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A closed loop of liquid-liquid immiscibility for a simple model binary symmetrical mixture of square-well
monomers with a single short-ranged interaction site has been recently observed using the Gibbs ensemble
Monte Carlo techniquéL. A. Davies, G. Jackson, and L. F. Rull, Phys. Rev. L8R, 5285(1999]. This
model system has unfavorable mean-field interactions between unlike components which leads to phase sepa-
ration at intermediate temperatures; the addition of a directional bonding site leads to association and miscibilty
of the system at low temperatures. In this work we present a detailed study of the effect of a variation in
pressure and of the strength of the bonding interaction on the phase equilibria of such a model system by Gibbs
ensemble simulation. The phase diagram is dominated by regions of liquid-liquid immiscibility which are
bounded at high temperatures by an upper critical solution temperature and by a lower critical solution
temperaturéLCST) for specific values of the pressure and association strength. This closed-loop region is seen
to increase in size as the pressure of the system is increased. For weak bonding interaction strengths the system
does not possess a LCST and is seen to exhibit regions of two-phase vapor-liquid coexistence which are
separated from the region of liquid-liquid immiscibility by a three-phase line. The phase equilibria of the same
model system is also determined using the statistical associating fluid theory as adapted for potentials of
variable range; the theory provides a good description of the closed-loop immiscibility and other features of the
phase diagram.

PACS numbes): 64.60—i, 61.20.Qg, 05.20.Jj

[. INTRODUCTION The first continuum study of a system with a well-defined
directional intermolecular potential which exhibits closed-
The existence of closed-loop regions of liquid-liquid im- loop immiscibility [5] used the Wertheim approa¢6—9] to
miscibility in the phase diagrams of aqueous fluid mixturesdescribe the association interactions within the framework of
such as aliphatic and aromatic alcohflg, amineg[2], and the statistical associating fluid theofSAFT) [10-13. More
nonionic surfactant§3] can be readily understood in terms recently, the link between the existence of the LCST and
of the nature of the intermolecular interactions. The associashort-ranged, directional association interactions has been es-
tion of unlike species via directional interactions such as hytablished for a continuum model using computer simulation
drogen bonds leads to the low-temperature miscibility of thg 14]. Here, we illustrate how continuum fluid theories, more
system. These bonds break as the temperature of the systepecifically the statistical associating fluid theory as adapted
increases resulting in phase separation above the lower critie potentials of variable rangeSAFT-VR) [15,16, can be
cal solution temperaturéLCST) due to the residual weak used to give complementary results in a study of the effect of
unlike interactions. The increase in the kinetic energy, angressure and association interaction strength on the phase
hence the entropy of the molecules at higher temperaturaiagram of a simple model system which exhibits reentrant
ensures that the system is miscible above the upper criticahiscibility.
solution temperatur@JCST). A detailed description of this It is well known that continuum fluid theories such as
type of reentrant phase behavior is given in Réf. SAFT can be applied to obtain an accurate prediction of the
Early theoretical studies of this particular phenomenon ophase behavior of real systems, providing suitable models
fluid phase equilibria used lattice models with orientationallyare used. The seminal study of Scott and van Konynenburg
dependent intermolecular interactiosee Ref[5] for a re- [17,18 used the van der Waals equation of state to describe,
view). Such approaches are based on the assumption thataad hence classify, the types of phase behavior exhibited by
lattice gives an adequate description of the structure of &inary fluid mixtures. Type VI behavior, which incorporates
liquid, which is a significant oversimplification. A descrip- regions of closed-loop immiscibility, is the only type which
tion of closed-loop immiscibility obtained with continuum cannot be predicted theoretically with the van der Waals
fluid theories is more realistic, since features such as pressueguation of state. The SAFT methodology consists of a per-
and density can be directly related to those of a real fluidturbation theory about a hard-sphere reference system, where
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the dispersive interactions are given by a simple high-center of each sphere. Bonding is only permitted between
temperature expansion, and a term is included to account famlike species, i.e., between sa®n component 1 and site
the association of species. The extent of the closed-loop re&en component 2. This particular model system is known
gion in the model system studied in RES] with a simplified  from previous studies to to exhibit regions of closed-loop
(mean-field SAFT equation of state depends on both theimmiscibility [5,14]. A series of simulations are performed
pressure of the system and the strength of the short-rangédr different values of the pressure and site-site interaction
interaction between species in the mixture. A global study ofnergies in order to illustrate their effect on the phase dia-
the phase behavior of aqueous mixtures of alcohols using thgram. The results obtained are compared with those obtained
SAFT approach predicts the existence of closed-loop regiongsing the SAFT-VR approach for corresponding conditions.
of immiscibility for model associating systems of intermedi-
ate chain lengths with specific values of the site-site interac- ||. GIBBS ENSEMBLE MONTE CARLO SIMULATIONS
tion energy[{19]. Similar models were used to give an accu-
rate prediction of the phase equilibria of aqueous systems of The Gibbs ensemble Monte Carl(GEMC) method
2-butanol, butoxyethanol and long-chain nonionic alkyl[25.26] is the most common direct simulation technique used
polyoxyethylene surfactant moleculeS;E;) with the SAFT for t_he dete(mmqtlon of phase equmprla in fdel systems,
approaclﬂ[zoyzzul This Simp|e approach is shown to give an partlcularly In mixtures [27,2% The isothermal-isobaric
adequate description of the phase behavior of systems whef& PT) version of the technique consists of a separate simu-
association is the dominant contribution to the Helmholtzlation in two regionsa and b which are in thermodynamic
free energy. equilibrium but not in physical contact. These regions have
A recent extension of the SAFT methodology employs thevolumesV? and V° and containN® and N particles, such
Barker and Henderson high-temperature perturbation theofpat V=V2+V® and N=N2+NP. The two regions are in
[22—24 to give a more accurate description of the dispersivehermodynamic equilibrium but not in physical contact.
interactions, and can also be used to predict the phase behalree different Monte Carlo moves are performed in order to
ior of systems which interact via potentials of variable range satisfy the conditions of thermodynamic equilibrium: particle
This so-called SAFT-VR approadi5,16) is described in displacements and reorientations within either subsystem, to
more detail in Sec. Ill. A major advantage of the SAFT ap-maintain equality of temperature; volume changes of either
proach is that only the monomer Helmholtz free energy angubsystem, to maintain equality of pressure; and particle in-
the contact value of the monomer cavity function are reterchanges between the two subsystems, to maintain equality
quired to describe the equation of state of chain molecule®f chemical potential. The enerdy, volumeV!, and com-
The success of this approach lies in its ability to provide arpositionx/=N!/N! of particles of type in subsystenj thus
accurate prediction of the thermodynamics and hence theary during the course of the simulation. The acceptance
phase behavior of systems where molecular shape and asswiterion for each of these moves in theP T version of the
ciating phenomena are dominant features. Additionally, thésibbs ensemble is governed by the pseudo-Boltzmann prob-
SAFT approach is very versatile; it can be used to describability distribution, see Refg§26,29 for details:
the phase behavior of a number of different systésee Ref.
[15] for a brief review. The molecular based nature of the  aibbs_ gl |y Ny! ‘i Ny!
SAFT-VR equation allows the results to be compared with N3! Nkl’! NZ‘!NQ!
computer simulation.

+N?InVv?

Here we obtain the phase behavior of a symmetrical +NbIan—Pva— PVb_ E4(NY) Eb(Nb)}
model mixture using both the Gibbs ensemble Monte Carlo kT kT kT kT |’
simulation method and the SAFT-VR equation of state. The
system consists of a binary mixture of equal sized spheres 2

with unfavorable mean-field interaction@vhich lead to
liquid-liquid phase separation at intermediate temperature
and a single association site which provides the direction
interactions between unlike specigghich leads to miscibil-
ity at low temperatureés The particles interact with a square- ti

We examine a symmetrical binary mixture Nf=N;+N,
articles at a constant temperatdrand a constant pressure

Simulations are performed in cubic boxes with the par-
cles initially arranged on a face-centered-cuficx) lattice.

well potential: The usual periodic boundary conditions and minimum image
_ convention are usefB0]. Initial guesses for the coexisting
t+o if rij<oij, densities and compositions at each pressure and temperature
u(rip =4 —&ij if oy=<ri;<\jo, (1) are made by using the corresponding SAFT-VR solutions

(see following section it is important to ensure that the
overall composition of the system lies somewhere between
the compositions of the two coexisting phases. The chemical
wherer;; is the distance between two particles. The contacpotential is determined with the Widom test particle tech-
distance isoj; and the parameters;; andej; are the range nique[31] as adapted to the GEMC approd@2], in order

and depth of the potential well for thej interaction, respec- to ensure that phase equilibria is achieved. One simulation
tively. For our particular systeno=o1=01,=09, € cycle consists oN displacements and reorientations in each
=g11=€9, and g1,=0, with A=N;;=N,=N,=1.5. A box, one volume change for either box, and a specific num-
single square-well association site of fixed deptly, and  ber of particle interchanges. The maximum displacement and
width A, ,=0.55 is placed at a distancg=0.25% from the  volume change are adjusted to give an acceptance ratio of

0 if rijz)\ijaij,
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between 30 and 40 %, and the number of insertions is con- 2 30,0 2

trolled so that between 1 and 3% of particles are inter- g"S5=— —z—go)ln(l—g3)+ 122, 2
changed each cycle. Simulations are performed with systems 7ps| | 25 1703 £3(1-¢5)?

of N=512, N=1000, andN= 1728 particles at a series of (7)

coexistence pressures for different values of the site-site |nIn this expression,=N,/V is the number density of the
s

teraction energy. An initial simulation of 50000 cycles is £ih ber of soh |

performed to equilibrate the subsystems, before averagm@'xu,Jre in terms of the number of spherical segments. Note

for between 100000 and 250 000 cycles. at in generaps=p(Z;x;m;), wherep is the total number
density of the mixture. In this case, since we consider only

monatomic specieps=p. The reduced densitie§ are de-
Ill. SAFT-VR EQUATION OF STATE FOR SQUARE- fined as

WELL MIXTURES

The SAFT-VR equation of state for a mixture of associ-
ating chain molecules is written in terms of four separate
contributions to the Helmholtz free enerfi/5,16

21 Xsi(o)', ®

T
§|:€Ps

where o; is the diameter of spherical segments of chiain
A AIDEAL  AMONO  ACHAIN  AASSOC and xg; is the mole fraction of segments of typein the
NKT— NKT + NKT + NKT + NKT (3 mixture, which is given by

whereN is the number of chain molecules in the mixtukés Xsi= - 9
Boltzmann’s constant, antlis the temperature. In this equa- 2 MuX

tion APEAL s the ideal free energydAMONO s the residual Kk

free energy due to the monomer segmeSHAN is the

residual contribution due to the formation of chains of mono-Sincexs;=X; ando= o, = o, in the system studied here, the
mers, andA?SSCC s the residual contribution to the free en- free energy of the reference hard-sphere mixture reduces to
ergy due to intermolecular association via sites placed on théhe Carnahan and Starling expressi6,33
monomer segments. We present the general expressions for

each contribution to the Helmholtz free energy in the above HS_47]—3772
equation together with those which are specific for the asso- a _W

ciating system examined in this work.

The free energy of an idealcomponent mixture is given where 5= mpo/6 is the packing fraction of the pure com-

(10

by [33] ponent, which is equivalent t; in Eq. (8).
The mean-attractive ener@y in the perturbation expan-
A'DEA'- i sion is given by
3 3
E XjInpiAj—1=x1InpA7+X5INprA5—1,

n n
“ alzz 2 Xs,ixs,jai]!v (11
e

wherex;=N; /N is the mole fractionp;=N;/V is the num-
ber density, and\; is the thermal de Broglie wavelength of where

species.
The monomer free energy is ailj _ _ZWpssijf Hrizjg:_;s(rij a)dry; (12)
AMONO n AM n !
Nk (2 XM | ST = 2 Xi ml)a =aM, (5) andg[®is the radial distribution function for a mixture of
=1 =1 hard spheres. The integral is transformed by applying the

mean-value theoreml5] giving an expression fom; in
wherem; is the number of spherical segments in each chaiferms of the contact value @H
i, so thatm=1 for monomers, antlg is the total number of
segments. The monomer free energy per segment of the mix- non
tureaM=AM/(NT) is obtained from the Barker and Hend- a;= —psz 2 Xs,ixs,jai\fDWgﬁ's[crij 8, (19
erson high-temperature expansi@2—24: 1=1j=1

aM=a"S+ ga; + p%a,, (6) where
ayPV=2me; ol (N} —1)/3 (14)
wherea's is the free energy for a mixture of hard spheres,
B=1KkT, a; anda, are the first two perturbation terms as- is the van der Waals attractive constant for the square-well
sociated with the attractive energy. interactioni-j. The contact value of the radial distribution
The free energy of the reference hard-sphere mixture ifunction for the hard-sphere reference systei o;; ;égﬁ]

obtained from the expression of Boub[i34] and Mansoori is evaluated at an effective packing fracti¢f’, using the
et al. [35]: expression of Boubk [34]
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eff _ 4
o o128 = 1 i & KHS_ {o(1—{3) (24)
i y LR ) .
R 1-¢§" oty (152 Lo(1=03)°+60145(1-{3)+983
2 geff? .
T 0 jj ) {5 (15 For our particular system
ot o _ 37
o a=xiaf daF=0d e, @9
For the binary mixture studied hew@=o1,=0,,, e=€1; )
=¢€90, N=N11=N1p=M\gp, and e,,=0, so that the mean- with
attractive energy of Eq11) reduces to sw
2,11, 2,22 sw aSW=EKH58P ] (26)
a;=x%al+x5a%= (x3+x5)a3", (16) 22 S dps
where whereK"S is now the pure component expression
a¥=—psaPWg"g oy ), (17) KHS_ (1-n)* o
with (1= 7)2+67(1—n)+99*
VPV =27 3(N\3—1)/3. (18  Since the system examined here consists only of monatomic

species the contribution to the free energy in B).due to
The Carnahan and Starling equation for the contact value dthain formation is zeroA“*AN=0).

the pair correlation function is us¢86,33, Within the framework of the theory of Wertheim the con-
tribution to the free energy in the SAFT-VR equation of state
1- %2 due to the association mediated §ysites on molecules of
9o ™M= ——, (190  specied is described by11]
(-7
AASSOC n Si X.:\ s
with 7°"= (" The parameterization for*™ obtained for => x| > (In Xqi— ﬂ) +2. (29
the pure square-well fluiffl5] is used, where i=1 Ja= T2 2
75T (p N =c (M) 9+ (M) 9P+ cz(N) 75, (200  The first sum is over the number of speciea the mixture
and the second sum is over all sigeen a molecule of type
and the coefficients,, c,, andcg are given by i. The fractions of molecules of speciesiot bonded at a
particular sitea, X, ;, is given by solution of the simulta-
Cq 2.25855 —1.50349 0.24943 neous equations:
C| - —0.669270 1.40049 —0.827739 1
Cs 10.1576  —15.0427  5.30827 Xai=— 7 5 , (29)
+ 2 2 PX; Xb] a,b,i,j
1 j=l b=1
X A ) (22) where
)\2
Aa,b,i,jzKa,b,i,jfa,b,i,jgﬁw(o'ij) (30)

This corresponds to the MX1 or MX3 mixing rules of Ref.
[16].
The fluctuation term of the free energy is given by

is specific for eacka-b site-site interaction, and incorporates
the volume available for bonding, p, i ; , and the strength of
the association via the Mayer functidp y, ; ; = €xp(eap/KT)
n oo —1 of the square-well potential. The contact value of the
=53 Ry 22) radial distribution function for the square-well interaction
j%2, Sw ; e
=1j= gij (oj;) is evaluated within the SAFT-VR approach for
B mixtures[15,1€ using a first order perturbation expansion
and each of the terma) are obtained with the local com-

pressibility approximatiofLCA) [22,23, gﬁW(gij)zg”s(gij)+,3€ijgl(gij)_ (32)
i _EKHS (91? 3 The contact value of the radial distribution function for the
A= Py, (23 hard-sphere reference systeji oy; ;{5] is evaluated with

the actual packing fractiod;, using the expression of Eq.
whereK"S is the isothermal compressibility for a mixture of (15). The first order perturbation terg,(oj;) is obtained
hard spheres which is given by the Percus-Yevick expressiofiom a self-consistent calculation of the pressure using the
[37] Clausius virial theorenil15]:
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must be obtained from the expression for the Helmholtz free

gﬁw[crij ;53]=gi'?s[crij 1 {3]+ Beij gil-jls[a'ij :Zgﬁ]+(7\ﬁ -1) energy. The chemical potentigl of species is given by

% h (99!?5[0”- ;§§ﬁ] B ﬁg:}ls[mj :£§”] ﬂ:<ﬁA/kT
3 (9)\” Ps 5ps ’ kT é)Ni

: (39

)T,V,NJ-,Fi
(32 whereN; is the number of molecules of speciedhe pres-

For our system, the contact value of the square-well distri-Surep may be calculated through the compressibility factor
’ Zas

bution function of Eq.(32) simplifies to

(40

9o n]=9" o; 7]+ Be| g™ o; M+ (N3~ 1) KT = SkT T NKT

These functions are used in the numerical determination of
(33 the phase behavior of the mixture, using a simplex method
’ [38].

XagHS[O';WEﬁ] fﬁﬂeﬁ_ r?neﬁ
o 13 on oy

where the Carnahan and Starling expressif86,33 for IV. CRITICAL BEHAVIOR

9" o; 7] andg" o; %] are used with the total and effec-

tive packing fractions, respectively. The parametrization for Generally, finite size effects in the Gibbs ensemble are

7° for the pure square-well fluid is given in EqR0) and  considered to be small for regions away from the critical

(21). point[39], so that simulation data from these regions can be

The components in the mixture examined here have onlyised as experimental data to estimate the critical temperature

have one interaction site per sphere and bonding is only perfc(N) via extrapolation of a Wegner expansip#0] which

mitted between unlike components in the mixture, i.e., beincludes scaling correctiojg1]. This method has been used

tween sitea on component 1 and site on component 2 successfully to predict the critical parameters of the pure

when the two sites are within a distance The expression Lennard-Jones fluif42], the pure square-well fluigt3], and

for the contribution to the Helmholtz free energy due to as-Selected square-well mixturg44]. Before such a fitting pro-

sociation, Eq(28), thus simplifies to cedure can be performed it is necessary to identify the uni-
versality clasq§45] of the phase transitions occurring at the
UCST and the LCST for the symmetrical associating mix-
ture. As the critical point between two phasgsandb is

(34) approached the critical exponeftis defined in terms of the
critical temperature of the finite system [&6]

The fractionsX, and X, of molecules of species 1 and 2 not

bonded at sites andb, respectively, are given by

AASSOC

NkT

X, 1
InXb—?+§ .

X, 1
:Xl |nXa—7+§ +X2

B
, (41)

Ax<N>=|xa—xb|=Bo<N>\1

1 Te(N)
Xg= (35) . . .
1+ pXoXpAap whereBy(N) is the leading amplitude term. We assume that
the phase transitions of the binary mixture at the LCST and
and the UCST both belong to the Ising universality class, so that
the critical exponent has the universal value & 0.325.
X — 1 (36) The coexistence curve thus has a cubic form in the critical
b 1+ px1 X A0 region. Providing that the correlation length remains less
than the linear box length, the value of3=0.325 can be
where assumed to be valid for the duration of the simulations. A
sw change in the value of the critical exponent frggs 0.325
Aap=Kapfapg™" (o). 37 (universal to 8= 0.5 (mean-field only occurs when the cor-

relation length becomes greater tharf47]. A value of 8
=0.5 results in a quadratic coexistence curve close to the
critical temperature. This “crossover” of critical exponents
has only been observed in Gibbs ensemble simulation studies
of a two-dimensional lattice ggd7] and in a two dimen-
sional square-well mixtur¢48]. Simulation studies of the
square-well fluid in three dimensiorig48,44,49, show no

The volume available for bonding between two siesndb
which are positioned at a distancg from the center of
spheres with diameter and have an interaction rangg is
given by[10]

Kap=4m2a{In[(ro+2r g)/o](6r3+18r2ry—24r3)

+ (Mot 2rg—0)(223—5r rg— Trgo—8r2+r.0 sign of this crossover behavior. This is in agreement with the
opinion that this type of crossover cannot be observed in

+02)}/(72r§). (38)  three dimensional systems using regular simulation tech-
nigues[50].

In order to determine the conditions of phase equilibria  Away from the critical region the power law of E(1)
for the model system, the pressure and chemical potentidhils to accurately describe the shape of the coexistence
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curve. Corrections to the renormaliZation-groiRG)-based exply)—exp(—V)
scaling laws must be included in order to obtain more accu- tanh(y) = —

. . exply)+exp(—y)
rate resultd41]. Such corrections can be written as an ex-

pansion int=1-T/T¢(N), in a so-called Wegne40] ex- s ysed as a switching function between the expansion for the

(46)

pansion UCST and that for the LCST. Hence, the expansion fitted to
p A pran data in the region of the UCST is used above a certain tem-
|Xa—Xp| = Bo| t|#+ By|t|FT 214 Byt 4+, (42 peratureT g, ey, and the expansion fitted to data in the region

of the LCST is used at temperatures below this point. The
whereA;=0.5 is a RG gap exponent, and tBeterms are  compositions of the coexisting liquid phases in the closed-
the correction amplitudes. This expansion leads an estimalgop region are obtained as
of the critical temperature while assuming a universal value
for the critical exponent. A similar expansion can be written X19%P=F(T)xYCST+ (1 - F(T))x5°ST, 47)
for the diameter of the coexistence cufvd]

whereF(T) is given by

(Xa+xb)

=X+ Colt|”+Cylt| + Colt| ¥ 21+ .., (43 11

5 =X Calt]+ Calt] + Clt| @3 cm=t Ly, g

where X, is the critical composition, th€; terms are the :
- . . . with

coefficients of the expansion, anglis an exponent which
characterizes the anomaly in the diameter of the curve. These T—Tewitch
two expansions can be combined to give one expression for y= o (49
the coexisting compositions switch

The parametek g cONtrols the steepness of the switchin
X+ =Xg+ Cq|t|?+ Cy|t| + Cyft| #2214 .. funCtFijon switch p g

1
5 (Bolt|+ Balt|P S14+ Byft]F 7204 ), (44) V. RESULTS

The reduced thermodynamic variables, temperature
wherex_ andx, represent the smaller and larger coexist-T* =kT/e, pressureP* =Pgd/e, and site-site interaction
ence compositions, respectively. Similar expressions can bénergye* =, /¢ are used in the following discussion. It
written in terms of the coexistence densities. is also convenient to reduce the pressure and temperature

Itis important to note that the Wegner extended scaling ofyith respect to the critical point of one of the components
the GEMC simulation data for simple model systems such as

the square-well fluid provides estimates for the critical pa- 290
rameters with an equivalent accuracy to the more thorougt
analysis of the critical region obtained by using finite-size | e

scaling approachesee Refs[44,48,51), despite being sig- 18 ¢ g RN
nificantly less computationally demanding. / \\
For the associating square-well mixture studied here this / \
expression can be simplified due to the symmetry of the . 16/ \
system. The critical composition is knowx,=0.5, and the T \
C; coefficients can be disregarded, since the diameterissym ., |/ | ® -~ -~ ‘

metrical aboutx.=0.5. Additionally, inclusion of only the
first correction to scaling termB, is known to give an ad-
equate description of the liquid-liquid coexistence region
[44]. The expression for the compositions of the coexisting
phases becomes

0.2 0.8 1.0

X

11
XizziE(BOMB_I'Bl|t|B+Al)- (45 ’
FIG. 1. Temperature-composition slice of the coexistence region
for the symmetrical square-well mixture at a reduced pressure of

Assumlng Va'!JeS 0B:0'32_5 andA_1:O.5 the {;lbove equa- px _p;8.=0.756 with a bonding interaction of},=¢,,/¢

tion can be fitted to the simulation data using a standard. 13 The reduced temperature is definedT4s=kT/¢. The tri-
least-squares proceduidg] to give estimates of the critical apgles correspond to the GEMC data for a systeriiof512 par-
temperature. For coexistence curves which possess both gfles, the squares to a systemNo# 1000 particles, and the circles
upper and a lower critical solution temperature it is possibl&o a system ofN=1728 particles. The error bars correspond to one
to use two such power laws, one to estimate the UCST, angtandard deviation. The dashed, continuous, and dotted curves cor-
one to estimate the LCST. These two expressions can hespond to the SAFT-VR prediction for the same model with bond-
combined to give a complete description of the closed-loofing strengths of} ,=12, 13, and 14, respectively. The predicted
coexistence curve. A hyperbolic tangent three-phase line is represented by the horizontal line.
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el 7 20t
1.8 | - - ;
Hl._l| 18
T 16| T
1.6
14
1.2
0.0 1.0

FIG. 2. Temperature-composition slice of the coexistence region FIG. 4. Temperature-composition slice of the coexistence region
for the symmetrical square-well mixture at a reduced pressure ofor the symmetrical square-well mixture at a reduced pressure of
P*=Po3e=1.08 with a bonding interaction ot} =e,p/e P*=Pg%e=1.48 with a bonding interaction ot} =e,p/e
=13. The reduced temperature is definedTds=kT/s. The tri- =14.5. The reduced temperature is definedTds=kT/e. The
angles correspond to the GEMC data for a systerhlef512 par-  circles correspond to the GEMC data for a systemNef 1728
ticles, the squares to a systemM#= 1000 particles, and the circles particles. The error bars correspond to one standard deviation. The
to a system oN=1728 particles. The error bars correspond to onecontinuous and dashed curves correspond to the SAFT-VR predic-
standard deviation. The continuous, dotted, and dashed curves cafen for the same model with bonding strengthsedf,=14.5 and
respond to the SAFT-VR prediction for the same model with bond-15, respectively. The dotted curve corresponds to the fit of the
ing strengths ok} ,=13, 14, and 15, respectively. The predicted GEMC simulation results obtained using the Wegner expansion of
three-phase lines are represented by the horizontal lines. Eq. (47), which includes a first correction to scaling. The predicted

three-phase lines are represented by the horizontal lines.

such thafl, =T*/T} andP,=P*/P} , where the subscrift

denotes the critical value of a variable. We use the critical
22 values of T =1.219+0.008 andP} =0.108+0.016 for the
pure-component square-well system with rangel.5 ob-
tained from GEMC simulation resul{43].

Constant-pressure temperature-composifionslices of
the coexistence regions are shown in Figs. 1-4. The symme-
try of the phase diagrams aboxt=0.5 is a result of the
symmetry of the model system. The distinction between gas
and liquid fluid phases is arbitrary at high pressures and tem-
peratures; here we use the term “gas” to describe a phase
which has its origins in the vapor phase of the pure compo-
nent and which thus has the lower density.

The pressure oP*=0.756 of Fig. 1 is approximately
seven times the critical pressure of the pure square-well sys-
tem with A =1.5. The Gibbs ensemble simulation data with
1.0 g5 p=13 for three system sizes are shown; there is a negli-

gible system size effect. The region of liquid-liquid immis-
cibility bounded by an UCST at high temperatures is clearly

FIG. 3. Temperature-composition slice of the coexistence regioshown, together with low temperature regions of gas-liquid
for the symmetrical square-well mixture at a reduced pressure ofpmiscibility below a three-phase line. The curves represent
P*=Po?/e=1.28 with a bonding interaction ot3,=zap/e  the SAFT-VR prediction for the equivalent model, with three
=14.5. The reduced temperature is definedTds=kT/e. The  igterent strengths of the site-site interaction energy. For a
squares CorreSpon.d to the GEMC data for a SYStemleﬂooo value of ¢X =12 the theory predicts immiscibility of the
particles, and the circles to a systenNof 1728 patrticles. The error & . .
bars correspond to one standard deviation. The continuous an.%ystem.at a," t.emperatures* below an USCT' ,AS t.he site-site
dashed curves correspond to the SAFT-VR prediction for the sami1t€raction is increased te ,=13 the prediction includes
model with bonding strengths aff ,=14.5 and 15, respectively. '€gions of gas-liquid immiscibility at lower temperatures,
The dotted curve corresponds to the fit of the GEMC simulation@nd the three-phase line can be observed at a temperature
results obtained using the Wegner expansion of @), which close to the critical temperature of the pure component. In-
includes a first correction to scaling. The predicted three-phase lingreasing the strength of the bonding interaction further to
is represented by the horizontal line. esp=14, leads to a complete change in the nature ofTtke
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TABLE I. Liquid-liquid coexistence data obtained frofP T Gibbs-ensemble Monte Carlo simulations
for the symmetrical mixture of square wells with a range 1.5, and a single interaction site of reduced
depthej,=&,,/6=14.5. The fixed variables during the simulation are the number of parti¢/ehe
reduced pressurB* =Pg>/e=1.28 and the reduced temperatdre=kT/e. The packing fractions; and
mole fractionsx, in the coexisting liquid phases are labelgdandl,, respectively; the uncertainties corre-

spond to one standard deviation.

N ™ 7, 7, Xa), Xa),
1728 1.58 0.2820.004 0.289-0.004 0.81&:0.021 0.195:0.020
1728 1.59 0.2820.004 0.296:-0.003 0.814:0.033 0.185%0.035
1728 1.60 0.2910.003 0.292-0.004 0.835:0.026 0.159:0.028
1728 1.61 0.2920.003 0.292-0.003 0.86&:0.017 0.136:0.017
1728 1.62 0.2890.004 0.296:0.004 0.8620.020 0.146:0.023
1728 1.63 0.296:0.005 0.296:-0.005 0.864-0.022 0.135:0.027
1000 1.64 0.2840.006 0.2790.006 0.866:0.032 0.17%#0.031
1000 1.65 0.292 0.007 0.285:0.007 0.886:0.026 0.176:0.036
1000 1.68 0.2820.007 0.2770.006 0.864:0.027 0.166:0.025
1000 1.70 0.27%50.007 0.2730.007 0.85%0.032 0.152-0.031
1000 1.72 0.2720.007 0.2740.010 0.8520.032 0.1310.041
1000 1.74 0.271£0.005 0.267 0.005 0.8780.024 0.156:0.024
1000 1.75 0.266:0.004 0.266:0.004 0.84%0.027 0.154-0.027
1000 1.76 0.2640.006 0.2610.005 0.85@:0.033 0.176:0.029
1000 1.78 0.262 0.007 0.25%0.006 0.854:0.032 0.1930.030
1000 1.80 0.262 0.005 0.266:0.004 0.866:0.028 0.154-0.029
1728 181 0.254 0.004 0.2540.004 0.827%0.029 0.1770.029
1728 1.82 0.256:0.003 0.255:0.003 0.8330.028 0.1780.030
1728 1.83 0.2540.003 0.255:0.003 0.816:0.021 0.1680.021
1728 1.84 0.2540.003 0.254-0.003 0.8240.020 0.1690.021
1728 1.85 0.25£0.004 0.2490.004 0.81%0.029 0.202-0.028
1728 1.86 0.24%0.005 0.247%0.005 0.796:0.038 0.214-0.037

slice, with miscibility above the two low-temperature regionsbounded at high temperatures by an UCSTat=1.98 and
of gas-liquid coexistence. Thus the SAFT-VR equation preat low temperatures by a LCST &t = 1.84, together with
dicts that an increase in the site-site interaction energy fronow-temperature regions of gas-liquid coexistence.
eap=13 to e}, =14 is sufficient to bring about the disap- At this stage we can conclude that increasing the pressure
pearance of the liquid-liquid immiscibility at this pressure. from P*=0.756 toP* =1.08 for a system with an interac-
The low-temperature regions of gas-liquid immiscibility ob- tion energy ofe} ,=13 does not bring about a sufficient
tained from simulation appear at slightly higher temperatureghange in the phase diagram of the system for a closed-loop
than those predicted by the SAFT-VR equation of state foiof immiscibility to be observed by GEMC simulation. An
ex,=13. increase in the strength of the bonding interaction, together
‘The equivalent temperature compositix slice for a  with a slight increase in pressure is required in order to ob-
higher pressure oP* =1.08 (approximately ten times the serve a closed-loop of immiscibilityl4].
critical pressure of the pure compongigt shown in Fig. 2. The temperature-composition slice for a pressure of
The simulation results again present a region of liquid-liquidP* =1.28 is shown in Fig. 3. Here, Gibbs ensemble simula-
immiscibility bounded at high temperatures by an UCST tions are performed for a mixture with a site-site interaction
and low-temperature regions of gas-liquid immiscibility be- energy ofe} ,=14.5; the data is reported in Tables | and II.
low the three-phase line. The region of liquid-liquid immis- The region of closed-loop immiscibility can be clearly ob-
cibility is seen to be larger than in the lower pressure case oferved, bounded by both an UCST and a LCST. No low-
Fig. 1, but a closed-loop of immiscibility is still not observed temperature regions of gas-liquid coexistence were isolated
for 3 ,=13. For this value of the site-site interaction energyfor this system. The SAFT-VR predictions at a pressure of
the SAFT-VR equation of state predicts a region of liquid-P* =1.28 with site-site interactions af; ,=14.5 ande} ,
liquid immiscibility bounded by an UCST and small regions =15 are also shown. Fary ,=14.5 the theory predicts a
of low temperature gas-liquid coexistence below the thregegion of liquid-liquid immiscibility bounded by an UCST
phase line. For a site-site interaction energy:bf=14, the  and regions of low-temperature gas-liquid coexistence at
low temperature gas-liquid regions predicted by the theoryemperatures below the three-phase line. Increasing the
are larger than in the} ,=13 case; the onset of a closed- strength of the site-site interaction &g ,=15 leads to the
loop region can be observed. Upon increasing the associatiqgarediction of closed-loop immiscibility, with upper and
energy toe} ,=15 the SAFT-VR equation of state predicts lower boundaries which are similar to those obtained using
the existence of a small closed-loop of immiscibility Gibbs ensemble simulation. It is encouraging to observe the
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TABLE Il. Fraction of molecules bonded in each of the two
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TABLE 1V. Estimated critical constants for the symmetrical

phases(, andX obtained fromN P T Gibbs ensemble Monte Carlo square-well mixture with a single bonding site of reduced energy
simulations for the symmetrical mixture of square wells with ae} =145 at a reduced pressure Bf =1.48. See Table Il for
single interaction site of reduced depiff ;=14.5 at a reduced details.

pressure oP* =1.28. See Table | for details.

UCST LCST
N T* X, X,
TX(N) 2.068+1.038 1.466:0.239
1728 1.55 0.4230.030 0.416:0.033 By 2.01+2.27 2.03-0.89
1728 1.56 0.2970.028 0.3050.031 B, —1.45+3.01 —1.51+1.12
1728 1.57 0.3080.030 0.321%0.038
1728 1.58 0.2460.018 0.2570.027
1728 1.59 0.2420.026 0.23:0.030 closed-loop immiscibility. No low-temperature immiscible
1728 1.60 0.226:0.028 0.214:0.031 regions are found at this pressure using the GEMC method.
1728 1.61 0.1930.020 0.18%0.022 For this higher pressure the extent of the closed-loop region
1728 1.62 0.1850.023 0.19@-0.027 has increased from that of tHe* =1.28 state, which is in
1728 1.63 0.1810.025 0.18%0.031 line with the theoretical prediction of the effect of pressure
1000 1.64 0.1820.034 0.21%0.029 on the closed loofas described later The prediction of
1000 1.65 0.1520.031 0.213+0.032 phase behavior obtained with the SAFT-VR equation for two
1000 1.68 0.17€:0.030 0.194:0.027 different interaction energies off ,=14.5 ands? , =15 is
1000 1.70 0.1640.032 0.1730.032 also shown. In this case, the theoretical results do not indi-
1000 1.72 0.162.0.029 0.14%0.036 cate the existence of a LCST for the system at these condi-
1000 174 0.1340.026 0.1550.023 tions. The narrow ranges of pressure and interaction strength
1000 1.75 0.156:0.027 0.159:0.025 which result in a region of closed-loop immiscibility is thus
1000 1.76 0.1560.030 0.1610.026 illustrated: for a constant interaction strengthedf, =15 an
1000 1.78 0.14%0.027 0.17@0.024 increase of pressure froR* =1.28 (Fig. 3) to P*=1.48
1000 1.80 0.130.025 0.13%0.027 (Fig. 4 the theory predicts the loss of the LCST for the
1728 1.81 0.1410.023 0.146-0.022 system since the region of liquid-liquid immiscibility merges
1728 1.82 0.14€0.023 0.144-0.022 with the low-temperature gas-liquid coexistence regions. The
1728 1.83 0.1460.016 0.136:0.015 fit of the simulation data obtained using the Wegner expan-
1728 1.84 0.13%0.017 0.1340.017 sion of Eq.(47) with Agpicn=0.1 andT5i,=1.70 is also
1728 1.85 0.14€0.019 0.1430.017 shown in Fig. 4. As for the lower pressure case, this method
1728 1.86 0.1460.021 0.14%#0.018 accurately describes the form of coexistence curve. The cor-

responding estimates of the critical temperatures and param-
eters are given in Table IV.

existence of a closed-loop of immiscibility for this system |n order to monitor the amount of association within the
with a single association site, both by GEMC simulation andsystem, we calculate the fraction of molecules bonded
with the SAFT-VR equation of state. The use of the WegneBonding only occurs when two unlike species are such that
expansion of Eq(47) which includes a first correction to their off-center interaction sites overlap. The extent of asso-
scaling, with gyiicn=0.1 andTg,;,= 1.63, to fit the simula-  ciation for the simulations performed &*=1.28 andP*
tion data, is seen to give an excellent description of the shape 1.48 are shown in Fig. 5. For temperatures close to the
of the closed loop. The estimated values for the critical temyCST approximately 10% of the molecules are bonded and a
peratures, together with the values of the coeffici@y®nd  dramatic increase of association is observed as the LCST is
B, obtained are given in Table IIl. approached. This indicates that the low-temperature misci-
A temperature-composition slice obtained at a highemiltiy of the system below the LCST is directly related to the
pressure ofP*=1.48 by Gibbs ensemble simulation is association of unlike species.
shown in Fig. 4. As for the case of tH&* =1.28 slice, the The effect of varying the strength of the site-site interac-
strength of the site-site interaction is fixededt,= 14.5, and  tion on the phase behavior of the model system as predicted
the simulation results indicate the presence of a region oby the SAFT-VR equation of state is shown in the PT pro-
jection of Fig. 6 (also see Ref[5]). The vapor pressure
TABLE lIl. Estimated critical constants for the symmetrical curves of the pure components lie on the same line due to the
square-well mixture with a single bonding site of reduced energysymmetry of the mixture. The dashed curve which originates
e5p=14.5 at a reduced pressureRff =1.28. The “error” denotes  at the vapor-liquid critical point of the pure component and
the maximum possible error which is estimated from the combinegygyes to higher pressures and temperatures represents the
errors in the compositions obtained from the simulation data. gas-liquid critical line. For a site-site interaction energy of
exp= 15 this gas-liquid critical line goes through a minimum

vesT LCST in temperature close to the critical point of the pure compo-
TH(N) 1.915+ 0.689 1.557% 0.009 nent. The critical line then moves to higher pressures, reach-
B, 2.32+1.85 3.06-0.21 ing a maximum before ending at the three-phase line. The
B, —2.61+3.20 —4.94+0.54 continuous curve which originates at high pressures is the

three-phase line for the mixture, along which two liquid
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FIG. 5. Fraction of the total number of molecules bonded in X,
phasea, X,, as a function of reduced temperatdré=kT/e for N ] )
the symmetrical square-well mixture at a reduced pressute*of FIG. 7. Temperature-composition slices of the coexistence re-

=Poe=1.28 andP* = Po’/e = 1.48, with a bonding interaction gio_n for the symmetrical square-well mixture widiyb:15_at a

of &%, =e,p/e=14.5. The degree of association is shown for aSeries of reduced pressurBs=6.8, 8.2, 9.3, and 10.4 using the
single phase which, due to the symmetry of interactions, is the sameAFT-VR equation of state. The reduced presdyre P*/P and

for both coexisting phases. The squares correspond to the GEMEduced temperaturg =T*/T¢ are used. The curves are labeled
data for a system dl=1000 particles, and the circles to a system with the corresponding value of the reduced pressure and the hori-

of N=1728 particles. The error bars correspond to one standargontal lines correspond to the three-phase lines.
deviation.

the minimum in the liquid-liquid critical line. In this region
phases and one “gas” phase coexist. The dashed curv@e system is seen to possess two liquid-liquid critical points,
which extends to higher temperatures going through a minithe LCST at lower temperatures and the UCST at higher

mum in pressure is the liquid-liquid critical line. This line temperatures. Decreasing the association strength #bn
forms the boundary of the closed-loop region for this mixture_ 15 o e, =14 shrinks the minimum in the liquid-liquid

for pressures between where it meets the three-phase line apgica| line, and hence the extent of closed-loop immiscibil-
ity exhibited by the system. A further decrease of the mag-

1 nitude of the interaction energy & ,= 13 leads to the dis-
. appearance of the minimum in the liquid-liquid critical line;
the three-phase line meets the gas-liquid and the liquid-liquid
critical lines before either go through a maximdor mini-
10 ¢ : - -
mum) in pressure. In this case the system does not exhibit
s | closed-loop immiscibility. When the strength of the bonding
P interaction is zero the only feature of the phase diagram is
’ 6l the region of liquid-liquid immiscibility below an UCST, as
illustrated with the simpler SAFT-HS approadb] and
al GEMC simulation [48,44. Conversely, increasing the
strength of the site-site interaction beyosifl,= 15, leads to
. | complete liquid-liquid miscibiliy, so that the system only ex-
hibits gas-liquid critical lines. Use of the SAFT-VR method-
0 ‘ 1 ology to evaluate the mean-attractive energy and its deriva-
0.5 1 15 2 tives (as opposed to the SAFT-HS treatment of the attractive

T, interactions at the van der Waals leJé&l]) decreases the

o ) __effect of the reduced site-site interactief),, thus reducing

FIG. 6. Pressure-temperature projection for the binary associaly,, o tant of the closed-loop immiscibility which is observed

ing square-well mixture with a range of bonding strengths b for specific values of the bonding energy

:hl’es’rig&;ndd 125::?;?;%‘9 t:rf dSSEIéZdR ;agrﬁatelﬁgtuc;féstate. The effect of a variation in pressure on the extent of the
P ' ¢ P ' closed-loop region of the binary square-well mixture is illus-

=T*/T} are used. The solid curve at low pressures and temperi ted in Fig. 7 f . f tant i f
tures corresponds to the vapor-liquid curve of the pure componen ,ra ed in Fig. or a series ol constant pressure slices ot a

while the solid curve at high pressures and temperatures corr&YStem withez ,=15. For a reduced pressureRf=6.8 the
sponds to the three-phase line of the mixture. The dashed curvéystem is seen to be miscible at all temperatures above
correspond to the critical lines, gas-liquid at low pressures and teml ;= 1.1, indicating that this pressure is well below the mini-
peratures, and liquid-liquid at high pressures and temperatures. THBUM in pressure of the liquid-liquid critical line. The closed-
curves are labeled with the corresponding value of the site-site inloop region appears when the pressure of the system is in-
teraction energy. creased toP,=8.2, and a further increase in pressure to
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P,=9.3 gives rise to the the gas-liquid-liquid three-phaseto reentrance under such unphysical conditions, anisotropic
line. At a higher pressure d?,=10.4 this gas-liquid region interactions such as hydrogen bonding are the central feature
merges with the low temperature gas-liquid region and thef systems which exhibit closed-loop behavior, a fact which
system only possesses a single critical point at these preiss borne out by experiment. Canongia Logésl] has re-
sures. cently found type VI phase behavior in mixtures of Lennard-
Jones molecules with the GEMC technique, but in his case
VI. CONCLUSIONS the driving force for the reentrant liquid-liquid immiscibility
o ) S is a cross interaction diameter that is smaller than the arith-
The associating model system examined in this work camnetic mean of the like diameters; there is thus an increase in
be considered as a prototype for a real fluid which exhibitgransiational entropgbetter packingwhen the system mixes
the phenomenon of closed-loop immiscibility as a result ofat |ower temperatures. In this context it is also important to
hydrogen bonding interactions. The simplistic nature of theyention related simulation studies of closed-loop immisci-
model allows for a clear understanding of this type of phaseyjity for lattice models with directional interactions in both
behavior. The phase behavior of the associating system gk [55] and confined56] systems; as for the analytical
shown to contain regions of closed-loop liquid-liquid immis- stydies with lattice models, closed-loop behavior is observed
cibility for specific values of the site-site interaction energyfor suitable choices of the intermolecular parameters. Reen-
both with GEMC simulations and the SAFT-VR equation of trance can also be seen in charged-stabilized colloidal sus-
state. Association between the unlike species in the miXthBensions[S?], which again is not caused by hydrogen bond-
results in the low-temperature miscibiliy of this model sys-ing or molecular association; the complex interplay between
tem. For weak Intel’aCtIO_n Strengths no LCST exists. Th%ou'ombic and entropic effects gives rise to the phase be-
SAFT-VR approach predicts that the LCST and the UCSThavior. The relation between directional attractive interac-
merge at a specific temperature and pressure upon increasifigns and closed-loop immiscibility of two fluid phases is
the strength of the bonding interaction; above this the systerglearly defined experimentally in hydrogen-bonded liquids

has no regions of liquid-liquid immiscibility. such as water and alcohol, and it is this feature of associating

proach illustrate that the extent of reentrance in such a model Reentrant phase behavior is of course not restricted to

depends on the pressure and temperature of the system agighple fluids. Reentrant liquid crystalline nematic phases can
also on the strength of the site-site interaction energy. Th@e seen as a consequence of the delicate temperature depen-
agreement between the two approaches indicates the validifjance of hydrogen bondine.g., see Refs[58]). In fact

of the use of the SAFT-VR equation of state in the predictionmolecular association and dipole pairing is often used to ex-
of the phase behavior of such associating systems. plain reentrant behaviof59]. Hydrogen bonding offers a

Despite the direct correlation observed in this work be-number of new possibilities to control the phase transitions
tween the directional association of unlike components angh jiquid crystalline and polymeric systems.

the existence of low-temperature miscibility below a LCST
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