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Mixed-spin Ising model with one- and two-spin competing dynamics
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In this work we found the stationary states of a kinetic Ising model, with two different types of gpins:
=1/2 andS=1. We divided the spins into two interpenetrating sublattices, and found the time evolution for the
probability of the states of the system. We employed two transition rates which compete between themselves:
one, associated with the Glauber process, which describes the relaxation of the system through one-spin flips;
the other, related to the simultaneous flipping of pairs of neighboring spins, simulates an input of energy into
the system. Using the dynamical pair approximation, we determined the equations of motion for the sublattice
magnetizations, and also for the correlation function between first neighbors. We found the phase diagram for
the stationary states of the model, and we showed that it exhibits two continuous transition lines: one line
between the ferrimagnetic and paramagnetic phases, and the other between the paramagnetic and antiferrimag-
netic phases.

PACS numbds): 64.60.Ht

I. INTRODUCTION p, which accounts for the competition between the two dy-
namical processes. We determined the phase diagram of the
In this work we studied the nonequilibrium states of amodel in the plane of temperatufieversus competition pa-

two-sublattice ferromagnetic Ising model with mixed spinsrameter Q=1—p), and we noticed the presence of three
o=1/2 andS=1. The time evolution of the states of the different phases: for very small values @f (small flux of
system is governed by two competing dynamical processenergy, we obtained a ferrimagnetic phase. Increasing the
one simulating the contact of the system with a heat bath dtux of energy, the ferrimagnetic phase becomes unstable,
a fixed temperaturd@, and the other mimicking an input of and appears to be a paramagnetic phase. However, when the
energy into the system. If a system is subject to an externdlux becomes large, we observed a transition from the para-
flux of energy, it can exhibit the self-organization phenom-magnetic phase to the ordered antiferrimagnetic phase. In
enon. Self-organizing structures are well known in chemicaSec. Il, we describe the model and derive the equations of
reactions and in fluid dynamics. The book by Nicolis andmotion for the sublattice magnetizations and the correlation
Prigogine[1] and that by Hakef2] present interesting ex- functions of interest. In Sec. lll, we apply the pair approxi-
amples of these phenomena. In our open ferromagnetic spmation decoupling scheme to find a closed set of equations
system, the contact with the heat bath is simulated by thef motion. In Sec. IV, we find the stationary states of the
Glauber stochastic proce$8], where boths and S spins  system, and exhibit the phase diagram of the model. Finally,
relax through single-spin flips. In our model, the flux of en-in Sec. V, we present our conclusions.
ergy into the system favors states with the highest energy,
generating a competition with the one-spin flip Glauber pro-
cess. The increase in the energy states is obtained when we !l MODEL AND EQUATIONS OF MOTION

simultaneously flip a nearest neighbor pair of spinands We consider a ferromagnetic Ising model in a square lat-
This is not a Kawasaki exchange proc¢d} as used, for ice with mixed spinsr=1/2 andS=1, in a bipartite lattice,
instance, in the work of Tomand de OliveirgS] to induce i the & spins occupying the sites of one sublattice, and
a self-organizing phenomenon in the kinetic Ising model. Inywe 5 gpins occupying the sites of the other one, each sublat-
their model, the stochastic Kawasaki dynamics conserves the.e containingN sites. A state of the system is represented
order parameter. Here our particular interest is to investigatgy~  (, §)=(o,. ... o, ....00:S, S.. .. 5

the competition between two dynamical processes when t“@here the spin variables, can assume the valuesl and

O(dr(]arhparametegl IS .notl qonser_ve((:ij. Th|s IS eaS|nyach|evg e spin variable$ can assume the valuestQl. The energy
with the two-sublattice Ising mixed-spin system, after a si- ¢ o system in the stater(S) is given by

multaneous flipping of a pair of nearest neighbor spins.
We used the dynamical pair approximatip@] to de-

couple the hierarchy of equations of motion which follow

from the application of the master equation approach. We E(0,S)= —J(Z.) Sy, @

attribute a weighp to the one-spin flip Glauber process, and !

a weight (1 p) to the two-spin flip process, which increases

the energy of the system. We found the stationary states afhere the sum is over all nearest neighboring pairs of spins,

the model as a function of temperature and of the parameteind J is taken to be positive. Let us cgl(o,S;t) the prob-
ability of finding the system in the state-(S) at timet. The
equation of motion for the probability of the states of the

*Electronic address: wagner@fisica.ufsc.br system is given by the gain and loss master equdfidn
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¢ Wep(o',S'—0,S
GiP(@.Si) == 2 W(0,S~0".S)p(o.Sit) oo(0",S'=.9)

o', S N
= 2 BBy Oey P
+ > W(a',S'—a,9p(c’,S;t), (2) :
o', s 3 , =
X 581’31532’Sé - 6Sk’sk P 5SN,S”\‘wjk(O- ,S),
whereW(o,S—¢’,S') is the probability, per unit of time, (7)

for the transition from stated,S) to state ¢',S’). In this
model, we assume that the transition rdtés,S—o’,S’) is
given by the competition between two independent stocha
tic processes: the one-spin flip Glauber process, intended
describe the relaxation of the and S spins in contact with
the heat bath at temperatufeis written as 0 if AEy=0

wjk(O',S):

wherewj(o,S) is the probability of a simultaneous flipping

of neighboring spingr; andS,. This process is designed to

gvor an increase in the energy of the system, and it is writ-
as

1 if AE;>0,
We(o,S—0o',S')=Wg(o,S—0d',S)+Wg(0,5—0,5'),
(3)  whereAE;j, is the change in energy after flipping the spins

oj and S, at the neighboring sitep and k. The average

and the two-spin flip process, chosen independent of tem¢@lué of a function of staté(c,S) is given by

perature, and intended to increase the energy of the system,

is written asWgp(o,S—0¢’,S'). Then we can write the fol- <A(g,s)>:2 A(o,S)p(o,S;t), (8)
lowing equation for the total transition probability: 0.5

where we sum over all possible configurations of spiremnd
W(o,S—c',S')=pWs(o,S—0c’,S') S If, for instance,A(o,S)=0, we obtain the sublattice
e magnetization associated with thesublattice. On the other
+(1-p)Wep(0,5-0".5),  (4) hand, ifA(o,S)=S,,, we obtain the sublattice magnetization
related to theSsublattice. In this way, we can write the set of
where O<p=<1 is the competition parameter between theequations:
one-spin flip and two-spin flip processes. The one-spin flip

process is described by the Glauber dynamics, that is, a((m: pA+(1-p)D, 9)
Wgs(o',S'—0a,9) d
N &(Sm>:p8m+(1_p)Emr (10)
22:1 Byt Py Oy mal - Oyl here
o 531'515325& e 5Sk'sl/< e 5SN'SI/\ij(O-,) A|: _2<0'|(1)|(0')>, (11)
N
+k21 501101502_% c. 50_1_ ol 5‘TN'”I,\J Bmn={((Sn—Sm) @m(9)), (12
Xéslysigszysé. "5Sk'§k' . '5SN,S,’\‘wk('é)* D|:_2 Ek <0'|a)|k(0',S)>, (13)
5) (NN of 1)
wherew;(o) and w(S) are the probabilities of flipping the Em= ; ((Sn=Sm@jm(,5)), (14
(NN of m)

spinso; and S, respectively. We used the variab to
mean the two possible values that a change of the actual Spjhere(NN of ) means that the sum is performed over all the
stateS, can take. We adopt the Metropolis prescription for nearest neighbors of the siteof a given sublattice. For the
these one-spin flip transitions, that is, correlation function between nearest neighbor spins in the
sublatticess and S, (S,,,), we can write

wj(o)=min[1,exd — BAE;)], (6) d
a(o'lsm>:pAlm+(1_p)Dlma (15
where 8=1/kgT, and T is the absolute temperature of the
heat bathAE; is the change in energy after flipping spifi ~ where
at sitej. We also assume a similar expressiondg(S). The ~
two-spin flip transition rate is written in the form Am=—2(1Snw(0)) +{01(Sn—Sn) om(9)), (16)
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Dim=—(1(3n+ Sm)0im(.,9)) where
/(&2 2
+ 2 <0'I(§m_sm)wjm(0'vs)> Cm <(Sm Sm)“’m(s)>a (24)
(Nlilf)#m) ~
Fom 2 ((S4=S2)ojm(a,9)), (25)
-2 gm (01Smi(0,9)). 17 (NN bt m)
(NN of )

Bim=—2(,S50i(0)) +{0(S5H—St)wm(S)), (26
The equations of motion for the sublattice magnetizations " (1Smen(0))+ (01 (Sn= S om( S, (26)

(o) and(S,), and for the correlation functiofirS,,) are

exact. Unfortunately, we do not know an exact expression Ein=—(1(Si+ Sh) 0im(.9))

for the probability distribution of the states. We need to em- _

ploy some approximation scheme in order to decouple the set + 2 <cr|(8§,— an)wjm(cr,S)>

of equations. Here we appeal to the pair approximation, (N,Jﬁ,}m)

which is the simplest approximation beyond the mean field

one. —2 2 (oiSfow(a,9). (27)

I1l. PAIR APPROXIMATION (NN of)

Considering the application of the pair approximation to NOW We search for solutions such thai_:<lf|>, for any
this dynamical mixed-spin problem, a set of self-consistenfPIn belonging to ther sublattice, andny=(Sy,), for any
equations is not immediately obtained, because there alsPIn Pelonging to thé sublattice. \2Ne also define t?e corre-
appear the correlationss2) and(o,S2). To see this, let us lation functionsr=({o;Sy), q=(Sp) and g=(cSy). In
consider a single pair of spins andS. We can write the this way, we can wrltg_t.he following expressions for the one-
following identity for the joint probability of the sping and ~ &nd two-spin probabilities:
S

1
Pi(a1)=5(1+0aimy), (28)
P(e.S)= 2 85,0 055P(",S'31), (18)
o', s
’ 1 3
where P2(52)21+552m2_55_<1—535)q, (29)
5 :1(1+aa') (19) 1 1 2 3w
70’2 ' Pif01,S) =51+ om+ 5 5m,— S~ 1- 5S4
and 1 , 3,
L 3 +50182r—0182m1—01 1_552 Ay
055 =1-(S+8%)+ 7SS +5(SS)% (20 (30)

Then the probability for the pair«,S), at timet, can be Whereo; andS, are nearest neighboring spins belonging to
written as the o andSsublattices, respectively. To find the mean values
of interest, we need to consider three different types of clus-
_ 1 1 5 5 ters: For the square lattice, thecluster is composed of a
p(o,Sit)= 5| 1+ o(o(1)+ 5 (S(1) =S (S(V)) spin o; of the ¢ sublattice, surrounded by four spis of
the S sublattice. The probability of this cluster is
3 1
+ 5 S(SA()) + 5 0o (1)S(1)) — oS (1)) Pi01,S)

Pa=Pu(on) 11 =575

(NNlofl)

(31

3
—o(o(t)SA(1))+ 5asz<a(t)sz(t)> . (2
The second cluster we consider, Beluster, is composed of
Before proceeding with the calculations, let us write the@ SPINS; of the S sublattice, surrounded by four spins of

equations of motion for the correlatiofS2) and (o S2): the o sublattice. The probability of this cluster is given by
d _ Piaa1,S2)
a(sfn>=pcm+(1—p)Fm, (22) Pe=P2(S,) H TPS) (32
(NN of 2)
d The thi i i
el 2\ _ _ e third cluster, theC cluster, is made up of a pair of
at (7S =PBim T (1=P)Bim, @) pearest neighbor spins,;, belonging to ther sublattice;S,
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belonging to theS sublattice; and their nearest neighbors. In 1.0
this pair approximation, the probability of this cluster is

given by 08|
PlZ(O.llSi) P12(0'|,Sz) I
Pc=P ) v
c=PiA01,S,) IL_IZ Pi(o1)  i#1 Pa(Sy) 06|
(NN of 1) (NN of 2) P

(33
=
After straightforward, but tedious, algebraic manipula- o4}
tions, we finally arrive at the following set of equations for
the time evolution of the sublattice magnetizations and cor-

relation functions: 02
d A +(1 D x\
—_— = m m r —_ m m r X " 1 " 1 " 1 " 1 " 1 n 1 n 1 A 1 n 1
d'[ml PAw(M,M2,1,0,Gy) + (1= P)Da(mMy,M,,1,0, ), %0 04 0z 03 04 05 08 07 08 03 10
(34) Q
d FIG. 1. Phase diagram of the mixed-spin ferromagnetic Ising
grm2= PBa(my,my,1,0,d1) +(1—p)Ex(my,my,r,0,q), model in the plane) vs Q. n=exp(— 1/20), whered=kgT/2zJ is

(35) the reduced temperature, aQd- 1 — p is the competition parameter
between the one- and two-spin flip processes. F, P, and AF, denote
d the ferrimagnetic, paramagnetic, and antiferrimagnetic phases, re-

—q=pCy(my,my,r,q,q;) +(1—p)Fo(my,my,r,q,q1), spectively.

dt
(36) R
for this critical temperature aré.=0.182 from real space

d renormalization 8], 6.=0.244 from series expansion calcu-
gt" = PA(ML,M,,1,q,0:) + (1= p)D1(my,mMy,r,q,qy), lations[9], 6.=0.24 from Monte Carlo simulatiori40], and
(37) 0.=0.322 from mean field renormalization group calcula-
tions[11].
d We point up that the competition between the one- and
g 1= PB1mMy,m2,r,0,01) + (1= P)Es(My,M;.1,0,01).  two-spin flip already appears for small values @f For 6

(39) < 6., and for very small values dp, the one-spin flip pro-
cess is the dominant one, and the ferrimagnetic phase is

The expressions which appear on the right-hand sides cftable below a critical value of the competition parameger
Egs.(34)—(39) are too lengthy to present here. In Sec. IV we However, the two-spin flip process, which simulates an input

will obtain the numerical solutions of the above system ofof energy into the system, easily destroys the ferrimagnetic
equations. phase. For instance, the critical valueéat 0 is Q.=0.04.

Above this critical value, we enter into the paramagnetic
phase, where the sublattice magnetizationsand m, van-
ish. Increasing the flux of energy, we reach another critical
The steady state solutions of the system of equationgalue ofQ, where the paramagnetic phase becomes unstable,
(34—(38) are obtained by employing the fourth-order and an antiferrimagnetic phase appears. The transition be-
Runge-Kutta method. For selected valuepahdT, we find  tween the paramagnetic and antiferrimagnetic phases is con-
three different types of magnetic ordering: a ferrimagnetictinuous, and the transition line is almost independent of tem-
state, withm;#m,, and m;>0, m,>0; a paramagnetic perature. This stresses the dominant character of the two-spin
state, withm;=m,=0; and an antiferrimagnetic state, where flip over the one-spin flip, because the former was chosen to
m;# m,, andm;<0, m,>0. In Fig. 1, we exhibit the phase be independent of temperature. In Fig. 2 we show the plot of
diagram of the model in the plang=exp(—1/260), versus the sublattice magnetization; as a function of the compe-
Q=1—p, where #=kgT/2zJ is the reduced temperature, tition parameterQ for two selected values of the reduced
andzis the number of nearest neighbors=(4 for the square temperature: one value below the critical temperat@ye
lattice). It displays three different phases, separated by twand the other one above it. In both cases, we notice that there
continuous transition lines: one between the ferrimagnetiés a critical value ofQ, almost independent of temperature,
(F) and paramagnetitP) phases, and the other between thewhere the sublattice magnetizatiom, is nonanalytic. This
paramagneti¢P) and antiferrimagneti¢AF) phases. For the marks the dynamical phase transition between the paramag-
particular cas& =0, where only one-spin flips are permit- netic and antiferrimagnetic phases. The same behavior is also
ted, the stationary state coincides with the thermodynamiobserved for the other sublattice magnetization In Fig. 3,
equilibrium state, because there is no flux of energy into thave also exhibit the plot ofj=(S?) versus the competition
system. In this pair approximation, we found the valje paramete for the same two temperatures of Fig. 2. At the
=0.3068 for the transition temperature between the ferriparamagnetic-antiferrimagnetic transition, we find a similar
magnetic and paramagnetic phases. The mean field value fapnanalytical behavior fag, as already seen fan; andm,.
this critical temperature i8.= 0.408. Other known estimates  This model system exhibits a self-organization phenom-

IV. STATIONARY STATES AND PHASE DIAGRAM
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FIG. 3. Autocorrelation functiom=(S?) as a function of the
competition parametd, for two selected values of temperature, as
indicated in the figure.

FIG. 2. Magnetizatiorm; as a function of the competition pa-
rameterQ, for two different temperatures, as indicated in the figure.

enon: when the flux of energy is not present, we have a well V. CONCLUSIONS
defined equilibrium ferrimagnetic phase for all values of the

reduced temperature, such that .. However, when the . L _ .
spin ferromagnetic Ising model in a square lattice. The dy-

system is submitted to a small flux of energy, the ferrimag amical states of the system evolve in time following two
netic state can become unstable due to the simultaneous flip- Yy 9

ping of pairs of neighboring spins. The system will enter into ompeting dynamical processes: a one-spin flip of a spin of

. - eitheroc=1/2 or S=1 sublattice, which accounts for the re-
a paramagnetic phase, after a c_r!tlcal value of the parametel, -tion of the system in the heat bath, and a simultaneous
Q, which measures the competition between one- and tw '

PR . L ipping of two neighboringr andS spins, which is assumed
spin flips, is attained. If we still increase the flux of energy, e independent of temperature, and that simulates a flux of
the paramagnetic phase will become unstable, and finally Wgnergy into the system. The equations of motion were decou-

will reach an ordere_c_i antiferromagnetic phase,_ at a highel5|ed by the dynamical pair approximation, and we found
value of the competition parameter. We would like to stresshree different possible steady states. The phase diagram ex-
that we could reverse the whole process, decreasing the fluxbits, at a very low flux of energy, a ferrimagnetic phase,
of energy from an ordered antiferrimagnetic steady state anglhich becomes unstable at a critical value of the competition
finally arriving at a ferrimagnetic state, after crossing a paraparameter between the two dynamical processes. Above this
magnetic region. We would like to point out that the inclu- critical value, the spin system settles into a paramagnetic
sion of a magnetic field in our model system will change thephase, and a new critical value of the competition parameter
phase diagram we have obtained. The ferrimagnetic to paras attained. If the flux of energy is sufficiently high, the sys-
magnetic transition &)= 0 will disappear, and the transition tem will organize itself into an antiferrimagnetic arrange-
lines between the ferrimagnetic and paramagnetic phasegent of spins. The ferrimagnetic to paramagnetic and para-
and between the paramagnetic and antiferrimagnetic phas¢§agnetic to antiferrimagnetic transitions are both continuous
will move to the right in our Fig. 1, i.e., in the direction of Phase transitions.

high values ofQ. The main effect of a magnetic field is
ultimately to destroy the antiferrimagnetic phase at large val-
ues of the field. We intend, in the future, to include the This work was partially supported by the Brazilian agen-
detailed effects of the field and of single-ion anisotropy incies CNPq and FINEP. We would like to thank Professor
this two-sublattice mixed-spin Ising model. Ron Dickman for many fruitful discussions.

In this work we have considered a nonequilibrium mixed-
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