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Nonequilibrium phase transitions induced by multiplicative noise: Effects of self-correlation
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A recently introduced lattice model, describing an extended system which exhitgig&ant(symmetry-
breaking, second-ordenoise-induced nonequilibrium phase transition, is studied under the assumption that
the multiplicative noise leading to the transitioncislored Within an effective Markovian approximation and
a mean-field scheme it is found that when the self-correlation timé&the noise is different from zero, the
transition isalso reentrantwith respect to the spatial coupliri@. In other words, at variance with what one
expects for equilibrium phase transitions, a large enough vall faf/ors disorder. Moreover, except for a
small region in the parameter subspace determined by the noise intenaitg D, an increase i usually
preventsthe formation of an ordered state. These effects are supported by numerical simulations.

PACS numbsg(s): 05.40—a, 47.20.Ky, 47.20.Hw

I. INTRODUCTION through extensive numerical simulatiofisl]. In addition to
its critical nature as a function of the noise intensity the
In the last few decades we have witnessed a paradigmatizewly found noise-induced phase transition has the notewor-
shift regarding the role of fluctuations, from the equilibrium thy feature of beingeentrant for each value oD above a
picture of merely being &2 perturbation on thermody- threshold one, the ordered state exists only inside a window
namic averages—or triggering at most phase transitions b¢o;,0,]. At variance with the known case @quilibrium
tween well defined minima of the free enerfdy—to lead a  order-disorder transitions that are inducga the simplest
host of new and amazing phenomena in far from equilibriumattice model$ by the nearest-neighbor coupling constant
situations. As examples we may cite noise-inducedand rely on the bistability of the local potential, the transition
unimodal-bimodal transitions in some zero-dimensionalin the case at hand is led by thembined effectsf D ando
models[2], stochastic resonance in zero-dimensional and exthrough the nonlinearities of the system. Neither the zero-
tended systemg3,4], noise-induced spatial patterri§],  dimensional systentcorresponding to th&® =0 limit) nor
noise-delayed decay of unstable std@sratchetd7], shifts  the deterministic oned=0) show any transition.
in critical points[8], etc. An attempt to find a noise-induced  This counterintuitive ordering role of noise has also been
phasetransition that preceded in almost a decade recent studeund afterwards in different models in the literatyte2—
ies is the work in Ref[9], resulting in a “no-go” theorem  18]. In Refs.[12,13, the authors study a noise-induced re-
for the existence of such a transition in a system of Ito-likeentrant transition in a time-dependent Ginzburg-Landau
differential equations withlinear drift and multiplicative ~ model with both additive and multiplicative noises. Refer-
noise. ence[14] introduces another simple model with a purely
Recently it has been shown that a white and Gaussiamultiplicative noise, which also presents a noise-induced re-
multiplicative noise can lead aextendeddynamical system entrant transition. This reference also gives evidence that the
(fulfilling appropriate conditionsto undergo ghasetransi-  universality class of its critical behavior is that of thaulti-
tion towards anordered state, characterized by a nonzero plicative noisg19,2Q (see also Ref.21] for a discussion of
order parameter and by the breakdown of ergodifit§].  the universality class of these modelth Refs.[15,16], a
This result—first obtained within a Curie-Weiss-like mean-first-order phase transition induced by noise is obtained in a
field approximation, and further extended to consider thesystem of globally coupled oscillators. A similar first-order
simplest correlation function approach—has been confirmeghase transition is also found in R¢L7]. Finally, Ref.[18]
addresses the role of multiplicative noise in the context of
phase-separation dynamics.

*Electronic address: smangio@mdp.edu.ar Although for the sake of mathematical simplicity all these
TElectronic address: deza@mdp.edu.ar references(in particular, Refs.[10,11]) studied only the
*URL:  http://formentor.uib.estraul.  Electronic  address: white-noise casdthe only exception is Ref.18] in which
dfsrtg0@ps.uib.es colored noise in space, white in time, is consideréds
SElectronic address: wio@cab.cnea.gov.ar expected that, because of their nature, fluctuations coupled
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multiplicatively to the system will show some degree of proach andfor 7=0) from a perturbative expansion, and the
time-correlation or “color” [2,22—-25, and hence new ef- D dependence of the order paramatefor nonzeror with a
fects may arise from this fact. For example, a reentrant beaumerical simulatiofi29]. A final discussion of the approach
havior has been found recently as a consequence of color @nd its results is made in Sec. V.
a noise-induced transitiof26] and an ordering nonequilib-
rium phase transition can be induced in a Ginzburg—Landau Il. THE MODEL
model by varying the correlation time of the additive noise
[27,28. Thus motivated, we have studied the consequences The model under consideration has been introduced in
of a finite (but still very short as compared with the “deter- Refs.[10,11,29: ad-dimensional extended system of typical
ministic” or coarse-grained time scaleself-correlation time  linear sizeL is restricted to a hypercubic lattice &f=L¢
7 of the multiplicative noise in systems of this kind. We now Points, whereas time is still regarded as a continuous vari-
recall some of the new effects that emerge in this coloredable. The state of the system at timis given by the set of
noise case, which have been briefly reported in a recent worktochastic variablegx;(t)} (i=1,...N) defined at the sites
[29]. r; of this lattice, which obey a system of coupled ordinary

Our main finding is that, as a consequence of the multiStochastic differential equatiofSDE’s)
plicative character of the noise, a strong enough spatial cou-
pling D leads invariably(for 7>0) to a disorderedstate, .
contrary to what would be expected to happen in equilibrium xi=F(x)+9(x) 7+ 2d j;n(i) (X=X @)
statistical-mechanical models.

Another important result is that, except for large values o

f I .
o andvery smallvalues ofr, color has arinhibiting role for (throughout the paper, the Stratonovich interpretation for the

Do SDE’s will be meant Equation(1) is the discrete version of
ordered states. Moreover, there existfiréte and not very . o . .
. o . thepartial SDE which in the continuum would determine the
large value ofr beyond which order is impossible. . L ,
. state of the extended system: we recognize in the first two
These results represent a major departure from what onge

can expect on the basis of equilibrium thermodynamics, acy S the generalization of Langevin's equation for site

cording to which one should tend to think that B2 an the case of multiplicative noiserf is the colored multipli-

orderedsituation is favored. Whereas that “intuitive” notion cative noise acting on Sitg). For 'ghe specific exa“?p_'?‘ ana-
) oo o ; X lyzed in Ref.[10], perhaps the simplest one exhibiting the

remains valid if the multiplicative noise that induces the non-y- - cition under anal siGee, however, Ref14])

equilibrium ordering phase transition is whif@0,11], it y ' ' '

ceases to be so fer>0. In the former case, the results could

be interpreted in terms of a “freezing” of the short-time

behavior by a strong enough spatial coupling: ©fo?

— o0, the stationary probability distribution could be consid- The last term in Eq(1) is nothing but the lattice version of

ered to bes-like, just as the initial one. In our case, an the LaplaciariV?x of the extended stochastic variabigr,t)

analysis of the short-time behavior of the order parameter ufi? & reaction-diffusion schemen(i) stands for the set of

to first order inr reveals that the disordering effectbfcan  nearest neighbors ind&xdimensional square lattice @ sites

only be felt fornonzeraoself-correlation time. As- increases, Which form the immediate neighborhood of the site and

the minimum value oD required to stabilize the disordered the coupling constard between neighboring lattice sites is

phase decreases and the region in parameter space availathie diffusion coefficient.

to the ordered phase shrinks until it vanishes. Thus, the fore- As previously stated, it is our aim in this work to inves-

going results can only be interpreted once we recall that théigate the effects of the self-correlation timeof the multi-

ordered phase arises from the cooperatiotwaffactors: the  plicative noise on the model system just described. To that

presence of spatial couplirand the multiplicative character end we must assume a specific form for the nofsg$: we

of the noise(which may eventually lead to “counterintui- choose Ornstein-Uhlenbeck noises, i.e., Gaussian distributed

tive” results). stochastic variables with zero mean and exponentially decay-

It is our purpose in this work to render an explicit accounting correlations

of our calculation and, at the same time, to expose and to

discuss the results more thoroughly. After presenting the (ni(t)r;j(t’))=5ij(02/27)exr(—|t—t’|/r). (3

model in Sec. Il, we begin Sec. Ill by introducing the ap-

proximations needed to render the problem accessible t9hey arise as solutions of amncoupledset of Langevin

mathematical analysis. We resort to a mean-field approximagpg:

tion such as that in Ref$10,11] and to a “unified colored

noise approximation’{UCNA) [30,31], devised to deal with .

self-correlated noises. In Sec. lll A a simplified treatment == nit o, )

using the aforementioned approximations is given and in

Sec. Il B we expose the more sophisticated approach tharhere the{;(t)} are white noises—namely, Gaussian sto-

was actually used to obtain the phase diagrams. In this aghastic variables with zero mean and correlated:

proach the UCNA is complemented with an appropriate in{&(t)é(t'))=&;6(t—t"). For r—0, the Ornstein-

terpolation schemg31]. In Sec. IV we expose and discuss Uhlenbeck noisen;(t) approaches the white-noise limit

the results obtained within the last approach, comparing thé"(t) with correlations <g}’v(t)§}“’(t’)>=025ij S(t—t"),

phase diagram with the ones arising from the simplified apwhich was the case studied in Reff$0,11].

f(x)=—x(1+x%)2, g(x)=1+x2 2)
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lll. THE APPROXIMATIONS governed by a Fokker-Planck equatipd2]. The resulting

The non-Markovian character of the procéss (due to equation, beindinear in x (but of course not irx), can be
the presence of the colored noisg}) makes it difficult to  immediately solved fox giving
study. However, some approximations have been devised ) _ _
which render aMarkovianprocess that—whereas nicely sim- X=Q(x;x) + S(X;X) ¢, 8
plifying the treatment—can still capture some of the essen. .-
tial features of the complete non-Markovian one. The afore-
mentioned UCNA is one of them: in fact a very reliable one, N e
because of its ability to reproduce the small- and large- QUGx)=(f+4)6, ©
limits [30]. By resorting to interpolation schemes, one can
retrieve meaningful results in wider vicinities of these limits
[31].

As already declared, our approach is a mean-field-like

one. The earlier we make this kind of assumptions in thel_he parametric dependence®@fx) andS(x) onx has been
calculation, the cruder the approximation will turn out to be'\(lyritten explicitly

In _order to find the phase diagra”? in the presence of colore The Fokker-Planck equation associated to the SDE Eq.
noise we have made the mean-field approximation at som&) is
late stage, so enhancing the precision of the calculation.
However, since. this calculatipn i§ a tedious one, we shall (?tP(x,t;7)=—ax[Rl(x;7) P(x,t;?)]
first expose a simpler approximation which brings out most
qualitative results. We aim in this way to underline the 1, — —
physical origin of the results presented in Sec. IV. The dif- +5 ARG P(XEX) ], (12)
ferences arising from both calculations are pointed out there.

with drift and diffusion coefficients given bj33]

S(x;x)=0gé, (10)

0(x;x)={1—rg[(f+A)/g]'} . (12)

A. A simpler approach

— 1
The simpler mean-field approximation follows closely Ri(x;x)=Q+ Z(SZ)', (13
Curie-Weiss’ mean-field approach to magnetism, and con-
sists in replacing the last term in EQ.) —

Ra(X; %) =S (14)
A.ER > (X=X 5 The solution of the time-independent Fokker-Planck equa-
=g 2 (5%) 6 T . - .
jen(i) tion leads to the stationary probability density
with — X 2Ry(X;X) = dyrRp(X';X)
_ PSt(x;x)=Nlex;{J' dx’ 1(XX) p— 2(X5%) ,
Ai=D(x=Xi), (6) 0 Ra(X";x)

(15
where x is a parameter that will be determined self-
consistently. In other words, thshort-rangeg interactions
are substituted by a time- and space-independent “external'th ic d q Rf R —
field whose valuelepends on the statef the system. Since '€ Parametric dependenceRf, Ry, onx. - .
in this approximation Eq(1) gets immediately decoupled, The value of?< arises from a self-consistency relatlo_n,
there is no use in keeping the subindend we may refer to ONce we equate it to the average value of the random variable
the systems in Eq$1) and (4) as if they were single equa- Xi in the stationary state
tions. Hereafter, the primes will indicate derivatives with re- o . o o
spect tox (clearly A’ = —D). x=<x>zf dx xPPY(x;x)=F(x). (16)

If we take the time derivative of Eq1), replace firsty in o
terms of » and & from Eq. (4) and theny in terms ofx and  As in the known Curie-Weiss mean-field approach, the con-
x from Eqg.(1), we obtain the followingnon-MarkovianSDE:  dition

7'(5'(—9—5(2>=—(1—T
g

+ . 7 . e

79¢ @ allows us to find the transition line between the ordered and
The aforementioned UCNA allows us to recover a Markov-the disordered phases. Here al6¢x) is a smooth odd func-
ian SDE: for our particular problem it amounts, on one handtjon such that Eq(16) has always a root at=0 and for

to a usual adiabatic eliminatiomamely, neglecting) and,  dF/dxJ;_,>1 it has two nontrivial roots which differ only
on the other, to negleof® so that the system’s dynamics be in sign. The condition Eq(17) thus reads

N being its norm. The partial-derivative notation in Eq.
(15—as in Egs(18) and(19) below—is only a reminder of

!

(f+K)'—%(f+K) d

5(+(f+K) d_E‘ =1 17
X —
x=0
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* X ! 2R, —d.R 2R,—d.R
J\/‘1J dx XJ dx’ex fx dx— 22 L X2
— 0 0 R2 Rz

=1, (18

where Bi=D 76, (25)
0 x  2R;—duR, have been defined in order to simplify the notation. Note that
N= fﬁxdxex J'de R, - (19 although only the dependence uprnhas been made ex-
x=0 plicit in this notation, these quantities depend aldwough

. . . Aj) on the valuex; at the neighboring sites.
Equationg(18) and(19) must be solved numerically in order Now, assuming the lattice to be isotropic, we apply to this

to find the lines in parameter space,¢,D) that separate oo, oan field-like approximatiofibut not yet the main
ordered §+0) from disordered X=0) phases. The results ong consisting inreplacingin all the functions appearing in
duce a more refined approach in which the mean-field apya|ye y . Through this procedure one reduces the number of
proximation is made at a later stage in the calculation. different coupled SDE'’s to 2: one for=x; and another for

its nearest neighbor variabje=y;. These are

B. A more refined approach

As we shall see, the relations obtained with this more a=ha+Gants, (26)
sc.)ph|s.t|cated approach are similar to EQ:SS)—(lE), but where a sum over the valuasy is implied for the indices
with different expressions for the functior?,(x;x) and 5 1 and the noise variables satisfig.(t) &(t')) = S.p0(t

Rz(x;;). The idea here is totroduce firstthe UCNA, with-  —t")_ If, similarly as before, we define
out yet resorting to the mean-field approximation. In the fol-

lowing, A; has the same meaning as in and, as it g (f()+D(y=x)|]"*
9. & 11as the same meaning as n &9 o(x,y)= 1—rg<x>—(— . @
occurred previously withA’, it satisfiesA;=—D. Note IX g(x)
however that whereas fdt=f(x;) andg;=g(x;) the prime
has the meaning of a total derivative with respecktp for Q(x,y)=[f(x)+D(y—x)]16(x,y), (28)
A/ and all the functions involving them, its meaning is really
that of apartial derivative with respect t@; . Proceeding as S(x,y)=ag(x) 0(x,y), (29)
before, i.e. taking the time derivative of Eq4) and using B
Egs.(1) and(4) to eliminate they's in favor of thex’s and B(xy)=7Do(Xy), (30
's, we obtain the following system on Markovia _
N g system of " AY) =[1- By By 0] 1=A(yx), (3D
.9l fi+A) '] and write§=y if a=x and vice versa, then the explicit
T( Xi— g—X,2 = —[1— Tgi(T) Xi+(fi+A))+ 09§ forms of the functions in E(26) are
I I
Dr « . h.=AxY)[Q(a,a)+B(a,a)Qaa)] (32
> Xj . (20
2d &Gy and
The UCNA proceeds here through the neglect,aind of gab:A(x,y)s(a,E) if b=a, (33
(x;)?, so retrieving dinear equation in thec's (but of course L .
not in thex’s), which can be rewritten as =A(x,y)B(a,a)S(a,a) if b=a.
(34)
. fi+Ai -1 DT . i i . i i
Xi=|1—-71g;| —— (fi+A)+009ié+ = E X; The bivariate Fokker—Planck equation associated with Eq.
9i 2d j Enc (26) is
[Q+SEl b D k. (21) L
' Yooad &y ! P =—0d5(RyP) + Eaaab(RabP)v (35
Here the quantities whereP=P(x,y;t). According to standard techniquEs3],
— the drift and diffusion coefficients are given respectively by
Oi=[1-rg;(fi+A;/g) "], (22
1
Qi=(f,+A)6, (23) Ra(X,y)=hat 5 9bcdb(Jac), (36)

S=o4g6;, (24 Ran(X,¥) =0acObe - (37)
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Since the denominators occurring in these equations may 200—— T
become zero for some values gfor y, we resort to an
interpolation procedurganalogous to the one used in Refs. L 1
[26,31)) consisting in replacing the expressidBl) for

A(x,y) by 150

_ 1=BXY)B(Y.X)
1+ B(x,Y)?B(y,x)?

A(X,Y) (39)

D (arb. units)
—
=)
s}
1

SinceB(x,y) is proportional tor, it follows that the expres-
sion in Eq.(31) coincides with the interpolated one, E§8),
as7—0 andr— o (the latter limit meaning indeed+ com-
parable with the ‘deterministic’ time scaleg” 50

By integrating the bivariate Fokker-Planck E&5) with
respect toy we obtain a single-variable equation, which in
the stationary case reads

0 2 4 6 8 10

1
0=~ (RP*)+ E(yi(RZPSt)’ (39 o (arb. units)
ot ot ) ) FIG. 1. Phase diagram in the-D plane, for different values of
whereR; P andR,P*" are functions of only: 7 (1) 7=0: (2) 7=0.015:(3) 7=0.03; (4) 7=0.05;(5) 7=0.1; (6)
7=0.123. The ordered phase exists omgide the corresponding
* curves.
RlPStEJ dy PPY(x,Y)R(X,y), (40)
Ry(x;X)=(f+A)+ a>x{g[1+ 7(f+A) ]+ r(f+A)},
o (44
R,P®'= f dy PYOGY) Rl X,Y). (41)
Ro(x;x)={ag[ 1+ 7(f+A) ]} (45)

Here it is when we resort to thmain mean-field-type
approximation resembling the Curie-Weiss’ type of ap- IV. THE RESULTS
proach used in Ref[10]: assuming P'(x,y)~PS{(x)d(y

— A. Ph di
—X), Ry andR;, in Egs.(40) and(41) are approximated by ase diagram

In the following we shall describe the results obtained
R —R (X_—) (42) through the numerical solution of Eq&l8) and (19) in the
17 A more refined approach, i.e., wilty andR, as prescribed by
Egs.(42) and(43). We shall also compare these results with
R,= Ry (X;X). (43)  the ones arising from Eq$13) and(14), and with a pertur-
bative expansion for sma#. Figures 1-3 are, respectively,
the projections onto the-D, 7-o, and 7-D planes, of cuts
of the boundary separating the ordered and disordered phases
performed at fixed values of the remaining parameters.

In this way, from the stationaryoint probability density
function PSY(x,y) we retrieve areffectivesingle-variable one

Stry - H H . .

zriéi)r({g;()fr\clyv:"noég.(%);?Ezstﬁgr;;%tg;rzsinB&E(cl;(i;)). ?E(;I?/za(l)ljlexéf _ Let us first concentrate on Fig. 1: it_ corresponds to F?g. 1
- i ) . in Ref. [29], but is the result of an improved calculation
x follows again from a self-consistency relation such as Edpased on the more refined mean-field approach described in
(16). The procedure to find the phase diagram is the same a$g¢ ||| B. The novelty is that, at least fernot too small, it
in the foregoing subsection and the explicit expression of thes 14\ evident that the region available to the ordered phase
conditiondF/dx|5,_o=1 is given by Eqs(18) and(19), this  is bounded The noteworthy aspects are the following.
time in terms of the correspondiri®y , R, given by Eqs(42) (A). As in the white-noise case=0 (Refs.[10,11]), the
and (43). ordering phase transition igentrant with respect to: for a

As discussed in Ref29], although the kind of approxi- range of values ob that depends om, ordered states can
mation leading to Eq(38) is not of a perturbative nature, it only exist within a window[ o ,0,]. The fact that this win-
has provided sound results in the cases analyzed heretofofigw shifts to the righfor small - means that, for fixed,
[26,31]. Nonetheless, for the sake of comparison we haveolor destroysorder just abover; but createsit just above
also adapted to the case of a multiplicative noise a knowny,.
perturbative proceduri34]. Within this context, the expres- (B). For fixed o>1 andr#0, ordered states exisnly
sions for Ry(x;x) and R,(x;x) come from a consistent within a windowof values forD. Thus the ordering phase
small-r expansion of a Fokker-Planck equatidtgs.(12) or  transition isalso reentrant with respect to .DFor 7 small
(35)1: enough the maximum value @ compatible with the or-
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o {(arb. units)

0 n 1 n 1 n 1 n 1 L 1 n 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12
7 (arb. units)

FIG. 2. Phase diagram in the o plane, for different values of

D: (1) D=20;(2) D=32;(3) D=45. The ordered phase exists only
insidethe corresponding curves.

dered phase increases rather steeply witheaching a maxi-
mum aroundo~5 and then decreases gently. Fe#0.1 it

becomes evider(in the ranges ob ando analyzed that the
region sustaining the ordered phaselssed and shrinks to
a point for a value slightly larger thar= 0.123.

(C). For fixed values oftr>1 andD larger than its mini-
mum for =0, the systenalwaysbecomes disordered for
large enough. The maximum value otonsistent with order
altogether corresponds to~5 andD~32. In other words,
ordering is possiblenly if the multiplicative noise inducing
it has short memory.

100

D (arb. units)

O n n n
0.00 0.02 0.04 0.06 0.08 0.10 0.12
© (arb. units)
FIG. 3. Phase diagram in theD plane, for different values of

o (1) 6?=10; (2) 6°=20; (3) 6>=30; (4) ¢>=50. The ordered
phase exists onlinsidethe corresponding curves.

o (arb. units)

0 I
0.00 0.02 0.04 0.06 0.08 0.10 0.12
T (arb. units)

FIG. 4. Comparison between the simpler mean-field approach
(solid line) and the refined oné&ots in the 7-o plane, forD =20
(lower two curveg andD =45 (upper two ones Not only does the
simpler approach tend to overestimate the size of the ordered re-
gion, but it even predicts unbounded ordered regions for some val-
ues ofD.

(D). The fact that the region sustaining the ordered phase
finally shrinks to a point means that even for that small re-
gion in theo—D plane for which order is induced by color, a
further increase inr destroys it. In other words, the phase
transition isalso reentrant with respect ta@. For D large
enough there may exist evéwo such windows.

Some of the features just described become more evident
by looking at Fig. 2: the existence of a maximum correlation
time consistent with ordering for each value®f(occurring
for an optimal value ofr) (C); the ordering ability(A) of a
very small amount of color foror>0o,(D) [o5(7,D) in-
creases very rapidly at fifstand the reentrance with respect
to 7 and even the occurrence ofdaublereentrance foD
large enoughD). Figure 3 represents another way of seeing
the reentrance with respect  for constanto (large
enough and the fact that there exists a maximuneonsis-
tent with order for each value af (it being largest foro
~5). The scarce dependence Bf on 7 in the lower
branch—as well as its almost linear dependencesenis
easily understood by looking at the rightmost branch of Fig.
1.

In Figs. 4—6 we compare the results just shown—obtained
as we said using the more refined approach of Sec. Ill B—
with the ones arising from the simpler offeec. Il A). Fig-
ure 4 corresponds to Fig. 2, whereas Figs. 5 and 6 focus
respectively on the=0.03 andr=0.015 curves in Fig. 1.
Not only does the simpler approachrossly overestimate
the size of the ordered region but also—as one may infer
from Figs. 4 and 5—it seems to predict unbounded ordered
regions.

Figure 6 corresponds to a rather small valuerofo that
a comparison with the results obtained by using expressions
(44) and (45) makes sense. Far and D small enough the
curves almost coincide. As it is well known, the simulta-
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150

-

o

o
T

D (arb. units)

50 -

FIG. 5. Comparison between the two mean-field approaches in
the o-D plane, forr=0.03. Solid line: simpler one; dots: refined

one.

neous consideration of smatland larges cannot be done
independentlyf23—29. In the present case, a similar effect
arises when we consider large valueshfas we discuss
below. Hence, in order to consider larger valuesraindD,
one should takextremely lowalues ofr. As Fig. 6 shows,

o (arb. units)

0.8 T T T T T T

©
~
T

m (arb. units)

0.0

o (arb. units)

FIG. 7. Order parametan vs o, for D=20 and four values of
7. (1) 7=0.015;(2) 7=0.05;(3) 7=0.06;(4) 7=0.07.

already for =0.015 there is an apparent discrepancy be{A) and(C) and shown in Fig. 1, we see that asncreases
tween the perturbative results and the mean-field ones evdéhe window ofo values where ordering occurs shrinks until

for not so large values of andD. The noteworthy fact is

it disappears. One also notices that at least for Ehighe

that the perturbative expansion also tends to indicate the exalue of o corrresponding to the maximum order parameter

istence of a reentrance with respectio

The order parameter in this systemmis=|x|, namely, the
positive solution of the consistency equati@ee Eq(16) in
Sec. lll A]. In Fig. 7 we plotmvs o for D= 20 and different

B. Order parameter

varies very little withr. Figure 8 is a plot ofm vs 7 for D
=45 and two values otr (=7.07 and~8.94) that illus-
trates the case of double reentrancer.in

Since the previous results have been obtained in the
mean-field approximation, we have also performed numeri-
cal simulations in order to have an independent check of the
predictions. As a representative example—corresponding to

values of . Consistently with what has been discussed inthe phenomenoiB) above (the destruction of the ordered

60

N
o
T

D (arb. units)

n
[=)
T

2
o (arb. units)

1.4

1.2

m (arb.units)

0.4

0.2

| 2
0.0 I R T B N 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12
< (arb. units)

FIG. 6. Comparison between the two mean-field approaches and

with a perturbative expansion in tlke D plane, forr=0.015. Solid

FIG. 8. Plot ofm vs 7 for D=45, showing cases of double

line: simpler MF; dotted line: refined MF; dashed line: perturbative.reentrance(1) ¢®>=50; (2) o-*= 80.
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()= = a(x)

one finds thar<<0. We then see that the triviédisordered
solution (x)=0 is stable only fora>0. For «<0 other
stable solutions witl{x) # 0 appear, and the system develops
order through a genuinphasetransition. In this case(x)
can be regarded as tlweder parameterin the white noise
limit 7=0 this is known to be the case for sufficiently large
values of the couplin@® and for a window of values for the
noise amplituder e[ o4,05].

We discuss now how the stability of the ordered phase is
altered by nonzero values of If we linearize Eq(47) using

the expression oR;(x,x) from Eq. (13), we obtain

(48)

_(1+7+7D)*—0?*(1-37+27D)
(1+ 7+ 7D)° '

(%

(49

predictions of the more refined mean-field approach together with
results coming from a numerical integration of the original SDE'’s, If we use instead Eq42), the result can be written exclu-

Eq. (D).

phase by an increasing coupling constdhj—we plot
jointly in Fig. 9, for rather small values of(=2) and 7

(=0.01), theD dependence of the order parameter as pre-
dicted by our mean-field approach and as resulting from a .

numerical integration of the original SDE’s, E¢l). We

sively in terms of7D:

,B(7D)

have taken three different lattice sizes in order to assess

finite-size effects. As we see, the numerical simulatidos
predict the disordering for large enoudh and even the

maximum ordering occurs in a region which is consistent

a=1l—-o0 A(D) (50)

with
A(X)=1+5x+8x?+3x3—3x*—x>+2x5+x’, (51
B(x)=1+3x+x%—5x3—3x*+3x°+x5, (52)

with the mean-field prediction. This comparison warns us,
however, that the mean-field approximation can severely urso the instability occurs at?=A/B. Now, the ratioB/A

derestimate the size of the ordered region.
The short-time evolutiorof (x) can be obtained multiply-
ing Eq.(12) by x and integrating:

d ® _ _
%= f ocdx R (X;X)P(x,t;X).

(46)

keeps always below 1 in the positive range, has a minimum
of ~0.05 at7D~1.09 and a maximum of-0.36 at 7D
~2.33. If we consider, e.g., the conditions in Figinamely,
7=0.03) and tak® large enough so thatD >2.33, one can
see that Eq(50) approximates the left boundary better than
Eq. (49) does. In the limitr<1 (but still finite) Eq. (50) can

be approximated to the expression reported in R28],

Let us assume an initial condition such that at early timesiamely,

P(x,t~0;x)=8(x—x). Equatingx=(x) as before, we ob-
tain

d(x)
Tt

Rl(X!X) (47)

[again, we can use fdR; the result Eq(13) of the simple
approximation or the more elaborate one given by @g)].
The numerical solution of Eq47) has an initialrising pe-
riod (it is initially unstable reaching very soon a maximum
and tending to zero afterwards.

For D/o?—, Eq. (47) results to be valid also in the
asymptotic regimeince PSY(x) = §(x—x) [11]. In Ref.[11]
an equivalent equation is obtained in the 0 case forboth
limits (D=0 and D/ 0>— ) being there interpreted in terms
of a “freezing” of the short-time behavior. According to this
criterion, in the D/g?— limit the system undergoes a
second-order phase transitidh the corresponding zero-
dimensional model presengslinear instability in its short-
time dynamicsi.e., if after linearizing Eq(47):

1+ 7D—o?
=5 (53

It is worthwile to stress the fagevident from Eqs(49), (50),
and(53)] that the value oD has no effect on thication of
the instability by itself, but only through the combination
7D: according to Eq(53) the stable phase is the disordered
one (x)=0) for 1+ 7D>0o? (since@>0) and the ordered
one (x)#0) for 1+ rD<c? In summary, whereas the
noise intensityo has a destabilizing effect on the disordered
phase, as soon as*0 the spatial couplind tends tosta-
bilize it. For 7=0 the last effect is not present, being then
o>1 the condition for orderin§l0,11]. Considering that the
effect of even a tiny correlation is enhanced Dy we can
understand the abrupt change in sléfpem negative to posi-
tive) shown in Fig. 1 as soon as#0. Note the approxi-
mately inverse relation betweenandD for fixed o on the
upper branches of Fig. 3, even when ) is strictly valid

for D/g?—oo.
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V. CONCLUSIONS The example worked throughout this paper shows vividly

This work has focused on the effects of a seIf-correIationthe fact that the conceptual inheritance from equilibrium

in the multiplicative noise, on the reentrant noise_induce&hermodynamps{thpugh often usefml!s not always_ appli-
phase transition introduced in RELOJ. Whereas in a recent cable. The equilibrium-thermodynamic lore would induce us

paper we have reported the most relevant re§ali it has  t© think that asb—c an ordered situation is favored].
been our purpose in the present work to expose in morélthough this is certainly true for the Curie-Weiss model
detail the techniques and the approximations employed. Wesince in that case the deterministic potential is itself bistable
also discuss more thoroughly the results, adding new figure&nd an increase of spatial coupling has the effect of raising
and enriching the contents of others. the potential barrier between the stable statéss notin the
Through the use of the UCNA we recovered a Markoviancase we are dealing with, since the deterministic potential is
behavior for the system, and through an interpolation schem@onostable Hence, it is the combined effects of the multi-
similar to the one introduced in Rdf31] we resolved inde- plicative noiseand the spatial coupling that induce the tran-
terminacies in the equations describing it. We stress that thsition.
equations resulting from this interpolation scheme extact As a summary, whereas one might say that the value of
in the limits 7=0 and7—cc. In addition to the fact that the Refs.[10,13,1] is that they tell experimentalists whenet
interpolation scheme has been already applied with success look for a noise-induced phase transiton—namely, in
in other works[26,31], the goodness of our approximations those systems which are prone to exhibit a usaro-
for small but nonetheless finite values®©has been checked dimensional noise-induced transition, and for too large
against a standard perturbative expandid4] (adapted for  nojse intensity—the present work tells moreover that, due to
multiplicative noisg. It is worth emphasizing the fact that the consideration of the more realistic colored noise source,
these approximations are, so far, twely tool available for a1 ordered phase is not to be found for large values of the
an analytical treatment of this essentially non-MarkovianSpatia| coupling either Though the specific choice of the
problem. . . ] forms for the functiong (x) andg(x) may appear to some as
The main result is that for# 0, the order established as a physically unmotivated, is up to our knowledge #implest
consequence of the multiplicative character of the noise cagne exhibiting this phenomenon. We believe nonetheless that
be destroyedby a strong enough spatial coupling. Figure 1the phenomenon is robust and transcends the specific choice
shows that for giverr (0.03 and o, the ordered phase can made in this work.
only exist between definite values &f. In particular, the The next obvious step is to consider a finite correlation
upper bound orD decreases roughly as * for given o. length in the lattice model, which requires to go beyond the

The foregoing result can be understood by recalling thaean field approach. This problem is presently being stud-
the ordered phase arises as a consequence @btlabora-  jed.

tion between the multiplicative character of the noise and the

presence of spatial coupling. The disordering effectDof

arisesonly when 7#0 (the results in Ref[11]—rightly in- ACKNOWLEDGMENTS
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