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Swollen stacks of finite-size disclike Laponite clay platelets are investigated within a Wigner-Seitz cell
model. Each cell is a cylinder containing a coaxial platelet at its center, together with an overall charge-neutral
distribution of microscopic co and counterions, withipr@mitive modeldescription. The nonlinear Poisson-
Boltzmann(PB) equation for the electrostatic potential profile is solved numerically within a highly efficient
Green’s function formulation. Previous predictions of linearized Poisson-Boltzr(ieB) theory are con-
firmed at a qualitative level, but large quantitative differences between PB and LPB theories are found at
physically relevant values of the charge carried by the platelets. A hybrid theory treating edge effect at the
linearized level yields good potential profiles. The force between two coaxial platelets, calculated within PB
theory, is an order of magnitude smaller than predicted by LPB theory.

PACS numbds): 82.70.Gg, 02.60.Nm, 68.10m

[. INTRODUCTION between colloidal spheres carrying a uniform surface charge,
leading to the screened Coulomb potential of Derjaguin,
Electrostatic interactions between suspended mesoscopi@ndau, Verwey, and Overbe¢g,7] (DLVO). LPB theory
particles or polyions play a key role in determining the sta-is, however, strictly speaking valid only provided the local
bility, mesostructure, and phase behavior of colloidal disperpotential energy felt by the microions is everywhere small
sions and polyelectrolytes. Polyions in aqueous dispersiongompared to the thermal energyT. This condition is rarely
may be rigid or flexible, and range in shape from spherical tonet in the immediate vicinity of the highly charged polyions,
rodlike or lamellar. Widely studied examples of polyions in- where the Coulomb energy becomes large comparégTo
clude polystyrene balls, elongated TMibbacco mosaic vi- so that nonlinearities become crucial and full PB theory
rus) particles, stiff polyelectrolyte chains such as DNA, flex- should be used to determine the concentration profiles of the
ible membranes, and silicate clay platelets. The highlymicroions. The deficiencies of LPB theory are frequently
charged polyions strongly attract or repel microscopic counpatched upy introducing the rather vague conceptooiun-
terions and coiongmicroions, leading to the formation of terion condensationleading to a Helmholtz-Stern layer of
electric double layers characterized by highly inhomoge-counterions highly bound to the polyiof], and henceforth
neous charge distributions around the polyions. Theoreticdb an effective valencg of the latter, significantly reduced
investigations of the structure of such double layers, and oiih magnitude compared to the nominal valerdt should
their mutual effective interactions, have been mostly rebe stressed thatounterion condensatiors a well-defined
stricted to the simplest polyion topologies, including uni- concept only within the cylindrical geometry of an infinite,
formly charged infinite planes or spheres. Starting with theuniformly charged thin rod9,10]. In all other geometries,
pioneering work of Gouy1] and Chapmar?2], on infinite  effective valenceZ.; can only be defined within some phe-
planar double layers, theoretical calculations are almost innomenological conventiofil1,12. In the case of spherical
variably based on the mean-field Poisson-Boltzm&rB) charge-stabilized colloids some recent direct measurements
approximation, which neglects excluded volume and Couof the effective pair potential between polyions in the bulk of
lomb correlations between the microions, although some rea suspension point to the validity of the functional form and
cent attempts have been made to include such correlatiomange of the DLVO potential, providedy is considered to
within a density functionalDFT) formulation, which may be an adjustable parameter, varying within a physically rea-
also account for discrete solvent effe¢®. The nonlinear sonable rang€l3].
PB equation for the local electrostatic potential may be This paper deals with electric double layers in lamellar
solved analytically for a single planar double layer, and twostacks of uniformly charged finite platelets, considered as a
interacting double layers in the salt-free cdge., in the  model for swollen clays. Due to the finite size of the plate-
absence of coiond1,2,4); in the presence of salt, the one- lets, edge effects come into play so that the problem ceases
dimensional problem of interacting charged planes is easilyo be one dimensional, as would be the case for stacks of
solved numerically{5]. However, PB theory becomes in- infinite planes. For simplicity, the clay platelets are assumed
creasingly difficult to handle for more complicated geom-to be disc shaped and coaxial, while they are equally spaced
etries, and must generally be linearized to become tractablaithin an infinite stack. Fairly monodisperse disc-shaped
A well-known application of linearized Poisson-Boltzmann platelets are synthetized as Laponfte4], a model clay
(LPB) theory is the calculation of the effective interaction which has received much recent experimental and theoretical
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attention. In particular a Wigner-Seif®VS) model for such N, and N_ monovalent counterions and coions. Overall
stacks has been thoroughly investigated within LPB theorycharge neutrality requires that
[15,16. Under most physical circumstances, the conditions
of validity of LPB theory are far from being met in swollen
clays, and consequently the much more difficult problem of
nonlinear PB theory for stacks of coaxial charged discs is
being addressed in this paper. The molecular nature of the solvetwaten inside the cell
The key innovation of the present work is that the solutionwill be ignored, i.e., the solvent is treated as a continuum of
of the nonlinear partial differential equation for given bound-dielectric constant (primitive model of electrolytes The
ary conditions is not sought within a standard finite differ- heightH and radiusR>r , of the cylinder must be such that
ence schemgl7], but rather by expressing the solution in 7R?H=v, where the volume is determined by the macro-
terms of the appropriate Green’s function. The latter is obscopic concentration of clay platelets. The latter does not
tained analytically for the present cylindrical geometry, indetermine the aspect ratit/R, which will be determined by
the form of a Bessel-Dini series, and the resulting nonlineathe condition that it minimizes the total free energy of the
integral equation is solved numerically by a very stable it-microion distribution within the cell. The task is now to de-
erative procedure. termine the total electrostatic potentia(r) throughout the
‘The remainder of the paper is organized as follows. Thesell, and to derive from it the concentration profile$(r)
Wigner-Seitz model, appropriate for stacks of coaxialandp~(r) of counterions and coions, and the resulting os-
Charged diSCS, is defined in Sec. Il. The basic aSSUmptiO%otiC propertieS, inc|uding the free energy, for a given vol-
and equations of PB theory are laid out in Sec. Ill, and theyme v and aspect rati¢i/R. In keeping with the physical
Green'’s function methodology for solving the nonlinear PBmeaning of the WS cell as representing the cage formed by
equation with cylindrical WS boundary conditions is pre- the neighboring platelets, the component of the electric field
sented in Sec. IV. A hybrid PB-Debye-tkel theory, E normal to the surfac® of the cylinder will be assumed to
whereby edge effects are treated to linear order in the devigzanish at each point of that surface, i.e., the following Neu-

geometry, is formulated in Sec. V. Numerical results for po-

tential and concentration profiles, and for the resulting os-

motic properties, are presented in Sec. VI. The force acting [n(r)- V] cse(r)=0, 2

between two finite, coaxial platelets is calculated in Sec. VII,

while conclusions are drawn in Sec.'VIII. A preliminary ac- wheren(r) is the normal to the surfac® atr. The task thus

count of parts of this work was published elsewhi8]. defined will be carried out within PB theory in the following
sections.

N,=N_+2Z. (1)

Il. WIGNER-SEITZ MODEL FOR SWOLLEN CLAYS

Consider a stack of coaxial, infinitely thin, disc-shaped lll. POISSON-BOLTZMANN THEORY
clay platelets, with an average spaciig-2h. Each platelet
has a radiug,, and carries a uniform charge density=
—Ze/a-rrg, whereZe is the total charge on a platelet. For
Laponite,r,~150 A andZ~1000[14]. Stacks are assumed
to fill space in a columnar arrangement, with the normals to
the platelets all pointing in the same direction. Each platelet
is then placed, on average, at the center of a Wigner-Seitz

cell, of volumev=V/N, whereV is the total volume of the ) ) L
sample andN the total number of platelets. In a hexagonal Wherépc(r) is the total charge density, which includes the

columnar array, the topology of the WS cell would be aCtontribution of the platelegp(r) and that of themonova-
prism of heightH and hexagonal basis parallel to the platelet./ent microions

The WS model thus describes a regular three-dimensional

array of platelets wit'h perfectly aligned axes, and is thus pe(N=0ap(r)+e[p(r)—p~(N)]. (4)
appropriate to describe moderately swollen stacked clays,

but would not be appropriate for dilute dispersions of clay ] o N o
particles. In view of the circular shape of the platelet it is !N the mean-field approximation, the positions of microions
reasonable to replace the WS prism by a cylinder of identicare uncorrelated, so that thelr local concentrgtlons are simply
volume and height. In fact it was shown explicitly in Ref. related to the local potential by the following Boltzmann
[15] that, at least within LPB theory, the results are verydistributions
insensitive to the precise shape of the WS cell. Compared to
prgvious studies of stacked clay platelgts, assumed to be in- pt(r)ngeiﬁmp(r), (5)
finite planeg5], the present study takes into account egige
finite platelet sizg effects.

The WS model for a swollen clay which will be examined where3=1/kgT. It is worth remembering that E¢5) is just
in this paper reduces hence to a single charged circular plate- statement of the Euler-Lagrange equation resulting from
let placed at the center of a coaxial cylinder, together withthe minimization of the following free-energy functional

The electrostatic potential throughout the WS cell satisfies
Poisson’s equation

) 41
\Y @(r)=—7pc(r), ©)
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Hp™(r),p~(1)]=Figear Fcoulombs the clharge densityp(r), defined by Egs.(5) and (4),
namely,

Fuem 3 ke [ pninia3pen)1- 1y, . "
o -6t pam=- [ errpdriar o

1
F =5 f re(r)dr, 6
Coulomb™ vpC( Je(r) ©) satisfies Poisson’s equati@B) and the Neumann boundary

o ) condition (2); (G* p.) coincides then with the required po-
keeping in mind thap.(r) and ¢(r) are linearly related by tential o(r). Note that the integral in Eq10) is not, strictly

Poisson’s equatiog. speaking, a convolution sin¢g is not a function of the rela-
The prefactorgg in Eqg. (5) have no physical significance tjve positionr —r’ only.
when considered separately. However, their progggt, is By definition, the Green’s function is a solution of the

uniquely determined by the imposed physical conditions. Irfollowing linear Poisson’s equation:

a canonical descriptioiN, andN_ are fixed by the macro-

scopic concentrations, =N /v andn_=N_ /v of counte- V2G(r,r')=48(r—r'). (11)
rions and coions; the latter coincides with the concentration

ng of added salt, i.e.n_=ng. The electroneutrality condi-
tion (1) then fixesn, , and the prefactorg, are determined
by the normalization constraints

Integrating both sides of E¢11), and using Gauss’ theorem,

. fVfG(r,r')dr=Ln(r)-vre(r,r')ds
nf;fvpi(r)dr- (7) !

=J’ S(r—r")dr=1, (12
Alternatively, if the suspension is in osmotic equilibrium v

with an ionic solution of concentratiomg acting as a reser-

voir, a semigrand-canonical description is in order. In thisit becomes clear that the Green’s function satisfy{dd)
case the chemical potential of coions and counterions mustannot obey the same boundary conditi@ as the poten-
be identical in the suspension and in the reservoir, leading ttal, but rather

the condition[5]

1

Pt 5 = (D)2 (®) [0(1)- V) 36(nr)= g7 13

A key quantity describing the solution is then the Donnan

ratio ng/ng of salt concentrations in the cell and in the res-whereS(2) is the total area of the WS cell. The boundary
ervoir. Substitution of Eq(5) into Egs.(4) and (3) leads to ~ condition(13) precludes the possibility of expandigin a
the closed nonlinear partial differential equation for the po-Bessel-Dini serie$19], similar to that used for the solution
tential ¢(r) of the LPB problem in the same cylindrical geometry
[15,14. The difficulty may be overcome by adopting one of
three possible routes.

V2p(r)=— 4_77( )+ —Bee(r) _ ,~ gBee(r) )
e(N)=——@p(r)+elpoe Po D (a) Eq. (11) is solved subject to the boundary condition

9)

This PB equation must be solved subject to the Neumann
boundary condition(2) on the surface of the WS cylinder.
The linearized version of Ed9), where the Boltzmann fac-
tors are expanded to first order¢n(LPB theory was solved
analytically in Refs[15,16], under the same boundary con-
ditions. The nonlinear problem is reformulated in terms of 2B ,
the appropriate Green’s function in the next section. ViGH(r,r)=6(r—r")+B(r), (15

[n(r)- V] cs(G*pc)(r)=0. (14)

An explicit example is given in Appendix A.
(b) A modified Green’s functiols? is sought, which sat-
isfies the following Poisson’s equation:

IV. GREEN'S FUNCTION METHODOLOGY where B(r) is an arbitrary neutralizing background charge
L o ) distribution, such that
The infinite dilution PB problem of an isolated platelet

immersed with counterions in an electrolyte solution has

been solved numerically using a finite difference scheme f@dr:—l_ (16)
[17]. However, this method is not well adapted to the case of v

a charged platelet confined to a WS cell. Here a semianalytic

method is proposed, whereby the PB equation is transforme@5(r,r’) can now be required to satisfy the same boundary
into a nonlinear integral equation, which can be solved iteracondition (2) as the potential. It is easily verified that
tively. This approach requires the knowledge of a Green's—47(G" p.)/e indeed satisfies Eq3), together with the
function G(r,r") such that its ‘tonvolutiorY product with  appropriate Neumann boundary conditi@, since
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am 4w N e S(¢p—¢') Jo(ynsr'/R) _ [h*Z’

Vz[——(GB*pC)}=——J VZGE(r,r")pe(r')dr Co(dr')=—2A, _(¢ ) O(i” )cosr{ .
€ € Jv RZsinj 2h/A, ] J5(Yn) Anq

47 (22)

€

4
= ry——»nB(r J r’)dr’
pe(1) € S vpC( ) For an infinitely thin platelet of radius,, the charge density

gp(r), which provide the source term in Poisson’s equation,

A may be simply expressed as
== —pc(r), (17
e Ap(r) =@ (ro—1)8(2), (23
where overall charge neutrality of the WS cell has been usedyhere® is the Heaviside function. The corresponding con-
similarly tribution to ¢(r) in Eq. (20) may then be evaluated analyti-
cally

[n(r)- V] cs(G% po)(r)
fvdr’GK(r,r’)qp(r’)
- [ {100 91, s6F e e yar <0, a9

__ o i J1(Yalo/R) Jo(Yal IR) r{h:z
in view of the boundary condition imposed Gf. R =1 "ynsinih/ AL 33(y,) An
(c) The bare Laplace operator in Ed.1) is replaced by a (24)

dressedor screenedperator, and the solutio@“ of

The nonlinear integral equatio20) was then solved for
2_ .2 N S(p g ¢(r) using an iterative Picard method with underrelaxation
(Vi= G =ar=r" (19 [20]. At a particular iteration step the result from the pre-
, _. vious iteration@' ~1(r), and the analytic resui4) are used
can then be made to satisfy the Neumann boundary condltlogs input to compute the right-hand sitRHS) of Eq. (20).

(.2) for any nonzero value of the inverse IepgthThe SOI.”' The resulting potentiap(r) is then used to produce the input
tion of this linear problem may be obtained analytically for the next iteration step by mixing it witt' ~1(r) accord-
along the same lines as those leading to the potential withi{hg to

LPB theory[15,16], as sketched in Appendix A. Subtracting
x%¢(r) from both sides of the nonlinear PB equati@, it e'(N=ae )+ (1-a)e(r), (25
is then straightforward to check that the solution to that
equation, subject to the proper boundary condit@nsatis-  where 0<a<1; typically «~0.9. The iterative cycle is re-
fies the nonlinear integral equation peated until the relative differende’ —¢'~|/|¢'| at the
center of the cylindrical WS celiwhich coincides with the
B 4 o , T Beo(r!) center of the discbhecomes smaller than a preset value, cho-
e(r)=— ?f G*(r,r")| ap(r’)+e[pge "¢ sen to be 10° in practice.

' The arbitrary inverse lengtlkx is chosen in the range
[kp/10,10¢p], Where kp=[8mnie?/(ekg)T]¥2 is the in-
verse Debye length in the reservoir, in the case of calcula-
tions carried out in the semigrand-canonical ensemble. The

Since G*(r,r') is known analytically, Eq.(20) may be pr(_efactorSpg andpg.in Eq. (5) are fixed during the calcu-
solved numerically by an iterative procedure, starting fromlation at values obeying the constrai8}. Note that the elec-
an initial guess fokp(r). troneutrality condition(1) is not obeyed until the iterations
Details for the analytic solutions of Eqél1), (15), and have converged to the actual solutigifr), thus providing
(19), subject to the appropriate boundary conditions, aré" additional global convergence test. If the calculations are
given in Appendix A. In practice the iterative procedure was¢aried outin the canonical ensembie=n_ is fixed, and
implemented numerically using route). Using the results <p=[87Nse/(ekgT)]™ . The concentration of counterions
from Appendix A, the required Green’s function may be i fixed by the electroneutrality conditidl) and the prefac-

written in the form of the following Bessel-Dini series: torsp, andp, are determined by Eq7) at each step of the
iteration, so that electroneutrality holds throughout the con-

r hT 7 vergence process.
GA(r,r')=> C§(¢,r’)30(yn—) cosr{—} (21 The converged solutiog(r) must be independent of the
n=1 R An particular choice of the auxiliary variable. Cylindrical
symmetry impliese(r)= ¢(r,z), which is calculated on a
wherer=(r,¢,z) (cylindrical coordinates the signs+ and  two-dimensional grich, X n, spanning half the cylinder. In
— correspond to the situatiozs>z’ andz<z’, respectively, practicen, =240 grid points were used to cover the interval
Y is thenth root of J,(y)=0, Jo andJ; are the zeroth and [0,R], which provides sufficient resolution for the represen-
first order cylindrical Bessel functions, and,?=(y2 tation of the Bessel functions, ant,=100 points for the
+ k?R?)/R?. The coefficients ; (¢,r’) are given by interval[O,h]. 60 terms were retained in the Bessel-Dini se-

—poe39<°<f’>]+,<2%<p(r'))dr'. (20)
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ries (21). Starting from the initial guess(r)=0, conver- The boundary condition associated with the presence of the
gence is generally achieved in about 50 to 200 iterations. Theniformly charged platelet a=0, r<rg is
number of iterations needed to achieve a relative accuracy of () )
-5 i i i ; Zr To
10> can be drastically reduced if the electrostatic potential ( ¢ ) --= O(ro—r). 31)
z=0"

obtained from the hybrid theory, introduced in the next sec- Jz
tion, is used as input.

The electric field normal to the top and bottom of the cylin-

V. A HYBRID POISSON-BOLTZMANN —DEBYE-HUCKEL der vanishes, i.e.,
THEORY

de(z,r)
The hybrid Poisson-Boltzmann—Debyée-kel (PB—DH) ( 9z ) =0. (32
theory was developed for the problem of a clay platelet in a z=zxh
cy]mdncgl WS cell as a first attempt to go beyond LPES|. Using Eq.(29) in Eq. (30) and then projecting on the basis of
Within this symmetry the potentiad(r) = ¢(r,z) can be ex-  he zeroth order Bessel functiods leads to the following
panded in a Bessel-Dini seri¢s9] set of differential equations:

o Yol
peg(zn=3 An(z)Jo(?), (26 dZdAliz) — 8l gnisinnA,(2),
Zz

which factorizes the dependence of the potential on the dis- ) )
tancez along the axis of the cylinder, and the radial distance d°An(2) (Yo A(2)= 8l aniA(2)sinhA(2), n=2
r=(x2+y?)¥2 The hybrid PB-DH approach is an attemptto ~ 42 n(£) = OmBls neh =

R
treat edge effects in a perturbative way, while keeping the (33
nonlinear PB description in the limit of infinite platelets.
Substituting(26) into Eq. (5), the leading termA;(z) in  with the boundary conditions at=0
the expansion is exponentiated, but the exponential is linear-
ized with respect to the remainder of the seriesQ) (dAl(Z)) 1 (r_o)2
z=0"

~blR

oo

. (27)

A r
pr=pse M@ 17 > An<z>Jo(yn—
n=2 R

(dAn(Z)) :_E(ro) 1 ] (ano) N2
z=0"

] .
The first term in this expansiom=1, corresponds to the dz DRy J3(yn) R

solution of the PB equation for an infinite charged plane in a
WS slab of height B, with an effective surface charge’
=o(ro/R)2. The terms of orden=2 may be considered as
providing an estimate of the correction to the infinite charged dA,(2)
plane limit (r—R) due to the finite size of the platelets ( ) =0, n
[15]. dz J,_.,

The concentrations of co and counterions are determined . .
wherelg= B€e?/ € is the Bjerrum length and=e/27alg the

Gouy length.
1 (+h This set of differential equations can be solved analyti-
n“=pg ﬁj e M@dz, (289 cally in the salt-free case, for a WS cylindrical cell of infinite
-h height[15] (h—«, R finite). A numerical solution must be
. . . . P - sought otherwise. The first equation in E83) is identical to
It. Is therefore impossible to IMposg, =N and po =n the nonlinear PB equation for the ion distribution in a one-
simultaneously. As a consequence, in the presence of addegh,ensional cell model where each platelet is assumed to be
salt, calculations are preferably performed in the semigrand infinite uniformly charged plane confined with its
car_10nica| ensemble, at_ fixed resgrvoir salt Cor‘Ce"‘tr""tiorl'nonovalent co and counterions to a slab. In order to solve
This can be achieved with the choice this equation we follow the prescription given in Appendix B
L -, of Ref.[5]. A first order differential equation can be obtained
Po = Po = Ns- 29 after integrating once, using the boundary conditioz=ah

(34)

and atz=*h

=1, (35

by

For z#0 the semilinearized Poisson-Boltzmann equation dA(2)
becomes dl
z

= — /167l gng coshA;(z) —coshA;(h)]. (36)

V2p(r)=— ﬁ[ pge M@ —poehl@—(ple M The equation above is solved numerically using a fourth or-
€ der Runge-Kutta algorithm. Different guessesA4qg(h) lead
o ; to different solutionsA;(z). An underestimated initial guess
T preM@ A (2)] ( _) _ 30 for A,(h) is increased until a solutioA,(z) that verifies the
Po )nEB:Z (2)Jo Yng (30 boundary condition az=0 is found.
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The second equation in EG33) can also be solved by
first reducing it to a first order differential equation and then
using an appropriate numerical algorithm for its integration.

Defining a function
_ . Yn|?
L(z)=8mwlgngsinhA(z)— R/ (37)
one obtains E
o
d*An(2)
— —L(2)A(2)=0, (38)
dz
which is astiff differential equation il (z) is large. This can
be reduced to a first order differential equation by applying a
Ricatti transform
(a)
1 dA,(2) 3g
which leads to
dn(2) )
i —L@-n2?” (40)
The differential equation above is again solved using a fourth
order Runge-Kutta algorithm, and forced to satisfy the ’i—;
boundary condition at=h rewritten as -
n(h)=0. (41)
Integration of Eq.(39) leads to
z
An(z)=Cexr{J n(z')dz' |. (42
0
b
The integral above can be evaluated numerically while the( )
integration constant is determined by the boundary condi-
tion atz=0
1 [dA(z
_ _( o >) | w3
7(0)\ dz | _,

The Bessel-Dini coefficientd,(z) in the expansior{26)
of the electrostatic potential can be computed numerically _
using the procedure just described. This involves solving asg
many independent differential equations as terms kept in the§
expansion, i.e., one for each coefficient. The computational
cost is considerably reduced compared to the solution of the
nonlinear PB equation using the iterative scheme prescriber

in the previous section.

VI. RESULTS

A. Potential and density profiles

Figures 1a)—1(c) compare the dimensionless electrostatic
potential ®(z,r)=pBe¢(z,r) as obtained within LPB

NONLINEAR POISSON-BOLTZMANN THEORY OF A . ..
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Z=5

(©

FIG.

1.

Dimensionless
=pBep(z,r) at z=0 versusr, and atr=0 versusz. The profiles

0.00
-0.05
010/, /| ____ LPB
—-—- PB/DH
— PB
-0.15 - - .
0.0 50.0 100.0 150.0 200.0
r or z (Angstrom)
Z=100
0.0 |
-10
-2.0
3.0 .
0.0 50.0 100.0 150.0 200.0
r or z {Angstrom)
Z=1000
0.0 | ememooomeseceeeeaeeeeeeeos
g @(z,0) _
5o/ / ‘-
N //f
/’ ¢( O,r) Il,l
-10.0 ’,'l /'/ _____ LPB
o ——— PB/DH
[rrrmTmTm T —PB
-15.0 : s .
0.0 50.0 100.0 150.0 200.0

r or z (Angstrom)

electrostatic  potentiad(z,r)

[15,16, PB-DH and PB. The PB-DH potential was com- were obtained in LPEdotted ling, in PB-DH (dashed ling and in

puted by first solving Eq(33) for the coefficientsA,(z) and
then using these in the Bessel-Dini expansi@f) for the
electrostatic potential. Only the projectiong=0r) and

the full nonlinear PB theoriesolid line). (See text for detaily.The
surface charge on the clay discs(® Z=5, (b) Z=100, and(c)
Z=1000. The concentrations of added salt and the Donnan ratios

(z,r=0) are shown. The results are for an aqueous solutiofs/Ns for these results are indicated in Table I.
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TABLE |. Values of the Donnan ratioss/n; obtained within ' " '
LPB, PB-DH, or PB theory for an aqueous solution of clay concen-
trationn=5x 10" °M. The temperature is 300 K and the radius of
the discsro=150 A. The reservoir salt concentration in PB and 0 |
PB-DH isn.=5x10"3M. The concentrations of added salt in the

WS cell are also indicated. #
z=5 Z=100 Z=1000
ns/ng '/
LPB 0.975 0.648 0.233 =S
PB-DH 0.976 0.720 0.564
PB 0.976 0.725 0.574
ng/10 M
LPB and PB 4.878 3.623 2.870
PB-DH 4.881 3.602 2.820 -10 ! . !
0 50 100 150 200
r or z (Angstrom)
of clay disks of radiusro=150 A at temperatureT FIG. 2. Comparison between the nonlinear PB potentialZor

=300 K. The aspect ratio of the cylindrical WS cell is =1000(as in Fig. 2 and the linearized LPB potential, now with an
h/r,=1.25 and the concentration of clayn=5  effective renormalized charge” =375.

_3 _ _3 .
x107°M (1IM=1 moldm ). Although in .th? present Up to a rescaling factor, the shapes of PB and LPB po-
model the clay platelets are assumed to be infinitely thin, %

; i . o - . ntials are similatFig. 1). For a given charge density on the
packing fraction can be defined by assigning a finite thICk'platelets(ﬁxed Z), one can then define an effective charge
nessd to the plateletsgd can be chosen to be 1nm, as appro-

* . . . . . PB
priate for Laponite 14]. Z* from a maximum likelihood criterion betweep™(Z)

LPB( 7% . _ ;
The PB and PB-DH results in Fig. 1 are semi-grand ca-and(’o (27): for Z=1000 and the parameters of Fig. 1, the

: . , _ corresponding effective charge Z& =375 (see Fig. 2 As
nonical calculations fon.S=5><,1(.) °M andz=5, 100, and expect%d,z* <gZ, which mear?s that the c(ounteri%n?; recon-
1000. The Donnan ratioBs/ng in Table | compare well,  yonge within a thin layer around the particle until the electric
!ndlcatmg_ that the concentration of added salt in the WS Ce'botential near the surface is lowered to a value of akgW.
is approximately the same in PB and PB-DH, for a fi#d  Figyre 2 shows that the resulting agreement is only qualita-
Unlike other thermodynamic quantitifsee next section e and that the renormalized LPB potential can neither ac-
this_macroscopic property is well estimated within the cqnt for the edge effects nor for the behavior along zhe
PB-DH theory. _ axis. However, in the vicinity of the WS surface and far from

The LPB results of Fig. 1 have been produced for thejhe piatelet where the variations of the potential are weak,
same salt concentrationss in the cell as those obtained pg theory can be linearized and the potential retains an LPB
within the semigrand canonical PB theofyee Table I o provided the bare charge is replaced by an effective
Onceng is known, the Donnan ratio reads within LRB1] chargez* . In the simpler spherical geometry, given the non-

' 12 linear PB electric potential, Alexandet al.[11] proposed to

Ns/ns=(1+2Zn/ng) == (44) determine the effective parameters for the linearized theory
by matching to the far-field limit of the PB solution: the
The corresponding data are collected in Table I. The DonnaffSulting LPB potential, matching the PB potential up to its
ratio in LPB is smaller than in PB and the difference in- third derivative, is then an effective potential for the colloid-
creases withz. For a given salt concentration in the reser-colloid interactions. The phase diagram associated with the
voir, LPB theory underestimates the concentration of addedftter effective interactions was later shown to be in good
salt in the WS cell. agreement with experiments for charged spherical colloids

Turn next to the comparison of the electrostatic potentiald22]. In the case of nonspherical colloids in anisotropic cells,
in Fig. 1. Although at very low surface charg€+%5) all  the condensation of microions may well be nonuniform so
theories produce an identical electrostatic potential, as sodfiat the effective particle may have a different charge distri-
asZ is as large as 100, it becomes obvious that the linearoution than the original one. Preliminary results confirm this
ization of the Boltzmann factors is no longer an acceptablécenario for clay platelets: the effective chaije depends
approximation. However, at such high surface charge dens@n the point chosen on the WS surface to match the LPB and
ties, the PB-DH still provides a very good approximation for PB potentials, except of course wh&ris low enough. The
o(z,r). At physically relevant charge densities, e.g, concept of charge renormalization thus seems to be inad-
=1000, the LPB approximation gives rise to an electrostati€dquate for clay particles due to the non uniformity of micro-
potential substantially different from that obtained within PBions condensation.
or PB-DH. The PB-DH theory still yields a good approxima-
tion for the potential except near the surface of the platelet,
for r=rq. This illustrates the breakdown of linearization to  Once the potentialp(r) and the concentration profiles
account for finite size corrections. p*(r) andp~(r) have been determined within PB, PB-DH,

B. Osmotic properties and quadrupole moment
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FIG. 3. Results obtained within the PB and PB-DH theories for an aqueous solution of clay discs of £k&ige and radius
=150 A. The clay concentration is=5X 10 °M andT=300 K. O: PB results,+: results from PB-DH theory antk: from PB-DH
with reexponentiation. liia) the osmotic pressurd is represented by dashed lines and the disjoining pre$yigy solid lines.(b) shows
the grand potential whiléc) shows the quadrupole moment. The quadrupole obtained within PB-DH with reexponentiation is not consistent:
different results are obtained from Ed51) (solid line) and (52) (dashed ling

or LPB theories, a number of osmotic properties may beExpression45) is valid within the semi-grand canonical en-
calculated, as discussed in detail in R¢1%5,16. The Helm-  semble (which was used throughoutwith the choice of
holtz free energy is obtained by substituting the profiles intop; = p, =ng. The resulting grand potential is

the functional(6), with the result

BF=B(Up—Uc)+(N*+N7)[In(ns\3)—1], (45 BQ=BF—2N"In(ng\3). (47

where\ is an irrelevant length scale, att andU are the
following two contributions to the internal enerdy=Up
+Uc:

For a given clay concentration, and hence for a given WS
volumev, Q and all osmotic properties depend on the as-
pect ratioh/R (or equivalentlyh/r ). The equilibrium topol-
ogy of the columnar stacking of platelets, as represented by
the WS cell model, is that which minimizé¥ as a function

of hirg, for given values ofv, ng, T, ande. For conve-
nience, the results shown in the figures are shiftedOy
=ZIn(n3), i.e.,

1
UPZELQPU)QD(r)df,

ef . .
Uczzfv[p (1) —p () ]e(r)dr. (46) B(QA—Qg)=p(Up—Uc)+N" +N*. (48)
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The osmotic pressurl can be derived from the pressure sure curve away from the minimum in the latter, and at a
tensor[15,16| much higher aspect ratio. Figuréb3 shows that the PB re-
sults for the grand potentid&) go through a flat minimum at
the same aspect ratio as the osmotic pressure. The minimum
is shifted to considerably higher aspect ratios within PB-DH
theory and its reexponentiated form, and does not coincide
where(- - -)* denotes an average over the total surficef ~ with the corresponding minima in the osmotic pressure
the WS cell. The osmotic pressure in the reservoillig  curves. The PB quadrupole moments calculated from Egs.
=2kgTng. For a cylindrical WS cell a disjoining pressure (51) and (52) coincide and go through zero at the value of
can be defined by h/rq corresponding to the osmotic pressure and grand poten-
tial minima of Figs. 8a), 3(b). The PB-DH results are fairly
1 Z s . € =35 close to their PB counterparts but go through zero at an as-
Hd_ﬁ P Pt g|V<P| ' (50 pect ratio which is significantly lower than the location of the
minimum of the corresponding grand potential. The reexpo-
whereS' C3 is the surface of the bottom and top of the WS nentiated PB-DH results, on the other hand, as calculated
cell. The swelling arises from the osmotic pressure exerteffom Egs.(51) and(52) are inconsistent.
by the microions and a normal spacing between the platelets Calculations at the very low platelet charge-5 lead to
(equal to the height of the cylindrical ceik obtained when undistinguishable results between the PB and reexponenti-
an axial pressurél4 is applied. ated PB-DH theories, as one might expect from the nearly
Thea priori lowest order nonvanishing multipole moment identical potential profiles in Fig. 1. However, at the physi-
of the charge distribution in the WS cell is tae component ~ cally relevant chargé&=1000, the discrepancies between the
of the traceless quadrupole tensor two theories become very large, as illustrated in Fig. 4.
The scenario emerging from PB theory is reminiscent of
o 1 > 2 o the predictions of LPB theory. In the framework of the latter
ZZ_EJVdr[pc(r)](ZZ —XT—y9). (3D the Helmholtz free energy goes through a minimum at the
same value of the aspect ratidr, for which the disjoining
Upon integration by parts, this may be reexpressed as a su#nd osmotic pressures are equal. The quadrupole mo@ent
face integral vanishes at this sant@r,. The same behavior follows from
the present PB results in the semigrand canonical ensemble,
showing thatQ%=0 and I1=1II4 at the aspect ratio that
minimizes the grand potentigsee Figs. 3 and)4This illus-
trates the robustness of the equivalence between a thermody-
where Poisson’s equation has been used. Numerical accurangmic minimization, an electrostatic criterio®{i=0), a
of the solutiong(r) to the PB equation can be checked by mechanical equilibrium conditio[=11,4), and the minimi-
comparing the quadrupole as obtained from the two equazation of an osmotic constrainil is minimum at the aspect
tions (51) and (52). In the pIots,QtZ"Zt is normalized by the ratio wherell =11, [see Figs. @) and 4a). This also holds
qguadrupole moment of the disc within LPB]. The equilibrium separation between two plate-
lets is determined by the minimization of the grand potential

_ K, S
I +tg Ve, (49

1
P

el
§°§=E§j£2¢(r)V(222—x2—y2)~dS, (52

disc_ L 5 2 (or Helmholtz free energy
2z —Equp(r)(Zz X mySdr Being an approximate theory for the electrostatic poten-
tial, the PB-DH is inconsistent at=100. However, in spite
Zer, of all the deficiencies which the PB-DH theory exhibits when
T4 (53 trying to compute macroscopic quantities from the electro-

static potential, this approximation does manage to give a
Figures 3a)—3(c) show results for the osmotic and dis- good first approximation fog(r) which compares well with
joining pressures, grand potential, and quadrupole momerthat obtained by solving the PB equation.
as functions of the aspect rathu'ry, for Z=100. Results
from PB and PB-DH are compared. Within the latter theory,
the concentration profiles may be calculated from &), VIl. FORCE ACTING BETWEEN TWO PARALLEL
once the coefficientd\, have been obtained; alternatively, PLATELETS
the profiles may be calculated by reexponentiating the poten-

The G 's functi thodol f Sec. lll b
tial determined from Eq(26), according to Eq(5). Figure e oreens tnction metodolody ot Sec may be

. .~ extended to calculate the potential and density profiles
3(a) shows that the osmotic pressuiegoes through a mini- = 5,64 two coaxial platelets placed symmetrically inside a
mum at a well-defined aspect ratio. Within PB theory, the\yg ce| within PB theory. If the two uniformly charged
disjoining_ pressurél 4 coincides Wit'h the osmqtic pressure at parallel discs are placed at + z, from the center of a WS
that minimum. The reexponentiated version of PB-DH gy a5 shown in Fig. 5, the PB equation is still given by Eq.

theory leads to results in reasonable agreement with the P with the source ter r) now including a contribution
data, whereas straight PB-DH theory yields an unphysic rg'm both platelets e (1) g

osmotic pressure which is lower than the reservoir pressure
IT,; note that although the corresponding disjoining pressure
agrees well with the PB data, it intersects the osmotic pres- dp(r)=00(ro—r)[8(z+2y) + 8(z—2zp)]. (549
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Z=1000 b
%-— ¥ osmotic PB/DH re—expon.
»—X disjoining PB/DH re—expon.
O-—©osmotic PB
G—-6disjoining PB X 4 : :
> S
/X'X
x/)<
2.5 X,X’ . P
) X y 4
5 xS
E20f ©
5]
22 SN RAAASSAIAM A AL ASSAS AN At e IS 2=0 H=2h
515- .
Py
10 ¢
0.5 : : : :
0.4 0.6 0.8 1.0 1.2 1.4
(a) h/r,
Z=1000
27"0
0.5 . > — % PB/DH re-expon., Eq. (51)
%—X PB/DH re—expon., Eg. (52)
o—oOPB 2R
FIG. 5. Side view of the Wigner-Seitz cylinder associated with
W the two-platelet problem.
0.0 e :
A » coshizg/A,Jcosh(h—2)/A,], zy<z
© x/
g x Y(z)=4 cosliz/A,]cosh(h—zp)/A,], —2zy<z<zg
Ve costizg/A,Jcosti(h+2)/A,], z<—z,.
-05 , : (56)
ya
a An example of a PB potential profile under conditions ap-
/x’ propriate for Laponite is shown in Fig. 6.
10 . /. . . Once¢(r) and the resulting concentration profilg$(r)
0.4 0.6 0.8 1.0 1.2 1.4 are known, the local stress tensor may be evaluated at each
(b) h/r, point of the WS cell

FIG. 4. Results obtained within the PB and PB-DH theory with - - &
reexponentiation for an aqueous solution of clay discs of charge H(r)=p(r)! - EVS"@V‘P’ (57)
=1000 and radiug,=150 A. The clay concentration ie=5
X 10"°M andT=300 K. O: PB results anck : from PB-DH with e
reexponentiation. Irfa) the solid lines are disjoining pressures and p(r)=kgT 2 p*(r) +—|ch(r)|2, (58
the dashed lines are osmotic pressufbs.shows the quadrupole a=+,- 8
moment. Different results for the quadrupole are obtained within

PB-DH with reexponentiation, from Eqg1) (solid line) and (52) where| denotes the unit tensor. The force acting on platelet
(dashed ling i e(1,2) follows by integrating the stress tens®i7) over

. _ _ _ both sidesS /; andX ;, of the platelet
The boundary condition@) still applies and the integral Eq. ’ '

(20) for the local potentialp(r) remains unchanged, with the -
contribution(24) from the source term now following from Fi=— f& __1I.ds. (59
Egs.(21) and(54), with the result 2pii2pi

In the case under consideration, of two identical coaxial

fdf'GK(f,f')QP(r') discs, the force=;=—F, is along the unit vector of the

v cylinder axis. The electric fielE= —V ¢ in the vicinity of

- plateleti may be decomposed into continuous and discon-
J1(Ynlo/R)  Jo(ynr/R) tinuous parts

2 Ao Y(2), (59)

i=1  Ynsini nl Jo(Yn)

o
—*20'§

, o E=E@ 4 EO=+27 o 4 EO. (60)
where the functiorl (z) is given by : ! g
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Z=1000 0
0
-1} 1
2t 1 .
<
@(0,1) w -2r 1
= e
N o4 g
5 o
-3} |
6 ®(2,0) 1
—4 1 1 1
0 0.2 0.4 0.6 0.8
-8 : w : : s drr,
-300 -200 -100 0 100 200 300
r or z (Angstrom) FIG. 7. The force between two parallel platelets of Laponite as
) ) ) ) a function of the distance separating their coaxial centérg (
FIG. 6. Dimensionless electrostatic ~potentia®(z,r)  =472r252/¢). The solid lines are results obtained from nonlinear

=pe¢(z,r) atz=0 versusr and atr=0 versusz. The profiles pg and the dashed lines from LPB.O: for ng
were obtained by solving the PB equation for an aqueous solution. 0.000784, [: ng=0.0046V, andA: for ng=0.0099M.

of two Laponite discs Z=1000, r,=150 A) at a temperaturg

=300 K. The distance between the two discsdis 0.24 , the

height of the cylindrical WS cell ii=1.5,, and the aspect ratio 7

h/R=0.423. The concentration of monovalent added salt in the WS Fi= L:Op(r)dS— fZ:hp(r)dS (65)
cell isng=4.64x10"3M.

The forceF; may then also be expressed as The numerical consistency between results based on Eq.
(65) and on Eq.(61) (see Appendix Bhas been carefully
F_ f EOd2S (=12 61 checked. Explicit calculations were carried out in the limit of
i—g Sp, i (1=1.2), (62) vanishing clay concentratiom(-0). This was achieved by
’ choosing a WS cylindrical cell large enough for the local
where the integration runs over the surface of platel@he electric field to vanish before the outer surface of the cell is
numerical evaluation of the force from E@1) poses tech- reached. For platelets with the physical characteristics of
nical difficulties associated with the removal of the disconti-Laponite ¢o=150 A andZ=1000), and salt concentrations
nuity suffered by the electric field across the platelet whichns=10 °M, this condition is met with a cell volume=4
requires some caresee Appendix B X108 A3 (corresponding to a clay concentratior= 8.3
Returning to the definitiori59), the surface integral may > 10 °M) and an aspect ratio/ro=1.5. A test that the WS

be transformed using the mechanical equilibrium condition cell was chosen sufficiently large is provided by checking
that the calculated concentratiorg of salt in the cell coin-

V. ﬁ(r):o (62) cides with the preset reservoir concentratidy as expected
for vanishing clay concentration. The forces calculated

into the following integral over the surfac® enclosing the ~Within PB theory are plotted versus the distance between
upper half of the WS celisee Fig. 5 platelets in Fig. 7, and compared to the analytical prediction
of LPB theory[16]
,:1=_|:2=_jﬁ-ds. (63)
S

4
Fo(d)= ()2 —

o’ [ 1 d
Jo J2(x) ;ex;{ - r—\/x2+ K%rg}.

Becausen-V¢=0 on the outer surfac® of the WS cell, 0

and de(r)/dz=0 by symmetry on the cross section of the (66)
cylinder atz=0, the termV ¢® V ¢ gives a vanishing con-
tribution to the forcer,, which reduces to For Z=5 the PB and LPB results coincide, but in the physi-
cally relevant cas&Z=1000 shown in Fig. 7, LPB theory
F.,= —f p(r)ds. (64)  overestimates the force by an order of magnitude. This find-
S ing is consistent with the overestimation of the absolute

R value of the potential around a platelet by LPB theory, as
This may be further simplified by noting thatn=0 on the illustrated in Fig. 1c). Note that unlike its LPB counterpart,
lateral surface of the cylindgjparallel to the axis so that the PB force does not decay exponentially with the distance
finally between platelets.
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VIIl. CONCLUSION the PB functional(6), along the lines proposed by Biben

Swoll tacks of di | latelet et al. [3]. Generalization of the present methodology to flex-
Woflen Stacks ol MonodISperse ciay platelets are convep, charged membranes would also be helpful in describing

niently modelled wit_hin a Wigner-Seitz quI repres:entation.charged soap films or smectite clay particles of lateral di-
Relevant elect_rostatlc and thermodyna_m|c propertles are denensions larger than those of Laponite.

rived from the inhomogeneous counterion and coion concen-
tration profiles related to the local electrostatic potential by
Poisson’s equation. Adopting th@imitive model point of
view for the solvent and neglecting spatial correlations be- E.T. thanks J.O. Fossum, G. Manificat, T. Nicolai, and F.
tween macroions leads to the closed PB equation for thgan Wijland for interesting discussions. R.J.F.L. de C. has
potentiale(r) which is solved subject to Neumann boundary carried out work at the ENS de Lyon as part of a project
conditions on the confining surface of the WS cell. While thefinanced by the European Commission through the Training
linearized LPB version of the theory yields to analytic treat-and Mobility of ResearcherSfMR) programme. He is now
ment [15,]_@1 the present paper is concerned with the nu-at UCL, funded by NERC. The present collaboration was
merical solution of the full nonlinear PB problem and of a facilitated by a grant from the British-French Alliance Pro-
hybrid PB-DH version of the theory. Rather than solving thegramme.

two-dimensional nonlinear partial differential PB equation

on a grid, it was found that a more adequate and stable APPENDIX A

methOd Is to Ted”C‘? the problem to a nonline,ar integral €AY Eor the three routes outlined in Sec. I8,(G? in caseb

fuon' for o(r), myolvmg an electrostat.u.: Green's f“”C“OT‘ sat- or G in casec) is expanded in a Bessel-Dini series

isfying appropriate boundary conditions. Three equivalent
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routes are proposed, each involving a Green’s function r

which may be calculated explicitly in terms of a Bessel-Dini G(r,r')= 2, Gn(b,z,r")Jg yn—) . (A1)
series, similar to that used for the solution of the LPB prob- n=1 R

lem.

While the present results generally confirm the qualitativeéNote that the coefficients of any expansion
trends predicted by the LPB analy$ib,16, there are con-
siderable quantitative differences at physically relevant sur- f(r)= 2 £ 3 (y r
face charge densities of the Laponite platelets. The main =y molInR
findings may be summarized as follows.

(a) LPB theory overestimates the magnitude of the localcan be obtained from the inversion relation
potential by typically a factor of 2 for a platelet of %90

(b) Rescaling of the platelet charge to a lower effective
value to force good agreement of the PB and LPB potentials
at the center of the platelet fails because the shapes of the
potential profiles differ significantly, particularly near edges. ) o

(c) The scenario of the variation of various propertiesS© that the Dirac distribution inside the WS cell can be cast
with the WS aspect ratio, for a fixed value of the cell vol- in the form
ume, derived from nonlinear PB theory confirms the LPB 1
predictions: the grand potentiér the Helmholtz free en- N TSyt Y o
ergy) goes through a minimum at a well-defined aspect ratio or=r’)= r Ar=r")o(¢=¢")o(z=2")
h/ro; at this same aspect ratio, the osmotic pressure is also at

(A2)

g
fn—%fo rf(r)Jo ynﬁ dr, (A3)

its minimum, where it coincides with the monotonically de- _ 2 3 r 3 r
creasing disjoining pressure, while the quadrupole moment & R2J2(y,) o| Yng /<ol ¥n g

of the charge distribution within the WS cell vanishes. Thus

the same equilibrium aspect ratio is selected by thermody- X8(p—')6(z—2"). (A4)

namic, mechanical, osmotic, and electrostatic criteria.
(d) The hybrid PB-DH theory, which is linearized with Consider specifically routé). Subsitution of Eqs(A4) and
respect to edge effects yields rather accurate potential pr¢Al) into Eq.(19) yields
files, but rather poor thermodynamic properties; the agree-
ment with full PB theory is improved upon reexponentiation d?G, Aﬁ 2Jo(yar'IR)
of the Bessel-Dini series for the local potential. 2 RO RIZv.
(e) The same Green’s function methodology allows an d R R*Jo(Yn)
accurate calculation of the force between the two coaxial
platelets. The force calculated within PB theory is an order
of magnitude smaller than the LPB prediction, and decrease¥
with the distance between the platelets in a nonexponential 4G
fashion, up to distances of the order of the radig®f the n =0, (AB)
platelets. dz |,__,
In future work it is planned to include microion correla-
tions and discrete solveftiydration effects, by generalizing the solution reads

S(p—")d(z—-2),
(A5)

hereA , 2=y2/R?+ «2. With the boundary condition
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N h¥z
Gn(¢>,z,r’)=C;cosI'<
An

: (A7)

where the superscripts and — refer to the situationz
>z’ andz<Zz’, respectively. The coefficient, are conve-
niently obtained by writingG,, in the form

Gn(¢.21')=0,(2,¢)0(z—2')+9,(2,¢)0(2' ~2).
(A8)

Invoking the identity
f d 1 ")=—1'(2)6 " +1(Z d d !
(2) §;8(z2=2")=—1"(29)8(z=2) +1(Z) 7 8(z=2')
(A9)
the continuity conditions obeyed Iy, atz=z' follow as

on(z')=9,(2'),

d , ,d 2 3 r’ 5 )
az9n (7))~ 79 (2 )—m of Yng| (=),
(A10)
leading back to Eq(22)
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Gi(z,¢,r")=|=lz—7'|- ! (Z2+2'?) | 8(p— ).
e R2 2hR?
(A14)
APPENDIX B

From Eq.(61), the force acting on platelet 1 sitting at
= +2z, can be written

iz —e 7P (B1)

Fi=-2 fr"d
‘=270 rr
0

((9(p(z,r)) +277

where — is for z=z; and + is for z=z; . This equation
allows the immediate computation of the force from the elec-
trostatic potential. However, it should not be used directly
since the numerical differentiation of the potential for
=z, and 0<r<rg [wheredo(r)/dz is discontinuoukis in-
accurate.

Instead, apply Gauss’ theorem to EB1) to obtain

An example of Green'’s function associated with method

(@ can be obtained by imposing

dG,
dz

=0

z=x*h

for n=2 (A11)

while the non-Neumann character Gfreflects itself in the
boundary condition obeyed b, that follows from the
resolution of Eq.(A5) with k=0. One finds

1
Gl(Z,¢,r’)=§5(¢—¢’)|Z—Z'|- (A12)

whereas the remaining ternG,,n=2 are the same as in
Egs.(21) and(22), with x=0.

Finally, method(b) can be illustrated along similar lines
with the following choice of the background:

1

B=- (A13)

(p—¢').
The above density is such that the expangi®h, with re-
lation (22) and k=0, is unchanged fon=2 while the first

term is now slightly modified with respect to E¢A12),
namely,

R do(z,r Zeo
FZ=U%_27TU'f drr( al )) —
€ "o 0z _— 2€
R de(z,r Zeo
=—cr%—2'n'0'j drr( al )) +——, (B2
€ o 0z . 2e

0

whereQ; is the total chargdexcluding the plateletin the
WS cell volume limited byzy<z<h and Q, is the total
charge in the volume of the WS cell limited by<<z,

Q1=277J;dzJ0Rdrrpc(r), (B3)

Q2=277J026dzf:drrpc(r). (B4)

Due to the imposed electroneutrali®; andQ, verify

Q:+Qr,=eZ (B5)
Equation(B2) requires the computation of the derivative of
the electrostatic potential at=z, and ro<r<R, where
do(r)/dz is continuous. The differentiation can be accu-
rately performed by fittingp(z,r) to a polynomial inz, at
fixed r.
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