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Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport
in axially symmetric turbulence
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We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having
different ratiosl i / l' . We find, in addition to the fact that a higher fluctuation leveldB/B0 makes the system
more stochastic, that by increasing the ratiol i / l' at fixeddB/B0, the stochasticity increases. It appears that the
different transport regimes can be organized in terms of the Kubo numberR5(dB/B0)( l i / l'). The simulation
results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When
R!1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are found. WhenR'1 the
diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coefficientD';(dB/B0)2 is recov-
ered. Finally, forR@1 the percolation scaling of the diffusion coefficientD';(dB/B0)0.7 is obtained.

PACS number~s!: 52.25.Fi, 02.50.Ey, 95.30.Qd, 05.45.2a
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I. INTRODUCTION

The transport of heat and particles in magnetized plas
depends on the electromagnetic turbulence in the plasm
self, as the electromagnetic fluctuations induce ‘‘random
motions in the directions perpendicular to the average m
netic field. For low frequency magnetic turbulence a
strong background magnetic fieldB0, the particles approxi-
mately follow the magnetic field lines. The quantitative d
scription of magnetic field line transport represents a lo
standing problem, since different transport regimes can
obtained, depending on the fluctuation level~weak or
strong!, on the anisotropy of magnetic turbulence, describ
by the values of the turbulence correlation lengths, on
Fourier spectral representation, and on the assumed dim
sionality @i.e., two dimensions~2D! or 3D# of the magnetic
fluctuations @1–6#. We assume an unperturbed fieldB0

5B0êz and magnetic fluctuationsdB(r ) depending on the
three spatial coordinates, but frozen in time. The latter
sumption corresponds to considering particle velocit
larger than the typical magnetic wave velocity, e.g., Alfv´n
velocity. Note that field line motion in such fields is formal
equivalent to the problem of passive tracer transport i
two-dimensional, time dependent velocity field@7,8#, so that
the main results obtained here can be applied to the prob
of transport in fluid turbulence, too.

In this paper, we would like to concentrate our attenti
on the effect of different correlation lengthsl i and l' in the
directions parallel and perpendicular to the mean magn
field B0, respectively, that is, on the influence of anisotro
in turbulence with axial symmetry. Indeed, in many physi
systems the magnetic turbulence is not spherically symm
ric. Axially symmetric turbulence can develop in a plasma
a result of a background magnetic field@9–11#, or as a con-
sequence of the geometrical features of a plasma device:
toroidal configuration, for instance, the correlation leng
along the toroidal direction is usually much larger than tho
in the two other directions@12,13#. Also, magnetic turbu-
lence withl i@ l' is often assumed as an approximate mo
for the solar wind@9,6# as well as the interstellar@14# mag-
PRE 611063-651X/2000/61~2!/1940~9!/$15.00
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netohydrodynamic turbulence.
For axially symmetric turbulence, the Fourier spectral a

plitude dB(k) can be represented as

dB~k!}
1

~k'
2 l'

2 1ki
2l i

2!g/411/2
, ~1!

wherek is the wave vector,k' (ki) is the projection ofk in
the plane perpendicular~in the direction parallel! to B0, and
g is the spectral index. Let us introduce a cut off of t
spectrum at constant amplitudedB(k). Then, forl i@ l' the
wavevectors are squeezed in the plane perpendicular toB0,
forming a pancake~or crêpe! in the k space. In such a case
the magnetic turbulence is termed quasi-2D@1,4#, the 2D
case being obtained by taking the limitl i / l'→` ~and keep-
ing only the Alfvénic polarization for MHD turbulence, se
later!. Conversely, forl i! l' the wave vectors are elongate
along B0, forming a cigar~or ‘‘spaghetto’’! in k space. In
such a case, the domain of magnetic turbulence is quasi
and this magnetic turbulence is termed slab model. Clea
whenl i5 l' the turbulence is spherically symmetric. We al
note that if the turbulence is not axially symmetric, as it is
the cases considered here, it is necessary to use three c
lation lengths, sayl x , l y , and l z , in the expression of the
Fourier amplitudes, Eq.~1!. This case is of interest in man
astrophysical plasmas, like the MHD turbulence in the so
wind and the magnetic fluctuations in the Earth’s magne
pause@15–19#. In particular, transport of magnetic field line
in the case of anisotropy in the plane perpendicular toB0,
that is whenl x@ l y , has been considered by Pommoiset al.
@11#.

Several issues need to be taken into account when con
ering magnetic field line transport in anisotropic turbulen
In the case of weak turbulence, that is when the level
fluctuationdB/B0 is low, one has the quasilinear regime,
which the magnetic diffusion coefficient isD;(dB/B0)2l i
@20–25#. It was shown by Kadomtsev and Pogutse@1# that
the quasilinear regime is more properly obtained when
dimensionless parameterR5(dB/B0)( l i / l'), is very small,
R!1. In the opposite limit,R@1, Kadomtsev and Poguts
1940 ©2000 The American Physical Society
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PRE 61 1941ANOMALOUS, QUASILINEAR, AND PERCOLATIVE . . .
showed that the percolation theory would be required~see
also Galeev and Zelenyi@26#!. Actually, R5(dB/
B0)( l i / l') turns out to be the Kubo number for the stocha
tic system under consideration. The Kubo numberR was
originally defined as a parameter measuring the strengt
perturbations in a stochastic Liouville equation@27#. For
fluid turbulence the Kubo number is given by the product
the ~rms! fluctuating velocity times its correlation time, d
vided by the correlation length. Since for field line transp
in frozen magnetic turbulence time is to be changed fo
coordinate along the unperturbed magnetic field, the ab
expression ofR is obtained. The smallness of the Kubo num
ber allows us to use a perturbative treatment@27#. Also, for
times much longer than the correlation time, a Markov
master equation can be obtained from a Liouville equat
@27,28# whenR!1.

Recently, Isichenko@4# derived the scaling of the diffu
sion coefficient with the level of fluctuations in the perco
tion limit, R@1, obtainingD; l'( l' / l i)

3/10(dB/B0)7/10 in
the case of a monoscale turbulence, i.e., when the fluctua
spectrum is peaked on one frequency. The percolation s
ing has been confirmed numerically, with some uncertain
by Ottaviani who used a 64 wave modes model@5# and,
more precisely, by Reuss and Misguisch who used a 7
wave modes@29#. Very recently, the percolation scaling
slightly modified from 0.7 to 0.64, was obtained with a dec
rrelation path method by Vladet al. @8#. Besides such ana
lytical limits of the Kubo number, it would be interesting t
quantify the transport properties for arbitrary values ofR, as
well as for strong fluctuation levels,dB/B0;1, as it is found
in many space and astrophysical plasmas. In such cases
necessary to make use of numerical simulations of field
transport in a turbulent magnetic field. Such a task has b
undertaken by several authors@30–36#. In particular, Refs.
@30–32# show that in isotropic turbulence~that is whenl i
5 l'[ l ), at low fluctuation levels,dB/B0&0.2, anomalous,
i.e., superdiffusive and subdiffusive regimes can be fou
These regimes are characterized by a mean square dev
^Dx2& which grows as

^Dx2&52D sa, ~2!

wheres is the field line length,D is the ‘‘diffusion coeffi-
cient,’’ andaÞ1 is the anomalous diffusion exponent@37–
44#. We warn the reader that in this paper anomalous di
sion means the departure from the Gaussian valuea51,
contrary to most of plasma physics literature where ano
lous diffusion is meant for non-collisionally induced tran
port. While normal, Gaussian diffusion corresponds toa
51, subdiffusion~superdiffusion! is described bya,1 (a
.1). Also, superdiffusion is interpreted in terms of a Le´vy
random walk@38–43#. Such anomalous transport behavi
are found when the fluctuation level is low, that is wh
most magnetic surfaces are closed, i.e., form KAM tori, a
a part of field lines move in the stochastic layer. In betwe
KAM tori and ballistic trajectories a Cantori layer is foun
which can give rise to temporary trapping of field lin
~yielding a,1) and to long Le´vy flights ~yielding a.1)
@11,30–32,39–42,45#. The Lévy random walk is made up o
jumps whose lengths have a power distribution for lo
jumps. Increasing the level of fluctuations a regime of glo
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stochasticity is reached, so that the KAM tori are destroy
and normal diffusion (a51) is attained. This behavior is
common to many chaotic systems which exhibit Cant
structures, and has been found in a variety of different ph
cal systems@42,44#. Therefore, for spatially periodic system
to which the KAM theorem applies, anomalous regimes
possible.

Summarizing, we can see that different transport regim
may be found depending on the fluctuation leveldB/B0 and
on the ratio of correlation lengthsl i / l' , that is on the an-
isotropy of magnetic turbulence. In order to understand wh
there is the transition from one regime to another, we w
consider a numerical simulation of magnetic field line tran
port wheredB/B0 and l i / l' can be varied smoothly, an
which is presented in the next section.

We find, in addition to the fact that a higher fluctuatio
level dB/B0 makes the system more stochastic, that by
creasing the ratiol i / l' at fixeddB/B0, the stochasticity in-
creases. It appears that the different transport regimes ca
organized in terms of the Kubo numberR5(dB/B0)( l i /
l'). WhenR!1 weak chaos, closed magnetic surfaces, a
anomalous transport regimes are found. WhenR'1 the dif-
fusion regime is Gaussian, and the quasilinear scaling of
diffusion coefficientD';(dB/B0)2 is recovered. Finally,
for R@1 the percolation scaling of the diffusion coefficie
D';(dB/B0)0.7 is obtained.

In Sec. II we present the numerical model, with spec
emphasis on the treatment of the anisotropy of turbulence
Sec. III we present the numerical results, showing the Po
caré sections, the diffusion coefficients and the anomalo
diffusion exponents, as well as the kurtosis. It is also sho
how the results can be organized in terms of the Kubo nu
ber R. In Sec. IV a discussion of our results and the conc
sions are given.

II. NUMERICAL MODEL

The magnetic field lines are tangent to the magnetic fi
B(r ) at a generic pointr , thus the field line equations ar
obtained as

dr

ds
5

B~r !

uB~r !u
, ~3!

where the field line lengths is used as an integration param
eter. Equation~3! is a nonlinear stochastic ordinary differen
tial equations. We set up a numerical realization ofB(r ) in
the following way: the magnetic field is taken to be the su
of a background field given byB05B0ez and of static mag-
netic perturbationsdB(r ).

The magnetic fluctuationsdB(r ), are given by

dB~r !5(
k,s

dB~k!e(s)~k!expi @k•r1fk
(s)#, ~4!

wheree(s)(k) are the polarization unit vectors,fk
(s) are ran-

dom phases, anddB(k) is the amplitude of the mode with
wave vectork given by Eq.~1!. Such a Fourier amplitude
represents a power-law spectrum, and is similar to wha
used in Refs.@30,32,11#. We have the following unit vectors
for the two polarizations:
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1942 PRE 61G. ZIMBARDO, P. VELTRI, AND P. POMMOIS
e(1)~k!5 i
k3B0

uk3B0u
, e(2)~k!5 i

k

uku
3e(1)~k!, ~5!

where e(1)(k) represents the Alfve´nic polarization and
e(2)(k) the magnetosonic one. The reality ofdB(r ) is en-
forced by settingdB(s)(2k)5dB(s)(k) andf2k

(s)52fk
(s) .

Here~like in Refs.@30,32,11#!, we consider the same param
eters for both polarizations, even if different set of corre
tion lengths, weights and spectral index could be given
the two polarizations.

During the integration of the magnetic field lines@see Eq.
~3!#, we save computer time by introducing a 3D lattice w
8Nmax points in each direction, on which the magnetic fie
components are computed exactly. Then, when integrat
the magnetic field is obtained by quadratic interpolation
this grid. We checked that 8 points per minimum wavelen
are enough to get satisfactory precision@30,32#.

We consider the wave vectors in the following way:

k52pS nx

Lx
,
ny

Ly
,
nz

Lz
D , ~6!

where the harmonic numbersni are integers. The periodicity
length in each direction isLx5Ly5Nminl' andLz5Nminl i ,
whereNmin is the minimum harmonic number~see below!,
therefore it is proportional to the correlation length in th
direction. Thus, the simulation box is a parallelepiped w
square basis, and the domain of wavevectors ink space is an
axially symmetric ellipsoid, see Fig. 1. Indeed, the harmo
numbers have to satisfy

N min
2 ,nx

21ny
21nz

2,N max
2 , ~7!

whereNmax is the maximum harmonic number, which corr
sponds to a short wavelength cut off. This is related to
extention of the spectrum and its value is fixed by the av
able numerical resources. A long wave length cut off is

FIG. 1. Simulation box~upper figures! andk space~lower fig-
ures! representation for two different configurations of the corre
tions lengths~Slablike model: left hand side figures, 2D-like mode
right hand side figures!.
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troduced by takingNmin.1. Therefore we have abandspec-
trum. In this way we avoid the spurious periodicity effec
introduced by the discretization of thek space similar to the
poor statistical representation of the longest wavelen
modes@32#. With this choice, we obtain the longest modes
each direction with wavelengthslx5ly. l' andlz. l i , by
settingni equal to the smallest integer larger thanNmin . In
other words, the correlation lengthsl' and l i determine the
physical features of the modelled magnetic turbulence. F
thermore the number of wave vectors is the same along e
axis, even with differents values ofl' and l i @see Eqs.~6!
and~7!# @46#. This ensures that a good statistical represen
tion of turbulence is given even for those wave vecto
which lay along the ‘‘short’’ directions ink space~in other
words, if the number of the wave vectors along one a
would be merely proportional to the length of the ellipso
axis, only few wave vectors would be found along the sh
axis of the ellipsoid, and the discretization of turbulen
would lead to the dominance of just a few modes!. Indeed,
we are going to simulate very strong anisotropies, e.g.,l'
@ l i and l'! l i , with the same number of modes which w
use for isotropic turbulence. For instance, the so-ca
quasi-2D turbulence, corresponding tol i / l'@1, will be rep-
resented by a fully 3D spectrum, although squeezed t
crêpe in the ink space~at variance with other works wher
the quasi-2D turbulence is represented by a strictly 2D sp
trum!. This garantees that the continuum spectrum of tur
lence is well represented by our discretized spectrum
that we can pass smoothly from one ratiol i / l' to another.
Further, in physical space we have the same number of
points in all the directions, with density of grid points pro
portional to the field gradients in each direction. Thus
consider that our numerical representation of turbulence
very well suited to study the effects of varying anisotropy

The value ofNmax is set to 14, whileNmin5A17. We set
for all the numerical runsg53/2, which is the value of the
spectral index inertial range predicted by Kraichnan@47#.
Furthermore, we set for all runs min(Lx ,Lz)5L whereL is the
unit length to which all lengths in this paper are normalize
@That is, for l i / l'.1, Lx5L and Lz5( l i / l')L; for l i / l'
,1, Lz5L andLx5Ly5( l' / l i)L.#

The desired fluctuation leveldB/B0 is obtained by nor-
malizing the magnetic fluctuations by setting

dB

B0
5A (

i jk
dBi jk

2

~8Nmax!
3B0

2
, ~8!

where the sum is made all over the grid points. Then
numerical simulation will be done for different values
l i / l' anddB/B0, and hence for different values of the Kub
number.

III. NUMERICAL RESULTS

Once a numerical realization of the magnetic field is o
tained as described in Sec. II, we integrate the magnetic fi
line equations~3!. We make two kinds of studies. First, i
order to get a qualitative overview of transport and of t
structure of the magnetic field, we draw the projection on

-
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planexy of the intersection of the magnetic field line with
plane at integer values ofz/Lz . We will call this projection a
Poincare´ section. We follow a few field lines~typically, 12
lines! integrating Eq.~3! from s50 to s5600Lz . As the
field lines are traveling mostly alongz then we have in this
way a view of the evolution of the transport transversal to
magnetic field. Second, we do an accurate quantitative s
by calculating the varianceŝDxi

2& as a function ofs, aver-
aged over 1000 field lines. In both cases the starting poin
each field line is taken atz50 and is randomly distributed in
the square 0<x<Lx , 0<y<Ly .

The different runs, where the ratiol i / l' is varying, are
described in Table I. Also reported is the ratio^dBz

2&/^dBx
2&,

which shows how the magnetic fluctuation energy is distr
uted along the different directions, for each realization of
fluctuating field~clearly, this ratio equals 1 forl i5 l' , for
run 4!. While the ratiô dBy

2&/^dBx
2& in thexy plane equals 1

~not reported! because of axial symmetry,̂dBz
2&/^dBx

2&
tends to 2 forl i / l'→`, and becomes very small forl i / l'
→0. The former result is because for very largel i / l' the
wave vectors are squeezed in thexy plane, and each wav
vectors has one polarization in thexy plane (ê1) and one
almost parallel toB0 (ê2), so thatdBz gets twice as much
independent contributions asdBx or dBy . The latter result is
because for very smalll i / l' all the wave vectors are aligne
alongz, and the polarization vectorsê1 and ê2 almost lay in

TABLE I. Parameters of the different runs of numerical sim
lations.

Run l i / l' ^dBz
2&/^dBx

2&

1 100 2.00
2 10 1.93
3 3 1.61
4 1 1.04
5 0.33 0.45
6 0.1 0.16
7 0.01 0.12
e
dy

of

-
e

the xy plane, so that only a small amount of the fluctuati
field is alongz. ~Note that wave modes withk exactly par-
allel to B0, that is with nx5ny50, are excluded from our
simulation becauseê1 and ê2 are undetermined; this is no
relevant to the magnetic field model due to the high num
of wave modes, typically 11 512; in addition, this explai
why for run 4,^dBz

2&/^dBx
2&51.04, rather than 1 as would b

expected for exact isotropy.!

A. Poincaré sections

The Poincare´ sections for some of the runs are plotted
Figs. 2 and 3. Looking at these plots, it can be seen that,
to the introduction of the longwavelength cut offNmin

5A17, we do not observe, even for very high anisotrop
effects of periodicity in these figures. Also, transport is rath
isotropic in thexy plane, as it should be sincel x5 l y5 l' . In
Fig. 2, the Poincare´ sections are plotted for a ratiol i / l'
increasing from left to right~that is l i / l'50.1, 0.33, and 3,
for respectively runs 6, 5, and 3!. Two different fluctuation
levels dB/B0 are plotted in the figure:dB/B050.1 for the
upper panels anddB/B050.3 for the lower panels, so tha
the fluctuation level is increasing from top to bottom. T
differences between the various runs are striking: for
lower ratio l i / l' ~on the left! we distinguish very well de-
fined magnetic surfaces and magnetic islands, while for
higher ratio l i / l' ~on the right!, the magnetic surfaces ar
completely destroyed even at moderate fluctuation lev
Therefore an increase of thel i / l' , for the same fluctuation
level, increases the stochasticity of the system.

As in the isotropic case an increase ofdB/B0 makes the
system more stochastic. However, the value ofdB/B0 is not
the only parameter which determines the stochasticity of
system. Rather, it appears that anisotropy, quantified
l i / l' , has a very strong influence on the stochasticity
magnetic field lines. It is clear from Fig. 2 that stochastic
increases withl i / l' . This in spite of the fact that the mag
netic fluctuation energy in the perpendicular direction, d
scribed by the ratiôdBz

2&/^dBx
2& in Table I, decreases whe

l i / l' increases. We note here that although a very la
FIG. 2. Poincare´ sections at variousdB/B0

and for different ratio l i / l' . ~a!–~c!, dB/B0

50.1; ~e!–~g!: dB/B050.3; ~a! and ~e!: l i / l'
50.1; ~b! and ~f!: l i / l'50.33; ~c! and ~g!:
l i / l'53.
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FIG. 3. Poincare´ sections for runs with the
same value ofR5(dB/B0)( l i / l'), but different
fluctuation levels and anisotropy degrees:~a!:
dB/B050.003 andl i / l'510 ~run 2, R50.03);
~b!: dB/B050.3 and l i / l'50.1 ~run 6, R
50.03);~c!: dB/B050.015 andl i / l'510 ~run 2,
R50.15);~d!: dB/B050.15 andl i / l'51 ~run 4,
R50.15);~e!: dB/B050.33 andl i / l'53 ~run 3,
R51); ~f!: dB/B051 and l i / l'51 ~run 4, R
51).
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number of studies has addressed the issue of how the
chasticity level depends on the fluctuation level, this is
first time that the influence of anisotropy on stochasticity
pointed out with a systematic study.

From the inspection of Fig. 2 we can understand that
level of stochasticity depends on a parameter which is m
up of the level of fluctuations and the degree of anisotropy
appears that the Kubo numberR5(dB/B0) l i / l' , which
originally was defined to measure the effect of stocha
perturbations over one correlation time~see the Introduc-
tion!, can be such a parameter. To this end, we show in
3 some Poincare´ sections with differentdB/B0 and l i / l' ,
but the same value ofR: it is apparent that the level of sto
chasticity is~at least from a visual point of view! the same
for a given value ofR. In other words the value ofR deter-
mines the level of chaos, withR'1 corresponding to globa
stochasticity.

The Poincare´ sections on the left panels of Fig. 2~those
with l i, l') suggest a subdiffusive behavior, as it is fou
also from the study of transport~see later!. The very well
defined closed curves plotted on the left panels show tha
magnetic field lines spiralize around the flux tubes and s
on them for a long time. AsdB/B0 is increased, the stochas
tic layer is getting thicker~although still very thin! and this
means that the field lines can escape more easily from
flux tube and then be trapped in another. Some other fi
lines have superdiffusive behavior because they are mo
for quite long distances in the stochastic layer, and are s
ject to long displacements very similar to Le´vy flights ~see
the open trajectories in Fig. 2!.
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B. Anomalous transport

The different transport regimes, which are suggested
the Poincare´ sections, as well as the role of the Kubo numb
R, can be better caracterized by studying quantitatively
transport properties. In this connection, we integrate Eq.~3!
to compute the varianceŝDxi

2&, where Dxi5xi2xi
(0) ( i

5x,y), as a function ofs ~here the field line lengths has a
role analogous to time!. Then we make a fit of̂Dxi

2&, with
the anomalous transport law

^Dxi
2&52Di sa i ~9!

and determinea i and Di when s is large enough to attain
asymptotic values. The asymptotic behavior is usually
tained fors51000Lz or less. Here, the exponenta i charac-
terizes the random walk law:a i51 in the Gaussian diffusive
regime,a i52 in the ballistic regime;a i,1 in the case of
trapping~subdiffusive regime!, and 1,a i,2 in the case of
Lévy random walk~superdiffusive regime! ~Refs. @30,40–
42,44#!. We note that the superdiffusive case when 1,a i
,2 usually corresponds to an alternate succession of s
jumps and of long jumps~Lévy flights! between two mag-
netic flux tubes. To have a good statistics, the above tra
port expression is fitted to the numerical results obtain
with a large number of field lines, tipically 1000.

In Fig. 4, we plotted the anomalous diffusion expone
as a function ofdB/B0 for a selection of runs. The sam
behavior found in previous studies@30–32,11# is confirmed:
for a given degree of anisotropy,a i tends to 1~Gaussian
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diffusion! whendB/B0 is increased, anda i is different from
1 for low dB/B0. In the latter cases, we find mostly subd
fusion, i.e.,ax,1, ay,1 ~see later!. However, the smaller
l i / l' , the higherdB/B0 has to be in order to attaina i51,
see the upper two panels of Fig. 4. This agrees with the f
discussed above, that global stochasticity is reached f
higher level of fluctuations whenl i / l' is decreased. We not
that a iÞ1 corresponds to a non Gaussian ‘‘dynamics.’’ I
deed, the Le´vy random walk is characterized by a distrib
tion of free path lengths which is power law rather th
Gaussian@40,41# and which has diverging second order m
ment. Further,a i51 does not always mean Gaussian regi
but can be the result of a mix of trapping events and Le´vy
flights such that normal transport is found@5#. This fact can
be evidenced by computing the kurtosisKi5^Dxi

4&/^Dxi
2&2,

which equals 3 for a Gaussian distribution. A kurtosis larg
than 3 corresponds to enhanced importance of the tails~as
for Lévy stable law distribution!, while Ki,3 implies very
short tails of the distribution. From the kurtosis in Fig. 4, w
have indication of Le´vy flights ~since Ki.3) for various
cases, even witha i.1; then for a particular fluctuation
level, that increases with the ratiol' / l i , the kurtosis is equa
to 3, i.e., the bunch of magnetic field lines has a Gauss
distribution, corresponding to normal diffusion.

Note that anomalous diffusion,aÞ1, is mostly found for
small values ofl i / l' . We interpret this as the influence o
the limited stochasticity~weak chaos! on transport: in the
presence of good magnetic surfaces~see Fig. 2! and of KAM
tori, many field line are trapped on KAM tori and give a ve

FIG. 4. Anomalous diffusion exponentsax and ay versus
dB/B0 @~a! and~b!#. KurtosisKx andKy versusdB/B0 @~c! and~d!#.
l i / l'5100: squares;l i / l'510: crosses;l i / l'51: triangles;l i / l'
50.1: circles.
t,
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low contribution to transport~this contribution goes asymp
totically to zero fors→`). Other field lines are in the sto
chastic layer and move in between the magnetic ‘‘island
with long coherent displacements which correspond to
Lévy flight ~leading to superdiffusion!, and others are on
Cantori layers. The latter is a region of broken magne
surfaces which are adjacent to KAM tori, on which fie
lines can be trapped for long times and then escape into
stochastic layer. It is typical of Cantori layers to have a fra
tal structure as well as a hierarchy of trapping times w
power law distribution@42–44#. It is the balance between
trapping in Cantori and Le´vy flight in the stochastic layer
that leads either toa,1 ~trapping prevails! or to a.1
~Lévy flights prevail! @30#. At the same time, it is well
known that anomalous diffusion is found in systems char
terized by weak, incomplete chaos@42–44#.

On the other hand, increasing the level of stochastic
i.e., R5(dB/B0)( l i / l'), the area occupied by KAM tori de
creases, the thickness of the stochastic layer increases
because of the enhanced instability of trajectories, the len
of Lévy flights and of trapping times on Cantori both d
crease. Thus, in a regime of global stochasticity the field l
random walk approaches a Gaussian regime~characterized
by finite jump length and jump time! and normal diffusion is
recovered.

C. Threshold of the Gaussian diffusion

Let us now investigate what are the conditions to ha
normal rather than anomalous diffusion. As shown abo
the anisotropy in the correlation lengths influences in a c
sistent way the regime of diffusion. In particular, from Fi
4, we note that that the value ofdB/B0 for which the kurtosis
becomes close to 3, decreases when increasing the
l i / l' . Also from Fig. 6 of Ref.@11#, we note that the sto-
chastic regime is reached for a higher fluctuation level wh
the anisotropyl x / l y is increased, i.e., the threshold for th
Gaussian regime is increasing with the ratiol x / l y ~in Ref.
@11# l y5 l z , so that the ratiol x / l y mimics l' / l i). We ob-
served in connection with Fig. 3 and in previous works@46#
similar stochasticity levels when the Kubo numberR
5(dB/B0)( l i / l') is the same. Also, the quasilinear regim
and the percolation regime are obtained for opposite limit
values ofR. For these reasons, we plotted in Fig. 5~a! the
value of (dB/B0)* for which the kurtosis attained 3.060.3
~that is the Gaussian value610% @31#!, versus the anisot-
ropy ratio l i / l' . We observe an almost inverse linear re
tion between the ratiol i / l' and the threshold for Gaussia
regime (dB/B0)* . In other words, (dB/B0)* l i / l'. con-
stant holds.

Then we can define the threshold Kubo number, tha
R* 5(dB/B0)* l i / l' , at which we reach the Gaussian r
gime. Therefore, we have anomalous transport regimes
R,R* , and Gaussian diffusion forR.R* . In the Fig. 5~b!,
we plottedR* versus the ratiol i / l' . We can see thatR* has
values going from 0.3 to 0.6, so thatR* '1 is a reasonable
criterion to determine the Gaussian threshold in our simu
tions. We note that this interpretation of the role of the Ku
number is fully consistent with that obtained from the abo
analysis of the Poincare´ sections.
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Actually, there are other parameters which influence
threshold of stochasticity, as well. For example, Zimbar
et al. @30# showed that with a longer spectral extention, g
bal stochasticity is attained for lower values of the fluctu
tion level ~a well known result, see also Refs.@22,48#!. Re-
cently, Pommoiset al. @32# showed that the shape of th
spectrum, that is the balance between the injection zone
the inertial range in the simulated turbulence, also influen
the reach of the Gaussian regime. Here we singled out
influence ofl i / l' on the stochasticity and Gaussian thres
old, and we leave for future investigations the study of
influence of the other parameters.

D. Scaling of the diffusion coefficients

In Fig. 6, we plotted the diffusion coefficientsDi for the
various runs but only when we are in the Gaussian regime
practice, the cases withR!1, which would correspond to th
quasilinear diffusion coefficient according to the analytic
studies, turn out to be in the anomalous diffusion regime
that the coefficientDi of the fit of Eq.~9! does not have the
meaning of a standard diffusion coefficient. We note t
transport is faster when the ratiol i / l' is increased, espe
cially for the lower fluctuation levels. Indeed, the scaling
the diffusion coefficient withdB/B0 appears to be differen
for the different degree of anisotropy~compare for instance
runs 1 and 4!.

In order to make the comparison with the analytical lim
its, let us introduce the transversal diffusion coefficientD' ,
corresponding to diffusion in the plane perpendicular toB0 .
Since we havê Dr'

2 (s)&5^Dx2(s)&1^Dy2(s)&, we obtain
directly thatD'5Dx1Dy . We now consider more closel
the scaling of the diffusion coefficientsD' with the fluctua-
tion dB/B0, that is

D'}S dB

B0
D m

~10!

FIG. 5. Minimum value of the fluctuation level (dB/B0)* at
which the kurtosis is between 3.3 and 2.7~upper panel!, and Kubo
numberR* ~for which the system passes from anomalous regim
Gaussian regime, lower panel! as a function of the ratiol i / l' for
the different runs.
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and compare it with the quasilinear limit and with the perc
lative limit.

In Fig. 7,D' is plotted for all the runs as a function of th
Kubo numberR. Several interesting features can be appre
ated from this figure. The quasilinear~percolative! scaling of
the diffusion coefficient withdB/B0 is given by the dotted
~dashed! lines ~at a fixed anisotropy ratiol i / l' , the scaling
of D' with dB/B0 is the same as that withR). Since each
different symbol in the figure represents a run with giv
anisotropy, it is easy to see that forR&1 theD' follow the
quasilinear scaling for all the different anisotropy ratio
Also, for R*10, the diffusion coefficient scales withR as in
the percolative regime. It is possible that the scaling ofD'

with R would be somewhat slower than the value propos
by Isichenko,m50.7 @4#, and in agreement with theorica
predictions by Vladet al. @8#. However, our data points ar
not enough to stricly constrain the value ofm in the perco-
lative regime. FromR.1 to R.10, an intermediate scaling
appears: although this might look similar to the so-cal
Bohm scaling,D';R, we consider this to be only a trans
tion regime from the quasilinear scaling to the percolat
scaling. Moreover, the theorical foundations of the Boh
scaling have been recently questioned by Reuss and
guich and Vladet al. @29,8#.

If we look at the left most part of Fig. 7, we have
confirmation of the fact that the Gaussian diffusion regime
reached whenR.0.320.4, since the diffusion coefficien

o

FIG. 6. Diffusion coefficientsDx and Dy versusdB/B0 ~in
Gaussian regime!. l i / l'5100: squares;l i / l'510: crosses;l i / l'
53: circles;l i / l'51: triangles. To estimate the scaling ofDi with
the fluctuation level,Di}(dB/B0)m, we plotted both the quasi
linear diffusion scaling withm52 ~dotted line! and the percolative
diffusion scaling withm50.7 ~dashed line!.
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are not obtained for smaller values ofR. Furthermore, we can
see that for a given value ofR, D' depends strongly on th
anisotropy ratiol i / l' , with the larger value ofD' obtained
for the smallerl i / l' . This result can be easily explaine
when we write down the quasilinear diffusion coefficient
terms of the Kubo number

Dql.bqlS dB

B0
D 2

l i5bql

l'
2

l i
R2. ~11!

It is clear that the smallerl i / l' , the largerD' ; also, inspec-
tion of Fig. 7, shows that our data points follow this relati
rather well. A fit of the data points in the quasilinear regim
to Eq. ~11! allows us to determine the proportionality co
stantbql asbql'0.015. In a similar way, in the percolativ
regimeD' is larger for smallerl i / l' , and we can write the
Isichenko diffusion coefficient in terms ofR:

Dp.bpl'S l i

l'
D 0.3S dB

B0
D 0.7

5bp

l'
2

l i
R0.7. ~12!

This is the same expression as above, Eq.~11!, apart from
the dependence onR and the proportionality constantbp .
This relation is approximately followed byD' in the perco-
lative regime,R*10, too, and a fit of the data points yield
bp'0.06.

It is important to notice here that although the Kubo nu
ber R5dB/B0l i / l' is the fundamental parameter which d
terminates the transport regime, e.g., anomalous, quasilin
or percolative, yet it is not the only parameter to determ
the value of the diffusion coefficientD' , as clearly indicated
by Fig. 7: the anisotropy ratiol i / l' also plays an importan
role ~of course, we are limiting such considerations to t
parameters which are varied in the present study!.

Finally, it is interresting to note that the analytical studi
predict a quasilinear regime forR!1 where we find anoma
lous transport; however, the quasilinear regime is still fou

FIG. 7. Anomalous diffusion coefficientsD' versus Kubo num-
ber R. l i / l'5100: squares;l i / l'510: crosses;l i / l'53: circles;
l i / l'51: triangles;l i / l'50.33: stars. We also plotted the quasili
ear scaling withm52 ~dotted lines!, and the percolative scaling
with m50.7 ~dashed lines!.
-

ar,
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including the particular dependence on the correlat
lengths shown in Eq.~11!, although shifted to larger value
of R, 0.3&R&1. The reason for which the quasilinear r
gime is obtained forR!1 in the analytical studies, wherea
we find it for R&1, is because the system, in the analytic
studies, is assumed to be stochastic from the start. Howe
the magnetic field line equations have an Hamiltonian str
ture such that the level of stochasticity~i.e., of chaos! is low
for R!1. In such a case closed magnetic surface, i.e., KA
tori, are found and anomalous transport results.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied magnetic field line transp
in 3D magnetic turbulence with anisotropy in the directio
parallel and perpendicular to the magnetic field. Particu
attention is devoted to the representation of the anisotropy
order to assess its influence on the transport regimes.
main results of the present study are the following: We fi
that stochasticity increases both increasing the fluctua
level dB/B0 and increasing the ratiol i / l' at fixeddB/B0. It
appears that the different transport regimes can be organ
in terms of the Kubo numberR5(dB/B0)( l i / l'). WhenR
!1 weak chaos, closed magnetic surfaces, and anoma
transport regimes are found. WhenR*0.3 the diffusion re-
gime is Gaussian, and the quasilinear scaling of the diffus
coefficient D';(dB/B0)2 is recovered forR up to 1. Fi-
nally, for R@1 the percolation scaling of the diffusion coe
ficient D';(dB/B0)0.7 is obtained. These results are cons
tent with those of Zimbardoet al. and Pommoiset al.
@30,32#, where the magnetic turbulence is isotropic a
anomalous diffusion is found fordB/B0&0.2. The percola-
tion scaling of the diffusion coefficient was previously o
tained in Refs.@5,29#. In particular, Reuss and Misguich@29#
realized 2D simulations, to study particle diffusion in th
guiding center approximation, and obtained the percola
scalingm;0.7. Therefore this analytical limit is confirme
by the numerical results in thel i / l'→` approximation.

It is interesting to note that a single parameter, the Ku
numberR5(dB/B0)( l i / l'), allows us to ‘‘classify’’ both
the quasilinear and percolative regimes, and the level of
chasticity of the system. This unexpected result suggests
there is a relation between the Kubo number and the leve
chaoticity of the system. In the problem of magnetic fie
line transport, the chaoticity is measured though the Kolm
orov entropyh @22,48#, which corresponds to the large
Lyapunov exponent of field lines. A quasilinear estimate
the Kolmogorov entropy can be obtained ashql

.(dB/B0)2( l i / l'
2 ) @22,30,48#. It is immediate to see that th

Kolmogorov entropy can be expressed through the Ku
number ashql.R2/ l i . Therefore the Kubo number, origi
nally defined as the parameter whose smallness allows a
turbative treament of a stochastic equation@27#, is very di-
rectly related to the Kolmogorov entropy~or the Lyapunov
exponents! of the system, and is an appropriate paramete
quantify the stochasticity of magnetic field lines. It would b
interesting to investigate numerically the relation betweeh
andR outside of the quasilinear regime and as a function
the degree of anisotropy.
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