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We consider the two-dimension@D) random Ising model on a diagonal strip of the square lattice, where
the bonds take two valued;>J,, with equal probability. Using an iterative method, based on a successive
application of the star-triangle transformation, we have determined at the bulk critical temperature the corre-
lation length along the strig, for different widths of the stril.<21. The ratio of the two lengthg, /L
=Ais found to approach the universal valdie- 2/7 for largelL, independent of the dilution paramethr/J,.

With our method we have demonstrated with high numerical precision, that the surface correlation function of
the 2D dilute Ising model is self-averaging, in the critical point conformally covariant and the corresponding
decay exponent igy=1.

PACS numbes): 05.50+q, 64.60.Ak, 68.35.Rh

. INTRODUCTION [G(r) ],y are different, even in the thermodynamic limit. In
the following we use(---) and[---],, to denote thermal
In the presence of quenched, i.e., time independent disoand disorder averaging, respectively.
der one generally considers different random samples and the |n higher-dimensional classical spin systems with random
physical observables are characterized by their distributioferromagnetic couplings, such as the random Ising and
and (nth) moments(Forn=1 andn=0 we have theaver-  Q-state Potts models, the effect of disorder is expected to be
age and typical value, respectively.The extensive quanti- even weaker than in 1D. In calculating the correlation func-
ties, which are connected to the free-energy and its derivaion the thermal average in higher dimensions involves sev-
tives, have normal distribution, thus in a single sample oneral random couplings, not only those connecting directly the
measures theiaveragevalue with probability one in the two points, therefore the disorder fluctuations are smoothed
thermodynamic limit. These quantities are callsélf- down. There is a class of random systems which, in the vi-
averaging There are, however, other observables, typicallycinity of their critical point, are homogeneous in macro-
correlation functions, which are broadly distributed and thescopic scales, thus the effect of quenched disordéres
typical (or most probablevalue is different from the average evant The corresponding criterion for weak randomness due
value, even in the thermodynamic limit. to Harris [7] requiresaP'"<0, whereaP"" is the specific
Such type of phenomena takes place in disordered quameat exponent of the pure system.
tum systemg 1], where the typical and average behavior of  For systems witheP'"®>0 the disorder is aelevantper-
correlations and critical singularities are even qualitativelyturbation so that the critical properties are controlled by a
different. As known by exact resulf®,3], renormalization (new) random fixed poinin which unconventional scaling
group[4] and numerical calculatior[$] in the infinite ran-  behavior is expected. A detailed study, bdfield) theoreti-
domness fixed poitihe average behavior is dominated by thecal [8,9] and numerica[10—12, about the two-dimensional
rare eventswhich occur with vanishing probability, whereas randomQ>2 state Potts model has revealed that the critical
the typical behavior is seen in any large sample with probbulk spin correlation function haswltifractal behavior: the
ability one. different moments of the correlation function at the critical
In a classical system the effect of disorder is comparapoint decay as a power
tively weaker [since in quantum systems the disorder is
strictly correlated along th@maginary time directior]. Here [Gn(r)];@N r —2><(”), (1.2
the critical singularities are controlled by random fixed
point and there are usually quantitative differences betweeRith n dependent decay exponent$). We note that for
the average and typical behavior. conventional scaling the(™’s have non dependence.
In this respect a well known example is the one- An important question concerning random magnetic sys-
dimensional(1D) random bond Ising mod¢b], defined by  tems is whether the critical point correlations in E.2)
the HamiltonianH = —X,J;s;s; ;. Here the spin correlation transform covariantly under conformal transformatiphs].
function Although correlations in one sample are not translationally
invariant theaveragecorrelations are translationally and ro-
. _ _ tationally invariant and—it is generally believed—they are
G(r)=(sj+rsj)= |£[J o te=tanfd/keT), (1D 564 conformally covariant. Indeed numerical studies in the
strip and rectangle geometry for the two-dimensioQat 2
is given as a product of random numbers and has a logstate random Potts model show that average critical correla-
normal distribution. Consequently its most probable, or typi-tions transform covariantly under conformal transformations
cal valueG(r),=exp{In[G(r) .} =[t]5, and average value [14]. Recently conformal properties of correlation func-

j+r—1
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tions and density profiles have been used to determine tHength-exponent relation, as follows from the assumption of
scaling dimensions of different operatdd?]. conformal invariance.

The two-dimensional random Ising model wit“"=0 The structure of the paper is the following. The model and
represents the marginal situation of the Harris criterion andhe ST method to calculate surface correlations are presented
detailed studies have been performed to clarify its criticalin Sec. Il. Our results about surface correlations and the cor-
properties[15]. Disorder is predicted as a marginally irrel- responding correlation lengths are given in Sec. Ill. We con-
evant perturbation by field theory, so that the critical singu-clude our paper with a discussion in the final section.
larities of the random model are characterized by the expo-

nents qf the pure Ising model supp_lemente_d by Iogarith_mic Il STAR-TRIANGLE APPROACH TO
correctiong[16,17,§4. Numerical studies are in favor of this SURFACE CORRELATIONS
scenario[15,18-22, although conflicting interpretation of

the numerical results has also been sugges8i4]. We consider the Ising model on a diagonal strip of the

Considering the spin correlation function of the randomsquare lattice, with i=1,2,...L columns and |j
Ising model according to field theory the decay of the differ-=1,2, ... K rows. Ati=1 andi=L there are two(1,1)
ent moments of the bulk correlations at the critical point aresurfaces, whereas in the vertical direction witk-L we im-
given by the power law of the pure model wiki“"*=1/8, pose periodic boundary conditions. The nearest neighbor
but the logarithmic corrections to the different moments arespins are connected with ferromagnetic couplingis>0,
n dependenf8,25]. Numerically the bulk critical correlations which could take two values,>J, with equal probability.
are studied in the infinite plane geometry by MC simulationsin the thermodynamic limit.,K—o the model is self-dual
in Ref.[11], however, the possible logarithmic corrections of [27] and the self-duality point
the moments have not been analyzed. On the other hand in
Refs.[18,24 the transfer matrix method is used in the strip tanh(J; /kgT) =exp(—2J,/kgT), (2.
geometry and the decay exponent of the typical and average
bulk correlations are deduced from the assumption of congorresponds to the critical point, since according to numeri-
formal invariance. cal studies there is one phase-transition in the system. The
In the semi-infinite geometry the critical surface correla-gegree of dilution can be varied by changing the ratio of the
tion function has been studied in Re1] by the star-  syong and weak couplings=J; /J,. At p=1 one recovers
triangle (ST) method . It was found that for any dilution the the perfect Ising model, whereas fpr—>= we are in the
numerically calculated average correlations are compatiblgecolation limit, wherer .= 0.
with the form For a given distribution of the couplings correlations be-
tween two surface spinGg(r)=(Sy;+,S1;), can be conve-
[Ge(r)]ay=1 H(Inr)*2, (1.3 niently calculated by the star-triangle method. The ST
method was introduced by Hilhorst and van Leeuvj28|
Thus the decay exponent of the critical surface magnetizaand later by other§29] to study the surface critical proper-
tionis =1, as for the pure system, however, in the randonties of triangular lattice Ising models with a layered struc-
model there are also logarithmic corrections. ture. Recently, the method has been generalized for arbitrary
In this paper we continue to study the surface correlatiordistribution of the couplings and applied for the random
function of the 2D random Ising model. New features of oursemi-infinite Ising model in Ref21], hereafter referred to as

investigations are the following. paper . In the following we recapitulate the method for the
(i) We considered the strip geometry, rather than thestrip geometrywith free boundary conditions at the two
semi-infinite geometry. edges of the strip.

(i) As a numerical method we used an iterative procedure Central to the method is the ST transformation by which
based on the star-triangle transformation. By this ST methodne replaces all right-pointing triangles of the strip by a star,
a finite strip of random Ising model is formally transformed which yields a hexagonal lattice of spins, denoted by dashed
to a chain of Ising spins with smoothly inhomogeneouslines in Fig. 1. In the second step of the mapping the left
bonds. Then, using the exact expression in(&dl), we have  pointing stars of the hexagonal lattice are replaced by tri-
calculated very accurately the correlation length parallel teangles resulting in a new triangular lattice, which is denoted
the strip, &, , and studied its distribution and different mo- by dotted lines in Fig. 1. Iterating the procedure a sequence
ments. of triangular Ising models is generatech€0,1,2...) from

(iii) The advantage of the ST method to the transfer mathe original model withm=0. Neither the width of the strip
trix (TM) technique, applied previous for bulk correlations is nor the number of spins is changed under the transformation.
twofold. First, we could investigate larger widths of the strip, As seen in Fig. 1 the surface spins of tmth and the
going up toL=21, which is approximately twice of the (m+1)th models are connected by the surface couplings of
widths available by the TM techniqy@6]. The second ad- the intermediate hexagonal lattice and, as shown in paper I,
vantage of the ST method that one can consider correlatiortbere is an explicit relation between the thermal average of
between two largely separated spins;O(10%), which is at  the surface spins in the two models. Then, from the fact that
least one order of magnitude larger, than for the TM methodthe surface magnetization of a finite strip with free boundary
In this way we obtained more accurate averaging and couldonditions is vanishing, follows that the surface couplings of
go deeper into the asymptotic region of the correlations. the hexagonal lattice goes to zero ms—%. As a conse-

(iv) Finally, we calculated different moments of the cor- quence the surface spins of the triangular lattice decouple
relation function and studied the validity of the correlation asymptotically from the rest of the system. The surface cor-
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FIG. 2. The average surface diagonal coupling, connecting the
surface spins to the rest of the system, as a function of the number
of iteration m. The calculation is performed on a given random
sample with dilutionp=4 and on a strip of siz& =11 andK
=1024. Inset: The approximate inverse correlation length, defined
in Eq. (2.2), as a function of the iteration parameter.
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FIG. 1. Strip of triangular lattice witlh =4 layers. The hexago-
nal lattice, obtained by the ST transformation is denoted by dashelfor isotropic systems the correlation length parallel to the
lines, the triangles of the new triangular lattice are shown by dottedstrip, £ and the width of the systerh are asymptotically
lines. In a diagonal square lattice the vertical couplings, which argoroportional and foiconformally invariantsystems their ra-
zero in the original model, are generated during the iteration protio takes the universal valJd.3]:
cess.

g1
relation functions of thenth and (m+ 1)-th triangular mod- NG (2.5
els are similarly related and one can use the results of paper s
| to calculate the surface correlation length from this relation.

) . . (n) i i -

One can, however, proceed in a simpler way noticing that th&'€"€Xs " is the anomalous dimension of the surface magne
surface spin correlation function stays asymptotically invari-ization, defined through the asymptotic decay of the critical
surface correlaton in the semi-infinite geometry,

ant under the mapping. Thé&y(r) in the original model can ) )
be expressed in the form of the one-dimensional Ising moddiG(r) "1 ~r =", Thusx{" is the surface counterpart of

in Eq. (1.1) replacingJ; by the asymptotic value of the sur- x" in Eq. (1.2 and satisfies the scaling relation) "
face couplingd{(m)=J,;(m). =2x{
For a given strip of width. the surface correlations show
an asymptotic exponential dec&(r)~exp(-r/&), r>L, . RESULTS
where the correlation lengty is approximated by

We studied the spin correlations of the random Ising

1 j+r-1 model on the(1,1) surface of the square lattice by the ST
=—ZIn H tanfI&(m)/kgT]|, (2.2  method. Evidently the original model with=0 can be con-
&.(m) r k=] sidered as a special triangular lattice model with vanishing

vertical bonds. During iteration, however, nonzero vertical
and lim,, ...& (m)=&_. Averaging over different disorder couplings are generated so that also the surface couplings
realizations one obtains thgpical correlation length J{(m) become nonzero. In the actual calculations we con-
sidered strips of width.=21+1 up toL =21 [30], whereas
for the length of the strigK the conditionK>L is always
satisfied. Typically we tookK =1024 and checked that the
numerical results are insensitive on the variatiorikKah this
In physical applications one should averagenttepower of  rggion,
the correlation function the asymptotic behavior of which, ~Ag indicated in the previous chapter, under iteration the
[Go(r)" oy ~exp(-r/&"), defines the corresponding correla- syrface spins asymptotically decouple from the rest of the
tion length ™ . As already mentioned fon=1 andn=0  system and the surface correlations have one-dimensional
we obtain the average and typical correlation lengths, respecharacter. For an illustration we have calculated the average
tively. From the different moments of the distribution of the value of the first diagonal couplingd‘®(m)],, connecting
inverse correlation lengtp(1/¢,) one obtainsf(L”) in a cu- the first and second line of spins, as a function of the itera-
mulant expansion tion m. It is given in Fig. 2 together with the correlation

EP=[& ]av- (2.3
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FIG. 3. Probability distribution of the inverse of the correlation
length forL =11 and for different lengths of the strih We studied
20000 samples for each lengths at a dilutpa4. The full lines
represent the Gaussian approximations to the distributions.

FIG. 5. Ratio of the correlation length corresponding torikte
moment of the correlation functiogf™ and the width of the strip in
units ofl|=(L—1)/2 at a dilutionp=4. The dashed line is guide to
the eyes, representing logarithmic finite-size corrections as
O(1/Inl).
length ¢, (m) as defined in Eq(2.2) between two spins of
maximal distance =K/2. As seen in Fig. 2 bothd(m)]a, g plotted against 1/ As seen in Fig. 4 in the range of dilu-
and ¢, (m) approach their limiting values rapidly, exponen- yion e worked, the correlation length is monotonically de-

tially with m. Analyzmg the iteration equations in paper | reaqing withp, whereas there is an approximate linedr 1/
one can show than~L* iteration steps are needed to reach . yection to the ratio for all values of. The asymptotic

the asymptotic region, which is indeed verified numerically., 5| ¢ of the ratio is found dilution independent, we estimated
For a given dilutionp, the correlation lengthg, , shows .o

variation from sample to sample. The distribution of the in-

verse correlation lengthp(1/£,) obtained over 20000 yp

samples is shown in Fig. 3 for different lengths of the strip im ™l _ 1+0.003 3.0

K. As seen in Fig. 3 the average value &f, defining the 2 1 - '

typical correlation length in Eq(2.3) is independent oK,

whereas the width of the distribution is decreasing with the . )

length of the strip as 1/K. This observation is in agreement We have.also studied the different moments of the correla-

with the cumulant expansion in E€.4) and with the fact tion function an(gj) calculated the ccggespondmg average cor-

that £ is asymptotically independent & The distribution ~ relation length¢i™. The ratio (@/2)¢7/1 is found to have a

p(1/£.) is found approximately Gaussian, however for finite Stong Size dependence, much stronger than for the typical

strips there is always some deviation from the normal distri_correla.tlon length. IQ th|§ case the f|n|te—S|z.e cqrrecuons are

bution. approximately logarithmic, as can be seen in Fig. 5. For any

Next, we are going to study tHedependence of the typi- finite L the corrections are increasing vyith the momant,
cal correlation lengtg™® for different values of the dilution "OWeVer the asymptotic value of the ratio tends to the same

p=1,2,4, and 10. First we note that in order to use the Samgnlversal value
lattice units in the vertical and horizontal directions one

L—oo

_ i i typ (n)
should replacé =21 +1 by|. In Fig. 4 the ratio {/2)&"/1 im ZizltO.OB. (32
w2 |
1.3 :
W pure
oo . as for the typical ratio in Eq3.1). We note that the error of
12} Ap=i0 b the estimate in Eq3.2) is increasing wittn.
~ I'e * At this point we compare our results in E¢8.1) and
g = (3.2 to that obtained in the semi-infinite geometry in Eg.
wp 117 I 1 (1.3 and comment about the validity of the correlation
%‘ Py § * * %+ length-exponent relation in Eq2.5. The universal ratio
0 ../,—_:’_‘_'__ i-k-EE TR | found in Egs.(3.1) and (3.2) according to the correlation
length-exponent relation corresponds to a typical and aver-
age surface magnetization decay exponengefl in com-

0.9 - - plete agreement with the result in the semi-infinite geometry
0.0 02 1] 04 in Eq. (1.3. Furthermore, for the average correlations we
observed logarithmic corrections in both geometries. Thus
FIG. 4. Ratio of the typical correlation leng8}® and the width ~ We can conclude that the correlation length-exponent relation
of the strip, measured in units= (L— 1)/2 for different dilutions.  is valid for the typical and average surface correlations of the
The dashed lines are guide to the eyes, representing the finite-sifandom 2D Ising model, thus they transform covariantly un-
corrections a©(11). der conformal transformations.
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IV. DISCUSSION thus the first correction term in the cumulant expansion in
In the previous section the surface correlation function oIEq.' (2.4 Is of O(1), as it should bg. The.eventual corre-
lations between the block-spin couplings will tend to reduce

the 2D random Ising model is studied in the strip geometry.

In particular we have calculated the ratio of the correlation® value of8 in Eq. (4.1). According to our numerical stud-

length g(Ln) obtained from the average of timéh moment of €S B~ _1/In L_ and this effect i_s the source of the logarithmic
the surface correlation function and the widthof the sys-  Corrections in the random Ising model. , _
tem. We found that asymptotically this ratio goes to a uni- 1he results in the semi-infinite geometry and in the strip
versal value, irrespective of the degree of dilutipmand the ~9eometry are in complete correspondence. Comparing the
value of the momenty. For typical correlations the correc- conformal result in Eq(2.5) with the numerical estimates in
tion terms are oD(1/L), whereas for the average= 1, and Egs.(3.1) and(3.2) one obtains the following conclusions.
for the higher momenta> 1. The finite-size corrections are (i) The correlation length-exponent relation is valid for
logarithmic, they are in the form dd(1/InL). the random Ising model, thus tligurface correlations of the
Several qualitative features of the above results can bsystem are conformally covariant.
understood by analyzing the ST iteration procedure. As men- (i) For the typical and average correlations at the critical
tioned before the surface spins are asymptotically decouplegoint the decay is given by the same exponent, which does
afterm~L? iteration steps, when the expression of the newnot depend on the degree of dilution. Consequently there is
surface couplings](ks)(m) contains a set of the original cou- no multifractal behavior for the critical correlations of the
plings J; j, taken from a region of £i<L and k—L<] model.
<k+L. Consequently theJ(ks)(m) are correlated for short (i) The typical surface correlations are free of logarith-
distances, but they are practically independent between twmic corrections, whereas the average correlations and the
sites which are separated by at least a distan€(b)). Now  higher moments are subject of logarithmic corrections, the
we can use an approximate coarse-grained description: intrgtrength of those is increased with
duce block-spin variables to replace edfL) number of (iv) Finally, our numerical results give strong and accu-
surface spins which are connected by correlated couplingsate numerical support to the field-theoretical conjecture that
The new couplings between the block spﬂr{]@ are approxi-  the random and pure Ising models in 2D belong to the same
mately independent random variables and they satisfyiniversality class.
tanh(]ff)/kBU=O(1), since with the original couplings
tanh@P/ksT)=0(1/L). Then from Eq.(2.2) follows that the
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