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Nonequilibrium phase transitions induced by multiplicative noise: Effects of self-correlation
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A recently introduced lattice model, describing an extended system which exhibits areentrant~symmetry-
breaking, second-order! noise-induced nonequilibrium phase transition, is studied under the assumption that
the multiplicative noise leading to the transition iscolored. Within an effective Markovian approximation and
a mean-field scheme it is found that when the self-correlation timet of the noise is different from zero, the
transition isalso reentrantwith respect to the spatial couplingD. In other words, at variance with what one
expects for equilibrium phase transitions, a large enough value ofD favorsdisorder. Moreover, except for a
small region in the parameter subspace determined by the noise intensitys and D, an increase int usually
preventsthe formation of an ordered state. These effects are supported by numerical simulations.

PACS number~s!: 05.40.2a, 47.20.Ky, 47.20.Hw
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I. INTRODUCTION

In the last few decades we have witnessed a paradigm
shift regarding the role of fluctuations, from the equilibriu
picture of merely being aN21/2 perturbation on thermody
namic averages—or triggering at most phase transitions
tween well defined minima of the free energy@1#—to lead a
host of new and amazing phenomena in far from equilibri
situations. As examples we may cite noise-induc
unimodal-bimodal transitions in some zero-dimensio
models@2#, stochastic resonance in zero-dimensional and
tended systems@3,4#, noise-induced spatial patterns@5#,
noise-delayed decay of unstable states@6#, ratchets@7#, shifts
in critical points@8#, etc. An attempt to find a noise-induce
phasetransition that preceded in almost a decade recent s
ies is the work in Ref.@9#, resulting in a ‘‘no-go’’ theorem
for the existence of such a transition in a system of Ito-l
differential equations withlinear drift and multiplicative
noise.

Recently it has been shown that a white and Gaus
multiplicativenoise can lead anextendeddynamical system
~fulfilling appropriate conditions! to undergo aphasetransi-
tion towards anordered state, characterized by a nonze
order parameter and by the breakdown of ergodicity@10#.
This result—first obtained within a Curie-Weiss-like mea
field approximation, and further extended to consider
simplest correlation function approach—has been confirm
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through extensive numerical simulations@11#. In addition to
its critical nature as a function of the noise intensitys, the
newly found noise-induced phase transition has the notew
thy feature of beingreentrant: for each value ofD above a
threshold one, the ordered state exists only inside a wind
@s1 ,s2#. At variance with the known case ofequilibrium
order-disorder transitions that are induced~in the simplest
lattice models! by the nearest-neighbor coupling constantD
and rely on the bistability of the local potential, the transiti
in the case at hand is led by thecombined effectsof D ands
through the nonlinearities of the system. Neither the ze
dimensional system~corresponding to theD50 limit! nor
the deterministic one (s50) show any transition.

This counterintuitive ordering role of noise has also be
found afterwards in different models in the literature@12–
18#. In Refs. @12,13#, the authors study a noise-induced r
entrant transition in a time-dependent Ginzburg-Land
model with both additive and multiplicative noises. Refe
ence @14# introduces another simple model with a pure
multiplicative noise, which also presents a noise-induced
entrant transition. This reference also gives evidence that
universality class of its critical behavior is that of themulti-
plicative noise@19,20# ~see also Ref.@21# for a discussion of
the universality class of these models!. In Refs. @15,16#, a
first-order phase transition induced by noise is obtained
system of globally coupled oscillators. A similar first-ord
phase transition is also found in Ref.@17#. Finally, Ref.@18#
addresses the role of multiplicative noise in the context
phase-separation dynamics.

Although for the sake of mathematical simplicity all the
references~in particular, Refs.@10,11#! studied only the
white-noise case~the only exception is Ref.@18# in which
colored noise in space, white in time, is considered! it is
expected that, because of their nature, fluctuations cou
223 ©2000 The American Physical Society
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224 PRE 61MANGIONI, DEZA, TORAL, AND WIO
multiplicatively to the system will show some degree
time-correlation or ‘‘color’’ @2,22–25#, and hence new ef
fects may arise from this fact. For example, a reentrant
havior has been found recently as a consequence of col
a noise-induced transition@26# and an ordering nonequilib
rium phase transition can be induced in a Ginzburg–Lan
model by varying the correlation time of the additive noi
@27,28#. Thus motivated, we have studied the consequen
of a finite ~but still very short as compared with the ‘‘dete
ministic’’ or coarse-grained time scales! self-correlation time
t of the multiplicative noise in systems of this kind. We no
recall some of the new effects that emerge in this color
noise case, which have been briefly reported in a recent w
@29#.

Our main finding is that, as a consequence of the mu
plicative character of the noise, a strong enough spatial c
pling D leads invariably~for t.0) to a disorderedstate,
contrary to what would be expected to happen in equilibri
statistical-mechanical models.

Another important result is that, except for large values
s andvery smallvalues oft, color has aninhibiting role for
ordered states. Moreover, there exists afinite and not very
large value oft beyond which order is impossible.

These results represent a major departure from what
can expect on the basis of equilibrium thermodynamics,
cording to which one should tend to think that asD→` an
orderedsituation is favored. Whereas that ‘‘intuitive’’ notio
remains valid if the multiplicative noise that induces the no
equilibrium ordering phase transition is white@10,11#, it
ceases to be so fort.0. In the former case, the results cou
be interpreted in terms of a ‘‘freezing’’ of the short-tim
behavior by a strong enough spatial coupling: forD/s2

→`, the stationary probability distribution could be consi
ered to bed-like, just as the initial one. In our case, a
analysis of the short-time behavior of the order paramete
to first order int reveals that the disordering effect ofD can
only be felt fornonzeroself-correlation time. Ast increases,
the minimum value ofD required to stabilize the disordere
phase decreases and the region in parameter space ava
to the ordered phase shrinks until it vanishes. Thus, the f
going results can only be interpreted once we recall that
ordered phase arises from the cooperation oftwo factors: the
presence of spatial couplingand the multiplicative characte
of the noise~which may eventually lead to ‘‘counterintui
tive’’ results!.

It is our purpose in this work to render an explicit accou
of our calculation and, at the same time, to expose and
discuss the results more thoroughly. After presenting
model in Sec. II, we begin Sec. III by introducing the a
proximations needed to render the problem accessible
mathematical analysis. We resort to a mean-field approxi
tion such as that in Refs.@10,11# and to a ‘‘unified colored
noise approximation’’~UCNA! @30,31#, devised to deal with
self-correlated noises. In Sec. III A a simplified treatme
using the aforementioned approximations is given and
Sec. III B we expose the more sophisticated approach
was actually used to obtain the phase diagrams. In this
proach the UCNA is complemented with an appropriate
terpolation scheme@31#. In Sec. IV we expose and discus
the results obtained within the last approach, comparing
phase diagram with the ones arising from the simplified
e-
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proach and~for t.0) from a perturbative expansion, and th
D dependence of the order parameterm for nonzerot with a
numerical simulation@29#. A final discussion of the approac
and its results is made in Sec. V.

II. THE MODEL

The model under consideration has been introduced
Refs.@10,11,29#: a d-dimensional extended system of typic
linear sizeL is restricted to a hypercubic lattice ofN5Ld

points, whereas time is still regarded as a continuous v
able. The state of the system at timet is given by the set of
stochastic variables$xi(t)% ( i 51, . . . ,N) defined at the sites
r i of this lattice, which obey a system of coupled ordina
stochastic differential equations~SDE’s!

ẋi5 f ~xi !1g~xi !h i1
D

2d (
j Pn( i )

~xj2xi ! ~1!

~throughout the paper, the Stratonovich interpretation for
SDE’s will be meant!. Equation~1! is the discrete version o
thepartial SDE which in the continuum would determine th
state of the extended system: we recognize in the first
terms the generalization of Langevin’s equation for sitei to
the case of multiplicative noise (h i is the colored multipli-
cative noise acting on siter i). For the specific example ana
lyzed in Ref.@10#, perhaps the simplest one exhibiting th
transition under analysis~see, however, Ref.@14#!,

f ~x!52x~11x2!2, g~x!511x2. ~2!

The last term in Eq.~1! is nothing but the lattice version o
the Laplacian¹2x of the extended stochastic variablex(r ,t)
in a reaction-diffusion scheme.n( i ) stands for the set o
nearest neighbors in ad-dimensional square lattice (2d) sites
which form the immediate neighborhood of the siter i , and
the coupling constantD between neighboring lattice sites
the diffusion coefficient.

As previously stated, it is our aim in this work to inve
tigate the effects of the self-correlation timet of the multi-
plicative noise on the model system just described. To t
end we must assume a specific form for the noises$h i%: we
choose Ornstein-Uhlenbeck noises, i.e., Gaussian distrib
stochastic variables with zero mean and exponentially dec
ing correlations

^h i~ t !h j~ t8!&5d i j ~s2/2t!exp~2ut2t8u/t!. ~3!

They arise as solutions of anuncoupledset of Langevin
SDE:

tḣ i52h i1sj i , ~4!

where the$j i(t)% are white noises—namely, Gaussian s
chastic variables with zero mean andd correlated:
^j i(t)j j (t8)&5d i j d(t2t8). For t→0, the Ornstein-
Uhlenbeck noiseh i(t) approaches the white-noise lim
j i

W(t) with correlations ^j i
W(t)j j

W(t8)&5s2d i j d(t2t8),
which was the case studied in Refs.@10,11#.
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III. THE APPROXIMATIONS

The non-Markovian character of the process$xi% ~due to
the presence of the colored noise$h i%) makes it difficult to
study. However, some approximations have been dev
which render aMarkovianprocess that—whereas nicely sim
plifying the treatment—can still capture some of the ess
tial features of the complete non-Markovian one. The afo
mentioned UCNA is one of them: in fact a very reliable on
because of its ability to reproduce the small- and largt
limits @30#. By resorting to interpolation schemes, one c
retrieve meaningful results in wider vicinities of these lim
@31#.

As already declared, our approach is a mean-field-
one. The earlier we make this kind of assumptions in
calculation, the cruder the approximation will turn out to b
In order to find the phase diagram in the presence of colo
noise we have made the mean-field approximation at s
late stage, so enhancing the precision of the calculat
However, since this calculation is a tedious one, we s
first expose a simpler approximation which brings out m
qualitative results. We aim in this way to underline t
physical origin of the results presented in Sec. IV. The d
ferences arising from both calculations are pointed out th

A. A simpler approach

The simpler mean-field approximation follows close
Curie-Weiss’ mean-field approach to magnetism, and c
sists in replacing the last term in Eq.~1!

D i[
D

2d (
j Pn( i )

~xj2xi ! ~5!

with

D̄ i[D~ x̄2xi !, ~6!

where x̄ is a parameter that will be determined self-
consistently. In other words, the~short-ranged! interactions
are substituted by a time- and space-independent ‘‘extern
field whose valuedepends on the stateof the system. Since
in this approximation Eq.~1! gets immediately decoupled
there is no use in keeping the subindexi and we may refer to
the systems in Eqs.~1! and ~4! as if they were single equa
tions. Hereafter, the primes will indicate derivatives with r
spect tox ~clearly D̄852D).

If we take the time derivative of Eq.~1!, replace firstḣ in
terms ofh andj from Eq. ~4! and thenh in terms ofẋ and
x from Eq.~1!, we obtain the followingnon-MarkovianSDE:

tS ẍ2
g8

g
ẋ2D52S 12tF ~ f 1D̄ !82

g8

g
~ f 1D̄ !G D ẋ1~ f 1D̄ !

1sgj. ~7!

The aforementioned UCNA allows us to recover a Marko
ian SDE: for our particular problem it amounts, on one ha
to a usual adiabatic elimination~namely, neglectingẍ) and,
on the other, to neglectẋ2 so that the system’s dynamics b
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governed by a Fokker-Planck equation@32#. The resulting
equation, beinglinear in ẋ ~but of course not inx), can be
immediately solved forẋ giving

ẋ5Q~x; x̄!1S~x; x̄!j, ~8!

with

Q~x; x̄![~ f 1D̄ !u, ~9!

S~x; x̄![sgu, ~10!

u~x; x̄![$12tg@~ f 1D̄ !/g#8%21. ~11!

The parametric dependence ofQ(x) andS(x) on x̄ has been
written explicitly.

The Fokker-Planck equation associated to the SDE
~8! is

] tP~x,t; x̄!52]x@R1~x; x̄!P~x,t; x̄!#

1
1

2
]x

2@R2~x; x̄!P~x,t; x̄!#, ~12!

with drift and diffusion coefficients given by@33#

R1~x; x̄!5Q1
1

4
~S2!8, ~13!

R2~x; x̄!5S2. ~14!

The solution of the time-independent Fokker-Planck eq
tion leads to the stationary probability density

Pst~x; x̄!5N 21expF E
0

x

dx8
2R1~x8; x̄!2]x8R2~x8; x̄!

R2~x8; x̄!
G ,

~15!

N being its norm. The partial-derivative notation]x8 in Eq.
~15!—as in Eqs.~18! and~19! below—is only a reminder of
the parametric dependence ofR1 , R2, on x̄.

The value of x̄ arises from a self-consistency relatio
once we equate it to the average value of the random vari
xi in the stationary state

x̄5^x&[E
2`

`

dx xPst~x; x̄![F~ x̄!. ~16!

As in the known Curie-Weiss mean-field approach, the c
dition

dF

dx̄
U

x̄50

51 ~17!

allows us to find the transition line between the ordered a
the disordered phases. Here also,F( x̄) is a smooth odd func-
tion such that Eq.~16! has always a root atx̄50 and for
dF/dx̄u x̄50.1 it has two nontrivial roots which differ only
in sign. The condition Eq.~17! thus reads
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N 21E
2`

`

dx xE
0

x

dx8expF E
0

x8
dx9

2R12]x9R2

R2
G] x̄S 2R12]x8R2

R2
D U

x̄50

51, ~18!
r
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by
where

N5E
2`

`

dx expF E
0

x

dx8
2R12]x8R2

R2
GU

x̄50

. ~19!

Equations~18! and~19! must be solved numerically in orde
to find the lines in parameter space (s,t,D) that separate
ordered (x̄Þ0) from disordered (x̄50) phases. The result
of this calculation will be shown in Sec. V. Next, we intro
duce a more refined approach in which the mean-field
proximation is made at a later stage in the calculation.

B. A more refined approach

As we shall see, the relations obtained with this mo
sophisticated approach are similar to Eqs.~15!–~19!, but
with different expressions for the functionsR1(x; x̄) and
R2(x; x̄). The idea here is tointroduce firstthe UCNA, with-
out yet resorting to the mean-field approximation. In the f
lowing, D i has the same meaning as in Eq.~5! and, as it
occurred previously withD̄8, it satisfiesD i852D. Note
however that whereas forf i[ f (xi) andgi[g(xi) the prime
has the meaning of a total derivative with respect toxi , for
D i8 and all the functions involving them, its meaning is rea
that of apartial derivative with respect toxi . Proceeding as
before, i.e. taking the time derivative of Eqs.~1! and using
Eqs.~1! and ~4! to eliminate theh ’s in favor of thex’s and
j ’s, we obtain the following system of~non Markovian!
SDE’s:

tS ẍi2
gi8

gi
ẋi

2D 52F12tgi S f i1D i

gi
D 8G ẋi1~ f i1D i !1sgij i

1
Dt

2d (
j Pn( i )

ẋ j . ~20!

The UCNA proceeds here through the neglect ofẍi and of
( ẋi)

2, so retrieving alinear equation in theẋ’s ~but of course
not in thex’s!, which can be rewritten as

ẋi5F12tgi S f i1D i

gi
D 8G21F ~ f i1D i !1sgij i1

Dt

2d (
j Pn( i )

ẋ j G
5@Qi1Sij i #1

b i

2d (
j Pn( i )

ẋ j . ~21!

Here the quantities

u i[@12tgi~ f i1D i /gi !8#21, ~22!

Qi[~ f i1D i !u i , ~23!

Si[sgiu i , ~24!
p-

e

-

b i[Dtu i ~25!

have been defined in order to simplify the notation. Note t
although only the dependence uponxi has been made ex
plicit in this notation, these quantities depend also~through
D i) on the valuesxj at the neighboring sites.

Now, assuming the lattice to be isotropic, we apply to t
set a mean-field-like approximation~but not yet the main
one! consisting inreplacing in all the functions appearing in
Eq. ~21! the 2d neighborsxj of the variablexi by a common
value yi . Through this procedure one reduces the numbe
different coupled SDE’s to 2: one forx[xi and another for
its nearest neighbor variabley[yi . These are

ȧ5ha1gabjb , ~26!

where a sum over the valuesx,y is implied for the indices
a,b, and the noise variables satisfy^ja(t)jb(t8)&5dabd(t
2t8). If, similarly as before, we define

u~x,y!5F12tg~x!
]

]x S f ~x!1D~y2x!

g~x! D G21

, ~27!

Q~x,y!5@ f ~x!1D~y2x!#u~x,y!, ~28!

S~x,y!5sg~x!u~x,y!, ~29!

b~x,y!5tDu~x,y!, ~30!

A~x,y!5@12b~x,y!b~y,x!#215A~y,x!, ~31!

and write ā5y if a5x and vice versa, then the explic
forms of the functions in Eq.~26! are

ha5A~x,y!@Q~a,ā!1b~a,ā!Q~ ā,a!# ~32!

and

gab5A~x,y!S~a,ā! if b5a, ~33!

5A~x,y!b~a,ā!S~ ā,a! if b5ā.
~34!

The bivariate Fokker–Planck equation associated with
~26! is

] tP52]a~RaP!1
1

2
]a]b~RabP!, ~35!

whereP5P(x,y;t). According to standard techniques@33#,
the drift and diffusion coefficients are given respectively

Ra~x,y!5ha1
1

2
gbc]b~gac!, ~36!

Rab~x,y!5gacgbc . ~37!
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Since the denominators occurring in these equations
become zero for some values ofx or y, we resort to an
interpolation procedure~analogous to the one used in Re
@26,31#! consisting in replacing the expression~31! for
A(x,y) by

A~x,y!5
12b~x,y!b~y,x!

11b~x,y!2b~y,x!2
. ~38!

Sinceb(x,y) is proportional tot, it follows that the expres-
sion in Eq.~31! coincides with the interpolated one, Eq.~38!,
ast→0 andt→` ~the latter limit meaning indeed ‘‘t com-
parable with the ‘deterministic’ time scales’’!.

By integrating the bivariate Fokker-Planck Eq.~35! with
respect toy we obtain a single-variable equation, which
the stationary case reads

052]x~R1Pst!1
1

2
]x

2~R2Pst!, ~39!

whereR1Pst andR2Pst are functions ofx only:

R1Pst[E
2`

`

dy Pst~x,y!Rx~x,y!, ~40!

R2Pst[E
2`

`

dy Pst~x,y!Rxx~x,y!. ~41!

Here it is when we resort to themain mean-field-type
approximation, resembling the Curie-Weiss’ type of ap
proach used in Ref.@10#: assuming Pst(x,y)'Pst(x)d(y

2 x̄), R1 andR2 in Eqs.~40! and ~41! are approximated by

R15Rx~x; x̄!, ~42!

R25Rxx~x; x̄!. ~43!

In this way, from the stationaryjoint probability density
functionPst(x,y) we retrieve aneffectivesingle-variable one
Pst(x; x̄) whose expression in terms ofR1(x; x̄) andR2(x; x̄)
arising from Eq.~39! is the same as in Eq.~15!. The value of
x̄ follows again from a self-consistency relation such as
~16!. The procedure to find the phase diagram is the sam
in the foregoing subsection and the explicit expression of
conditiondF/dx̄u x̄5051 is given by Eqs.~18! and~19!, this
time in terms of the correspondingR1 , R2 given by Eqs.~42!
and ~43!.

As discussed in Ref.@29#, although the kind of approxi-
mation leading to Eq.~38! is not of a perturbative nature,
has provided sound results in the cases analyzed heret
@26,31#. Nonetheless, for the sake of comparison we h
also adapted to the case of a multiplicative noise a kno
perturbative procedure@34#. Within this context, the expres
sions for R1(x; x̄) and R2(x; x̄) come from a consisten
small-t expansion of a Fokker-Planck equation@Eqs.~12! or
~35!#:
ay

.

.
as
e

ore
e
n

R1~x; x̄!5~ f 1D̄ !1s2x$g@11t~ f 1D̄ !8#1t~ f 1D̄ !%,
~44!

R2~x; x̄!5$sg@11t~ f 1D̄ !8#%2. ~45!

IV. THE RESULTS

A. Phase diagram

In the following we shall describe the results obtain
through the numerical solution of Eqs.~18! and ~19! in the
more refined approach, i.e., withR1 andR2 as prescribed by
Eqs.~42! and~43!. We shall also compare these results w
the ones arising from Eqs.~13! and ~14!, and with a pertur-
bative expansion for smallt. Figures 1–3 are, respectively
the projections onto thes-D, t-s, andt-D planes, of cuts
of the boundary separating the ordered and disordered ph
performed at fixed values of the remaining parameters.

Let us first concentrate on Fig. 1: it corresponds to Fig
in Ref. @29#, but is the result of an improved calculatio
based on the more refined mean-field approach describe
Sec. III B. The novelty is that, at least fort not too small, it
is now evident that the region available to the ordered ph
is bounded. The noteworthy aspects are the following.

~A!. As in the white-noise caset50 ~Refs.@10,11#!, the
ordering phase transition isreentrant with respect tos: for a
range of values ofD that depends ont, ordered states can
only exist within a window@s1 ,s2#. The fact that this win-
dow shifts to the rightfor small t means that, for fixedD,
color destroysorder just aboves1 but createsit just above
s2.

~B!. For fixed s.1 andtÞ0, ordered states existonly
within a windowof values forD. Thus the ordering phas
transition isalso reentrant with respect to D. For t small
enough the maximum value ofD compatible with the or-

FIG. 1. Phase diagram in thes-D plane, for different values of
t: ~1! t50; ~2! t50.015;~3! t50.03; ~4! t50.05; ~5! t50.1; ~6!
t50.123. The ordered phase exists onlyinside the corresponding
curves.
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228 PRE 61MANGIONI, DEZA, TORAL, AND WIO
dered phase increases rather steeply withs, reaching a maxi-
mum arounds;5 and then decreases gently. Fort>0.1 it
becomes evident~in the ranges ofD ands analyzed! that the
region sustaining the ordered phase isclosed, and shrinks to
a point for a value slightly larger thant50.123.

~C!. For fixed values ofs.1 andD larger than its mini-
mum for t50, the systemalwaysbecomes disordered fort
large enough. The maximum value oft consistent with order
altogether corresponds tos;5 andD;32. In other words,
ordering is possibleonly if the multiplicative noise inducing
it has short memory.

FIG. 2. Phase diagram in thet-s plane, for different values of
D: ~1! D520; ~2! D532; ~3! D545. The ordered phase exists on
inside the corresponding curves.

FIG. 3. Phase diagram in thet-D plane, for different values of
s: ~1! s2510; ~2! s2520; ~3! s2530; ~4! s2550. The ordered
phase exists onlyinside the corresponding curves.
~D!. The fact that the region sustaining the ordered ph
finally shrinks to a point means that even for that small
gion in thes –D plane for which order is induced by color,
further increase int destroys it. In other words, the phas
transition isalso reentrant with respect tot. For D large
enough there may exist eventwo such windows.

Some of the features just described become more evi
by looking at Fig. 2: the existence of a maximum correlati
time consistent with ordering for each value ofD ~occurring
for an optimal value ofs) ~C!; the ordering ability~A! of a
very small amount of color fors.s2(D) @s2(t,D) in-
creases very rapidly at first#; and the reentrance with respe
to t and even the occurrence of adouble reentrance forD
large enough~D!. Figure 3 represents another way of seei
the reentrance with respect toD for constant s ~large
enough! and the fact that there exists a maximumt consis-
tent with order for each value ofs ~it being largest fors
;5). The scarce dependence ofD on t in the lower
branch—as well as its almost linear dependence ons—is
easily understood by looking at the rightmost branch of F
1.

In Figs. 4–6 we compare the results just shown—obtain
as we said using the more refined approach of Sec. III B
with the ones arising from the simpler one~Sec. III A!. Fig-
ure 4 corresponds to Fig. 2, whereas Figs. 5 and 6 fo
respectively on thet50.03 andt50.015 curves in Fig. 1.
Not only does the simpler approach~grossly! overestimate
the size of the ordered region but also—as one may in
from Figs. 4 and 5—it seems to predict unbounded orde
regions.

Figure 6 corresponds to a rather small value oft, so that
a comparison with the results obtained by using express
~44! and ~45! makes sense. Fors and D small enough the
curves almost coincide. As it is well known, the simult

FIG. 4. Comparison between the simpler mean-field appro
~solid line! and the refined one~dots! in the t-s plane, forD520
~lower two curves! andD545 ~upper two ones!. Not only does the
simpler approach tend to overestimate the size of the ordered
gion, but it even predicts unbounded ordered regions for some
ues ofD.
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neous consideration of smallt and larges cannot be done
independently@23–25#. In the present case, a similar effe
arises when we consider large values ofD, as we discuss
below. Hence, in order to consider larger values ofs andD,
one should takeextremely lowvalues oft. As Fig. 6 shows,
already fort50.015 there is an apparent discrepancy
tween the perturbative results and the mean-field ones e
for not so large values ofs and D. The noteworthy fact is
that the perturbative expansion also tends to indicate the
istence of a reentrance with respect toD.

B. Order parameter

The order parameter in this system ism[ux̄u, namely, the
positive solution of the consistency equation@see Eq.~16! in
Sec. III A#. In Fig. 7 we plotm vs s for D520 and different
values oft. Consistently with what has been discussed

FIG. 5. Comparison between the two mean-field approache
the s-D plane, fort50.03. Solid line: simpler one; dots: refine
one.

FIG. 6. Comparison between the two mean-field approaches
with a perturbative expansion in thes-D plane, fort50.015. Solid
line: simpler MF; dotted line: refined MF; dashed line: perturbati
-
en

x-

n

~A! and ~C! and shown in Fig. 1, we see that ast increases
the window ofs values where ordering occurs shrinks un
it disappears. One also notices that at least for thisD, the
value ofs corrresponding to the maximum order parame
varies very little witht. Figure 8 is a plot ofm vs t for D
545 and two values ofs ('7.07 and'8.94) that illus-
trates the case of double reentrance int.

Since the previous results have been obtained in
mean-field approximation, we have also performed num
cal simulations in order to have an independent check of
predictions. As a representative example—correspondin
the phenomenon~B! above~the destruction of the ordere

in

nd

.

FIG. 7. Order parameterm vs s, for D520 and four values of
t: ~1! t50.015;~2! t50.05; ~3! t50.06; ~4! t50.07.

FIG. 8. Plot of m vs t for D545, showing cases of doubl
reentrance:~1! s2550; ~2! s2580.
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phase by an increasing coupling constantD)—we plot
jointly in Fig. 9, for rather small values ofs(52) and t
(50.01), theD dependence of the order parameter as p
dicted by our mean-field approach and as resulting from
numerical integration of the original SDE’s, Eq.~1!. We
have taken three different lattice sizes in order to ass
finite-size effects. As we see, the numerical simulationsdo
predict the disordering for large enoughD, and even the
maximum ordering occurs in a region which is consist
with the mean-field prediction. This comparison warns
however, that the mean-field approximation can severely
derestimate the size of the ordered region.

Theshort-time evolutionof ^x& can be obtained multiply-
ing Eq. ~12! by x and integrating:

d^x&
dt

5E
2`

`

dx R1~x; x̄!P~x,t; x̄!. ~46!

Let us assume an initial condition such that at early tim
P(x,t;0;x̄)5d(x2 x̄). Equatingx̄5^x& as before, we ob-
tain

d^x&
dt

5R1~ x̄,x̄! ~47!

@again, we can use forR1 the result Eq.~13! of the simple
approximation or the more elaborate one given by Eq.~42!#.
The numerical solution of Eq.~47! has an initialrising pe-
riod ~it is initially unstable! reaching very soon a maximum
and tending to zero afterwards.

For D/s2→`, Eq. ~47! results to be valid also in the
asymptotic regimesincePst(x)5d(x2 x̄) @11#. In Ref. @11#
an equivalent equation is obtained in thet50 case forboth
limits (D50 and D/s2→`) being there interpreted in term
of a ‘‘freezing’’ of the short-time behavior. According to thi
criterion, in the D/s2→` limit the system undergoes
second-order phase transitionif the corresponding zero
dimensional model presentsa linear instability in its short-
time dynamics, i.e., if after linearizing Eq.~47!:

FIG. 9. Plot of m vs D for s52 and t50.01, showing the
predictions of the more refined mean-field approach together
results coming from a numerical integration of the original SDE
Eq. ~1!.
-
a

ss

t
,

n-

s

^ẋ&52a^x& ~48!

one finds thata,0. We then see that the trivial~disordered!
solution ^x&50 is stable only fora.0. For a,0 other
stable solutions witĥx&Þ0 appear, and the system develo
order through a genuinephasetransition. In this case,̂x&
can be regarded as theorder parameter. In the white noise
limit t50 this is known to be the case for sufficiently larg
values of the couplingD and for a window of values for the
noise amplitudesP@s1 ,s2#.

We discuss now how the stability of the ordered phase
altered by nonzero values oft. If we linearize Eq.~47! using
the expression ofR1( x̄,x̄) from Eq. ~13!, we obtain

a5
~11t1tD !22s2~123t12tD !

~11t1tD !3
. ~49!

If we use instead Eq.~42!, the result can be written exclu
sively in terms oftD:

a512s2
B~tD !

A~tD !
~50!

with

A~x!5115x18x213x323x42x512x61x7, ~51!

B~x!5113x1x225x323x413x51x6, ~52!

so the instability occurs ats25A/B. Now, the ratioB/A
keeps always below 1 in the positive range, has a minim
of ;0.05 at tD;1.09 and a maximum of;0.36 at tD
;2.33. If we consider, e.g., the conditions in Fig. 5~namely,
t50.03) and takeD large enough so thattD.2.33, one can
see that Eq.~50! approximates the left boundary better th
Eq. ~49! does. In the limitt!1 ~but still finite! Eq. ~50! can
be approximated to the expression reported in Ref.@29#,
namely,

a5
11tD2s2

11tD
. ~53!

It is worthwile to stress the fact@evident from Eqs.~49!, ~50!,
and~53!# that the value ofD has no effect on thelocationof
the instability by itself, but only through the combinatio
tD: according to Eq.~53! the stable phase is the disorder
one (̂ x&50) for 11tD.s2 ~sincea.0) and the ordered
one (̂ x&Þ0) for 11tD,s2. In summary, whereas th
noise intensitys has a destabilizing effect on the disorder
phase, as soon astÞ0 the spatial couplingD tends tosta-
bilize it. For t50 the last effect is not present, being the
s.1 the condition for ordering@10,11#. Considering that the
effect of even a tiny correlation is enhanced byD, we can
understand the abrupt change in slope~from negative to posi-
tive! shown in Fig. 1 as soon astÞ0. Note the approxi-
mately inverse relation betweent andD for fixed s on the
upper branches of Fig. 3, even when Eq.~48! is strictly valid
for D/s2→`.
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V. CONCLUSIONS

This work has focused on the effects of a self-correlat
in the multiplicative noise, on the reentrant noise-induc
phase transition introduced in Ref.@10#. Whereas in a recen
paper we have reported the most relevant results@29#, it has
been our purpose in the present work to expose in m
detail the techniques and the approximations employed.
also discuss more thoroughly the results, adding new figu
and enriching the contents of others.

Through the use of the UCNA we recovered a Markov
behavior for the system, and through an interpolation sche
similar to the one introduced in Ref.@31# we resolved inde-
terminacies in the equations describing it. We stress that
equations resulting from this interpolation scheme areexact
in the limits t50 andt→`. In addition to the fact that the
interpolation scheme has been already applied with suc
in other works@26,31#, the goodness of our approximation
for small but nonetheless finite values oft has been checke
against a standard perturbative expansion@34# ~adapted for
multiplicative noise!. It is worth emphasizing the fact tha
these approximations are, so far, theonly tool available for
an analytical treatment of this essentially non-Markov
problem.

The main result is that fortÞ0, the order established as
consequence of the multiplicative character of the noise
be destroyedby a strong enough spatial coupling. Figure
shows that for givent ~0.03! ands, the ordered phase ca
only exist between definite values ofD. In particular, the
upper bound onD decreases roughly ast21 for given s.

The foregoing result can be understood by recalling t
the ordered phase arises as a consequence of thecollabora-
tion between the multiplicative character of the noise and
presence of spatial coupling. The disordering effect ofD
arisesonly when tÞ0 ~the results in Ref.@11#—rightly in-
terpreted in terms of a ‘‘freezing’’ of the short-time behavi
by a strong enough spatial coupling—are thus consis
with ours!. As t increases, the minimum value ofD required
to stabilize the disordered phase decreases rapidly, and
region in parameter space available to the ordered ph
shrinks until it disappears.
.
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The example worked throughout this paper shows vivi
the fact that the conceptual inheritance from equilibriu
thermodynamics~though often useful! is not always appli-
cable. The equilibrium-thermodynamic lore would induce
to think that asD→` an ordered situation is favored@1#.
Although this is certainly true for the Curie-Weiss mod
~since in that case the deterministic potential is itself bista
and an increase of spatial coupling has the effect of rais
the potential barrier between the stable states!, it is not in the
case we are dealing with, since the deterministic potentia
monostable. Hence, it is the combined effects of the mul
plicative noiseand the spatial coupling that induce the tra
sition.

As a summary, whereas one might say that the value
Refs. @10,13,11# is that they tell experimentalists wherenot
to look for a noise-induced phase transition—namely,
those systems which are prone to exhibit a usual~zero-
dimensional! noise-induced transition, and for too larg
noise intensity—the present work tells moreover that, due
the consideration of the more realistic colored noise sou
an ordered phase is not to be found for large values of
spatial coupling either. Though the specific choice of th
forms for the functionsf (x) andg(x) may appear to some a
physically unmotivated, is up to our knowledge thesimplest
one exhibiting this phenomenon. We believe nonetheless
the phenomenon is robust and transcends the specific ch
made in this work.

The next obvious step is to consider a finite correlat
length in the lattice model, which requires to go beyond
mean field approach. This problem is presently being st
ied.
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