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Closed-loop phase equilibria of a symmetrical associating mixture of square-well molecules
examined by Gibbs ensemble Monte Carlo simulation
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A closed loop of liquid-liquid immiscibility for a simple model binary symmetrical mixture of square-well
monomers with a single short-ranged interaction site has been recently observed using the Gibbs ensemble
Monte Carlo technique@L. A. Davies, G. Jackson, and L. F. Rull, Phys. Rev. Lett.82, 5285 ~1999!#. This
model system has unfavorable mean-field interactions between unlike components which leads to phase sepa-
ration at intermediate temperatures; the addition of a directional bonding site leads to association and miscibilty
of the system at low temperatures. In this work we present a detailed study of the effect of a variation in
pressure and of the strength of the bonding interaction on the phase equilibria of such a model system by Gibbs
ensemble simulation. The phase diagram is dominated by regions of liquid-liquid immiscibility which are
bounded at high temperatures by an upper critical solution temperature and by a lower critical solution
temperature~LCST! for specific values of the pressure and association strength. This closed-loop region is seen
to increase in size as the pressure of the system is increased. For weak bonding interaction strengths the system
does not possess a LCST and is seen to exhibit regions of two-phase vapor-liquid coexistence which are
separated from the region of liquid-liquid immiscibility by a three-phase line. The phase equilibria of the same
model system is also determined using the statistical associating fluid theory as adapted for potentials of
variable range; the theory provides a good description of the closed-loop immiscibility and other features of the
phase diagram.

PACS number~s!: 64.60.2i, 61.20.Qg, 05.20.Jj
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I. INTRODUCTION

The existence of closed-loop regions of liquid-liquid im
miscibility in the phase diagrams of aqueous fluid mixtu
such as aliphatic and aromatic alcohols@1#, amines@2#, and
nonionic surfactants@3# can be readily understood in term
of the nature of the intermolecular interactions. The asso
tion of unlike species via directional interactions such as
drogen bonds leads to the low-temperature miscibility of
system. These bonds break as the temperature of the sy
increases resulting in phase separation above the lower
cal solution temperature~LCST! due to the residual wea
unlike interactions. The increase in the kinetic energy, a
hence the entropy of the molecules at higher temperat
ensures that the system is miscible above the upper cri
solution temperature~UCST!. A detailed description of this
type of reentrant phase behavior is given in Ref.@4#.

Early theoretical studies of this particular phenomenon
fluid phase equilibria used lattice models with orientationa
dependent intermolecular interactions~see Ref.@5# for a re-
view!. Such approaches are based on the assumption t
lattice gives an adequate description of the structure o
liquid, which is a significant oversimplification. A descrip
tion of closed-loop immiscibility obtained with continuum
fluid theories is more realistic, since features such as pres
and density can be directly related to those of a real flu
PRE 611063-651X/2000/61~3!/2245~12!/$15.00
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The first continuum study of a system with a well-defin
directional intermolecular potential which exhibits close
loop immiscibility @5# used the Wertheim approach@6–9# to
describe the association interactions within the framework
the statistical associating fluid theory~SAFT! @10–13#. More
recently, the link between the existence of the LCST a
short-ranged, directional association interactions has bee
tablished for a continuum model using computer simulat
@14#. Here, we illustrate how continuum fluid theories, mo
specifically the statistical associating fluid theory as adap
to potentials of variable range~SAFT-VR! @15,16#, can be
used to give complementary results in a study of the effec
pressure and association interaction strength on the p
diagram of a simple model system which exhibits reentr
miscibility.

It is well known that continuum fluid theories such a
SAFT can be applied to obtain an accurate prediction of
phase behavior of real systems, providing suitable mod
are used. The seminal study of Scott and van Konynenb
@17,18# used the van der Waals equation of state to descr
and hence classify, the types of phase behavior exhibited
binary fluid mixtures. Type VI behavior, which incorporate
regions of closed-loop immiscibility, is the only type whic
cannot be predicted theoretically with the van der Wa
equation of state. The SAFT methodology consists of a p
turbation theory about a hard-sphere reference system, w
2245 ©2000 The American Physical Society
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the dispersive interactions are given by a simple hi
temperature expansion, and a term is included to accoun
the association of species. The extent of the closed-loop
gion in the model system studied in Ref.@5# with a simplified
~mean-field! SAFT equation of state depends on both t
pressure of the system and the strength of the short-ran
interaction between species in the mixture. A global study
the phase behavior of aqueous mixtures of alcohols using
SAFT approach predicts the existence of closed-loop reg
of immiscibility for model associating systems of intermed
ate chain lengths with specific values of the site-site inter
tion energy@19#. Similar models were used to give an acc
rate prediction of the phase equilibria of aqueous system
2-butanol, butoxyethanol and long-chain nonionic alk
polyoxyethylene surfactant molecules (CiEj ) with the SAFT
approach@20,21#. This simple approach is shown to give a
adequate description of the phase behavior of systems w
association is the dominant contribution to the Helmho
free energy.

A recent extension of the SAFT methodology employs
Barker and Henderson high-temperature perturbation the
@22–24# to give a more accurate description of the dispers
interactions, and can also be used to predict the phase be
ior of systems which interact via potentials of variable ran
This so-called SAFT-VR approach@15,16# is described in
more detail in Sec. III. A major advantage of the SAFT a
proach is that only the monomer Helmholtz free energy a
the contact value of the monomer cavity function are
quired to describe the equation of state of chain molecu
The success of this approach lies in its ability to provide
accurate prediction of the thermodynamics and hence
phase behavior of systems where molecular shape and
ciating phenomena are dominant features. Additionally,
SAFT approach is very versatile; it can be used to desc
the phase behavior of a number of different systems~see Ref.
@15# for a brief review!. The molecular based nature of th
SAFT-VR equation allows the results to be compared w
computer simulation.

Here we obtain the phase behavior of a symmetr
model mixture using both the Gibbs ensemble Monte Ca
simulation method and the SAFT-VR equation of state. T
system consists of a binary mixture of equal sized sphe
with unfavorable mean-field interactions~which lead to
liquid-liquid phase separation at intermediate temperatu!
and a single association site which provides the directio
interactions between unlike species~which leads to miscibil-
ity at low temperatures!. The particles interact with a square
well potential:

ui j ~r i j !5H 1` if r i j ,s i j ,

2« i j if s i j <r i j ,l i j s i j ,

0 if r i j >l i j s i j ,

~1!

wherer i j is the distance between two particles. The cont
distance iss i j and the parametersl i j and« i j are the range
and depth of the potential well for thei -j interaction, respec-
tively. For our particular systems5s115s125s22, «
5«115«22, and «1250, with l5l115l125l2251.5. A
single square-well association site of fixed depth«a,b and
width la,b50.55 is placed at a distancer d50.25s from the
-
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center of each sphere. Bonding is only permitted betw
unlike species, i.e., between sitea on component 1 and siteb
on component 2. This particular model system is kno
from previous studies to to exhibit regions of closed-lo
immiscibility @5,14#. A series of simulations are performe
for different values of the pressure and site-site interact
energies in order to illustrate their effect on the phase d
gram. The results obtained are compared with those obta
using the SAFT-VR approach for corresponding conditio

II. GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

The Gibbs ensemble Monte Carlo~GEMC! method
@25,26# is the most common direct simulation technique us
for the determination of phase equilibria in fluid system
particularly in mixtures @27,28#. The isothermal-isobaric
(NPT) version of the technique consists of a separate sim
lation in two regionsa and b which are in thermodynamic
equilibrium but not in physical contact. These regions ha
volumesVa and Vb and containNa and Nb particles, such
that V5Va1Vb and N5Na1Nb. The two regions are in
thermodynamic equilibrium but not in physical contac
Three different Monte Carlo moves are performed in orde
satisfy the conditions of thermodynamic equilibrium: partic
displacements and reorientations within either subsystem
maintain equality of temperature; volume changes of eit
subsystem, to maintain equality of pressure; and particle
terchanges between the two subsystems, to maintain equ
of chemical potential. The energyEj , volumeVj , and com-
positionxi

j5Ni
j /Nj of particles of typei in subsystemj thus

vary during the course of the simulation. The accepta
criterion for each of these moves in theNPT version of the
Gibbs ensemble is governed by the pseudo-Boltzmann p
ability distribution, see Refs.@26,29# for details:

P Gibbs5expF lnS N1!

N1
a!N1

b! D 1 lnS N2!

N2
a!N2

b! D 1Na ln Va

1Nb ln Vb2
PVa

kT
2

PVb

kT
2

Ea~Na!

kT
2

Eb~Nb!

kT G .
~2!

We examine a symmetrical binary mixture ofN5N11N2
particles at a constant temperatureT and a constant pressur
P.

Simulations are performed in cubic boxes with the p
ticles initially arranged on a face-centered-cubic~fcc! lattice.
The usual periodic boundary conditions and minimum ima
convention are used@30#. Initial guesses for the coexistin
densities and compositions at each pressure and temper
are made by using the corresponding SAFT-VR solutio
~see following section!; it is important to ensure that th
overall composition of the system lies somewhere betw
the compositions of the two coexisting phases. The chem
potential is determined with the Widom test particle tec
nique @31# as adapted to the GEMC approach@32#, in order
to ensure that phase equilibria is achieved. One simula
cycle consists ofN displacements and reorientations in ea
box, one volume change for either box, and a specific nu
ber of particle interchanges. The maximum displacement
volume change are adjusted to give an acceptance rati
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between 30 and 40 %, and the number of insertions is c
trolled so that between 1 and 3 % of particles are int
changed each cycle. Simulations are performed with syst
of N5512, N51000, andN51728 particles at a series o
coexistence pressures for different values of the site-site
teraction energy. An initial simulation of 50 000 cycles
performed to equilibrate the subsystems, before avera
for between 100 000 and 250 000 cycles.

III. SAFT-VR EQUATION OF STATE FOR SQUARE-
WELL MIXTURES

The SAFT-VR equation of state for a mixture of asso
ating chain molecules is written in terms of four separ
contributions to the Helmholtz free energy@15,16#

A

NkT
5

AIDEAL

NkT
1

AMONO

NkT
1

ACHAIN

NkT
1

AASSOC

NkT
, ~3!

whereN is the number of chain molecules in the mixture,k is
Boltzmann’s constant, andT is the temperature. In this equa
tion AIDEAL is the ideal free energy,AMONO is the residual
free energy due to the monomer segments,ACHAIN is the
residual contribution due to the formation of chains of mon
mers, andAASSOC is the residual contribution to the free e
ergy due to intermolecular association via sites placed on
monomer segments. We present the general expression
each contribution to the Helmholtz free energy in the abo
equation together with those which are specific for the as
ciating system examined in this work.

The free energy of an idealn-component mixture is given
by @33#

AIDEAL

NkT
5(

i 51

n

xi ln r iL i215x1 ln r1L1
31x2 ln r2L2

321,

~4!

wherexi5Ni /N is the mole fraction,r i5Ni /V is the num-
ber density, andL i is the thermal de Broglie wavelength o
speciesi.

The monomer free energy is

AMONO

NkT
5S (

i 51

n

ximi D AM

NskT
5S (

i 51

n

ximi D aM5aM, ~5!

wheremi is the number of spherical segments in each ch
i, so thatm51 for monomers, andNs is the total number of
segments. The monomer free energy per segment of the
tureaM5AM/(NskT) is obtained from the Barker and Hend
erson high-temperature expansion@22–24#:

aM5aHS1ba11b2a2 , ~6!

whereaHS is the free energy for a mixture of hard sphere
b51/kT, a1 anda2 are the first two perturbation terms a
sociated with the attractive energy.

The free energy of the reference hard-sphere mixtur
obtained from the expression of Boublı´k @34# and Mansoori
et al. @35#:
n-
-
s

n-

ng

-
e

-

e
for
e
o-

in

ix-

,

is

aHS5
6

prs
F S z2

3

z3
2

2z0D ln~12z3!1
3z1z2

12z3
1

z2
3

z3~12z3!2G .

~7!

In this expressionrs5Ns /V is the number density of the
mixture in terms of the number of spherical segments. N
that in generalrs5r(( iximi), wherer is the total number
density of the mixture. In this case, since we consider o
monatomic speciesrs5r. The reduced densitiesz l are de-
fined as

z l5
p

6
rsF(

i 51

n

xs,i~s i !
l G , ~8!

wheres i is the diameter of spherical segments of chaini,
and xs,i is the mole fraction of segments of typei in the
mixture, which is given by

xs,i5
mixi

(
k51

n

mkxk

. ~9!

Sincexs,i5xi ands5s15s2 in the system studied here, th
free energy of the reference hard-sphere mixture reduce
the Carnahan and Starling expression@36,33#

aHS5
4h23h2

~12h!2
, ~10!

whereh5prs3/6 is the packing fraction of the pure com
ponent, which is equivalent toz3 in Eq. ~8!.

The mean-attractive energya1 in the perturbation expan
sion is given by

a15(
i 51

n

(
j 51

n

xs,ixs, ja1
i j , ~11!

where

a1
i j 522prs« i j E

s i j

`

r i j
2 gi j

HS~r i j ;z3!dri j , ~12!

and gi j
HS is the radial distribution function for a mixture o

hard spheres. The integral is transformed by applying
mean-value theorem@15# giving an expression fora1 in
terms of the contact value ofgi j

HS:

a152rs(
i 51

n

(
j 51

n

xs,ixs, ja i j
VDWgi j

HS@s i j ;z3
eff#, ~13!

where

a i j
VDW52p« i j s i j

3 ~l i j
3 21!/3 ~14!

is the van der Waals attractive constant for the square-w
interaction i -j . The contact value of the radial distributio
function for the hard-sphere reference system,gi j

HS@s i j ;z3
eff#

is evaluated at an effective packing fractionzeff, using the
expression of Boublı´k @34#
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gi j
HS@s i j ;z3

eff#5
1

12z3
eff

13
s i i s j j

s i i 1s j j

z2
eff

~12z3
eff!2

12S s i i s j j

s i i 1s j j
D 2 z2

eff2

~12z3
eff!3

. ~15!

For the binary mixture studied heres5s115s22, «5«11
5«22, l5l115l125l22, and «1250, so that the mean
attractive energy of Eq.~11! reduces to

a15x1
2a1

111x2
2a1

225~x1
21x2

2!a1
SW, ~16!

where

a1
SW52rsa

VDWgHS@s;heff#, ~17!

with

aVDW52p«s3~l321!/3. ~18!

The Carnahan and Starling equation for the contact valu
the pair correlation function is used@36,33#,

gHS@s;heff#5
12heff/2

~12heff!3
, ~19!

with heff5z3
eff . The parameterization forheff obtained for

the pure square-well fluid@15# is used, where

heff~h,l!5c1~l!h1c2~l!h21c3~l!h3, ~20!

and the coefficientsc1 , c2, andc3 are given by

S c1

c2

c3
D 5S 2.258 55 21.503 49 0.249 434

20.669 270 1.400 49 20.827 739

10.1576 215.0427 5.308 27
D

3S 1

l

l2D . ~21!

This corresponds to the MX1 or MX3 mixing rules of Re
@16#.

The fluctuation term of the free energy is given by

a25(
i 51

n

(
j 51

n

xs,ixs, ja2
i j , ~22!

and each of the termsa2
i j are obtained with the local com

pressibility approximation~LCA! @22,23#,

a2
i j 5

1

2
KHS« i j rs

]a1
i j

]rs
, ~23!

whereKHS is the isothermal compressibility for a mixture o
hard spheres which is given by the Percus-Yevick expres
@37#
of

n

KHS5
z0~12z3!4

z0~12z3!216z1z2~12z3!19z2
3

. ~24!

For our particular system

a25x1
2a2

111x2
2a2

225~x1
21x2

2!a2
SW, ~25!

with

a2
SW5

1

2
KHS«rs

]a1
SW

]rs
, ~26!

whereKHS is now the pure component expression

KHS5
~12h!4

~12h!216h~12h!19h2
. ~27!

Since the system examined here consists only of monato
species the contribution to the free energy in Eq.~3! due to
chain formation is zero (ACHAIN50).

Within the framework of the theory of Wertheim the co
tribution to the free energy in the SAFT-VR equation of sta
due to the association mediated bysi sites on molecules o
speciesi is described by@11#

AASSOC

NkT
5(

i 51

n

xiF (
a51

si S ln Xa,i2
Xa,i

2 D1
si

2 G . ~28!

The first sum is over the number of speciesi in the mixture
and the second sum is over all sitesa on a molecule of type
i. The fractions of molecules of speciesi not bonded at a
particular sitea, Xa,i , is given by solution of the simulta
neous equations:

Xa,i5
1

11(
j 51

n

(
b51

sj

rxjXb, jDa,b,i , j

, ~29!

where

Da,b,i , j5Ka,b,i , j f a,b,i , jgi j
SW~s i j ! ~30!

is specific for eacha-b site-site interaction, and incorporate
the volume available for bondingKa,b,i , j , and the strength of
the association via the Mayer functionf a,b,i , j5exp(«ab/kT)
21 of the square-well potential. The contact value of t
radial distribution function for the square-well interactio
gi j

SW(s i j ) is evaluated within the SAFT-VR approach fo
mixtures@15,16# using a first order perturbation expansion

gi j
SW~s i j !5gi j

HS~s i j !1be i j g1~s i j !. ~31!

The contact value of the radial distribution function for th
hard-sphere reference systemgi j

HS@s i j ;z3# is evaluated with
the actual packing fractionz3, using the expression of Eq
~15!. The first order perturbation termg1(s i j ) is obtained
from a self-consistent calculation of the pressure using
Clausius virial theorem@15#:
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gi j
SW@s i j ;z3#5gi j

HS@s i j ;z3#1b« i j Fgi j
HS@s i j ;z3

eff#1~l i j
3 21!

3S l i j

3

]gi j
HS@s i j ;z3

eff#

]l i j
2rs

]gi j
HS@s i j ;z3

eff#

]rs
D G .

~32!

For our system, the contact value of the square-well dis
bution function of Eq.~32! simplifies to

gSW@s;h#5gHS@s;h#1b«FgHS@s;heff#1~l321!

3
]gHS@s;heff#

]heff S l

3

]heff

]l
2h

]heff

]h D G , ~33!

where the Carnahan and Starling expressions@36,33# for
gHS@s;h# andgHS@s;heff# are used with the total and effec
tive packing fractions, respectively. The parametrization
heff for the pure square-well fluid is given in Eqs.~20! and
~21!.

The components in the mixture examined here have o
have one interaction site per sphere and bonding is only
mitted between unlike components in the mixture, i.e.,
tween sitea on component 1 and siteb on component 2
when the two sites are within a distancer c . The expression
for the contribution to the Helmholtz free energy due to
sociation, Eq.~28!, thus simplifies to

AASSOC

NkT
5x1S ln Xa2

Xa

2
1

1

2D1x2S ln Xb2
Xb

2
1

1

2D .

~34!

The fractionsXa andXb of molecules of species 1 and 2 n
bonded at sitesa andb, respectively, are given by

Xa5
1

11rx2XbDa,b
~35!

and

Xb5
1

11rx1XaDa,b
, ~36!

where

Da,b5Ka,bf a,bgSW~s!. ~37!

The volume available for bonding between two sitesa andb
which are positioned at a distancer d from the center of
spheres with diameters and have an interaction ranger c is
given by @10#

Ka,b54p2s$ ln@~r c12r d!/s#~6r c
3118r c

2r d224r d
3!

1~r c12r d2s!~22r d
225r cr d27r ds28r c

21r cs

1s2!%/~72r d
2!. ~38!

In order to determine the conditions of phase equilib
for the model system, the pressure and chemical pote
i-

r

ly
r-
-

-

ial

must be obtained from the expression for the Helmholtz f
energy. The chemical potentialm i of speciesi is given by

m i

kT
5S ]A/kT

]Ni
D

T,V,Nj Þ i

, ~39!

whereNi is the number of molecules of speciesi. The pres-
sureP may be calculated through the compressibility fac
Z as

Z5
PV

NkT
5(

i 51

n

xi

m i

kT
1

A

NkT
. ~40!

These functions are used in the numerical determination
the phase behavior of the mixture, using a simplex meth
@38#.

IV. CRITICAL BEHAVIOR

Generally, finite size effects in the Gibbs ensemble
considered to be small for regions away from the critic
point @39#, so that simulation data from these regions can
used as experimental data to estimate the critical tempera
Tc(N) via extrapolation of a Wegner expansion@40# which
includes scaling corrections@41#. This method has been use
successfully to predict the critical parameters of the p
Lennard-Jones fluid@42#, the pure square-well fluid@43#, and
selected square-well mixtures@44#. Before such a fitting pro-
cedure can be performed it is necessary to identify the u
versality class@45# of the phase transitions occurring at th
UCST and the LCST for the symmetrical associating m
ture. As the critical point between two phasesa and b is
approached the critical exponentb is defined in terms of the
critical temperature of the finite system as@46#

Dx~N!5uxa2xbu5B0~N!U12
T

Tc~N!
Ub

, ~41!

whereB0(N) is the leading amplitude term. We assume th
the phase transitions of the binary mixture at the LCST a
the UCST both belong to the Ising universality class, so t
the critical exponent has the universal value ofb50.325.
The coexistence curve thus has a cubic form in the crit
region. Providing that the correlation lengthza remains less
than the linear box lengthL, the value ofb50.325 can be
assumed to be valid for the duration of the simulations.
change in the value of the critical exponent fromb50.325
~universal! to b50.5 ~mean-field! only occurs when the cor
relation length becomes greater thanL @47#. A value of b
50.5 results in a quadratic coexistence curve close to
critical temperature. This ‘‘crossover’’ of critical exponen
has only been observed in Gibbs ensemble simulation stu
of a two-dimensional lattice gas@47# and in a two dimen-
sional square-well mixture@48#. Simulation studies of the
square-well fluid in three dimensions@48,44,49#, show no
sign of this crossover behavior. This is in agreement with
opinion that this type of crossover cannot be observed
three dimensional systems using regular simulation te
niques@50#.

Away from the critical region the power law of Eq.~41!
fails to accurately describe the shape of the coexiste
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curve. Corrections to the renormaliZation-group~RG!-based
scaling laws must be included in order to obtain more ac
rate results@41#. Such corrections can be written as an e
pansion int512T/Tc(N), in a so-called Wegner@40# ex-
pansion

uxa2xbu5B0utub1B1utub1D11B2utub12D11•••, ~42!

whereD150.5 is a RG gap exponent, and theBi terms are
the correction amplitudes. This expansion leads an estim
of the critical temperature while assuming a universal va
for the critical exponent. A similar expansion can be writt
for the diameter of the coexistence curve@41#

~xa1xb!

2
5xc1C1utuc1C2utu1C3utuc1D11•••, ~43!

where xc is the critical composition, theCi terms are the
coefficients of the expansion, andc is an exponent which
characterizes the anomaly in the diameter of the curve. Th
two expansions can be combined to give one expression
the coexisting compositions

x65xc1C1utuc1C2utu1C3utuc1D11•••

6
1

2
~B0utub1B1utub1D11B2utub12D11••• !, ~44!

wherex2 and x1 represent the smaller and larger coexi
ence compositions, respectively. Similar expressions can
written in terms of the coexistence densities.

It is important to note that the Wegner extended scaling
the GEMC simulation data for simple model systems such
the square-well fluid provides estimates for the critical p
rameters with an equivalent accuracy to the more thoro
analysis of the critical region obtained by using finite-s
scaling approaches~see Refs.@44,48,51#!, despite being sig-
nificantly less computationally demanding.

For the associating square-well mixture studied here
expression can be simplified due to the symmetry of
system. The critical composition is known,xc50.5, and the
Ci coefficients can be disregarded, since the diameter is s
metrical aboutxc50.5. Additionally, inclusion of only the
first correction to scaling termB1 is known to give an ad-
equate description of the liquid-liquid coexistence reg
@44#. The expression for the compositions of the coexist
phases becomes

x65
1

2
6

1

2
~B0utub1B1utub1D1!. ~45!

Assuming values ofb50.325 andD150.5 the above equa
tion can be fitted to the simulation data using a stand
least-squares procedure@38# to give estimates of the critica
temperature. For coexistence curves which possess bot
upper and a lower critical solution temperature it is possi
to use two such power laws, one to estimate the UCST,
one to estimate the LCST. These two expressions can
combined to give a complete description of the closed-lo
coexistence curve. A hyperbolic tangent
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tanh~y!5
exp~y!2exp~2y!

exp~y!1exp~2y!
~46!

is used as a switching function between the expansion for
UCST and that for the LCST. Hence, the expansion fitted
data in the region of the UCST is used above a certain t
peratureTswitch, and the expansion fitted to data in the regi
of the LCST is used at temperatures below this point. T
compositions of the coexisting liquid phases in the clos
loop region are obtained as

x6
loop5F~T!x6

UCST1„12F~T!…x6
LCST, ~47!

whereF(T) is given by

F~T!5
1

2
1

1

2
tanh~y!, ~48!

with

y5
T2Tswitch

2lswitch
. ~49!

The parameterlswitch controls the steepness of the switchin
function.

V. RESULTS

The reduced thermodynamic variables, temperat
T* 5kT/«, pressureP* 5Ps3/«, and site-site interaction
energy«a,b* 5«a,b /« are used in the following discussion.
is also convenient to reduce the pressure and tempera
with respect to the critical point of one of the componen

FIG. 1. Temperature-composition slice of the coexistence reg
for the symmetrical square-well mixture at a reduced pressure
P* 5Ps3/«50.756 with a bonding interaction of«a,b* 5«a,b /«
513. The reduced temperature is defined asT* 5kT/«. The tri-
angles correspond to the GEMC data for a system ofN5512 par-
ticles, the squares to a system ofN51000 particles, and the circle
to a system ofN51728 particles. The error bars correspond to o
standard deviation. The dashed, continuous, and dotted curves
respond to the SAFT-VR prediction for the same model with bo
ing strengths of«a,b* 512, 13, and 14, respectively. The predicte
three-phase line is represented by the horizontal line.
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FIG. 2. Temperature-composition slice of the coexistence reg
for the symmetrical square-well mixture at a reduced pressur
P* 5Ps3/«51.08 with a bonding interaction of«a,b* 5«a,b /«
513. The reduced temperature is defined asT* 5kT/«. The tri-
angles correspond to the GEMC data for a system ofN5512 par-
ticles, the squares to a system ofN51000 particles, and the circle
to a system ofN51728 particles. The error bars correspond to o
standard deviation. The continuous, dotted, and dashed curves
respond to the SAFT-VR prediction for the same model with bo
ing strengths of«a,b* 513, 14, and 15, respectively. The predict
three-phase lines are represented by the horizontal lines.

FIG. 3. Temperature-composition slice of the coexistence reg
for the symmetrical square-well mixture at a reduced pressur
P* 5Ps3/«51.28 with a bonding interaction of«a,b* 5«a,b /«
514.5. The reduced temperature is defined asT* 5kT/«. The
squares correspond to the GEMC data for a system ofN51000
particles, and the circles to a system ofN51728 particles. The erro
bars correspond to one standard deviation. The continuous
dashed curves correspond to the SAFT-VR prediction for the s
model with bonding strengths of«a,b* 514.5 and 15, respectively
The dotted curve corresponds to the fit of the GEMC simulat
results obtained using the Wegner expansion of Eq.~47!, which
includes a first correction to scaling. The predicted three-phase
is represented by the horizontal line.
such thatTr5T* /Tc* andPr5P* /Pc* , where the subscriptc
denotes the critical value of a variable. We use the criti
values ofTc* 51.21960.008 andPc* 50.10860.016 for the
pure-component square-well system with rangel51.5 ob-
tained from GEMC simulation results@43#.

Constant-pressure temperature-compositionTx slices of
the coexistence regions are shown in Figs. 1–4. The sym
try of the phase diagrams aboutx250.5 is a result of the
symmetry of the model system. The distinction between
and liquid fluid phases is arbitrary at high pressures and t
peratures; here we use the term ‘‘gas’’ to describe a ph
which has its origins in the vapor phase of the pure com
nent and which thus has the lower density.

The pressure ofP* 50.756 of Fig. 1 is approximately
seven times the critical pressure of the pure square-well
tem with l51.5. The Gibbs ensemble simulation data w
«a,b* 513 for three system sizes are shown; there is a ne
gible system size effect. The region of liquid-liquid immi
cibility bounded by an UCST at high temperatures is clea
shown, together with low temperature regions of gas-liq
immiscibility below a three-phase line. The curves repres
the SAFT-VR prediction for the equivalent model, with thre
different strengths of the site-site interaction energy. Fo
value of «a,b* 512 the theory predicts immiscibility of the
system at all temperatures below an USCT. As the site-
interaction is increased to«a,b* 513 the prediction includes
regions of gas-liquid immiscibility at lower temperature
and the three-phase line can be observed at a temper
close to the critical temperature of the pure component.
creasing the strength of the bonding interaction further
«a,b* 514, leads to a complete change in the nature of theTx
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FIG. 4. Temperature-composition slice of the coexistence reg
for the symmetrical square-well mixture at a reduced pressure
P* 5Ps3/«51.48 with a bonding interaction of«a,b* 5«a,b /«
514.5. The reduced temperature is defined asT* 5kT/«. The
circles correspond to the GEMC data for a system ofN51728
particles. The error bars correspond to one standard deviation.
continuous and dashed curves correspond to the SAFT-VR pre
tion for the same model with bonding strengths of«a,b* 514.5 and
15, respectively. The dotted curve corresponds to the fit of
GEMC simulation results obtained using the Wegner expansio
Eq. ~47!, which includes a first correction to scaling. The predict
three-phase lines are represented by the horizontal lines.
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TABLE I. Liquid-liquid coexistence data obtained fromNPT Gibbs-ensemble Monte Carlo simulation
for the symmetrical mixture of square wells with a rangel51.5, and a single interaction site of reduce
depth «a,b* 5«a,b /«514.5. The fixed variables during the simulation are the number of particlesN, the
reduced pressureP* 5Ps3/«51.28 and the reduced temperatureT* 5kT/«. The packing fractionsh and
mole fractionsx2 in the coexisting liquid phases are labeledl 1 and l 2, respectively; the uncertainties corre
spond to one standard deviation.

N T* h l 1
h l 2

x2,l 1
x2,l 2

1728 1.58 0.28960.004 0.28960.004 0.81060.021 0.19560.020
1728 1.59 0.28960.004 0.29060.003 0.81460.033 0.18560.035
1728 1.60 0.29160.003 0.29260.004 0.83560.026 0.15960.028
1728 1.61 0.29260.003 0.29260.003 0.86060.017 0.13660.017
1728 1.62 0.28960.004 0.29060.004 0.86260.020 0.14060.023
1728 1.63 0.29060.005 0.29060.005 0.86460.022 0.13560.027
1000 1.64 0.28460.006 0.27960.006 0.86060.032 0.17760.031
1000 1.65 0.29260.007 0.28560.007 0.88660.026 0.17660.036
1000 1.68 0.28260.007 0.27760.006 0.86460.027 0.16660.025
1000 1.70 0.27560.007 0.27360.007 0.85960.032 0.15260.031
1000 1.72 0.27260.007 0.27460.010 0.85260.032 0.13160.041
1000 1.74 0.27160.005 0.26760.005 0.87860.024 0.15060.024
1000 1.75 0.26660.004 0.26660.004 0.84960.027 0.15460.027
1000 1.76 0.26460.006 0.26160.005 0.85060.033 0.17060.029
1000 1.78 0.26260.007 0.25760.006 0.85460.032 0.19360.030
1000 1.80 0.26260.005 0.26060.004 0.86060.028 0.15460.029
1728 1.81 0.25460.004 0.25460.004 0.82760.029 0.17760.029
1728 1.82 0.25660.003 0.25560.003 0.83360.028 0.17860.030
1728 1.83 0.25460.003 0.25560.003 0.81660.021 0.16860.021
1728 1.84 0.25460.003 0.25460.003 0.82460.020 0.16960.021
1728 1.85 0.25160.004 0.24960.004 0.81360.029 0.20260.028
1728 1.86 0.24760.005 0.24760.005 0.79660.038 0.21460.037
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slice, with miscibility above the two low-temperature regio
of gas-liquid coexistence. Thus the SAFT-VR equation p
dicts that an increase in the site-site interaction energy f
«a,b* 513 to «a,b* 514 is sufficient to bring about the disap
pearance of the liquid-liquid immiscibility at this pressur
The low-temperature regions of gas-liquid immiscibility o
tained from simulation appear at slightly higher temperatu
than those predicted by the SAFT-VR equation of state
«a,b* 513.

The equivalent temperature compositionTx slice for a
higher pressure ofP* 51.08 ~approximately ten times the
critical pressure of the pure component! is shown in Fig. 2.
The simulation results again present a region of liquid-liq
immiscibility bounded at high temperatures by an UCS
and low-temperature regions of gas-liquid immiscibility b
low the three-phase line. The region of liquid-liquid immi
cibility is seen to be larger than in the lower pressure cas
Fig. 1, but a closed-loop of immiscibility is still not observe
for «a,b* 513. For this value of the site-site interaction ener
the SAFT-VR equation of state predicts a region of liqu
liquid immiscibility bounded by an UCST and small regio
of low temperature gas-liquid coexistence below the th
phase line. For a site-site interaction energy of«a,b* 514, the
low temperature gas-liquid regions predicted by the the
are larger than in the«a,b* 513 case; the onset of a close
loop region can be observed. Upon increasing the associa
energy to«a,b* 515 the SAFT-VR equation of state predic
the existence of a small closed-loop of immiscibili
-
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bounded at high temperatures by an UCST atT* 51.98 and
at low temperatures by a LCST atT* 51.84, together with
low-temperature regions of gas-liquid coexistence.

At this stage we can conclude that increasing the pres
from P* 50.756 toP* 51.08 for a system with an interac
tion energy of«a,b* 513 does not bring about a sufficien
change in the phase diagram of the system for a closed-
of immiscibility to be observed by GEMC simulation. A
increase in the strength of the bonding interaction, toget
with a slight increase in pressure is required in order to
serve a closed-loop of immiscibility@14#.

The temperature-composition slice for a pressure
P* 51.28 is shown in Fig. 3. Here, Gibbs ensemble simu
tions are performed for a mixture with a site-site interacti
energy of«a,b* 514.5; the data is reported in Tables I and
The region of closed-loop immiscibility can be clearly o
served, bounded by both an UCST and a LCST. No lo
temperature regions of gas-liquid coexistence were isola
for this system. The SAFT-VR predictions at a pressure
P* 51.28 with site-site interactions of«a,b* 514.5 and«a,b*
515 are also shown. For«a,b* 514.5 the theory predicts a
region of liquid-liquid immiscibility bounded by an UCST
and regions of low-temperature gas-liquid coexistence
temperatures below the three-phase line. Increasing
strength of the site-site interaction to«a,b* 515 leads to the
prediction of closed-loop immiscibility, with upper an
lower boundaries which are similar to those obtained us
Gibbs ensemble simulation. It is encouraging to observe
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existence of a closed-loop of immiscibility for this syste
with a single association site, both by GEMC simulation a
with the SAFT-VR equation of state. The use of the Weg
expansion of Eq.~47! which includes a first correction to
scaling, withlswitch50.1 andTswitch* 51.63, to fit the simula-
tion data, is seen to give an excellent description of the sh
of the closed loop. The estimated values for the critical te
peratures, together with the values of the coefficientsB0 and
B1 obtained are given in Table III.

A temperature-composition slice obtained at a hig
pressure ofP* 51.48 by Gibbs ensemble simulation
shown in Fig. 4. As for the case of theP* 51.28 slice, the
strength of the site-site interaction is fixed at«a,b* 514.5, and
the simulation results indicate the presence of a region

TABLE II. Fraction of molecules bonded in each of the tw
phasesXa andXb obtained fromNPT Gibbs ensemble Monte Carl
simulations for the symmetrical mixture of square wells with
single interaction site of reduced depth«a,b* 514.5 at a reduced
pressure ofP* 51.28. See Table I for details.

N T* Xa Xb

1728 1.55 0.42360.030 0.41660.033
1728 1.56 0.29760.028 0.30560.031
1728 1.57 0.30860.030 0.32160.038
1728 1.58 0.24660.018 0.25760.027
1728 1.59 0.24260.026 0.23960.030
1728 1.60 0.22060.028 0.21460.031
1728 1.61 0.19360.020 0.18760.022
1728 1.62 0.18560.023 0.19060.027
1728 1.63 0.18160.025 0.18160.031
1000 1.64 0.18260.034 0.21560.029
1000 1.65 0.15760.031 0.21160.032
1000 1.68 0.17060.030 0.19460.027
1000 1.70 0.16460.032 0.17360.032
1000 1.72 0.16260.029 0.14760.036
1000 1.74 0.13460.026 0.15560.023
1000 1.75 0.15660.027 0.15960.025
1000 1.76 0.15060.030 0.16160.026
1000 1.78 0.14160.027 0.17060.024
1000 1.80 0.13060.025 0.13960.027
1728 1.81 0.14160.023 0.14660.022
1728 1.82 0.14060.023 0.14460.022
1728 1.83 0.14660.016 0.13660.015
1728 1.84 0.13760.017 0.13460.017
1728 1.85 0.14060.019 0.14360.017
1728 1.86 0.14060.021 0.14760.018

TABLE III. Estimated critical constants for the symmetric
square-well mixture with a single bonding site of reduced ene
«a,b* 514.5 at a reduced pressure ofP* 51.28. The ‘‘error’’ denotes
the maximum possible error which is estimated from the combi
errors in the compositions obtained from the simulation data.

UCST LCST

Tc* (N) 1.91560.689 1.55760.009
B0 2.3261.85 3.0060.21
B1 22.6163.20 24.9460.54
d
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closed-loop immiscibility. No low-temperature immiscib
regions are found at this pressure using the GEMC meth
For this higher pressure the extent of the closed-loop reg
has increased from that of theP* 51.28 state, which is in
line with the theoretical prediction of the effect of pressu
on the closed loop~as described later!. The prediction of
phase behavior obtained with the SAFT-VR equation for t
different interaction energies of«a,b* 514.5 and«a,b* 515 is
also shown. In this case, the theoretical results do not in
cate the existence of a LCST for the system at these co
tions. The narrow ranges of pressure and interaction stre
which result in a region of closed-loop immiscibility is thu
illustrated: for a constant interaction strength of«a,b* 515 an
increase of pressure fromP* 51.28 ~Fig. 3! to P* 51.48
~Fig. 4! the theory predicts the loss of the LCST for th
system since the region of liquid-liquid immiscibility merge
with the low-temperature gas-liquid coexistence regions. T
fit of the simulation data obtained using the Wegner exp
sion of Eq. ~47! with lswitch50.1 andTswitch* 51.70 is also
shown in Fig. 4. As for the lower pressure case, this meth
accurately describes the form of coexistence curve. The
responding estimates of the critical temperatures and par
eters are given in Table IV.

In order to monitor the amount of association within t
system, we calculate the fraction of molecules bondedXj .
Bonding only occurs when two unlike species are such t
their off-center interaction sites overlap. The extent of as
ciation for the simulations performed atP* 51.28 andP*
51.48 are shown in Fig. 5. For temperatures close to
UCST approximately 10% of the molecules are bonded an
dramatic increase of association is observed as the LCS
approached. This indicates that the low-temperature mi
biltiy of the system below the LCST is directly related to th
association of unlike species.

The effect of varying the strength of the site-site intera
tion on the phase behavior of the model system as predi
by the SAFT-VR equation of state is shown in the PT p
jection of Fig. 6 ~also see Ref.@5#!. The vapor pressure
curves of the pure components lie on the same line due to
symmetry of the mixture. The dashed curve which origina
at the vapor-liquid critical point of the pure component a
moves to higher pressures and temperatures represent
gas-liquid critical line. For a site-site interaction energy
«AB* 515 this gas-liquid critical line goes through a minimu
in temperature close to the critical point of the pure comp
nent. The critical line then moves to higher pressures, rea
ing a maximum before ending at the three-phase line. T
continuous curve which originates at high pressures is
three-phase line for the mixture, along which two liqu

y

d

TABLE IV. Estimated critical constants for the symmetric
square-well mixture with a single bonding site of reduced ene
«a,b* 514.5 at a reduced pressure ofP* 51.48. See Table III for
details.

UCST LCST

Tc* (N) 2.06861.038 1.46660.239
B0 2.0162.27 2.0360.89
B1 21.4563.01 21.5161.12
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phases and one ‘‘gas’’ phase coexist. The dashed c
which extends to higher temperatures going through a m
mum in pressure is the liquid-liquid critical line. This lin
forms the boundary of the closed-loop region for this mixtu
for pressures between where it meets the three-phase line

FIG. 5. Fraction of the total number of molecules bonded
phasea, Xa , as a function of reduced temperatureT* 5kT/« for
the symmetrical square-well mixture at a reduced pressure ofP*
5Ps3/«51.28 andP* 5Ps3/«51.48, with a bonding interaction
of «a,b* 5«a,b /«514.5. The degree of association is shown for
single phase which, due to the symmetry of interactions, is the s
for both coexisting phases. The squares correspond to the GE
data for a system ofN51000 particles, and the circles to a syste
of N51728 particles. The error bars correspond to one stand
deviation.

FIG. 6. Pressure-temperature projection for the binary asso
ing square-well mixture with a range of bonding strengths of«a,b*
513, 14, and 15 obtained using the SAFT-VR equation of st
The reduced pressurePr5P* /Pc* and reduced temperatureTr

5T* /Tc* are used. The solid curve at low pressures and temp
tures corresponds to the vapor-liquid curve of the pure compon
while the solid curve at high pressures and temperatures co
sponds to the three-phase line of the mixture. The dashed cu
correspond to the critical lines, gas-liquid at low pressures and t
peratures, and liquid-liquid at high pressures and temperatures
curves are labeled with the corresponding value of the site-site
teraction energy.
ve
i-

nd

the minimum in the liquid-liquid critical line. In this region
the system is seen to possess two liquid-liquid critical poin
the LCST at lower temperatures and the UCST at hig
temperatures. Decreasing the association strength from«a,b*
515 to «a,b* 514 shrinks the minimum in the liquid-liquid
critical line, and hence the extent of closed-loop immiscib
ity exhibited by the system. A further decrease of the m
nitude of the interaction energy to«a,b* 513 leads to the dis-
appearance of the minimum in the liquid-liquid critical lin
the three-phase line meets the gas-liquid and the liquid-liq
critical lines before either go through a maximum~or mini-
mum! in pressure. In this case the system does not exh
closed-loop immiscibility. When the strength of the bondi
interaction is zero the only feature of the phase diagram
the region of liquid-liquid immiscibility below an UCST, a
illustrated with the simpler SAFT-HS approach@5# and
GEMC simulation @48,44#. Conversely, increasing th
strength of the site-site interaction beyond«a,b* 515, leads to
complete liquid-liquid miscibiliy, so that the system only e
hibits gas-liquid critical lines. Use of the SAFT-VR metho
ology to evaluate the mean-attractive energy and its der
tives ~as opposed to the SAFT-HS treatment of the attrac
interactions at the van der Waals level@5#! decreases the
effect of the reduced site-site interaction«a,b* , thus reducing
the extent of the closed-loop immiscibility which is observ
for specific values of the bonding energy.

The effect of a variation in pressure on the extent of
closed-loop region of the binary square-well mixture is illu
trated in Fig. 7 for a series of constant pressure slices o
system with«a,b* 515. For a reduced pressure ofPr56.8 the
system is seen to be miscible at all temperatures ab
Tr51.1, indicating that this pressure is well below the min
mum in pressure of the liquid-liquid critical line. The close
loop region appears when the pressure of the system is
creased toPr58.2, and a further increase in pressure
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FIG. 7. Temperature-composition slices of the coexistence
gion for the symmetrical square-well mixture with«a,b* 515 at a
series of reduced pressuresPr56.8, 8.2, 9.3, and 10.4 using th
SAFT-VR equation of state. The reduced pressurePr5P* /Pc* and
reduced temperatureTr5T* /Tc* are used. The curves are labele
with the corresponding value of the reduced pressure and the
zontal lines correspond to the three-phase lines.
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Pr59.3 gives rise to the the gas-liquid-liquid three-pha
line. At a higher pressure ofPr510.4 this gas-liquid region
merges with the low temperature gas-liquid region and
system only possesses a single critical point at these p
sures.

VI. CONCLUSIONS

The associating model system examined in this work
be considered as a prototype for a real fluid which exhib
the phenomenon of closed-loop immiscibility as a result
hydrogen bonding interactions. The simplistic nature of
model allows for a clear understanding of this type of ph
behavior. The phase behavior of the associating system
shown to contain regions of closed-loop liquid-liquid immi
cibility for specific values of the site-site interaction ener
both with GEMC simulations and the SAFT-VR equation
state. Association between the unlike species in the mix
results in the low-temperature miscibiliy of this model sy
tem. For weak interaction strengths no LCST exists. T
SAFT-VR approach predicts that the LCST and the UC
merge at a specific temperature and pressure upon incre
the strength of the bonding interaction; above this the sys
has no regions of liquid-liquid immiscibility.

Both the computer simulation and the SAFT-VR a
proach illustrate that the extent of reentrance in such a m
depends on the pressure and temperature of the system
also on the strength of the site-site interaction energy.
agreement between the two approaches indicates the va
of the use of the SAFT-VR equation of state in the predict
of the phase behavior of such associating systems.

Despite the direct correlation observed in this work b
tween the directional association of unlike components
the existence of low-temperature miscibility below a LCS
several studies have illustrated the existence of closed-
regions for systems such as Lennard-Jones molecules@52#
and attractive spheres@53# where the interactions are sphe
cally symmetrical. The approximate theories used in th
studies predict unrealistic LCSTs at very low temperatu
for densities which are characteristic of the solid phase.
though it is possible that isotropic interactions could give r
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to reentrance under such unphysical conditions, anisotro
interactions such as hydrogen bonding are the central fea
of systems which exhibit closed-loop behavior, a fact wh
is borne out by experiment. Canongia Lopes@54# has re-
cently found type VI phase behavior in mixtures of Lenna
Jones molecules with the GEMC technique, but in his c
the driving force for the reentrant liquid-liquid immiscibility
is a cross interaction diameter that is smaller than the ar
metic mean of the like diameters; there is thus an increas
translational entropy~better packing! when the system mixes
at lower temperatures. In this context it is also important
mention related simulation studies of closed-loop immis
bilty for lattice models with directional interactions in bot
bulk @55# and confined@56# systems; as for the analytica
studies with lattice models, closed-loop behavior is obser
for suitable choices of the intermolecular parameters. Re
trance can also be seen in charged-stabilized colloidal
pensions@57#, which again is not caused by hydrogen bon
ing or molecular association; the complex interplay betwe
Coulombic and entropic effects gives rise to the phase
havior. The relation between directional attractive intera
tions and closed-loop immiscibility of two fluid phases
clearly defined experimentally in hydrogen-bonded liqu
such as water and alcohol, and it is this feature of associa
fluids which we focus on in this work.

Reentrant phase behavior is of course not restricted
simple fluids. Reentrant liquid crystalline nematic phases
be seen as a consequence of the delicate temperature d
dence of hydrogen bonding~e.g., see Refs.@58#!. In fact
molecular association and dipole pairing is often used to
plain reentrant behavior@59#. Hydrogen bonding offers a
number of new possibilities to control the phase transitio
in liquid crystalline and polymeric systems.
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