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Deterministic equations of motion and phase ordering dynamics
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We numerically solve microscopic deterministic equations of motion for the two-dimensionalf4 theory
with random initial states. Phase ordering dynamics is investigated. Dynamic scaling is found and it is domi-
nated by a fixed point corresponding to the minimum energy of random initial states.

PACS number~s!: 64.60.Cn, 64.60.My
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In recent years microscopic deterministic equations
motion ~e.g., Newton, Hamiltonian and Heisenberg equ
tions! have attracted much attention of scientists in differ
areas. From fundamental view points, solutions of determ
istic equations may describe both equilibrium and noneq
librium properties of statistical systems, even though a g
eral proof does not exist, e.g., see Refs.@1–5#. Ensemble
theories and stochastic equations of motion are effective
scriptions of static and dynamic properties of the statist
systems, respectively. With recent development of comp
ers, it becomes possible to solve deterministic equations
merically. For example, recently attempt has been made
the O(N) vector model andXY model @5–7#. The results
support that deterministic equations correctly describe s
ond order phase transitions. The estimated static critical
ponents are consistent with those calculated from canon
ensembles. More interestingly, the macroscopic short-t
~nonequilibrium! dynamic behavior of the two-dimension
~2D! f4 theory atcriticality has also been investigated an
dynamic scaling is found@8,9#. The results indicate that de
terministic dynamics with random initial states is in a sa
universality class of Monte Carlo dynamics of model A.

On the other hand, phase ordering dynamics has b
investigated for years@10#. It concerns how a statistical sys
tem evolves into an ordered phase after a quench fro
disordered phase. For example, the Ising model initially a
very high temperatureTI is suddenly quenched to a temper
ture TF well below the critical temperatureTC , and then
evolves dynamically. Because of the competition of the t
ordered phases, it is well known that the equilibration is v
slow. Investigation reveals that in thelate stage~in micro-
scopic sense! of the dynamic evolution there emerges scali
behavior, which is somehow universal. The scaling beha
is dominated by the fixed point (TI ,TF)5(`,0) and away
from the fixed point there are corrections to scaling.

Up to now, for simple systemsstochasticdynamics de-
scribed by Langevin-type equations or Monte Carlo alg
rithms has been studied. Scaling behavior of ordering
namics depends essentially on whether the order parame
conserved~model B! or not ~model A!. For the Ising model
~or f4 theory!, the dynamic exponent isz52 for model A
andz53 for model B@10#.

The purpose of this paper is to study the phase orde
dynamics with the microscopic deterministic equations
motion, taking the 2Df4 theory as an example.
PRE 611063-651X/2000/61~1!/153~4!/$15.00
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Following Refs.@8,5# we consider an isolated system. Th
Hamiltonian of the 2Df4 theory on a square lattice is

H5(
i

F1

2
p i

21
1

2 (
m

~f i 1m2f i !
22

1

2
m2f i

21
1

4!
gf i

4G
~1!

with p i5ḟ i and it leads to the equations of motion

f̈ i5(
m

~f i 1m1f i 2m22f i !1m2f i2
1

3!
gf i

3 . ~2!

Energy is conserved in these equations. Solutions in
long-time regime are assumed to generate a microcanon
ensemble. The temperature could be defined as the aver
kinetic energy. For the dynamic system, however, the to
energy is an even more convenient controlling paramete
the system, since it is conserved and can be input from in
states. For given parametersm2 andg, there exists a critical
energy densityec , separating the ordered phase~below ec!
and disordered phase~aboveec). The phase transition is o
the second order.

The order parameter of thef4 theory is the magnetiza
tion. The time-dependent magnetizationM[M (1)(t) and its
second momentM (2) are defined as

M (k)~ t !5
1

L2k K F(
i

f i~ t !G (k)L , k51,2. ~3!

The average isover initial configurationsandL is the lattice
size.

Following ordering dynamics with stochastic equation
we consider a dynamic process that the system initially i
disorderedstate but with energy density well belowec is
suddenly released to evolve according to Eq.~2!. For sim-
plicity, we set initial kinetic energy to zero, i.e.,ḟ i(0)50.
To generate a random initial configuration$f i(0)%, we first
fix the magnitudeuf i(0)u[c, then randomly give the sign to
f i(0) with the restriction of a fixed magnetization in unit o
c, and finally the constantc is determined by the given en
ergy. We could also give a distribution foruf i(0)u but the
difference will only be corrections to scaling.

In the case of stochastic dynamics, scaling behavior
phase ordering is dominated by the fixed point (TI ,TF)
5(`,0). In deterministic dynamics, energy density cannot
153 ©2000 The American Physical Society
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154 PRE 61B. ZHENG
taken to the real minimumemin523m4/2g since the system
does not move. Actually, for the initial states describ
above, the energy is given by

V5(
i

F S d2
1

2
m2Df i

21
1

4!
gf i

4G . ~4!

Here d is the spatial dimension. The conjecture is that
scaling behavior is dominated by the minimum energy d
sity vmin5Vmin /L2, which is a kind of fixed points. In this
paper, we consider the case ofd,m2/2. Thenvmin526(d
2m2/2)2/g. From now, we redefine the energy densityemin
as zero. Then the fixed point ise05vmin2emin .

To solve the equations of motion~2! numerically, we dis-
cretizef̈ i by @f i(t1Dt)1f i(t2Dt)22f i(t)#/(Dt)2. After
an initial configuration is prepared, we update the equati
of motion until t5650 or 1000. Then we repeat the proc
dure with other initial configurations. From the experience
Refs.@8,9#, Dt50.05 is small enough for our updating time
In our calculations, we use mainly a lattice sizeL5512 and
samples of initial configurations for average are 200. So
simulations have also been performed forL51024 with 50
samples to estimate the finite size effect.

An important observable is the equal-time correlati
function

C~r ,t !5
1

L2 K (i
f i~ t !f i 1r~ t !L . ~5!

Here the lattice sitei 1r is away fromi with a distancer.
The scaling hypothesis is that at the late stage of the t
evolution,C(r ,t) obeys a scaling form

C~r ,t !5 f ~r /t1/z!, ~6!

where z is the so-called dynamic exponent and the init
magnetizationm050. For stochastic dynamics, this scalin
form is valid for all temperatures well below the critical tem
perature. Monte Carlo simulations, e.g., for the Ising mod
actually show that at the fixed point (TI ,TF)5(`,0) the
scaling behavior often emerges at a relatively early timet in
the macroscopicsense@11,12#, after a time scaletmic which
is large enough in the microscopic sense. Away from
fixed point, there are corrections to scaling. For determini
dynamics, we expect that the minimum energy density of
random initial statese05vmin2emin plays a similar role.

Another interesting observable is the autocorrelation fu
tion

A~ t !5
1

L2 K (i
f i~0!f i~ t !L . ~7!

The scaling hypothesis for the autocorrelationA(t) is a
power law behavior

A~ t !;t2l/z. ~8!

It implies a divergent correlation time and ordering dynam
is in some sense‘‘critical. ’’ Here l is another independen
exponent.
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We have carried out computations with a lattice sizeL
5512 for parameters (m2,g)5(6.0,1.8), (6.0,5.4), and
(8.0,2.4) at the fixed pointe0. For (m2,g)5(6.0,1.8), extra
simulations with energy densitye5e014/3 and ate0 with a
large latticeL51024 have been performed. The autocorre
tion has been plotted in Fig. 1. The curve for (m2,g)
5(6.0,1.8) withL51024 ~not in the figure! overlaps with
that for L5512. In the figure, we see clearly a nice pow
law behavior aftertmic;502100. The dashed line is fo
(m2,g)5(6.0,1.8) with energy densitye5e014/3 and cor-
rection to scaling is still not so big. All curves having near
the same slope indicate a kind of universality and the fix
point plays an important role. As is the case of the Isi
model with Monte Carlo dynamics@11#, there is a small
curvature in the curves, but upwards. This gives rise to ab
one or two percent difference of the slope depending on
measured time interval. Slopes for different curves have a
a comparable uncertainty. Taking into account all these f
tors and statistical errors, we estimate the exponentl/z
50.460(10).

In Fig. 2, the equal-time correlation functionC(r ,t) is
displayed. The curves are for (m2,g)5(6.0,1.8) with L
51024 and one sees clear self-similarity during time evo
tion. According to the scaling form~6!, data for different
time t should collapse ifr is suitably rescaled byt1/z. In other
words, searching for the best collapse of the data we
obtain the dynamic exponentz. This collapse of the data is
shown on the first curve from the left. All data points loca
nicely on a curve except for a small departure fort520. The
corresponding dynamic exponent measured from a time
terval @40,640# is z52.69(9). In Table I, we list values ofz
for different parameters and measured in different time in
vals. Again, for larger timet the dynamic exponentz tends to
be slightly smaller. We believe the small deviation for d
ferent parameters (m2,g) is more or less due to uncontrolle
systematic errors or/and possible corrections to scal
From the table, we estimate the dynamic exponenz
52.65(10). This is significantly different fromz52.0 for the
Ising model with stochastic dynamics of model A.

FIG. 1. The autocorrelation and the second moment withL
5512 plotted in log-log scale. Solid lines forA(t) are for (m2,g)
5(8.0,2.4), (6.0,1.8), and (6.0,5.4)~from above! at the fixed
points, while forM (2)(t) are for (m2,g)5(6.0,1.8), (8.0,2.4), and
(6.0,5.4) ~from above!. Dashed lines correspond to (m2,g)
5(6.0,1.8) but energy density is 4/3 above the fixed point.
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Very interesting is that the scaling functionf (x) in Eq.
~6! for the f4 theory is the same as that of the Ising mod
with Monte Carlo dynamics of model A@11,13#, even though
the exponentz is different. This is shown on the last curv
from left in Fig. 2. To plot the functions,r andC(r ,t) have
been suitably rescaled by constants. We did not try to g
‘‘best’’ fit to all the data but only to show they are indeed
same function. For the data of (m2,g)5(6.0,5.4) ~3! and
(6.0,5.4) ~s!, only r is rescaled. For the Ising model~full
diamonds!, the rescaling factor forr happens to be 1/2.

A simple understanding of the scaling behavior ofC(r ,t)
can be achieved from the second moment of the magne
tion. Integrating overr in Eq. ~6!, we obtain a power law
behavior

M (2)~ t !;td/z. ~9!

This is shown also in Fig. 1. Even though there are so
visible fluctuations, power law behavior is observed. Fr
slopes of the curves aftert;100, we measure the expone
d/z50.76(3). Then we estimate the dynamic exponentz
52.63(10).

For discussions above, the initial magnetizationm0 is
zero. Ifm0 is a nonzero, the system reaches a unique orde

FIG. 2. Scaling plot for C(r ,t). Six curves for (m2,g)
5(6.0,1.8) at fixed point withL51024 correspondt520, 40, 80,
160, 320, and 640~from left!. s, h, L, 3, and* fitted to the curve
of t520 are those fort540 to 640 butr is rescaled according to
r /t1/z with z52.69. 3 and * fitted to the curve oft5640 are data
for (m2,g)5(6.0,5.4) and (8.0,2.4) at the fixed points ands for
(m2,g)5(6.0,1.8) with energy density 4/3 above the fixed poi
The lattice size isL5512 and both axes are rescaled with suita
constants. Full diamonds represent the scaling function for the I
model at the zero temperature.

TABLE I. The dynamic exponentz estimated from scaling col
lapse ofC(r ,t) in a time interval@ t1,640#. If not specified, the
lattice sizeL5512 and the energy density is at its fixed points.

(m2,g) t1540 t1580 t15160 t15320

~8.0,2.4! 2.84~5! 2.83~6! 2.76~10! 2.79~12!

~6.0,5.4! 2.75~2! 2.75~1! 2.70~1! 2.72~1!

~6.0,1.8! 2.78~3! 2.76~1! 2.67~3! 2.57~4!

L51024 2.72~7! 2.69~9! 2.67~7! 2.66~4!

e5e014/3 2.78~5! 2.74~8! 2.70~10! 2.69~10!
l

a

a-

e
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state within a finite time. Ifm0 is infinitesimal small, how-
ever, the time for reaching the ordered state is also infin
and scaling behavior can still be expected, at least at r
tively early times~in macroscopic sense!. In this case, an
interesting observable is the magnetization itself and at e
times it increases by a power law

M ~ t !;tu, u5~d2l!/z. ~10!

The exponentu can be written asx0 /z, with x0 being the
scaling dimension ofm0. This power law behavior has
deeply been investigated in critical dynamics@14,15#.

In Fig. 3, the initial increase of the magnetization
shown. Aftertmic;80, nice power law behavior is seen. T
avoid finite m0 effect, very small values ofm0 have been
chosen. The resulting exponentu is 0.308(9) and 0.315(30)
for m050.0078 and 0.0052, respectively. Taking into a
count the errors, we consideru50.308(9) as the final result
With u and l/z in hand, from the scaling relationu5(d
2l)/z again we can calculate the dynamic exponenz
52.60(5).

In Table II, we have summarized all the measurements
the exponents. The agreement of different measurementsz
strongly supports the dynamic scaling hypothesis. The ex
nents of the Ising model with stochastic dynamics of mo
A are from theoretical calculations@12,10#. In Monte Carlo
simulations, there may be small deviation@12,16,11#. It is
interesting that the dynamic exponentz for the f4 theory
with deterministic dynamics is clearly different from that
the Ising model with stochastic dynamics but the exponenl
looks the same.

In Refs. @8,9,15#, we know that in dynamic critical phe
nomena, deterministic dynamics for the 2Df4 theory and

.

g

FIG. 3. The magnetization in log-log scale. The lattice size
L5512.

TABLE II. Exponents of thef4 with deterministic dynamics.
To calculatel, z measured fromC(r ,t) is taken as input. Values fo
the Ising model are theoretical results with stochastic dynamic
model A @12,10#.

z

u l/z d/(l/z1u) C(r ,t) M (2) l

f4 0.308~9! 0.460~10! 2.60~5! 2.65~10! 2.62~10! 1.22~5!

Ising 0.625 2 1.25
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156 PRE 61B. ZHENG
stochastic dynamics of model A for the Ising model are in
same universality class. Why is it not the case in order
dynamics? This may be traced back to the energy conse
tion in our deterministic equations. Since energy couples
the order parameter, deterministic dynamics is somehow
lieved to be a realization of model C@17#. For critical dy-
namics, in two dimensions model A and model C are
same. For ordering dynamics, however, model A and mo
C can be different. It is pointed out in Ref.@17# that in many
cases real physical systems may be intermediate betw
model A and C.

When d2m2/2 becomes positive,vmin moves to zero.
This is an unnormal fixed point@f i(0)[0#, from which the
system cannot move. Around this fixed point, self-similar
,
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is also observed in time evolution, but a simple scaling fo
as Eq.~6! does not give good collapse of the data, at least
to the timet5650. Further understanding remains open.

In conclusion, we have investigated ordering dynam
governed by deterministic equations of motion, taking t
2D f4 theory as an example. Scaling behavior is found a
it is dominated by the fixed point corresponding to the mi
mum energy of random initial states. The dynamic expon
z is different from that of stochastic dynamics of model
while the scaling function for the equal-time correlatio
C(r ,t) is the same. Deterministic dynamics with energy co
servation might be a realization of model C.

This work was supported in part by the Deutsche Fo
chungsgemeinschaft under Project No. TR 300/3-1.
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