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Deterministic equations of motion and phase ordering dynamics
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We numerically solve microscopic deterministic equations of motion for the two-dimensighttieory
with random initial states. Phase ordering dynamics is investigated. Dynamic scaling is found and it is domi-
nated by a fixed point corresponding to the minimum energy of random initial states.

PACS numbes): 64.60.Cn, 64.60.My

In recent years microscopic deterministic equations of Following Refs[8,5] we consider an isolated system. The
motion (e.g., Newton, Hamiltonian and Heisenberg equa-Hamiltonian of the 2D¢* theory on a square lattice is
tions) have attracted much attention of scientists in different L . . L
areas. From fundamental view points, solutions of determin- , _ s 2. = N2 T 242 4
istic equations may describe both equilibrium and nonequi- H_Z’ 2™ T3 2,;‘ ($ivu=@)"= 3M A+ 7799
librium properties of statistical systems, even though a gen- (2)
eral proof does not exist, e.g., see Rdfs-5]. Ensemble .
theories and stochastic equations of motion are effective dewith 7;=¢; and it leads to the equations of motion
scriptions of static and dynamic properties of the statistical 1
systems, respectively. With recent development of comput- u_ _ 2, — 43
ers, it becomes possible to solve deterministic equations nu- ¢i_§ (Pirut di-p=2)+ M 3! g’ @
merically. For example, recently attempt has been made for
the ON) vector model andXY model [5-7]. The results Energy is conserved in these equations. Solutions in the
support that deterministic equations correctly describe sedong-time regime are assumed to generate a microcanonical
ond order phase transitions. The estimated static critical ex¢nsemble. The temperature could be defined as the averaged
ponents are consistent with those calculated from canonic&inetic energy. For the dynamic system, however, the total
ensembles. More interestingly, the macroscopic short-tim&N€rgy is an even more convenient controlling parameter of

(nonequilibrium dynamic behavior of the two-dimensional the system, §ince itis conserved and can be i_nput fro_”_‘ initial
(2D) ¢* theory atcriticality has also been investigated and states. For given parameterg andg, there exists a critical

dynamic scaling is foun@8,9]. The results indicate that de- energy densitye;, separating the ordered phaelow )

terministic dynamics with random initial states is in a sameand disordered phadabovee,). The phase transition is of

universality class of Monte Carlo dynamics of model A the second order, . .

On the other hand, phase ordering dynamics has. be The order parameter of thé" theory is the magnetiza-
. . » P g dynamics §ibn. The time-dependent magnetizativh= M A)(t) and its
investigated fgr yearglQ]. It concerns how a statistical sys- second momeni! @ are defined as
tem evolves into an ordered phase after a quench from a
disordered phase. For example, the Ising model initially at a 1
very high temperatur&, is suddenly quenched to a tempera- MK (t)= _<
ture T well below the critical temperaturé., and then L2k
evolves dynamically. Because of the competition of the two ) o ) . ) )
ordered phases, it is well known that the equilibration is veryT he average isver initial configurationsandL is the lattice
slow. Investigation reveals that in thate stage(in micro-  SIZ€. _ . . _ _ _
scopic senseof the dynamic evolution there emerges scaling  Following ordering dynamics with stochastic equations,
behavior, which is somehow universal. The scaling behaviolVe consider a dynamic process that the system initially in a
is dominated by the fixed poinfT(,T¢)=(,0) and away disorderedstate but with energy densﬂy well belov\é. is
from the fixed point there are corrections to scaling. suddenly released to evolve according to E2). For sim-

Up to now, for simple systemstochasticdynamics de- plicity, we set initial kinetic energy to zero, i.e;(0)=0.
scribed by Langevin-type equations or Monte Carlo algo-To generate a random initial configuratif®;(0)}, we first
rithms has been studied. Scaling behavior of ordering dyfix the magnitude ¢;(0)|=c, then randomly give the sign to
namics depends essentially on whether the order parameterds(0) with the restriction of a fixed magnetization in unit of
conservedmodel B or not (model A). For the Ising model ¢, and finally the constart is determined by the given en-
(or ¢* theory), the dynamic exponent is=2 for model A ergy. We could also give a distribution fe;(0)| but the
andz=3 for model B[10]. difference will only be corrections to scaling.

The purpose of this paper is to study the phase ordering In the case of stochastic dynamics, scaling behavior of
dynamics with the microscopic deterministic equations ofphase ordering is dominated by the fixed poif ,(Tg)
motion, taking the 2Dp* theory as an example. =(,0). In deterministic dynamics, energy density cannot be

Ei #i(t)

)
>, k=1,2. 3)
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taken to the real minimure,,;,=—3m%2g since the system
does not move. Actually, for the initial states described
above, the energy is given by

v=>

1
S+ 4790 @

1
——m?
(d 2

Hered is the spatial dimension. The conjecture is that the

scaling behavior is dominated by the minimum energy den
Sity Vmin=Vmin/L? which is a kind of fixed points. In this
paper, we consider the case @&m?/2. Thenv ,=—6(d
—m?/2)?/g. From now, we redefine the energy densify,
as zero. Then the fixed point &=V min—€min-

To solve the equations of motig2) numerically, we dis-
cretizeg; by [ ¢;(t+At)+ ¢ (t—At) —2¢;(t)]/(At)2. After
an initial configuration is prepared, we update the equation
of motion untilt=650 or 1000. Then we repeat the proce-
dure with other initial configurations. From the experience in
Refs.[8,9], At=0.05 is small enough for our updating times.
In our calculations, we use mainly a lattice slze512 and
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FIG. 1. The autocorrelation and the second moment wWith
S 512 plotted in log-log scale. Solid lines féx(t) are for (m?,g)
=(8.0,2.4), (6.0,1.8), and (6.0,5.4from above at the fixed
points, while forM®)(t) are for (m?,g)=(6.0,1.8), (8.0,2.4), and
(6.0,5.4) (from above. Dashed lines correspond tomt,qg)
=(6.0,1.8) but energy density is 4/3 above the fixed point.

samples of initial configurations for average are 200. Some

simulations have also been performed for 1024 with 50
samples to estimate the finite size effect.
An important observable is the equal-time correlation
function
1
2

C(f,t)=L—<2i ¢i(t)¢i+r(t)>- ©)

Here the lattice sité+r is away fromi with a distancer.
The scaling hypothesis is that at the late stage of the tim
evolution,C(r,t) obeys a scaling form

C(r,t)=f(r/t'?), (6)

We have carried out computations with a lattice size
=512 for parameters nf?,g)=(6.0,1.8), (6.0,5.4), and
(8.0,2.4) at the fixed poingy. For (m?,g)=(6.0,1.8), extra
simulations with energy densita= €5+ 4/3 and atey with a
large latticeL = 1024 have been performed. The autocorrela-
tion has been plotted in Fig. 1. The curve fom?g)
=(6.0,1.8) withL=1024 (not in the figure overlaps with
that for L=512. In the figure, we see clearly a nice power
law behavior aftert,,;.,~50—100. The dashed line is for
€m?,g) =(6.0,1.8) with energy density= e,+4/3 and cor-
rection to scaling is still not so big. All curves having nearly
the same slope indicate a kind of universality and the fixed
point plays an important role. As is the case of the Ising
model with Monte Carlo dynamicfl1], there is a small

where z is the so-called dynamic exponent and the initial oy ryature in the curves, but upwards. This gives rise to about
magnetizatiormy=0. For stochastic dynamics, this scaling one or two percent difference of the slope depending on the
form is valid for all temperatures well below the critical tem- measured time interval. Slopes for different curves have also
perature. Monte Carlo simulations, e.g., for the Ising modelg comparable uncertainty. Taking into account all these fac-

actually show that at the fixed poinfT(,Tg)=(%,0) the
scaling behavior often emerges at a relatively early tirime
the macroscopicsensd 11,12, after a time scalé, which

tors and statistical errors, we estimate the exponefat
=0.460(10).
In Fig. 2, the equal-time correlation functia@(r,t) is

i_s Iarge_enough in the micr_oscopic sense. Away from_th_edisplayed. The curves are fom,g)=(6.0,1.8) with L
fixed point, there are corrections to scaling. For deterministic_ 1024 and one sees clear self-similarity during time evolu-
dynamics, we expect that the minimum energy density of thgjon - According to the scaling forni6), data for different

random initial stateg,=Vmin—€min Plays a similar role.
Another interesting observable is the autocorrelation func
tion

1
A(t)= F<2i ¢i<0>¢i<t>>. (7)

The scaling hypothesis for the autocorrelatiét) is a

power law behavior

A(t)~t Mz, (8)

time t should collapse if is suitably rescaled bi*. In other
words, searching for the best collapse of the data we can
obtain the dynamic exponeat This collapse of the data is
shown on the first curve from the left. All data points locate
nicely on a curve except for a small departuretfer20. The
corresponding dynamic exponent measured from a time in-
terval[40,64Q is z=2.699). In Table I, we list values of

for different parameters and measured in different time inter-
vals. Again, for larger timéthe dynamic exponerzitends to

be slightly smaller. We believe the small deviation for dif-
ferent parameter:{?,g) is more or less due to uncontrolled
systematic errors or/and possible corrections to scaling.

It implies a divergent correlation time and ordering dynamicsFrom the table, we estimate the dynamic exponent

is in some senskcritical. ” Here A is another independent
exponent.

=2.65(10). This is significantly different from= 2.0 for the
Ising model with stochastic dynamics of model A.
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FIG. 2. Scaling plot forC(r,t). Six curves for (m2g) FIG. 3. The magnetization in log-log scale. The lattice size is
L=512.

=(6.0,1.8) at fixed point with. =1024 correspond= 20, 40, 80,
160, 320, and 64(rom left). O, [, ¢, X, and* fitted to the curve
of t=20 are those fot=40 to 640 butr is rescaled according to
r/tY2 with z=2.69. X and * fitted to the curve of=640 are data €ver, the time for reaching the ordered state is also infinite
for (m?,g)=(6.0,5.4) and (8.0,2.4) at the fixed points abdfor and scaling behavior can still be expected, at least at rela-
(m?,g)=(6.0,1.8) with energy density 4/3 above the fixed point.tively early times(in macroscopic sengeln this case, an
The lattice size i1 =512 and both axes are rescaled with suitableinteresting observable is the magnetization itself and at early
constants. Full diamonds represent the scaling function for the Isingmes it increases by a power law

model at the zero temperature.

state within a finite time. Iimg is infinitesimal small, how-

M(t)~t?,  o=(d—\)/z (10
Very interesting is that the scaling functidiix) in Eq.
(6) for the ¢* theory is the same as that of the Ising model The exponent can be written axq/z, with xo being the
with Monte Carlo dynamics of model 11,13, even though ~scaling dimension ofmg. This power law behavior has
the exponent is different. This is shown on the last curve deeply been investigated in critical dynamjds},15.
from left in Fig. 2. To plot the functions, andC(r,t) have In Fig. 3, the initial increase of the magnetization is
been suitably rescaled by constants. We did not try to get 8hown. Aftert.,;.;~80, nice power law behavior is seen. To
“best” fit to all the data but only to show they are indeed a avoid finite my effect, very small values ofn, have been
same function. For the data ofmf,g)=(6.0,5.4) (x) and  chosen. The resulting exponefis 0.308(9) and 0.315(30)
(6.0,5.4) (O), only r is rescaled. For the Ising modé&ull ~ for my=0.0078 and 0.0052, respectively. Taking into ac-
diamond$, the rescaling factor for happens to be 1/2. count the errors, we considér0.308(9) as the final result.
A simple understanding of the scaling behavioagf,t) ~ With 6 and A/z in hand, from the scaling relation=(d
can be achieved from the second moment of the magnetiza=\)/z again we can calculate the dynamic exponent

tion. Integrating over in Eq. (6), we obtain a power law =2.6Q(5).
behavior In Table Il, we have summarized all the measurements of

the exponents. The agreement of different measuremeunts of
strongly supports the dynamic scaling hypothesis. The expo-
nents of the Ising model with stochastic dynamics of model
This is shown also in Fig. 1. Even though there are some\ are from theoretical calculatiofd2,10. In Monte Carlo
visible fluctuations, power law behavior is observed. Fromsimulations, there may be small deviatipt2,16,11. It is
slopes of the curves aftér-100, we measure the exponent interesting that the dynamic exponenfor the ¢* theory
d/z=0.763). Then we estimate the dynamic exponent with deterministic dynamics is clearly different from that of
=2.63(10). the Ising model with stochastic dynamics but the exponent
For discussions above, the initial magnetizatiog is looks the same.
zero. Ifmg is a nonzero, the system reaches a unique ordered In Refs.[8,9,15, we know that in dynamic critical phe-
nomena, deterministic dynamics for the 28} theory and

M@)(t)~t92, ©)

TABLE I. The dynamic exponers estimated from scaling col-
lapse of C(r,t) in a time interval[t,,640]. If not specified, the
lattice sizeL =512 and the energy density is at its fixed points.

TABLE II. Exponents of theg* with deterministic dynamics.
To calculaten, zmeasured fronC(r,t) is taken as input. Values for
the Ising model are theoretical results with stochastic dynamics of

(m?,g) t;=40 t,=80 ;=160 ;=320 model A[12,10.
(8.0,2.9 2.845) 2.836) 2.7610) 2.7912) ,
(6.0,5.4 2.752) 2751 2.701) 2.721)
(6.0,1.9 2.793) 2761 2.673) 2574 Mz |d(Nz+6) C(rit) MO \
L=1024 2.727) 2.699) 2.677) 2.664) ¢* 0.3089) 0.46010)| 2.605) 2.6510) 2.6210) 1.225)
e=et4/3 2785 2.748) 2.7010) 2.6910) Ising 0.625 2 1.25
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stochastic dynamics of model A for the Ising model are in ais also observed in time evolution, but a simple scaling form
same universality class. Why is it not the case in orderingas Eq.(6) does not give good collapse of the data, at least up
dynamics? This may be traced back to the energy conserv# the timet=650. Further understanding remains open.

tion in our deterministic equations. Since energy couples to [N conclusion, we have investigated ordering dynamics

the order parameter, deterministic dynamics is somehow b,gover4ned by deterministic equations of motion, taking the
lieved to be a realization of model [17]. For critical dy- 2D ¢ theory as an example. Scaling behavior is found and

namics, in two dimensions model A and model C are thdt is dominated by the fixed point corresponding to the mini-

same. For ordering dynamics, however, model A and modél"UM énergy of random initial states. The dynamic exponent
C can be different. It is pointea out in Réﬁ?] that in many 215 different from that of stochastic dynamics of model A,

cases real phvsical svstems mav be intermediate betvveWh”e the scaling function for the equal-time correlation
pny y y P([J(r,t) is the same. Deterministic dynamics with energy con-

model A and C. : : ot
When d—m2/2 becomes positivey,. moves to zero. servation might be a realization of model C.
This is an unnormal fixed poirfii;(0)=0], from which the This work was supported in part by the Deutsche Fors-

system cannot move. Around this fixed point, self-similarity chungsgemeinschaft under Project No. TR 300/3-1.
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