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The infinite-range-interaction Ising spin glass is considered in the presence of an external random magnetic
field following a trimodal(three-peakdistribution. Such a distribution corresponds to a bimodal added to a
probability p, for a field dilution, in such a way that at each site the figjdobeysP(h;)=p. é(h;—hg)
+pod(h;) +p_48(h;+hg). The model is studied through the replica method and phase diagrams are obtained
within the replica-symmetry approximation. It is shown that the border of the ferromagnetic phase may present,
for conveniently chosen values pf, andh,, first-order phase transitions, as well as tricritical points at finite
temperatures. Analogous to what happens for the Ising ferromagnet under a trimodal random field, it is verified
that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these
transitions are reduced for increasing valuepofWhenever thes function at the origin becomes comparable
to those ath;= *h,, first-order phase transitions disappear; in fact, the threshold yglueabove which all
phase transitions are continuous, is calculated analyticalp} as2 (e¥2+2)~1~0.308 56. The ferromagnetic
boundary at zero temperature also exhibits an interesting behavior<fpp€@pg , a single tricritical point
occurs, whereas if,>p§ the critical frontier is completely continuous; however, fir=p§ , a fourth-order
critical point appears. Stability analysis of the replica-symmetric solution is performed and the regions of
validity of such a solution are identified; in particular, the Almeida-Thouless line in the plane field versus
temperature is shown to depend on the wejght

PACS numbegps): 05.50+q, 64.60—i, 75.10.Nr, 75.50.Lk

[. INTRODUCTION RFIM with bimodal and Gaussian probability distributions
has been proven rigorous[)L6]. Indeed, Aharony15] ar-
Among disordered magnefd], spin glasse$2—4], and gued that whenever an analytic symmetric distribution for
ferromagnets in the presence of random figBis8] may be  the fields presents a minimum at zero field, one should ex-
singled out as two of the most puzzling and controversiaPect a tricritical point and a first-order transition for suffi-
systems in condensed matter physics. The random-field Isingjently low temperatures. Further studies of the RFIM at the
model (RFIM), introduced by Imry and M§9], has attracted mean-f|eld level have considered a trimogaree-peakdis-
much interest since the identification of its physical realiza-fribution[17,18
tions. Probably the most important physical conception of
the RFIM is a diluted Ising antiferromagnet in the presence P(h;)=p. &(hj—hg) +pod(h;) +p-&(hi+hg), (1.1
of a uniform magnetic field10,11. Many diluted antiferro-
magnets have now been investigated, in such a way thamn its symmetrical form, i.e.p,=p_=3(1—py). Such a
systems like Fgn,_,F, and FeMg,_,Cl, are nowadays distribution, which may be interpreted as a bimodal added to
considered as standard experimental realizations of tha dilution in the fields with probabilityp, [17], is expected to
RFIM [12,13. mimic real systems better than its bimodal counterpart. It has
From the theoretical point of view, many important ingre- been shown that the field dilution plays an important role in
dients remain unknown. At the mean-field level, it is well the occurrence of the tricritical point: distinct analyses lead
known that different probability distributions for the random to slightly different estimates for the threshold value above
fields may lead to distinct phase diagrams, e.g., a Gaussiamhich the tricritical point disappeats/hereas the analysis of
probability distribution yields a continuous ferromagnetic- Mattis [17] shows that the tricritical point vanishes fpg
paramagnetic boundafit4], whereas for a bimodal distribu- >0.25, according to Kaufmaet al. [18] such a behavior
tion, this boundary exhibits a continuous piece at high temshould occur forp,>0.24). Whether the features in the
peratures ending up at a tricritical point, which is followed mean-field phase diagrams of the RFIM should prevail in
by a first-order phase transition at low temperatyres]. short-range-interaction models represents a point that has at-
Such a contrast in the mean-field phase diagrams of thgacted a lot of interest19—-22. For the three-dimensional
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RFIM, recent Monte Carlo simulations detect a jump in thelSG for x<0.24, whereas for intermediate concentrations
magnetization but no latent heat, for both bimofle8] and  (0.24<x=<0.40) one may observe both behaviors depending
Gaussiar) 20] distributions, whereas high-temperature serieon the magnitude of the applied external magnetic field
expansion$21] and a zero-temperature scaling analyg8i®]  [RFIM (ISG) for small (large) magnetic field} with a cross-
find a continuous transition for both distributions. However,over between them; this latter effect was observed in
in four dimensions the same zero-temperature anagds  F&.312Nosd2 [41]. Certainly, such properties are expected to
leads to a first-order transition in the bimodal case and &€ properly explained only if one considers a model that
continuous one for a Gaussian distribution, in agreemenf@kes into account both spin-glass and random-field ingredi-
with the mean-field predictions. Apart from that, the low- €nts. Indeed, the crossover observed i e e~ Was
temperature phase of the RFIM, in finite dimensions, may/SC found in a study of the SK model under a Gaussian
present a nontrivial structure, with a complicated free-energyandom field[38]. On the other hand, a study of the SK
landscape, as suggested by perturbative analz8:24. !”nodel in the presence Qf a bimodal random f|§ald producgd
The Ising spin-glas¢ISG) problem has become, nowa- |r'1t'erest|n.g results, with first-order phase transitions and .tI’IC-
days, one of the most controversial issues in the physics dftical Points[39]; such results may be relevant for explain-
disordered magnets. Its mean-field theory, based on the s#d the first-order phase transitions observed igMg Cl
lution of the infinite-range-interaction model, the so-calledl13] )
Sherrington-Kirkpatrick(SK) model [25], presents a quite In the present work we study the SK model in the pres-
nontrivial behavior. The correct low-temperature solution, a€nce of a random field following a trimodal probability dis-
proposed by Paris[26], consists of a continuous order- tribution [see Eq.(l.l)]_. In addl_tlor_1 to that, one may inter-
parameter functiori.e., an infinite number of order param- _polate petyveen the bimodal distribution a_nd a beha\(|or that
eters associated with many low-energy states, a procedur® gualitatively analogous to the Gaussian one, since by
which is usually denominated the replica-symmetry breakindnonitoring theé function at the origin, one is able to control
(RSB). Furthermore, a transition in the presence of an exterth€ presence of tricritical points. In the next section we de-
nal magnetic field, known as the Almeida-Thoulé&¥) line f!ne Fhe model and, throu_gh the use of the replica method,. we
[27], is found in the solution of the SK model: such a line find its freg—_energy density, equations of state, and equations
separates a low-temperature region, characterized by RS@r the validity of the'RS solution. In Sec. lll we exhlblt and
from a high-temperature one, where a simple one-parameté‘scuss the phase dlagr_ams of the model. Finally, in Sec. IV
solution, denominated as replica-symmet®&S) solution, is W€ present our conclusions.
stable. The validity of the results of the SK model for the
description of real(short-range-interactionsystems repre- Il. THE MODEL AND REPLICA FORMALISM
sents a very polemic questid2]. The rival theory is the . ,
droplet model[28], based on domain-wall renormalization-  1he mean-field theory of the ISG is usually formulated as
group arguments for spin glasse29,30. According to the & set ofN spins, eac_h of thgm interacting with all othées
droplet model, the low-temperature phase of dinjte- total of 1/AN(N—1) |nteractlon$ known as the SK model
dimensionalshort-range spin glass should be described it25)- The SK model in the presence of an external random
terms of a single thermodynamic stdtegether, of course, magnetic field may be defined in terms of the Hamiltonian
with its corresponding time-reversed counterparnt., essen- 38,39,
tially a RS-type of solution. Obviously, the droplet model
becomes questionable for increasing dimensionalities, where _
one expects the existence of a finite upper critical H= % JiSS zl hiS:, 2.3
dimension—believed to be six for the ISB1]—above
which the mean-field picturc_a should prevail. .Recent_analyseﬁlheregz +1, withi=1,2, ... N, and the interactions are
of short-range ISG’s on diamond hierarchical lattides
which the Migdal-Kadanoff renormalization group is exact
have found evidence of the droplet pictliB2]; however, the
applicability of such lattices for the description of ISG’s on
Bravais lattices is doubtful33,34. Numerical simulations
are very hard to carry out for short-range ISG’s on a cubic N |12 N
lattice, due to large thermalization timg33]; as a conse- P(Ji.):(_z) exr{— —
quence, no conclusive results in three-dimensional systems l2m 2]
are available. However, in four dimensions the critical tem-
perature is much higher, making thermalization easier; in thisvith P(h;) given by Eq.(1.1) (p, +petp-=1). Letus, for
case, many works claim to have observed some mean-fielthe moment, keep the trimodal probability distribution in its
featureq 35]. general form of Eq(1.1); later on, we will see that the fer-
From the theoretical point of view these two problemsromagnetic boundary does not exist for #p_, and so, in
(RFIM and ISGQ, have been, in most cases, studied sepasuch a case, we will be restricted to the symmetrical form
rately, with a few exceptionf36—40. However, many di- p.=p_=3(1—py). It should be mentioned that the above
luted antiferromagnets, like FEen,_,F, [41] and randomnessesy;} and{h;}) are usually correlated in real
FeMg, _,Cl, [42,43, are able to exhibit, within certain con- systems; herein for the sake of simplicity we shall consider
centration ranges, random-field, spin-glass, or both behawwo independent probability distributions. Therefore, for a
iors. For FgZn, _,F,, one gets a RFIM fox=0.40 and an given realization of bonds and site field$,J(},{h;}), one

infinite-range-like, i.e., the sul; ;, applies to all distinct
pairs of spins. The coupling constarty;} and the random
fields {h;} are quenched variables, following independent
probability distributions,

2
Jij— %) }, (2.2
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has a corresponding free ener@y({J;;},{hi}), such that the

average over the disordgi]; ,, may be performed as inde-

pendent integrals,

FU3 0D Ln= [ [T (a3,P 1] (dhPihy)]

XF({Jijh{hi}). 2.3

The usual procedure consists in applying the replicarn
method[3,4], in such a way as to get the free energy per spin

as

1 1
—pt=lim S INZ{3hhih1g,= lim lim

N— o0 N—o n—0
X([Z"]5n—1),

whereZ" is the partition function oh copies of the system
defined in Eq(2.1) and 8= 1/T (we work in unitskg=1).
Standard calculations lead to

(2.9

2
pt=— L L im Zming(meq), (29
4 n—0 n
where
J J)?
9(m*,q**) = % 2 (m9)2+ g 2, @
- «P)

—p INTr, exp(H &) —po INTr, exp(H 2ry)
—p_ InTr, exp(H o¢¢), (2.6a

Har=BIo m“S“+(ﬁJ)2(EB) qePs*sP+ ghy Y, S,
(2.6b

H=BIo> masa+<m>2(2m q°fs* S, (2.60

In the equations above, the sum indexesand 8 («,B

=1,2,...n) are replica labels and, 5 denote sums over

distinct pairs of replicas.
The extrema of the functionaj(m®,q*?) give us the
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(BJ)?

B BJo

(1-q)*+ Tmz— p+f DzIn(2 coshé™)

—pof DzIn(2 cosh§°)—p_f DzIn(2 coshé ™),
(2.9

=p+f thanh§++pof Dztanh&®+ p_f Dztanhé™,

(2.10
q=p+J Dztant? £*
+p0f Dztanlt? &9+ p_f Dztantf £, (2.10)
where
- 1/2
J Dz~~=f_m(%) dzexp(—Z%/2)---, (2.12
and
£ =BIom+ BIgY%z+ Bhy, (2.133
= pI,m+ BIgr%. (2.13b

Although the spin-glass order paramef&q. (2.11)] is al-
ways induced by a nonzero random fieldy€1), it may
still contribute to a nontrivial behavior; this is provided by
the instability of the RS solution. Such an instability occurs
at the AT line[27],

T 2
(3) :p+szsecH §++pof Dzsech &°

+p,f Dzsech ¢, (2.19

which may be obtained through the simultaneous solution of
Egs.(2.14), (2.10, and(2.17).
In the next section we shall consider the phase diagrams

of the model and the regions of instability of the RS solution,
worked out from Eqs(2.9—(2.14).

equilibrium equations for the magnetization and spin-glass

order parameters, respectively,

m*=p,(S%) . +po(S¥)o+p_(SY)_, (2.7a
q¥P=p . (S*SP)  +po(S P+ p_(S*SPY_  (a#p),
2.7

Ill. RESULTS AND DISCUSSION

Let us first consider the casg=0; one may easily see
that the only nontrivial behavior in this case is given by the
AT instability in the plane magnetic field versus temperature,
which may now be obtained from the solution of E(¢A11)
and (2.14). The integrals involvingg™ may be easily trans-

where().. and(), refer to thermal averages with respect to formed through the change of variables> -z, in such a

the “effective Hamiltonians”H o;; and H 2 in Egs.(2.6b
and(2.60, respectively.
If one assumes the replica-symmetRS) ansatZ25],

V(ap),

the free energy per spirEqg. (2.5] and the equilibrium con-
ditions[Egs.(2.7)] become

(2.9

m*=m, Va; q*=q,

way that the AT line may be obtained by solving the set of
equations,

T 2
(3) :(1—p0)fDzsecl‘f(,BJq”zZJrﬁho)

+ pOJ Dzsech(BIq¥%z), (3.1a
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FIG. 1. The AT lines, for the SK model in the presence of a
trimodal random field, in the plarie, versusT (in units ofJ), for
typical values ofp,.

It should be pointed out that the equations above are valid for g=0o+
arbitrary values of the weights in the probability distribution

TRICRITICAL POINTS IN THE SHERRINGTON. . . 2235

hO/J From now on, we will be restricted ti,>0; in this case,
as far as RS is concerned,pf. #p_ Egs.(2.10 and(2.1))
yield nonzero magnetization and spin-glass order parameters,
leading to trivial behavior. Therefore, for the rest of this
paper we will concentrate on a symmetrical trimodal distri-
bution, i.e.,p,=p_=3(1—py). In this case, the random
field still induces a nonzero value for the parameteforc-
ing spin-glass ordefunlike the spontaneous order of the SK
model in the zero external fiell25]). Therefore, the only
possible phase transition within the RS approximation is the
one associated with the magnetization, as in the case of the
bimodal distribution[39]. Hence, two phases are possible,
namely, the ferromagnetio(#0, g#0) and the indepen-
dent (m=0, q#0) ones. Although in the RFIM this latter
phase is usually said to be paramagnetic, in the present prob-
lem, within the RS approximation, we shall keep the nomen-
0.0 T T T T ] clature independent, for reasons that will become clear soon.
00 02 04 06 08 1.0 The critical frontier separating these two phases may be
T/J found by solving the equilibrium equatiof 10 and(2.11:
in the case of first-order phase transitions, we shall make use
of the free energy per spliEq. (2.9)] as well. Expanding Eq.
(2.10 in powers ofm one gets

2.0 1

1.5 1

1.0 1

0.5

m=A;(q)m+Ag(q)m*+As(q)m>+O(m’), (3.4

— 12
q=(1- pO)f Dztanif(8Iq"z+ ho) where the coefficients depend qiiwhich in its turn depends
onmthrough Eq.(2.11)]. Expanding Eq(2.11) in powers of
+ poJ Dztant?(BIqY%z). @1p ™

(BT,

4
(BT o(m?), (3.5

of Eqg. (1.1), with p, +p_=1—pg; although the AT line i

changes with field dilution, it is not altered under a field

inversion. The AT lines in the plane magnetic field versus — T'=(1—pg)(1—4p; +3p;)+po(1—4p9+3p)),
temperature are exhibited in Fig. 1, for typical valuepgf (3.6)
Clearly, the AT line for the bimodal distributionpg=0)
[39] is identical to that of the SK model in the presence of a
uniform magnetic field27], due to the property of invari-
ance under field inversion. FoOpy<<1, one may calculate

p{zf Dztantt(BIqe’z+ Bho), (3.79

analytically the behavior of the AT line in the low-field re-
gimey gzay), k= f Dztantt!(BJgy 2), (3.7b
T [3(1—po)]¥3 ho\?® whereq, is independent ofn, corresponding to the solution
3= | |3/ (32 of Eq. (2.11 with m=0. Substituting the above results into

Eq. (3.4), one gets themindependent coefficients of the

which leads to a slightly modified amplitude, but the samePOWer expansion,
low-field exponent as the standard AT lif#7]. If one con- ' o + 0
siderspy,~0, the low-temperature behavior of the AT line A= B[ 1= (17 Po)p1 ~Pop1l, (3.89
may be easily calculated,

Jo)3 | 1+2(B3)°T
2 pgm - BRI LH2BT]
T 41 {(1 : p( h0>+ ] . 3 [ 1-(BY)r
<=2 —=|(1-po)exp — =—| +Po|, :
b3 \2n 29 (B3 1+8(BJ)2F+36(,8J)4F2+15(BJ)6F3}
5= Y 2 )
which exhibits the usual exponential ded@], but with a 30 1-(B)T
shift toward higher temperatures for increasing valuegof (3.80

In all other situations, the AT lines were calculated by solv-yhere

ing Egs.(3.1) numerically. One notices that for high values

of po, the integrals multiplyingp, in Egs. (3.1) contribute y=(1—po)(—4+34p; —60p, +30p3)
significantly, in such a way that the AT lines become slightly

independent ohy,, for h, large enough, as shown in Fig. 1. +Po(—4+34p3 — 60p5+30p3). 3.9
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Jo/J Jo/J
FIG. 2. Phase diagram versusJ, (in units of J) of the SK FIG. 3. Phase diagrarh versusJ, (in units of J) of the SK

model in the presence of a trimodal random field witg=0.3, model in the presence of a trimodal random field wi~=0.3,
compared with that of the bimodal cage,&0), for conveniently  compared with that of the bimodal case,E0), for conveniently
chosen values ofhy. (@) hy/J=0.9573 py=0); (b) hy/J chosen values di,, in such a way as to obtain two tricritical points
=1.53526 0,=0.3). The ferromagnetic boundaries are continu-(black circle3 along the ferromagnetic boundarya) hy/J

ous, except for the points whetd =0 [cf. Eq.(3.8D], represented =0.97 (po=0); (b) hy/J=1.558 (py=0.3). The dashed lines

by black squares. These choices signal lower boundbfoabove  stand for first-order phase transitions. The phase nomenclature is
which first-order phase transitions occur. The phase nomenclature the same as in Fig. 2.

specified in the text, with the low-temperature phases SG and F

delimited by AT lines.

The critical frontier may be determined using standard pro-
cedures, as described below.

(i) For continuous phase transitions,=1 andA;<0. T/J

(i) A first-order phase transition occurs whenever 1.0 4
=1 andA}>0; the proper critical frontier should be found, () (b)
in this case, through a Maxwell construction, i.e., by equat-
ing the free energies of the two phases. 0.8 1

(i) When both types of phase transition are present, the
continuous and first-order critical frontiers meet at a tricriti-
cal point[45], which defines the limit of validity of the series 0.6 - P F
expansions; beyond the tricritical point the magnetization is
discontinuous. The location of such a point is determined by
settingA; =Aj=0, with the conditionA,<0 satisfied. 0.4 -

In Figs. 2 —4 we show three qualitatively distinct ferro-
magnetic boundaries of the present problem, for a typical
value ofpy (po=0.3), compared with those of the bimodal

0.2

probability distribution py=0). In Fig. 2 there is a single SG

point along the ferromagnetic boundary at whid§j=0; \
such a point may not be considered as tricritical, since there 0.0 F'

is no first-order phase transition. However, for any value of 0.0 1.0 2.0 3.0
hy greater than those of Fig.[2,/J=0.9573 {y,=0) and JO/J

hy/J=1.53526 (,=0.3)], one gets first-order phase tran-
sitions, and at least one tricritical point. In Fig. 3 we show IG. 4. Phase diagrari versusJ, (in units of J) of the SK

situations where two tricritical points appear along the ferro—moze| in the presence of a trimodal random field with=0.3,
magnetic boundary; we have verified that, for a fixed valuompared with that of the bimodal casg,&0), for conveniently
of po, such a behavior occurs within a narrow intervahgf  chosen values df, in such a way as to obtain a single tricritical
In Fig. 4 a single tricritical point emerges, separating a conpoint (black circle along the ferromagnetic boundarfg) ho/J
tinuous boundaryhigh temperaturgdrom a first-order criti-  =1.02 (py=0); (b) hy/J=1.58 (p,=0.3). The phase nomencla-
cal frontier (low temperatures From such phase diagrams, ture and line representations are as in Figs. 2 and 3.



PRE 61 TRICRITICAL POINTS IN THE SHERRINGTON. . . 2237

one notices that the main effect of the field dilution is to push J Jam=+h Jam—h
the tricritical points toward lower temperatures, i.e., the tem-f=— Ome— —0(1— Po)| erfl o0 —erf( u”
perature range over which the first-order transitions occur 2 2 N2 2
decreases. 9

As mentioned before, although the spin-glass order pa- _ L(l—p ) exp — M
rameter is always induced by the random field, it may still V27 0 2J?

exhibit interesting behavior, associated with the instability of
the RS solution. The AT instabilities, given by the solution . (Jom—hg)? 2J 0 (Jom)?
of Egs.(2.10, (2.11), and(2.14 with p,=p_=2(1—py), A R BN o2 ||
yield two distinct lines in the phase diagrams of Figs. 2—4, J m J
depending on whether one is in the independent phase ( (3.113
=0) or in the ferromagneticni+ 0) one. In the former case,
the AT line is a straight linéindependent o8,), whereas in 1 1 . Jom+hg +erf Jom—hg
the latter, it presents the usual decrease with temperature for m= E( Po)| €r W2 er W2

+py erf 220 (3.11h

erfl —|. .
Po J\/E

increasing values afy, in such a way that for low tempera-
tures one gets exponential decays,

T 4 1 |1 Jo+hg)? J2
35‘—|—(1—po)exr{—M]+poeXI{— :

Using a similar procedure as the one for finite temperatures,

27? 27? one may expand Ed3.11b,

1 (Jo—ho)? m=a,m+asm’+asm°+0(m’), (3.12
+ = (1—py)ex -0 (3.10
2 232 where
2Jo h3
Herein we shall adopt the usual criteria for identification of a1=\ 5| (1-poexp - > +po|, (3.133

the regions where RS is stable and those throughout which a
RSB procedure is necessdB;4]. The two regions with zero 1 [2(3,)3 hg hS
magnetization will be associated with the paramagrigigh a3=g\/:( 7) (1—po) —llexp — | —Pol
temperatures and spin-glass(low temperaturés phases, & J 2J

whereas those with nonzero magnetization will be associated (3.13b
with the ferromagnetic(high temperaturgsand mixed- 5 4 5
ferromagnetidlow temperaturesphases. The several phases a 1 2 ( ‘]0) [(1_ Do) ( @ _ GE " 3)

exhibited in our phase diagrams are identified as follows. 57120V J J4 32

;{ hg) 3 (3.130
xXexp ——|— . )
232 Po

The critical frontier separating the phase$ &nd SG is
shown in Fig. 5 for typical values gf,. One notices that the
effect of the weighip, is to favor the continuous line, along
It should be mentioned that the present low-temperaturdhicha; =1 with a;<0, i.e.,
results are questionable inside the phasearfd SG, due to
the instability of the RS solution; in particular, the point for Jo _ \/E 1 (3.14
2 po+(1-poJexp(—hy/23%) "

Paramagneti¢P) (m=0; qg: RS;
Spin-GlasgSG) (m=0; qg: RSB;
FerromagneticF) (m#0; q: RY9;
Mixed Ferromagneti¢F’) (m#0; g: RSB.

po=0.3 where A;=0 in Fig. 2, as well as the low- J

temperature tricritical points of Fig. 3, may completely dis-

appear under a RSB procedure. However the highwhile decreasing the extension of the first-order transition

temperature tricritical points, like those of Figs. 3 and 4, ardine. For small values op, these two lines meet at a tricriti-

inside the region of stability of the RS solution and will cal point, obtained by solving the equatioas=1, aj

persist under more general treatments; we believe that suchO, with the conditionas<<0; within the analysis for finite

points are reminiscent of the tricritical point of the bimodal temperatures, this corresponds to the situation where the

RFIM. lower-temperature tricritical poinfcf. Fig. 3 hits the zero-
The two AT lines mentioned above usually meet at a contemperature axis. Ip,=0 such an effect occurs g39]

tinuous ferromagnetic boundary; however, these lines do not

match each other across first-order phase transitions @_1_ Jo _ /TF_GNZ 0664 31
[39,40,48: there is a smal(but finite) gap between them in ] 3 e ' (3.19
Figs. 3 and 4.

Let us now investigate the ferromagnetic boundary at zerae verified that for 6<py,<pg (wherepg will be defined
temperature; forT=0 the spin-glass order parameter is below), such a set of equations presents two solutions, al-
trivial (g=1), in such a way that one gets for the free energythough only one of them represents a tricritical point, satis-
and magnetization, fying as<<0. By increasing, inside this range, we noticed
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20 30 40 50
)i

FIG. 5. The zero-temperature phase diagfagnversusJ, (in

1.0

field, for typical values ofpgy. If 0<py<pj one always gets tric-
ritical points (black circles, followed by first-order phase transi-
tions for high values ohy. Whenpy=p§ , one gets a fourth-order
critical point (represented by a sparAbove the threshold value
ps =2(e*?+2)"1~0.308 56, the critical frontier separating the
phases SG and’Hs continuous.
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3(Po=Pp)

0.00 {—=
-0.05
-0.10 A3(py=0-3) ™
0157  Aypy=03)
-0.20 . - - . ,
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T/J

FIG. 6. The ordinate represents either the coefficighor A
units of J) of the SK model in the presence of a trimodal random[Egs. (3.8 and (3.80, respectively along the ferromagnetic

boundary, forpy=0.3 (hy/J=1.535 26)(dot-dahed linesand p,
=pg (ho/d= J3) (full lines), as a function of temperature. In the
former caseA;=0 at T/J=0.25 (with A;<0), whereas in the
latter, A;=A{=0 atT=0.

In Fig. 7 we exhibit the ranges qf, andhy/J throughout

which first-order phase transitions and tricritical points are

that such solutions get closer and collapsedgrpg . We

calculated analytically pg =2(e*?+2) 1~0.30856, at
which a fourth-order critical poinft47] (characterized by,

=az=a;=0, with a;<0) occurs at

possible along the ferromagnetic boundary. In regiah
first-order phase transitions are conceivable at finite and zero
temperature, with a single tricritical poifdat finite tempera-

tures: typical examples are shown in Fig. 4. Throughout a

very narrow rangédregion (b)] two tricritical points appear

Jo 2w

ho LY
7= 3~1.73207; 7=T(e +2)~2.707 86.
(3.16

The valuepg represents a threshold p§ above which there
are no first-order transitions for any temperatiitce 0. For
po>ps the second-order critical frontier of Fig. 5 ap-
proaches an asymptote for large valuesgf indeed, when
po—1 the zero-temperature ferromagnetic boundary ap-
proaches a straight line a§/J= \/7/2 [see Eq(3.14)], char-
acteristic of the SK model in zero fie[@5].

It should be mentioned that the finite-temperature vesti-
gial points whereA;=0, like the ones in Fig. 2, are qualita-
tively different from the fourth-order critical point found for
Po= Py at zero temperature, even though both situations rep-
resent thresholds for the occurrence of tricritical points. In
the former caseA;<0, whereas in the latteA;=0. In Fig.

6 we exhibit the behavior of the coefficierAg andAg, for
temperatures along the ferromagnetic frontier, for the case
(b) of Fig. 2, i.e., pg=0.3 (hg/J=1.53526), andpg

=ps (ho/d= J3). One clearly sees that the fourth-order
critical point shows up only at zero temperature; its param-

temperature axis.

hy/J
1.8 1

1.6 1
1.4 1
1.2 A

1.0 -

(a)
(c)

(b)

0.8
0.0

0.2 T 04 Po 0.6

- - : - FIG. 7. Ranges op, andhy/J associated with distinct behav-
eters, as defined in E3.16), correspond to the situation jors for the ferromagnetic boundarga) First-order phase transi-
where the vestigial point of Fig. 2 collapses on the zero+jons at finite and zero temperatures, with a single tricritical point at

finite temperaturegp) two tricritical points with a first-order phase

If 0<po<pg, it is always possible to obtain first-order transition for finite temperature$c) continuous phase transitions.

phase transitions by conveniently choosing the valubgof

The arrows indicates the valyg=pg .
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and the first-order phase transition occurs only for finite temorder critical point is observed; fquy>pg , the ferromag-
peratures: typical examples are exhibited in Fig. 3. The renetic boundary is always continuous.
gion (b) is delimited by characteristic values gb{,hy/J): Although the spin-glass order parameter is induced by a
(i) the threshold foihy/J smaller corresponds to the set of random field p,<1), it may still contribute to a nontrivial
points satisfyingA3=0, but with no first-order phase transi- behavior, concerning the stability of the replica-symmetric
tion (e.g., the vestigial points shown in Fig); Zii) the de-  solution. We have calculated the regions of instability of
limiter for ho/J larger corresponds to the coordinates of theSUCh @ solution, leading to the identification of two low-
tricritical points at zero temperature. The vertical line in Fig. '€Mperature phases, namely, the spin-glass and mixed ferro-
7 is for po=pZ , defining[together with the delimitefi) of magnetic ones. Besides that, the Almeida-Thouless line in
; 0~ ro: : . the plane field versus temperature was shown to depend on
region (b)], the range throughout which the ferromagnetic

boundary is always continuolisegion (6)] the weightp,, with different amplitudegbut the same expo-
: nend in the low-field regime, and qualitatively distinct high-
field behaviors.
IV. CONCLUSION We have verified that whenever the ferromagnetic bound-
We have studied the Sherrington-Kirkpatrick spin glass ind’y presents poth cc_)nltinuous and first-.or(_jgr tran_sition lines
meeting at a single finite-temperature tricritical point, such a

thﬁ presence ?)f gf’}!"d%m f.'slq.@i}’ fcr)]l.lor\]/vmg a trlmé)dal point is located inside the region of stability of the replica-
(t. ree-peak probability .!St” utlon_, which corresponas toa symmetric solution, and it will not be removed by a replica-
bimodal plus a probabilityp, for field dilution, i.e.,P(h)  gymmetry-breaking procedure. However, when two tricritical
=P 6(hj—ho) +pod(hi) +p-8(hi+ho). We have used the 5ints occur along the ferromagnetic boundary, at least one
replica method and the phase diagrams were obtained withigf them (the one at low temperatunesppears inside the
the replica-symmetry approximation. The boundary of theynstable region, and its existence may be an artifact of the
ferromagnetic phase exhibited an interesting behavior, witheplica-symmetric solution.

the presence of first-order phase transitions and tricritical The applicability of the present results to the description
points: within certain ranges fqu, andhg, a single or two  of real systems obviously depends on the survival of the
tricritical points were encountered. We have shown that thenean-field characteristics in the respective short-range-
first-order phase transitions are directly affected by the diluinteraction versions of Ising spin glasses and the Ising ferro-
tion in the fields, in such a way that the extension of suchmagnet in the presence of a random field. However, the tri-
lines is reduced by increasing. In fact, there is a threshold modal distribution employed herein is expected to mimic
value, p§ =2(e%2+2)~1~0.308 56, above which the ferro- real systems better than the bimodal distribution itself. Al-

magnetic boundary is always continuous. Such effects ma§ough we are not aware of experimental observations that
be reminiscent of those occurring within the mean-fielgmatch our results, we believe that the diluted antiferromagnet
theory of the Ising ferromagnet in the presence of trimodafF&Mdi1-xCl> is a good candidate, since, for conveniently
random fields: the single tricritical point that appears in thechosen dilutions, it may exhibit flrsy—order phase transitions
case of a bimodal distributiofL5] is removed by the pres- [13]', as well as a crossover from first- to second-order be-
ence of thes function at the origin, wheneves, becomes havior[44].
greater than a certain val&7,1§.

At zero temperature, if @py<pg, the ferromagnetic
critical frontier exhibits a single tricritical point, with a first-  We acknowledge E. M. F. Curado for useful discussions.
order phase transition at high valueshgf By increasingp,, F.D.N. thanks CNPq and Pronex/M(Brazilian grant agen-
the first-order line gets reduced and, fiy=pg , a fourth-  cies for partial financial support.
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