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Depinning of kinks in a Josephson-junction ratchet array
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We have measured the depinning of trapped kinks in a ratchet potential using a fabricated circular array of
Josephson junctions. Our ratchet system consists of a parallel array of junctions with alternating cell induc-
tances and junctions areas. We have compared this ratchet array with other circular arrays. We find experi-
mentally and numerically that the depinning current depends on the direction of the applied current in our
ratchet ring. We also find other properties of the depinning current versus applied field, such as a long period
and a lack of reflection symmetry, which we can explain analytically.

PACS numbd(s): 05.40—a, 74.50+r, 85.25.Na

[. INTRODUCTION tion is different than the current to move it in the opposite
direction.

Disorder and noise are not always undesirable in physical In this paper, we will show that we can design almost any
systems. Inhomogeneity has been shown to control certaitype of 1D pinning potential in a parallel Josephson array by
types of spatiotemporal chaf], while noise can lead to an choosing an appropriate combination of junction critical cur-
enhancement of the signal-to-noise ratio because of stochakgnts and plaquette areas. Indeed, it has been sht@ythat
tic resonancé2]. Another more recent counterintuitive result WO alternating critical currents and plaquettes areas are
is that of transport of a Brownian particle in a ratchet poten-8nough to provide a ratchet potential for fluxons. As we will
tial [3]. Though initially proposed as a model for molecular show t)elow, this is not the only possible design for a ratchet
motors in biological organisnigl], ratchets can also serve as poter_mal. .

a model to study dissipative and stochastic processes in With only an ac _d_rlvmg current these arrays show dc Vqlt'
nanoscale devices. age _steps of _stab|I|ty at multiples of_ the externa_l ac drive

A ratchet potential is a periodic potential which lacks re_amplltude. This occurs whep the equ!valent ac driving force
flection symmetny[in one dimension(1D) V(x)=V(—x). becomes commensurate with the period of the ratchet poten-

. ¢ thi breaking i th tial. This behavior could open the possibility of using these
see Fig. 1. A consequence of this symmetry breaking is the oy s for a voltage standard device or a microwave detector

possibility of rectifying nonthermal, or time correlated, fluc- without a dc bias current. Moreover, the same ideas of flux

tuations[5]. This can be understood intuitively. In Fig. 1, it cleaning underlying Refl7] could be applied to 2D arrays
takes a smaller dc driving force to move a particle from aysing the designs described here.

well to the right than to the left. In other words, the spatial  The paper is organized into five sections. Section Il intro-
symmetry of the dc force is broken. Under an ac diise-  duces the theoretical framework for the study of inhomoge-
called “rocking ratchets) or time-correlated noise, particles neous parallel Josephson arrays. We find that inhomoge-
show net directional motion in the smallest slope directionneous arrays present a long periodicity with respect to the
This effect can be used in devices in which selection of parnumber of kinks in the array. To test the theory, we have
ticle motion is desired. designed four different Josephson junction rings and mea-

Because of this effect, ratchet engines have been proposestred the depinning current of the array versus the applied
as devices for phase separatid, and very recently as a magnetic field. The experimental results are shown in Sec.
method of flux cleaning in superconducting thin filfirg. A
ratchet mechanism has also been proposed as a method to
prevent mound formation in epitaxial film growfB].

Josephson junctions are solid state realizations of a simple
pendulum. By coupling them, it is possible to make a physi-
cal realization of model systems such as the Frenkel- U
Kontorova model for dislocation§9,10] or the 2D X-Y
model[11] for phase transitions. In particular, a parallel Jo-
sephson arraysee Fig. 2 is a discrete version of the sine- —_
Gordon equation and it has been used to experimentally
study soliton(usually referred to as kinks, vortices, or flux-
ons dynamics on a discrete latti¢&0].

In parallel arrays, kinks behave as particles in which the F|G. 1. Example of a ratchet potential. The particle sitting on
idea of Brownian rectification can apply. The applied currenthe well requires less force to move through the first peak to the
is the driving force. If the kink experiences a ratchet poten-ight than to move to the left. Therefore, there is a preferred direc-
tial, then the current needed to move the kink in one direction of motion.

X
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Due to the linearity of Maxwell's equations®; can be
decomposed into two parts: the induced flix,4, and the
external quxd)im which is the applied fieldB,,; times the
cell areaA;. The induced flux is simply; times the mesh
current of the cell, which has been defined to edfjalThen,

. l)j i . (I)O 1
) o ) ijj+§+|cS|n€Dj_|ext+Fj+ﬂ L—((pJJrl—(pJ)
FIG. 2. Circuit diagram for an inhomogeneous parallel Joseph- i j
son array. Each junction has a critical curreband each cell has 1
an inductance ok ; . "’L_(<Pj—1_ (PJ.)} 3)
-1

[ll. In Sec. IV we discuss some of the properties of the mode| . -1 j
. ith Fj_(q)ext /Lj—l_q)ext“‘])'
and show that they agree well the experimental results. We N ext , . . .
S . o This circuit is realizable by varying cell and junction ar-
also show that a combination of three different critical cur- . . .
; . ' - . . eas. The cell areA; will determine the self-inductance. W
rent junctions is sufficient to design a ratchet potential. In, )

Sec. V we present the conclusions of our work and propose'zi the width of the cell andA?q N |J_ts_length, thent
number of new experiments. ~moAX; as long asW~Ax;. Since Pg=WAXBey, we

see thatdl /L j~WBgy/ 1o and is approximately constant

for all j. The junction area determiné$, C;, andR; but

IIl. THEORETICAL FRAMEWORK they are not independent since the capacitance and critical
A. Circuit model current are linearly proportional to the junction area and the

resistance is inversely proportional to the junction area. The

Figure 2 shows the circuit diagram for an array of Joseph]LRj product and thdaJC/Cj ratio of each junction are constant

son junctions. Each junction is marked by arx”™ and we for every junction
will connect N junctions in parallel with short wires as We will normélize all the currents by*zmax(lic) and
shown. Coupling of the junctions occurs through the geo-. b _W h B ¢ h
metrical inductances of the cells. We will neglect all mutualime PY 7= V®oC. /27l whereC, =max(C;). Then,
inductances and consider only the self-inductance of each -

; . . i h; D=t fitNi(@i1—0)+N (01— @
cell L;. The induced flux in each cell is then times the Mep) Ziext i+ N (@1 @) 11 <P,),(4)
mesh current of the cell which in this simple geometry can
pe easily seen to equal the curren_t through th_e top horizontg|nere J\f((pj)=§'oj+1’§oj+sinqoj [14]. The ratio of critical
link 1} We will usel e for the uniformly applied external = ¢\, rrents ish;=11/1; and the inductances are normalized as
bias current per junction as shown in Fig. 2. We then dEf'nE?\fCI)O/ZwI;Lj . Finally, fi=2af(\; 1A; 1/A,~NA|/

the mesh current as the current passing through this top horj heref is the frustrationB o We h
zontal wire. With this definition we can place the loop self- A*):' %va;ée-) IS the frustrationBe,A, /Po. We have used
J)-

Lﬂqu?t%mdt‘i on t_he tof thhonzo_ntal_llgk. :Ne emgh?stlﬁe thalfc To complete the system we need to specify the boundary
this inductance 1S not the wire inductance, out the Sl yitions. There are two types: open, if the junctions form a
inductance of the cell so that only one such element

Sinear row and periodic, if the junctions form a closed ring.
needed per cell.

The junctions will be modeled by the parallel combination Z;rf;??uggt?gn?iulndzgh%ogg:gfgnvgeom: :fr;yozn que
of an ideal Josephson junction with a critical current!ofa ' Y

setAy=An=0.
capacitorC;, and a resistandg; . The ideal Josephson junc- N

: o . "] e X For the periodic boundary conditions we de§=A\y and
tion has a constitutive relation of= ¢ sing; whereg; isthe o — A Furthermore, a circular system poses a topological

gauge-invariant phase difference of the junction. Whenggngiraing ong; since they are angular variables and have
there is a voltage across the junction,, then v; 5. periodicity: ¢;,n=g¢;+27M. In particular o= gy
=(®,/27)dg;/dt. Since we will haveN parallel junctions, _ 5.\ and @ns1= @1+ 27M. HereM is referred to as the

in our ar_rayj_zl to N ) winding number and represents the number of kinks in the
The circuit equations result from applying current consergysiem.

vation and flux quantizatiofiL.3]. Current conservation at the In this paper we will discuss systems with periodic

top node of junctiorj yields boundary conditions. Since the produg#,; is roughly con-
stant throughout the array we consider=0 in the simula-
+I"sin<p4=l it ) tions of the rings we presefit5]. We have checked numeri-
c j ext' 'b b .
cally that for the experiments reported here, these terms do
not significantly alter our results.

. Uj
ijj'i-ﬁj

Flux quantization of cel] yields

B. Symmetries

%((Pju—@j):@j, 2 The system of equationg}) presents an odd inversion

symmetry under the changd ——M, ¢;— —¢;, andigy
— —lgy @s is expected from Maxwell’'s equations. The re-
where®; is the total flux in cellj. sponse of the array to an external current will reflect this
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symmetry. In particular g — M) = —l3e{M). Here,l 4¢pis
the maximum value of the applied current for which a solu-
tion épi =0 can not be sustained in the presence of a positive
or negative external current. We will usg,,, to refer to the
absolute value of the depinning current as the external cur-
rent is increasgd-) or decreasdd-) from zero.

Another symmetry of the equations refers to the periodic- @ ()
ity of the system when varying the number of kinks in the
array. In the case of a regular rifgll the cells and junctions
are equalthis periodT is equal to the number of junctiomé
[16].

A method of calculating the periodicity iM for the gen-
eral case studied here is to use the simple transformation

(

© d)

Y=g +2mm;, 5

. . L FIG. 3. The four different measured arraya} regular ring,h;
wherem; are integers. The equations of motion in the new_q and\;=0.11, (b) ring with alternating critical currents); =1

variables are the following: and h;,;=0.43, \;=0.043, (c) ring with alternating cell areah;
=1, \;=0.08, and\; ,=0.15, (d) ratchet ring with alternating
— = \)\. : _ ) . . . ] jt+1
hJN( b 27ij) )‘J(‘ﬁﬁl ¢,)+)\171( ¥i-1 ‘pl) critical currents and cell area;=1, h;,;=0.43,\;=0.035, and

—2m\ (M1 —m) \j+1=0.06. These parameters are calculate@-al K.

—277)\1_1(mj_1—mj)+iext+fj )

(6)
~imposed, the number of kinks in the array does not appear in
where M(y;—2mm;) =M(#;). The new boundary condi- o equations. We consider instead the periodicity of the
tions are system with the external field. In this case, the periodicity
Y=+ 2m(M+T), 7) depends on the ra_ltio between the cell areas instead of the
ratio between the inductances. It can be shown that the pe-
whereT=m;,y—m;. Thus after the transformatio®) we  riod in f=Be,A. /P is equal tog, whereA,/A;=p/q and
recover the same equations as Ef).but with the number of A;=A,.
kinks equal toM + T so that the equations are periodic in the
number of kinks in the array with a periad
To calculateT we take out then; dependence on the right Il. EXPERIMENTAL RESULTS
hand side of Eq(6) by choosingm; such that\;(m;, _ _ _ _
—m;)+\j_1(m;_;—m;)=0. Remarkably, the resulting pe- We have designed and _fabncated thg fo_ur d|fferent_ rings
riod is independent oh; and only depends on the ratio be- (&), (b), (c), and(d) schematically shown in Fig. 3. The rings
tween the consecutive's. In the appendix we find a formula are fabricated with a Nb-AD,-Nb trilayer technology with
for the periodicity in the number of kinks for the general a junction critical current density of 1 kA/émThe current is
system. injected through bias resistors in order to be distributed as
Here we are going to develop the case of a ring that wasiniformly as possible. We measure the dc voltage across a
measured: a ring with an even number of junctions and withsingle junction[17] and each ring consists di=8 junc-
alternating cell areas. In this case there are only M®  tjons.

involved. Let A\j=N; (X;) for j odd(even and A\;/\; Figure 3a) is a regular ring with equal critical currents
=p/q. If we let (m;_;—m;)=—q and (m;,;—m))=p (for  and plaquette areas. FigurébBhas alternating critical cur-
evenj for instancg, we satisfy the above condition. rents with a ratio of 0.43. Figure (® has alternating

_ The period is calculated from the new boundary Condi'plaquette areas with a ratio afs of 1.8. Finally, Fig. 3d)
tions has both alternating critical currents and alternating plaquette
areas. It will be shown experimentally that orlg) has a
ratchet pinning potential.
For the regular arrap=q=1 and we recover the expected The outer diameter of each ring is 36n with an area
result of T=N. Also, we note that in order to have a finite ~4070um?. The inner diameter is 18m and it consists of
period we need the ratios betweris to be rational num- an island of niobium that is used to extract the applied cur-
bers. This condition will almost never be satisfied in a realrent. The rings also have either small junctions (3
experiment. Thus we see that a simple design of alternatingt3 wm?) or alternating small and large junctions (4.25
cell areas can result in an arbitrarily long perigbat could X 4.25um?). The designed, ratio is 0.5, but in practice the
be equal to) when varying the number of kinks in the junction areas have rounded corners and experimentally we
array. find thel ratio to be 0.43. We vary the cell inductance by
A similar calculation can be made for the case of an operalternating the cell area. In this case, the angles of the cells
array. As no topological constraint for the phases can bare 60° and 30°.

T=myy1—mp=(p+q)N/2. (8)
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] ] o ring. To calculate applied flux, we multiply the applied field by the
FIG. 4. SampleV curves for the four rings considered in Fig. 3 ring area. A constant offset has also been subtracted to account for

[(a) corresponds to Fig.(8) and so of Rings(a), (b), and(c) have  the ambient magnetic field. The measurement was dofie-8t8 K
symmetriclV's as the current is swept in the positive and negativeith T~0.5 and\x~0.9.

direction. The measurements correspondvte- 1. Ring (d) is the

ratchet ring as can be seen from the difference in the depinnin% )
current in the positive and negative direction. .5uV. Our computer controlled equipment also corrects for

any voltage drift of our amplifiers. As the current increases

Both I" and\ are mostly determined from material prop- beyond the depinning value, there is a sequence of voltage
erties of the samples and the junctiqn Sincel . varies with  steps where as the current increases the voltage remains rela-
temperature, both parameters can be experimentally comively constant. There are at least two mechanisms that can
trolled to some extent. In generland\ can be made larger cause these steps: resonances between the circulating kink
by up to a factor of 10 by raising the sample temperature. Asind radiated linear waves, and instabilities of the whirling
the temperature reach&g, however, most of the measured branch[10]. We have verified that the voltage positions cor-
features become too smeared to be distinguished. respond to these two mechanisms.

The temperature dependencel pis modeled well by the Figure 4b) is for a ring with alternating critical currents
standard Ambegaokar-Baratoff relation with(0)R,=1.9 whenM=1. We again see that thd/ is symmetric with
mV [18]. We find thatl .(0)=95 A for the small junctions respect to current direction and that there are voltage steps.
andl .(0)=224 nA for the larger junctions. We will normal- These steps are of the same origin as in the regular ring.
ize all our parameters with the largelst of a given ring.  However, in this ring the linear dispersion relation that de-
From the above values, we can estimB{®)=0.17 which, termines the resonance condition is split into two branches.
due to the constariR, product, is independent of junction This splitting is analogous to the optical and acoustic
area. The inductances are estimated from a numerical packfanches of a crystal with a two atom basis. Figu® & for
age that extracts inductances from complex 3D geometries @ ring with alternating areas. The characteristics are similar
conductors[19]. In this sample the loop inductance lis to that of ring(b) including a splitting of the linear dispersion
=23.5pH for the small cells and=42.6 pH for the large relation. Since for these three ringgep =1lgep- » WE can
ones[arrays(c) and (d)]. For the cells in ringga) and (b) infer that the kink is traveling in a symmetric pinning poten-
L=33.5pH. To calculate the dimensionless penetratiorial as theoretically expected.

depth A(0)=d/27L1.(0) we usel.=95uA if the ring Figure 4d) shows arlV for the ring with both alternating
only has small junctionfg(@) and(c)] and for those rings that critical currents and areas. The of this ring is qualitatively
also have large junctiofib) and(d)] we use 224uA. different from the other rings due to the ratchet nature of the

The current-voltagéV curves are measured by applying a pinning potential. We see thag, in the positive direction is
perpendicular magnetic field of 0 to 300 mG through a mag-65% of the depinning current in the negative direction. We
netic coil that is mounted on the radiation shield of ouralso note that there are different voltage steps excited in the
probe. We heat the sample aboVg=9.2 K and cool down up and down direction. The steps are of the same nature as
to a temperaturd <T.. We cool our ring in the presence of the explained resonances above and there is also a splitting
a flux that corresponds to approximatdlyflux quanta. Flux  of the dispersion relation. In the rest of the article we will
quantization will cause the expulsion of extra flux so that thefocus onl 4o, measurements as a signature for ratchet behav-
ring contains exacthil flux quanta after undergoing a super- ior in our arrays.
conducting transition. Figure 5 shows a measurement of the depinning current

Figure 4 shows typicalV’s for the different rings shown vs applied flux for the regular ring shown in Figa® The
in Fig. 3. Figure 4a) is for a regular ring whemM =1. The temperature is 8.8 KI'=0.5 while A\=0.9. Each plateau
IV is symmetric with respect to applied current direction. Asrepresents a different number of kinks trapped in the ring.
the current is increased from the superconducting state thehis is a direct result of flux quantization: The ring only
voltage remains at zero. We define the depinning currenallows integer number of flux quanta even if we have applied
when the array has a voltage greater than a threshold afightly more or less flux. Sinc&l=8 and this ring has a
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FIG. 6. Measured critical currents vs applied flux for a ring with ~ FIG. 8. Measured critical currents vs applied flux for a ratchet
alternating critical currents. The applied flux was calculated as deting. The applied flux was calculated as described in Fig. 5. The
scribed in Fig. 5. The measurement was dondat9 K with I’ measurement was done Bt=8.8 K with I'~0.5 and\;~0.3 and
~0.7 and\~0.9. As~0.6. The line varying abouty,;=0 is the difference between

lgepr @ndlgep-

symmetric pinning potential, we expettey =Igep- (NO
ratchet effedt, and a period of 8 as can be seen in the meathe ratio of the inductances. For our geométrylL ;~1.8 or
surements. We also see tHat, has a reflection symmetry 9/5 which implies a period of 56. However, in any physical
aboutM =T/2. array the inductance ratio is rarely going to be exactly a ratio
When we alternate the critical currents in our ring we of small numbers. Just on physical grounds we expect a very
expect the same qualitative featuresl gf, as in the regular large period, if any, in the experiments. In Fig. 7 we have
ring. Figure 6 shows a measurement of the depinning curremtieasured the depinning current frobh=—15 to M=15
vs applied flux for the ring shown in Fig.(® which has and though there is some apparent self-similarity in the data,
alternating critical currents. There are plateaus correspondinity is not periodic. Though there is no period, we can still
to different values oM just as in the regular ring and there is prepare our ring systematically withl=1, 2, 3, etc., by
up-down symmetry and periodicity withl =8 as expected, counting the plateaus. But instead f=1 andM=1+N

and a reflection symmetry abot=4. yielding the same dynamical state as in the regular ring, they
If we make all the critical currents constant and vary onlyare now distinguishable.

the cell area as in Fig.(8), then we alternate the valuesof When we alternate both the critical current and the cell

but the pinning potential remains symmetric. A9 K, \, inductances as in Fig.(8), it is possible to form a ratchet

for the large cell is~0.7 and\ for the small cell is=1.3.  pinning potentiaksee Fig. 1 Figure 8 shows an experiment

The result of measurinbye, is shown in Fig. 7. As expected on such a ring. Since the period depends on the inductance

the data is symmetric with respect to current direction sgatio, we experimentally expect a very long period. This is

kinks are not traveling in a ratchet pinning potential. How-borne out by the data as there is no sign of a period in the

ever, unlike in the previous ring$yep is No longer periodic range fromM=-15 to 15. We also expect thdfep,

with M =8. As shown in Sec. Il B, the period will depend on # l4ep- Since the kink is traveling in a ratchet pinning poten-
tial. The line shown in the center of the figure varying about

1 l4eg=0 is the difference between thky, and lgep -

- - Clearly, the force to move kinks in one direction is different
- - than the force to move it in the opposite direction. The mag-
05/ o - nitude and direction of this ratchet effect depends on the
. R . - number of kinks in the system.
Z - ™ T T e e iy As a further test of the symmetries and periods of the
.§' O o emme W it VO ] experiments, we have numerically integrated &j.using a
— " e - variable step size explicit 4th order Runge-Kutta method.
_05_"'" | The kink numberM is set in the boundary junctions. The
) had - initial conditions arep;=27M]j/N. That is, we stretch the
~ - kinks across the full array at the start of the simulation. We
_]l - . . then sweep the applied current in the positive direction until
-5 -10 -5 Y 5 10 15 a voltage develops in the array and calculajg, . We re-
d)app/<1>0 peat the procedure while sweeping the current in the negative

direction to calculaté ;¢ .

FIG. 7. Measured critical currents vs applied flux for a ring with ~ Figure 9 shows the simulations with parameters similar to
alternating cell areas. The applied flux was calculated as describdfiose of the experiments. Both FiggaPand 9b) have al-
in Fig. 5. The measurement was doneTat9 K with '~0.7 and  ternating\’s with \;=0.3 and\;,,;=0.54 forj odd. The
N~0.7 and\g~1.3. inductance ratio is 0.54/0:39/5 so using Eq(8) the ex-
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1 - : - : @ where dy0j=¢j1—2¢;+ ¢j_1 represents a discrete La-
—.ﬂrﬂ" MLJLIL‘ "J-LJL.‘ placian whiled, ;= (¢j+1—¢;-1)/2 is just the center dif-
| | ference of the first order derivative. To arrive at a continuous

0 limit we expand our variables as Taylor seriesAir;. The
Lo W cell area isWAx; while the cell inductancé.;=GAx; as
Z -l s : : s : Ax;—0 whereG is a geometric constant. Therefdre=0 as
2 1 . . . . . Ax;—0 and the discrete operators are replaced by their con-
— ®) tinuous derivatives
0 N(X)M @) =N(X) dxxp+ IxN (X) xp + i ext

=[N (X) dxp] +iexi- (10

0 10 20 30 40 50 If X\ andh are constant then we have the usual sine-Gordon
M equation. In this case the equations have a reflection symme-
try and it is not possible to have a ratchet pinning potential.
FIG. 9. (a) Simulation forN =8 ring with only alternating’'s of | )\ s dependent on position, the spatial coupling is analo-
A=0.3 and\,=0.54, anch;=1. (b) Simulation forN=8 ratchet  4oys to inhomogeneous diffusion, anisotropic heat conduc-
ring with both alternating\’s of Aj=0.3 and\;.,=0.54 and criti-  {jon or waves traveling in an anisotropic medium. We also
cal currents oh; =1 andh;,;=0.43. Line shown aboulye,=0'is  y5¢e thatf; in the discrete equations is essentially a pertur-
the difference betweehyep, and!aep- - bation to the continuous model that is dependent on the exact
discretization employed and is usually small. Thus, in order
pected period isT=56. We find this period in the simula- to get a ratchet pinning potential, there are three ways to
tions. Figure 8a) hash;=1 so we expect the depinning cur- break the reflection symmetry of the equations: with an ap-
rent to be up-down symmetric, i.e., no ratchet effect, as capropriateh(x), \(x), or a combination of both.
be seen in the data. Since we always have an odd inversion To calculate how the parametersand\; determine the
symmetry [ geps (M) =lgep-(—M)=lg4ep- (T—M)], lgep is  pinning potential, we will use a perturbative approach. In the
symmetric abouM = 56/2=28. This reflection symmetry of limit where all\;— 0 the kink will approach a step function
| sep@boutT/2 is generic for any array that is not ratchet since[20]. A stable kink configuration will have the kink sitting in
it is a direct consequence of the up-down symmetry of thea potential well in the middle of a plaquette. Let the kink lie
currents. We also find this symmetry in the experiments obetween junctiorj and j+ 1. The nearest phases ji@and j
nonratchet arrays. +1 will be small in this limit. As an approximation we let
Figure gb) has junctions with two alternating critical cur- ¢;=« ande;,,=2m— 3 and set all the other phases to 0 or
rents (=1 andh;,;=0.43 forj odd as well as two alter- 2. We can solve fora and 8 by minimizing the static
nating\’s (\j=0.3 and\, ,=0.54 forj odd. We now ex-  energy of the system
pect the kinks to travel in a ratchet pinning potential so that N
l 4epe does not equalye, , thoughl 4, still has an odd in- _ j 5
version symmetry. Just as in the expperiments we see that the H= ; 7 (@1 ¢ thj(l—-cosgy (. (1D
effect of the ratchet, and rectification direction, depends on
the number of kinks. Alsol 4, does not have the expected Here we have ignored the kinetic energy since we are only
reflection symmetry abouf/2. In summary, the simulations concerned with kink depinninf21].
show the same features as the experiments and also agreeSubstituting the approximations fgr; and ¢;,,, we are
guantitatively with our predictions. left with

1 1

IV. DISCUSSION H=3 (A ) B2+ S (N a kA a®—2mhj(at B)

The equations developed in Sec. Il describe kink propa- +Njaf+ 2772)\]-+hj(1—COSa)+hHl(l—COSﬂ).
gation through a discrete inhomogeneous medium. In this (12
section we will try to get a better understanding of the sys-
tem by briefly analyzing the continuous limit of our discrete ¢ solve for@ and 8 we minimize the energyaH/da
equations. We will then go back to our discrete equations_ g anggH/98=0. The resulting equation is transcendental
and approximate the pinning potential for a single kink. Withpacause it depends on the sine @fand 8 and would in
the analysis, it will become apparent how it is possible t0yeneral have to be solved numerically. However, for the sys-
construct many types of pinning potentials, including ratchetemg of small\’s studied here, the corrections are small and
ones, in the inhomogeneous array. __ we can linearize the sine termisin(x)~x] to solve fora and

To derive the continuous limit of the equations, 1et;2 B, We have found that for the parameters used in this paper
=Nj+\j_p andd\j=N\j—\j_;. Substituting in Eq(4), we the linear approximation is sufficiently accurate to describe
get the numerically calculated pinning potentials.

After linearizing the sine term we are left with

h]/\/'(goj)zrjﬁxxgoj-i-ﬁhj (9X(pj+fj+iext, (9) a:2)\j77(hj+1+)\j+1)/D,
(13
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BZZ)\jW(hJ+)\J_1)/D,

whereD = (hj+Xj+X;_1)(hj. 1+ N1+ N) =\

To get an idea of how the energy depends on the param-
eters, we can substitute back into Edl) and expand the
energy as a series with respect\p. The result is

H=272\;+O0(\)). (14)

For small\;, the height of the pinning potential when the
kink is the middle of a plaquette is determined Jy. The
second order term has corrections duéto;, h; and\;_,
and\;j ;.

As the kink moves through the pinning potential it will
reach a point of maximum energy which in the limit where
all \;— 0 occurs when the kink is on the top of a junction. In _ o _ )
this limit the nearest phases can have small corrections. We FIG. 10. () Simulated depinning currents féf=9 ring with
let ¢ 1=a, ¢j=7—p, andcpj+1=27-r— y. Again we sub- )\]:.0.2.5 anch;_;=1, h;=0.5, gndhj+1=0.25. Solid lines are the
stitute the corrections and set all the other phases to Gror 2 4€PINNIng current as current is increased or decreased while the
Minimizing the energy with respect ta, 3, andy and lin- dashed Iln_e is the dlf'ference_of _the up anc_i down depinning current.
earizing the sine terms yieldsa:,)\- ’ (m— B)I(h; (b) Numerlc.:ally calculated pinning poFent_laI_. Symbols are analyti-
Y A N )\_l;;\. dl’l cal calculation of the energy when a kink is in a plaquéstpuares
thatj _gan lgé),caTcuIz;t(eZ flrggn; J+%ﬂ_ JB Ja+)1) ’)\ "22 'f, and on a junctior(circles. The actual kink position is calculated

jo\IT P ) AT

using Eq.(16). The dashed line is a guide to the eye.
+pB)+h;B=0. If we let every\; be of O(\) and O(\)

<O(hj), then we can expand the energy as a series to compute the energy of the kink as it moves from a maxi-
mum to a minimum. The position of the kink in the array is
H=2h;+O(\). (15 calculated with
For small\, h; determines the pinning potential height when 1 1 N _
the kink is on top of a junction. Xem=5+ 5 21 J(@j+1— @) (16)
i<

The above calculation gives some intuition on the differ-

ent ways of designing a ratchet pinning potential. For in-y gig 10b) we have plotted the numerically calculated pin-
stance, alternating critical currents in the array will not Pro-ning potential. We place the kink on the energy maximum
duce a ratchet pinning potential since the potential will still ;4 perturb it along the unstable direction and calculate the
have reflection symmetry. In this paper we have experimen(-anergy using Eq(11) and the kink position using E16).
tally studied one possible way pf breaking this reflection\ye have also superimposed the values of the kink pinning
symmetry by using alternate critical currents and plaque_tt%otential calculated from the above perturbative analysis. We
areas. However, another possibility corresponds t0 havingaye ysed the linearized results to calculate the phases and
three different critical currents while maintaining equal aréasgy (11) to calculate the energy. The circles represent the
for all the cells. _ _ energy when the kink is approximately on a junction while
To test these ideas, we have numerically integrated Eqpe squares are the energy when the kink is approximately in
(4) for the case ba 9 junctions array. We lett;_,=1,h; 3 plaquette center. We see that the pinning potential is indeed

=0.5, andh; . ,=0.25 (with h;, 3=h;) and use the experi- 55ymmetric and that the analysis agrees well with the nu-
mentally realizable value ok;=0.25 for allj. We set the grical result.

kink numberM and the initial conditions as described in the
previous section. We then sweep the applied current in both
the positive and negative direction to calculate the depinning
current. Figure 1@ shows the result of the simulation. We have shown that an inhomogeneous parallel

There are three features in the depinning currentWws Josephson-junction array provides an ideal experimental sys-
graph. First, the kink is traveling in a ratchet pinning poten-tem to study kink motion in different potentials. In particular,
tial. For M =1, as the current is swept in the positive direc-we have designed a ratchet potential in an array with a ring
tion the depinning current is different than when it is sweptgeometry. One way of designing a ratchet potential is by
in the negative direction. Second, the depinning current hasgarying cell inductances and junction areas. We have verified
the expected odd inversion symmetry; that ligp, (M) experimentally and numerically that a kink, and even a train
=lgep-(T—M). Thirdly, the depinning current is periodic of kinks, requires a different amount of force to depin in
with period T=9. All these features were predicted by the positive and negative directions. One interesting result for
theory developed above. the inhomogeneous rings is that the periodicityMnof the

The observation that the kink is traveling in a ratchet pin-system will depend only on the inductance ratios of consecu-
ning potential can be directly verified by calculating the pin-tive cells. As a consequence, it is possible to design a small
ning potential. We will use both the analysis described aboveing, e.g.,N=8, such that one can distinguish between hun-
and the numerical method used in Réf2], which allows us  dreds of states with different number of trapped kinks.

V. SUMMARY
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We have also shown that a ratchet kink potential can béound an excellent agreement between experiments and
obtained by using junctions with three different critical cur- theory.
rents. In this case, the inductances of all cells are equal and
the array has a period M equal to the number of junctions. ACKNOWLEDGMENTS
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The ideas studied in this paper can be extended to the

study of vortex depinning, vortex motion and flux flow in_ ber of kinksM of Eq. (4) for a general inhomogeneous ring

ratchet 2D Josephson-junction arrays. We just need to des'%ray. Importantly, this period depends only on the ratio be-
a 2D array with an appropriate combination of critical cur-

. o . -~ tween consecutiva’s and it is independent of the order of
rents and cell areas in the direction of vortex motion, WhIChSUCh ratios and the values of the critical currents.
is perpendicular to the current injection direction. As in the main text, we will use the following transfor-

Another way of designing a ratchet effect is by Comro"mation for the phases:’
ling the critical current of the individual junctions of a regu-
lar homogeneous array with the application of an external
magnetic field. In this way, we can make a physical realiza-
tion of a “flashing ratchet.” The mechanics of motion is
well understood3,5]. The pinning potential is removed pe-
riodically. In the interval in which the potential is off, par-
ticles can diffuse freely. After restoration of the pinning po-
tential, most of the particles localize again in the minimum
of the next lattice site giving a net motigim the opposite
direction of the “rocking ratchet). However, as we have solutions  where mi—m _+(m —m . )A /A ;=0
seen temperaturg@.e., diffusion) does not play an important Clearly. thi it e dj_l d ]tbf J+h i | ld—l d
role in the motion of the kink. Nevertheless, one can devise early, Inis condition Is independentiof and only depends
a new mechanism for the kink motion in this context. After °" the ratiosh /A ;. . .
the removal of the pinning potential, kinks delocalize in an_. First we !et)‘i”‘iflzpj /q; with p; and g; _(:opr|me.
asymmetric way and localize agaiwhen the pinning poten- Since only differences afy are needed, we let; =0 with-
tial appears in the next plaquette. Preliminary numerical ©Ut 0SS Of generality. Then we solve for; in terms ofm,,
simulations confirm this scenario.

The study of inhomogeneous 1D arrays of Josephson m3=p2+qu ' (A2)
junctions can also help to elucidate pinning mechanism in P2
both 2D Josephson-junction arrays and superconducting thin
films. Also, systems in which critical currents are modulatedSimilarly, m, in terms ofm; is
[22] can show complex and interesting dynamical behavior.

In these systems and mainly in the presence of ac driving, we 003t pP3(p2+ds)
expect the appearance of new collective coherent vortex mo- My = Pa(ps+ ) Ms.
tion which can give a mode-locking response. Thus, these

ratchet arrays may be used as inspiration for devices that takgtter some algebra we find the following recursive formula
advantage of the properties of directional transport, rectificatgy m. ., /m; :

tion, and quantized response to ac driving. : !

An interesting application of directional motion of vorti- M /m=&..1/p& (A4)
ces has already been proposed in R&f. An appropriate J e >
ratchet potentialvia the modulation of the thickness of the it
superconductgris used to eliminate vortices from the thin

In this appendix we calculate the periodicity in the num-

wherem; is an integer. Equatiof6) is the new equation of
motion in the new variables. The new boundary condition for
the transformed variables becom#s, = ¢;+27(M +T)
with T=m;, y—m;. The strategy to calculate the peridd
will be to find a set of integers that eliminate tive depen-
dence in the right hand side of E¢). We will look for

(A3)

film. This “cleaning” is also convenient in 1D and 2D j-1
Josephson-junction arrays in which the presence of trapped &= H Ut Pj-1&-1. (A5)
k=2

flux breaks the phase coherence of, for instance, arrays used

as radiation sources or complex rapid single flux quantum

(RSFQ circuits. It appears that our ratchet pinning potentialHereé,=1 andj=3 toN+ 1. We have now derived that the

could be used to “clean” this trapped flux. ratio of m;,,/m; is a ratio of integers. So in principle, we
In summary, we have shown that inhomogeneous paralletan find an integer for eveny; .

arrays of Josephson arrays are ideal model systems for the To find a set of integers fan; we start at the most com-

study of flux pinning. We have also shown that there areplex ratio: my,.,/my. We take my 1=¢&y.1 and my

different ways to build a ratchet pinning potential, and have=pyéy. By back substituting, we find
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N thaty has to be a multiple of all then;. Therefore, let
mj=§jH_ Pk (AB) ?<=GCD(mN+1,mN, ...,My). The minimum integer period
k=] is then
for j=2 to N and withm;=0. N
It is straightforward to find the period. Since we have T=( H qQu+ DN§N) / X. (A8)
takenm; =0 the period can be most easily expressed as k=2

~ M1 As an example, let us consider the regular ring with

N =\. Hereéyy1=N, GCD(N,N—1N-2,...,1=1 andT
T=11 ac+pnén. (A7) =N as expected from the homogeneous sine-Gordon equa-
k=2 tion. This explains the observation in Fig. 10 tAat 9.
As another example, we consider the ring with alternating
areas. Let\;/Nj_,=p/q for j even and\;/\;_;=q/p for j
odd. Thené;=p+q, £,=2pqg+g? and

For consistency we also check that the equatiorjs=t are
satisfied:mg+myN 1 /A y=0. It is relatively easy to find that
mo=—1II}_,qx. The period calculated using=my—mq
also yields Eq.(A7). This completes the existence that an N
inhomogeneous parallel array with consecutive that are §N=§p
rational numbers has a period .

This procedure, however, will not necessarily yield thefor N even. Also
minimum period. To calculate the minimum period we need

N/2— qu/27l+

N
E_ 1) pN/Z*ZqN/Z (Ag)

to find the smallesmy, . For each ratio ofm;, we can ﬁ CNEZ—1-Nf2

make the numerator and denominatogpf, /p;&; relatively AL Q=P g (A10)
prime by dividing by their greatest common divis@CD).

We start with the last rationy, 1 /my= &+ 1/Pnén- If we  Then,x=GCD(my;1,My, ... .my)=pV21gV?~ ! and
let y=GCD(én+1,PnéN) then my.1=Ens1/y and my

=p;énly. However, we also need to be able to consistently T=(N/2)p+(N/2—1)q+q

change my. That is, the ratio my/my_1=pnén/ = (p+q)N/2. (A11)

pnPn-1&n—1 should still be valid. This implies thay
has to be a multiple omy_, as well. By iterating, we see We have recovered the same result derived in the main text.
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