we represent the amplitudes afven more relevant. We have connected the role of the spec-
three central consecutive oscillations®@fT). Note that, al- tral dimensionD as the average value 6f(T) with the mul-
though the amplitudes are not identical, they are very similatifractal properties of the sets, and we have found a condition
and the three curves almost overlap. As expec2dle- for which the oscillatory regime disappears. After that, we
creases, while the amplitudes increase. It is interesting to sdeave studied the thermodynamics of tight-binding Fibonacci
that in the region of very high values pf,— g/, the limit  spectra. These spectra are just approximate fractads
value of the amplitudes coincide with. This is logical: a  strictly invariant under changes of scaland then many of
is the average value, the amplitudes are boundedby  the properties found before in Cantor sets become here just
order to prevent negative values 6{T). In part (b), we  approximated. This fact is specially relevant in the meaning
present the behavior of three perio@®rresponding to the of D, and in the periodicity and amplitude of the oscillations
same central oscillations as the previous amplitudes, anthat we have found in the Fibonacci specific heat.
with the same symbolss a function ofs ,— £g|. Of course, Finally, we would like to connect our results here with
they are periods in “log” sense: they are obtained as thesome previous works. Examining the vibrational problem,
quotient between temperatures for which consecutivéPetriet al.[16] and Petri and Ruocdd 7], when considering
maxima are reached. As before, the periods are not identicad, chain with hierarchical couplings, found integrated densi-
but very similar, and therefore the curves almost overlap: aties of states of Cantor sets type. Therefore, some of the

FIG. 8. The specific heat for the spectra shown in Fig. 7, repre-
sented with the same type of lines.

VII. CONCLUSIONS




PRE 61 THERMODYNAMICS OF FRACTAL SPECTRA: CANT®R . . . 2289

properties found for generalized Cantor sets, derived jussome circumstances extra peaks in the specific heat as a
from the fractal and scaling properties of the spectra, aréunction of the temperature in the loWregion, also related
expected to be found in their results. For example, althouglvith the results presented in this paper.
Petri and Ruoccdl7] studied the Debye vibrational specific
heat, they found small oscillations in the Iowregion, con-
nected with the results obtained in this paper. ACKNOWLEDGMENTS
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