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Correlation-length–exponent relation for the two-dimensional random Ising model
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We consider the two-dimensional~2D! random Ising model on a diagonal strip of the square lattice, where
the bonds take two values,J1.J2, with equal probability. Using an iterative method, based on a successive
application of the star-triangle transformation, we have determined at the bulk critical temperature the corre-
lation length along the stripjL for different widths of the stripL<21. The ratio of the two lengthsjL /L
5A is found to approach the universal valueA52/p for largeL, independent of the dilution parameterJ1 /J2.
With our method we have demonstrated with high numerical precision, that the surface correlation function of
the 2D dilute Ising model is self-averaging, in the critical point conformally covariant and the corresponding
decay exponent ish i51.

PACS number~s!: 05.50.1q, 64.60.Ak, 68.35.Rh
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I. INTRODUCTION

In the presence of quenched, i.e., time independent di
der one generally considers different random samples and
physical observables are characterized by their distribu
and (nth) moments.~For n51 andn50 we have theaver-
age and typical value, respectively.! The extensive quanti
ties, which are connected to the free-energy and its der
tives, have normal distribution, thus in a single sample o
measures theiraveragevalue with probability one in the
thermodynamic limit. These quantities are calledself-
averaging. There are, however, other observables, typica
correlation functions, which are broadly distributed and
typical ~or most probable! value is different from the averag
value, even in the thermodynamic limit.

Such type of phenomena takes place in disordered q
tum systems@1#, where the typical and average behavior
correlations and critical singularities are even qualitativ
different. As known by exact results@2,3#, renormalization
group @4# and numerical calculations@5# in the infinite ran-
domness fixed pointthe average behavior is dominated by t
rare events, which occur with vanishing probability, wherea
the typical behavior is seen in any large sample with pr
ability one.

In a classical system the effect of disorder is compa
tively weaker @since in quantum systems the disorder
strictly correlated along the~imaginary! time direction#. Here
the critical singularities are controlled by arandom fixed
point and there are usually quantitative differences betw
the average and typical behavior.

In this respect a well known example is the on
dimensional~1D! random bond Ising model@6#, defined by
the HamiltonianH52( j Jjsjsj 11. Here the spin correlation
function

G~r !5^sj 1rsj&5 )
k5 j

j 1r 21

tk , tk5tanh~Jk /kBT!, ~1.1!

is given as a product of random numbers and has a
normal distribution. Consequently its most probable, or ty
cal valueG(r ) typ5exp$ln@G(r)#av%5@ t#av

r and average value
PRE 611063-651X/2000/61~1!/147~6!/$15.00
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@G(r )#av are different, even in the thermodynamic limit. I
the following we usê •••& and @•••#av to denote thermal
and disorder averaging, respectively.

In higher-dimensional classical spin systems with rand
ferromagnetic couplings, such as the random Ising a
Q-state Potts models, the effect of disorder is expected to
even weaker than in 1D. In calculating the correlation fun
tion the thermal average in higher dimensions involves s
eral random couplings, not only those connecting directly
two points, therefore the disorder fluctuations are smoot
down. There is a class of random systems which, in the
cinity of their critical point, are homogeneous in macr
scopic scales, thus the effect of quenched disorder isirrel-
evant. The corresponding criterion for weak randomness d
to Harris @7# requiresapure,0, whereapure is the specific
heat exponent of the pure system.

For systems withapure.0 the disorder is arelevantper-
turbation so that the critical properties are controlled by
~new! random fixed pointin which unconventional scaling
behavior is expected. A detailed study, both~field! theoreti-
cal @8,9# and numerical@10–12#, about the two-dimensiona
randomQ.2 state Potts model has revealed that the criti
bulk spin correlation function hasmultifractal behavior: the
different moments of the correlation function at the critic
point decay as a power

@Gn~r !#av
1/n;r 22x(n)

, ~1.2!

with n dependent decay exponentsx(n). We note that for
conventional scaling thex(n)’s have non dependence.

An important question concerning random magnetic s
tems is whether the critical point correlations in Eq.~1.2!
transform covariantly under conformal transformations@13#.
Although correlations in one sample are not translationa
invariant theaveragecorrelations are translationally and ro
tationally invariant and—it is generally believed—they a
also conformally covariant. Indeed numerical studies in
strip and rectangle geometry for the two-dimensionalQ.2
state random Potts model show that average critical corr
tions transform covariantly under conformal transformatio
@14#. Recently conformal properties of correlation fun
147 ©2000 The American Physical Society
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148 PRE 61PÉTER LAJKÓ AND FERENC IGLÓI
tions and density profiles have been used to determine
scaling dimensions of different operators@12#.

The two-dimensional random Ising model withapure50
represents the marginal situation of the Harris criterion a
detailed studies have been performed to clarify its criti
properties@15#. Disorder is predicted as a marginally irre
evant perturbation by field theory, so that the critical sing
larities of the random model are characterized by the ex
nents of the pure Ising model supplemented by logarith
corrections@16,17,8#. Numerical studies are in favor of thi
scenario@15,18–22#, although conflicting interpretation o
the numerical results has also been suggested@23,24#.

Considering the spin correlation function of the rando
Ising model according to field theory the decay of the diff
ent moments of the bulk correlations at the critical point
given by the power law of the pure model withxpure51/8,
but the logarithmic corrections to the different moments
n dependent@8,25#. Numerically the bulk critical correlations
are studied in the infinite plane geometry by MC simulatio
in Ref. @11#, however, the possible logarithmic corrections
the moments have not been analyzed. On the other han
Refs.@18,26# the transfer matrix method is used in the st
geometry and the decay exponent of the typical and ave
bulk correlations are deduced from the assumption of c
formal invariance.

In the semi-infinite geometry the critical surface corre
tion function has been studied in Ref.@21# by the star-
triangle~ST! method . It was found that for any dilution th
numerically calculated average correlations are compat
with the form

@Gs~r !#av;r 21~ ln r !1/2. ~1.3!

Thus the decay exponent of the critical surface magnet
tion is h i51, as for the pure system, however, in the rand
model there are also logarithmic corrections.

In this paper we continue to study the surface correlat
function of the 2D random Ising model. New features of o
investigations are the following.

~i! We considered the strip geometry, rather than
semi-infinite geometry.

~ii ! As a numerical method we used an iterative proced
based on the star-triangle transformation. By this ST met
a finite strip of random Ising model is formally transforme
to a chain of Ising spins with smoothly inhomogeneo
bonds. Then, using the exact expression in Eq.~1.1!, we have
calculated very accurately the correlation length paralle
the strip,jL , and studied its distribution and different mo
ments.

~iii ! The advantage of the ST method to the transfer m
trix ~TM! technique, applied previous for bulk correlations
twofold. First, we could investigate larger widths of the str
going up to L521, which is approximately twice of the
widths available by the TM technique@26#. The second ad-
vantage of the ST method that one can consider correlat
between two largely separated spins,r 5O(103), which is at
least one order of magnitude larger, than for the TM meth
In this way we obtained more accurate averaging and co
go deeper into the asymptotic region of the correlations.

~iv! Finally, we calculated different moments of the co
relation function and studied the validity of the correlati
he
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length-exponent relation, as follows from the assumption
conformal invariance.

The structure of the paper is the following. The model a
the ST method to calculate surface correlations are prese
in Sec. II. Our results about surface correlations and the
responding correlation lengths are given in Sec. III. We c
clude our paper with a discussion in the final section.

II. STAR-TRIANGLE APPROACH TO
SURFACE CORRELATIONS

We consider the Ising model on a diagonal strip of t
square lattice, with i 51,2, . . . ,L columns and j
51,2, . . . ,K rows. At i 51 and i 5L there are two~1,1!
surfaces, whereas in the vertical direction withK@L we im-
pose periodic boundary conditions. The nearest neigh
spins are connected with ferromagnetic couplings,Ji , j.0,
which could take two valuesJ1.J2 with equal probability.
In the thermodynamic limitL,K→` the model is self-dual
@27# and the self-duality point

tanh~J1 /kBT!5exp~22J2 /kBT!, ~2.1!

corresponds to the critical point, since according to num
cal studies there is one phase-transition in the system.
degree of dilution can be varied by changing the ratio of
strong and weak couplingsr5J1 /J2. At r51 one recovers
the perfect Ising model, whereas forr→` we are in the
percolation limit, whereTc50.

For a given distribution of the couplings correlations b
tween two surface spinsGs(r )5^s1,j 1rs1,j&, can be conve-
niently calculated by the star-triangle method. The
method was introduced by Hilhorst and van Leeuwen@28#
and later by others@29# to study the surface critical proper
ties of triangular lattice Ising models with a layered stru
ture. Recently, the method has been generalized for arbit
distribution of the couplings and applied for the rando
semi-infinite Ising model in Ref.@21#, hereafter referred to a
paper I. In the following we recapitulate the method for t
strip geometrywith free boundary conditions at the tw
edges of the strip.

Central to the method is the ST transformation by wh
one replaces all right-pointing triangles of the strip by a st
which yields a hexagonal lattice of spins, denoted by das
lines in Fig. 1. In the second step of the mapping the
pointing stars of the hexagonal lattice are replaced by
angles resulting in a new triangular lattice, which is deno
by dotted lines in Fig. 1. Iterating the procedure a seque
of triangular Ising models is generated (m50,1,2, . . . ) from
the original model withm50. Neither the width of the strip
nor the number of spins is changed under the transformat

As seen in Fig. 1 the surface spins of themth and the
(m11)th models are connected by the surface couplings
the intermediate hexagonal lattice and, as shown in pap
there is an explicit relation between the thermal average
the surface spins in the two models. Then, from the fact t
the surface magnetization of a finite strip with free bound
conditions is vanishing, follows that the surface couplings
the hexagonal lattice goes to zero asm→`. As a conse-
quence the surface spins of the triangular lattice decou
asymptotically from the rest of the system. The surface c



ap
on
th
ri

d
r-

w

r

h
a-

pe
e

the

ne-
cal
y,

f

ng
T

ing
al

lings
on-

e

the
the
onal
age

ra-
n

-
h
tte
ar
ro

the
ber

m

ned

PRE 61 149CORRELATION-LENGTH–EXPONENT RELATION FOR . . .
relation functions of themth and (m11)-th triangular mod-
els are similarly related and one can use the results of p
I to calculate the surface correlation length from this relati
One can, however, proceed in a simpler way noticing that
surface spin correlation function stays asymptotically inva
ant under the mapping. ThenGs(r ) in the original model can
be expressed in the form of the one-dimensional Ising mo
in Eq. ~1.1! replacingJj by the asymptotic value of the su
face couplingJj

(s)(m)[J1,j (m).
For a given strip of widthL the surface correlations sho

an asymptotic exponential decayGs(r );exp(2r/jL), r @L,
where the correlation lengthjL is approximated by

1

jL~m!
52

1

r
lnS )

k5 j

j 1r 21

tanh@Jk
(s)~m!/kBT# D , ~2.2!

and limm→`jL(m)5jL . Averaging over different disorde
realizations one obtains thetypical correlation length

jL
typ5@jL#av. ~2.3!

In physical applications one should average thenth power of
the correlation function the asymptotic behavior of whic
@Gs(r )n#av

1/n;exp(2r/jL
(n)), defines the corresponding correl

tion lengthjL
(n) . As already mentioned forn51 andn50

we obtain the average and typical correlation lengths, res
tively. From the different moments of the distribution of th
inverse correlation lengthp(1/jL) one obtainsjL

(n) in a cu-
mulant expansion

FIG. 1. Strip of triangular lattice withL54 layers. The hexago
nal lattice, obtained by the ST transformation is denoted by das
lines, the triangles of the new triangular lattice are shown by do
lines. In a diagonal square lattice the vertical couplings, which
zero in the original model, are generated during the iteration p
cess.
er
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jL
(n)

5
1

jL
typ

2
1

2
nrF S 1

jL
2

1

jL
typD 2G

av

1•••. ~2.4!

For isotropic systems the correlation length parallel to
strip, jL

(n) and the width of the systemL are asymptotically
proportional and forconformally invariantsystems their ra-
tio takes the universal value@13#:

jL
(n)

L
5

1

pxs
(n)

. ~2.5!

Herexs
(n) is the anomalous dimension of the surface mag

tization, defined through the asymptotic decay of the criti
surface correlation in the semi-infinite geometr

@Gs(r )n#av
1/n;r 22xs

(n)
. Thusxs

(n) is the surface counterpart o
x(n) in Eq. ~1.2! and satisfies the scaling relationh i

(n)

52xs
(n) .

III. RESULTS

We studied the spin correlations of the random Isi
model on the~1,1! surface of the square lattice by the S
method. Evidently the original model withm50 can be con-
sidered as a special triangular lattice model with vanish
vertical bonds. During iteration, however, nonzero vertic
couplings are generated so that also the surface coup
Jj

(s)(m) become nonzero. In the actual calculations we c
sidered strips of widthL52l 11 up toL521 @30#, whereas
for the length of the stripK the conditionK@L is always
satisfied. Typically we tookK51024 and checked that th
numerical results are insensitive on the variation ofK in this
region.

As indicated in the previous chapter, under iteration
surface spins asymptotically decouple from the rest of
system and the surface correlations have one-dimensi
character. For an illustration we have calculated the aver
value of the first diagonal coupling@J(d)(m)#av connecting
the first and second line of spins, as a function of the ite
tion m. It is given in Fig. 2 together with the correlatio

ed
d
e
-

FIG. 2. The average surface diagonal coupling, connecting
surface spins to the rest of the system, as a function of the num
of iteration m. The calculation is performed on a given rando
sample with dilutionr54 and on a strip of sizeL511 and K
51024. Inset: The approximate inverse correlation length, defi
in Eq. ~2.2!, as a function of the iteration parameter.
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150 PRE 61PÉTER LAJKÓ AND FERENC IGLÓI
length jL(m) as defined in Eq.~2.2! between two spins o
maximal distancer 5K/2. As seen in Fig. 2 both@J(d)(m)#av
and jL(m) approach their limiting values rapidly, expone
tially with m. Analyzing the iteration equations in paper
one can show thatm;L2 iteration steps are needed to rea
the asymptotic region, which is indeed verified numerica

For a given dilution,r, the correlation length,jL , shows
variation from sample to sample. The distribution of the
verse correlation lengthp(1/jL) obtained over 20 000
samples is shown in Fig. 3 for different lengths of the st
K. As seen in Fig. 3 the average value ofjL , defining the
typical correlation length in Eq.~2.3! is independent ofK,
whereas the width of the distribution is decreasing with
length of the strip as 1/AK. This observation is in agreemen
with the cumulant expansion in Eq.~2.4! and with the fact
thatjL

(n) is asymptotically independent ofK. The distribution
p(1/jL) is found approximately Gaussian, however for fin
strips there is always some deviation from the normal dis
bution.

Next, we are going to study theL dependence of the typi
cal correlation lengthjL

typ for different values of the dilution
r51,2,4, and 10. First we note that in order to use the sa
lattice units in the vertical and horizontal directions o
should replaceL52l 11 by l. In Fig. 4 the ratio (p/2)jL

typ/ l

FIG. 3. Probability distribution of the inverse of the correlatio
length forL511 and for different lengths of the stripK. We studied
20 000 samples for each lengths at a dilutionr54. The full lines
represent the Gaussian approximations to the distributions.

FIG. 4. Ratio of the typical correlation lengthjL
typ and the width

of the strip, measured in unitsl 5(L21)/2 for different dilutions.
The dashed lines are guide to the eyes, representing the finite
corrections asO(1/l ).
.

-

e

i-

e

is plotted against 1/l . As seen in Fig. 4 in the range of dilu
tion we worked, the correlation length is monotonically d
creasing withr, whereas there is an approximate linearl
correction to the ratio for all values ofr. The asymptotic
value of the ratio is found dilution independent, we estima
as

lim
L→`

p

2

jL
typ

l
5160.003. ~3.1!

We have also studied the different moments of the corre
tion function and calculated the corresponding average
relation lengthjL

(n) . The ratio (p/2)jL
(n)/ l is found to have a

strong size dependence, much stronger than for the typ
correlation length. In this case the finite-size corrections
approximately logarithmic, as can be seen in Fig. 5. For a
finite L the corrections are increasing with the moment,n,
however the asymptotic value of the ratio tends to the sa
universal value

lim
L→`

p

2

jL
(n)

l
5160.03. ~3.2!

as for the typical ratio in Eq.~3.1!. We note that the error o
the estimate in Eq.~3.2! is increasing withn.

At this point we compare our results in Eqs.~3.1! and
~3.2! to that obtained in the semi-infinite geometry in E
~1.3! and comment about the validity of the correlatio
length-exponent relation in Eq.~2.5!. The universal ratio
found in Eqs.~3.1! and ~3.2! according to the correlation
length-exponent relation corresponds to a typical and a
age surface magnetization decay exponent ofh i51 in com-
plete agreement with the result in the semi-infinite geome
in Eq. ~1.3!. Furthermore, for the average correlations w
observed logarithmic corrections in both geometries. Th
we can conclude that the correlation length-exponent rela
is valid for the typical and average surface correlations of
random 2D Ising model, thus they transform covariantly u
der conformal transformations.

ize

FIG. 5. Ratio of the correlation length corresponding to thenth
moment of the correlation functionjL

(n) and the width of the strip in
units of l 5(L21)/2 at a dilutionr54. The dashed line is guide to
the eyes, representing logarithmic finite-size corrections
O(1/ln l).



o
try
io

ni

-

e

b
e
pl
ew
-

t
tw

tr

ng

is

n

in
e-
ce
-
ic

rip
the

or

cal
oes
e is
e

h-
the

the

u-
hat
me

an
un-
KA
the
9.
ling
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IV. DISCUSSION

In the previous section the surface correlation function
the 2D random Ising model is studied in the strip geome
In particular we have calculated the ratio of the correlat
lengthjL

(n) obtained from the average of thenth moment of
the surface correlation function and the widthL of the sys-
tem. We found that asymptotically this ratio goes to a u
versal value, irrespective of the degree of dilutionr and the
value of the moment,n. For typical correlations the correc
tion terms are ofO(1/L), whereas for the average,n51, and
for the higher momentsn.1. The finite-size corrections ar
logarithmic, they are in the form ofO(1/lnL).

Several qualitative features of the above results can
understood by analyzing the ST iteration procedure. As m
tioned before the surface spins are asymptotically decou
after m;L2 iteration steps, when the expression of the n
surface couplingsJk

(s)(m) contains a set of the original cou
plings Ji , j , taken from a region of 1< i<L and k2L, j
,k1L. Consequently theJk

(s)(m) are correlated for shor
distances, but they are practically independent between
sites which are separated by at least a distance ofO(L). Now
we can use an approximate coarse-grained description: in
duce block-spin variables to replace eachO(L) number of
surface spins which are connected by correlated coupli
The new couplings between the block spinsJk8

(B) are approxi-
mately independent random variables and they sat
tanh(Jk8

(B)/kBT)5O(1), since with the original couplings
tanh(Jk

(s)/kBT)5O(1/L). Then from Eq.~2.2! follows that the
correlation length of the system is self-averaging, in a
sample the expression in Eq.~2.2! in the thermodynamic
limit goes to the average correlation length@jL#av, with
probability 1. Evaluating the variance of 1/jL in the coarse-
grained picture one gets

F S 1

jL
2

1

jL
typD 2G

av

.
b

rL
, ~4.1!
y
re
,
n a

in

ys
f
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n

-

e
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ed
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fy

y

thus the first correction term in the cumulant expansion
Eq. ~2.4! is of O(1/L), as it should be. The eventual corr
lations between the block-spin couplings will tend to redu
the value ofb in Eq. ~4.1!. According to our numerical stud
ies b;1/lnL and this effect is the source of the logarithm
corrections in the random Ising model.

The results in the semi-infinite geometry and in the st
geometry are in complete correspondence. Comparing
conformal result in Eq.~2.5! with the numerical estimates in
Eqs.~3.1! and ~3.2! one obtains the following conclusions.

~i! The correlation length-exponent relation is valid f
the random Ising model, thus the~surface! correlations of the
system are conformally covariant.

~ii ! For the typical and average correlations at the criti
point the decay is given by the same exponent, which d
not depend on the degree of dilution. Consequently ther
no multifractal behavior for the critical correlations of th
model.

~iii ! The typical surface correlations are free of logarit
mic corrections, whereas the average correlations and
higher moments are subject of logarithmic corrections,
strength of those is increased withn.

~iv! Finally, our numerical results give strong and acc
rate numerical support to the field-theoretical conjecture t
the random and pure Ising models in 2D belong to the sa
universality class.
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