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From continuous time random walks to the fractional Fokker-Planck equation
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We generalize the continuous time random w@k RW) to include the effect of space dependent jump
probabilities. When the mean waiting time diverges we derive a fractional Fokker-Planck eqi&RB.
This equation describes anomalous diffusion in an external force field and close to thermal equilibrium. We
discuss the domain of validity of the fractional kinetic equation. For the force free case we compare between
the CTRW solution and that of the FFPE.

PACS numbes): 02.50-r, 05.40.Fb, 05.30.Pr

[. INTRODUCTION sumed to follow an exponential decay which is very different
from the power law decay we assume here.
The linear Fokker-Planck equation Using the CTRW in an external field we consider a con-

tinuum approximation where the lattice spacimg-0. Un-

2 9 F(x) der certain conditions we show that the dynamics are de-
P(x,t)=K; " 7x KaT P(x,t) (1)  scribed by a fractional kinetic equation
7 9 F(x)

P(x,t)=oDi “K, P(x,t), 2)

[1-6], also called the Smoluchowski equation, is usually ap- X% ax kgT

plied to describe various types of normal Markovian diffu- wherethl’“ is the the fractional Riemann-Liouville opera-

s;we phenomepa. In thg absence of an externgl fd7¢e) tar (see more details belowWe call Eq.(2) the fractional
_0_, _the equation describes a Ga_us_5|an evolution as may kf?okker-Planck equatiofFFPB. This equation has been re-
anticipated based on the central limit theorem. The equation ‘

. : -cently investigated17,18 and derived from a generalized
describes an overdamped motion and hence has no eXp“Crlrfaster equationl9]. Earlier, Balakrishnap20] has derived

dependence on the velocity of the test particle. When th _ o
motion is bounded by an external potential field the station(—%‘he FFPE for the casg(x) =0 based upon a generalization

ary solution is the Boltzmann equilibrium defined by the]?f Brownlaln .motlonh Sfchneltf:ier and IWy{Ql,ZZ ha\;e
temperatureT. ound a solution to the force free problem in terms of Fox

. - functions. Here a detailed and different derivation of the
Many works have focused on the domain of validity of : N . .
Eq. (1). The derivation of this equation can be achieved us-.FFPE in an external field is presented, the starting point be-

. : : : . ing the extensively investigated CTRW model. We discuss
ing different approaches reviewed in the variety of text . =) ; ) g N
books on the subjedtl—6]. In all derivations it has been the scaling regime in which the FFPE is valid and its limita

assumed that a microscopic time scale exists, which is smaﬁ'lons’ and compare between the CTRW solui6ie3,24

compared to the observation tirhdn a random walk picture antljt tir;at/v%frttr?emlzeizsnlirr]] d'mg?sf'rf; c}ﬁi’lgkinetic equations
this time is the characteristic time it takes a particle to per- 9 q

form a single microscopic jump. What happens when thish"?we been suggested to model a quantum particle interacting

characteristic time scale diverges? In this anomalous case V\%th a chaotic bathi25], anomalous_ dlffu3|qn m_random en-
vironments[26,27], and for chaotic Hamiltonian systems

certainly do not expect the Markovian Fokker-Planck equa- . . i
tion (1) to hold. However, as we show, there exists a natural 2,8]. These fractional equations have been used to describe

generalization of the Fokker-Planck equation evy flights or diverging diffusion. In contrast, we describe
It is by now well established that the dive.rgence of mi- subdiffusive systems where the mean square displacement

- 2y __ta -
croscopic time scales in random walk schemes may lead IB{vhen F(x)—O]lbehzyf?s géx ) tR ?Qg ‘ijzlg Forare
anomalous diffusiorf6]. The continuous time random walk VIEw On anomalous difiusion See Ref3z, 14,29,

(CTRW) of Montroll and Weiss[7] has been used to de- This paper is organized as follows. In Sec. Il we introduce
scribe such anomalous diffusion whE(x) =0 for over two the CTRW model in an external field. In Sec. lll we derive
decadeg6,8—15. Here we generalize the one-dimensionalthe FFPE from the CTRW model. A comparison between the

CTRW on a lattice for jump probabilities that depend on the(_:-(r)R.W soéutpn Sand K\/e IEFPIF s.oltgmn I?r thedpaéa) h

site of jump. In this way we break the spatial invariance | Is made In Sec. IV. Finally, in Sec. V, we discuss the
usually assumed within the context of CTRW. Shugard anddomam of validity of the FFPE and some of its limitations.

Reiss[16] have already carried out a similar extension and
used it to develop a theory to calculate nucleation rates. In
this case the external potential field is the free energy barrier. We consider an unbounded random walk on a one dimen-
Their Montroll-Weiss waiting time distribution has been as-sional lattice with a lattice spacing Lattice sites are de-

1. MODEL
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noted by{...,—1,0,2...,n,...}. At time t=0 the par-
ticle is located at site1=0.

Once the particle has arrived at sitdt is trapped there
for some random time. These waiting times are giveqhy
andi=1,2, ..

of the particlen (i.e., it is independent of the external figld
Different types of such probability densitigg 7) have been
used to describe a wide variety of physical phenonjéné—
15].

We assume that the particle can jump either to the left o
the right and only nearest neighbor jumps are allowed. Thé

probability of hopping from site to n+ 1 is R(n) and from

siten to siten—1 isL(n), the normalization condition being

L(n)+R(n)=1. R(n) andL(n) are time independent.

The random walk process is therefore described as

follows. At time t=0 a particle starts at site=0. It stays

there for a timer; chosen randomly. Then with probability

R(0) [or 1—R(0)] it jumps to siten=1 [or n=—1]. The
process is then renewed. The jumping probabiliiés) and
L(n) are independent of the duration of trapping.

Ill. FROM CTRW TO FFPE

The probability that a particle is trapped for a period
without executing a jump is

wi = [ “urr @)
In Laplacet—u space

. 1—4

= @

where #(u) is the Laplace transform ofi(7). Since the

waiting times are independent, identically distributed random

variables, it is straightforward to show th@t(t), the prob-
ability that the random walker has jumpedimes in the
interval (0t), is in Laplace space

. 1—(u) -
="y,

©)

Let the probability of finding the particle at siteat time
t be P(n,t), and letp;(n) be the probability to be on site
after stepi. Then,

P(n,t>=i§O pi(NQ;(t).

©
Using Eq.(5),
R 1-(u) < .
P =" p(mi(w) U

The evolution ofp;(n) is determined by the discrete time

and space equation

Pi+1(N)=R(n=1)pi(n=1)+L(n+1)pi(n+1). (8)

FROM CONTINUOUS TIME RANDOM WALKS TO THE . ..

..{7} are independent random variables iden-
tically distributed according to a probability density function
(7). Itis assumed that( ) is independent of the location

133

In Eq. (8) we have used the assumption that the jumping
probabilitiesR(n) andL(n) are independent of the waiting
times. We now consider the continuum limit of this equation
by using the replacement

pi(n)—pi(x),

wherep;(x)dx is the probability of finding the particle after
the ith jump in the interval X,x+dx). Similarly, R(n)
—R(x) and L(n)—L(x) with the normalizationL(x)
+R(x)=1. In addition we haveL(n+1)—L(x+a) and
B(n+ 1)—R(x+a) wherea is the lattice spacing. We now
xpand Eq(8) in a Taylor series ira, a typical term being

R(n—1)pi(n—1)—R(x—a)pi(x—a)

J
=RX)pi(x)+ - [RO)pi(x)](—a)

52
o2 RO ]2+, (9)
where higher order terms proportionalad,a* etc. are omit-

ted. Similar expansions are used to derive @9g.

We assume that our system is close to thermal equilib-
rium defined with a temperatur@. For this caseR(x)
=L(x)=1/2 and according to detailed balanRéx) — L (x)
=aF(x)/(2kyT), whereF(x) is the external force field. We
show below that such a requirement(x) andL(x) guar-
antees that the system relaxes to the thermal Boltzmann equi-
librium. In this case we obtain from Eq&)—(9) in the con-
tinuum limit

a?[ & d F(x)
Pi+100=Pi(X)+ | =2 Pi(X) ~ = kb—-l-pi(X) oo
(10
We now rewrite Eq(7) as
. 1—4 14 - N
P(x,u)= f(u) Po(X) + f(u) Z,l Pi(X) ' (u),
(13)

where the continuum approximatid(n,u)— P(x,u) has
been made. Inserting Eq10) into Eq. (11), and using
po(x) = 8(x), we find

ﬁ’(x,u)z 1= :'j/(u) S(X) + 1= ff(u)

% 2 &2
Xizl Pifl(X)+§a—szi71(X)
a? 9
2 ox

F(x)
pifl(x)kb_-l—

~--]£ai<u). (12)

We notice that according to E¢7)

o]

1—4 . R R
Cl > P10 # (u)=P(x,u)g(u)

u i=1

(13

and hence from Eq12) we obtain
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R 1—d(u) R R a® 9% .
P(x,u)= J 5(X)+¢(U){P(x,U)+7 WP(x,U)
a? . F(x)
—7& P(X,U)kb—_l_ + . (14)

We now introduce the waiting time probability density
function, which for larger behaves as

aA,

M

(19

wherea=<1. In Laplaceu space the waiting time probability
density function behaves as
P(U)=1—Au%+cy(Au%)2+ - (16)

whenu is small. Whene<<1 the first moment of the waiting
times diverges. Inserting E¢16) into Eq. (14) we find

A U= Cq(AUu%)2+ -
u

B(x,u)= - 5(x)+[1— AU

a.2 2

+cy(A U2 ~]‘ P(x,u) +5 a—les(x,u)

17
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D, “Z(t)= ! ftdt' 2t (22
o=t “T(a))o (t—t")t-«
for 0O<a<1 and in Laplace space
fe’“t[oD{“Z(t)]dtzu’“Z(u). (23)
0

WhenF(x)=0 Eqg.(21) reduces to the result in Rei20].
Differentiating Eq.(21) with respect to time gives

IP(x,t) e
- =0Di “LipP(XD). (24)
with the fractional derivativgyD; ~* defined by
DI 9z(t)= L 7 ftdt’ 2t (25)
ot CT(a)at)o (t—t)t-e

As mentioned in the Introduction E@24) is the fractional
Fokker-Planck equation. It reduces to the ordinary Fokker-
Planck equatioril), whena=1, while for <1 it describes
subdiffusive processes.

Equations(21) and(24) are initial value problems. While
Eq. (21) is defined with a single initial conditiofthe delta
function on its left-hand sidein solving Eq.(24) two initial
conditions have to be specifi¢d0], these beind?(x,t=0)
and oD, “P(x,t)|;=o [31]. When settingyD, “P(X,t)|;~¢ to

We are now practically ready to derive the FFPE, but muskero the two equations are equivalent. Finally, we note that

first specify the limit in which this equation is derived.
Consider the limita—0. In the standard diffusion ap-

proximation such a limit is meaningful only when both the

mean waiting time and the lattice spaciagapproach zero.

the derivation of the FFPE in dimensions higher tias 1
follows exactly the same lines specified in this section.

IV. FFPE VS CTRW IN THE FORCE FREE CASE

For those cases when the mean waiting time diverges the

standard limit of the diffusion approximation breaks down.
We takea—0 andA,—0, while the ratio

lim
a2~>0,Aa—>O

(18)

a

is kept finite. K, is the generalized diffusion coefficient
whose units are [mt]/[sed®. When a=1, K,
=a?/(2(7)), and(7)=A,. The latter is the finite mean wait-
ing time as expected for this normal case.

Multiplying Eq. (17) by A, *u™¢ and using the limiting
procedure defined in E¢18) we find that

P(x,u)— 80)/u=K u~“L,P(x,u), (19

where
P 9 F(X) 20
=5 % kT (20

is the well known Fokker-Planck operator. EG9) can be
rewritten int space in terms of the fractional Riemann-
Liouville operator[30] as

P(X,t) = 8(X) =Dy “LtpP(X,1). (21

The fractional operator in Eq21) is defined by

In the previous section we have derived the FFPE from
the CTRW. Generally the two approaches are not identical.
One should expect, however, that the solutions of both the
processes coincide in a certain scaling regime valid for large
r andt. In this section we compare between the FFPE and the
CTRW for the force free casd;(x)=0, in dimensionsD
=1,2,3.

Schneider and Wyd21] have found the exact solution of
the FFPE in terms of a Fox functid82,33. Using the di-
mensionless equation

P(r,t)=oD{ “V2P(r,t) (26)
with the initial condition P(r,t=0)=5(r) the solution in
(IZ,u) Fourier-Laplace space is

ua—l

u+ k2’

P(k,u) (27)

Using Eq.(27) it is straightforward to show that the mean
square displacement of the particle follows

2D

= Frat™

(28)

Using the Mellin transform it can be shown tHatl]
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P(r,t)y=a ta P2 ~PHZ) _ATT
W(t) 8(r) ~ ———— 5(r). (35)
(1,1) I'i—a)
272/ar2/at71 ! )’ (29)
(D/2,1la),(1,1lex) Clearly only for timesA,t~*/T'(1—a)<1 can we expect

the FFPE solution and the CTRW solution to coincide. Also
whereH is a Fox function(for a different method of solu- notice that within the FFPE framework and f&r=2,3,
tion, see[34]) The asymptotic expression for this Green P(r,t) for é&<1 Eq.(33), decays not faster than the singular
function is term in the CTRW solution. Therefore for on the origin and
for D>1 the two solutions behave differently even when
P(r,t)~xr PP Mexp — N\ €Y7 @) (30) . In contrast, for normal random walks, the singular term
decays exponentially with time and then the diffusion ap-

where¢=r?/t* is the scaling variable proximation works well already after an exponentially short
time.
k=g V2 Em 02— q) " VZglatdr D21z ) The CTRW singular term is especially important for prob-

(3)  lems with a boundary conditiof86]. This term can be used
to find a lower bound oi$(t)—the probability that a particle

and which att=0 was at the origin has not crossed a closed
boundary until timet; clearl
M= (2—a) (a2 ), (32 Y Y
Equation(30) is valid for &>1. The behavior oP(r=0,t) S(t)y=W(t)~ (36)

valid for £<1 is i-a)
Notice that this simple relation is valid for all dimensiobs

and is independent of the shape of the boundary of the do-
main. Such a result cannot be derived based upon the FFPE

( 1
T(1-a/2)t*?

D=1 modeling. In the FFPE there is only a single parameter, the
P(r,t)~ < m'n(talz/r) D=2 (33 diffusion coefficient,, and so based on dimensional analy-
D=3

sis one can easily see that a bound like E3§) cannot be
r found based on this approach.
\ 47l (1—a)t® We now consider the second term on the RH&34j. For
IargeF andt one can use the smalandu values to find an
We see that in two and three dimensions the FFPE solution igpproximate solution of the CTRW. For convenience and

singular on the origin. Equatio(83) was derived indepen- without loss of generality we use’=2 andA,=1 then
dently by Saichey35]. A small ¢ expansion of thé>(r,t) is

-1

given in the Appendix foD=1. exp(—lr k)
Let us now analyze the CTRW result. We considerEhe U)~ df f — (37)
dimensional CTRW in continuum spadéhe extension to (2m) u“+k

lattice walks is straightforwayd The probability density

function of jump lengths is denotef(r) and its Fourier AS noted already by Comp{@7,38 the small k,u) behav-

. . ior of the CTRW, Eq.(37) is identical to the solution of the
transform byf (k). We use an unbiased CTRW and assum FPE Eq{(27). The exact solution of this equation is given in

an eX|st|ng variance of the jump length distribution. In this Eq. (29). An approximate normalized solution of the integral
Casef(k) 1—- 0'2k2/2+ - for smallk. The CTRW solution Eq (37) has been given in Ref$6,23]

in (r,u) space is written as a sum of two terms
P(r,t)=Nr~P(rP=1) P2 dexp( -\, 9) (39)

R () I BV (T |
P(r,u)= U o(r)+ J (2m)P

andN is a normalization coefficient. This res(ii] was de-

rived based upon the steepest descent methodsfdr.

. f(k)exp(—lr K) The approximate solution, Eq38), derived within the
f f ——~d®k. (39 CTRW framework, is compared with the exact soluti@d)

— 1= f(K)g(u) found within the framework of the FFPE. First we notice that
the stretched exponential term in E&8) is identical to the

The first term on the right-hand sidBHS) of this equation  stretched exponential term in E@0). The exact FFPE result

is a result of random walks where the particle is trapped orhas a scaling form in terms of

its initial location during the time interval (), No such

singular component appears in the solution of the FFPE Eq. P(r,t)r°~G,(¢) (39

(29). Since the Fokker-Planck operator contains derivatives

of finite order, the CTRW singularity at the origin does not while the CTRW approximation Eq38), for D# 1, has a

appear in the FFPE solution. different scaling form

According to Eqs(3), (4), and(16) the inverse Laplace
transform of the first singular term in E(B4) is P(r,t)rP(r1 D)~ NG,(¢). (40)
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In the scaling regime&—o the two functionsG;(£) and  time limit [43—45. Unlike normal transport processes, trans-
G,(&) coincide, however, on the LHS of E(10) appears a port coefficients of anomalous processes can be shown to
prefactorr~® which does not exist in E¢39). depend on the way a system has been initially prepared. In
Why does the approximate solution, E§8) or Eq.(40), this work we have assumed that the CTRW process has
derived within the CTRW framework, deviate from scaling? started att=0. Hence we derived the Riemann-Liouville
The derivation in[6,23] follows two steps. First the operator with an integral whose lower limit is=0. One
asymptotic largef solution of Eq.(37), P,{r,t) is found could easily imagine other processes going on for a long
using the method of steepest descent. This methed de- period of time before starting the observatiortat0. In the
tails in Refs.[6,23]) gives the correct scaling result. Then a absence of a microscopic time scale such a process could
normalization condition is imposed on the asymptotic resultpossibly lead to a different type of fractional equation from
the one derived here.

Padr,t) Another assumption we have used is that the waiting time
P(r,t)= ' (41) density ¢(7) does not depend on the local fiek{x). In
Pasdr,t)dPr principal () could be site dependent due to the breaking of

spatial invariance. Our assumption means that the external

This second step leads to deviation from the scaling propertfi€ld is weak and its influence ow(7) is negligible. The

of the solution. Imposing a normalization condition on aninfluence of an external bias on anomalous subdiffusion has

asymptotic expression gives th&  term in Eq.(40) which ~ been investigated for chaotic deterministic diffusjas] and

does not exist in the exact FFPE solution E29). for charge carrier transport in disordered mddi@). In these
Finally we remind the reader of the asymptotionsin- ~models the dependence of the waiting time probability den-

gular in ;) behavior of the CTRW solution at the origin sity functiony(7) on the linear external field was calculated.

[6,23,24 A crossover from a power law behavior for short times to an
T exponential decay for long times has been found. The cross-
1/te? D=1, over time diverges as the field becomes weak. This transition
w has a rather strong influence on the dynamics which switches
P(r=01t)~{ In(/t* | D=2, (42) to a normal Gaussian behavior when the external field is
14 D=3. finite and for long times. Thus care must be taken when
assuming field dependent waiting times.
Comparing this solution with the FFPE modeling Eg3) As we mentioned, the CTRW solution, E¢B4) has a
we see that foD # 1 the behaviors of the Green functions at singular term which describes random walks for which a
the origin are not identical. particle did not leave the origin during the observation time
Such a singular term does not appear in the FFPE. Such a
V. DISCUSSION AND CONCLUSIONS term can be important when modeling anomalous type of

L brieflv di fh . fth diffusion especially foD =2,3. In contrast, for normal ran-
et us briefly |icuss Isomglp t e propertlr(]as of the FFPEq,m walks the diffusion approximation works very well after
Eq. (24). At t— thermal equilibrium is reached and then oy qnentially short times and then it is justified to neglect

V() the singular term.
lim P(x,t)=N exp{ — _} (43 To conclude, expansion of the CTRW in an external force
t—o kpT field leads to the familiar Fokker-Planck equation when the

_ o _ o mean waiting time is finite. When this time diverges we ob-
N being the normalization and(x) is the potential field. For tain a fractional non-Markovian Fokker-Planck equation.
a constant field=(x)=F the solution of the FFPE ink(u)

space is
ACKNOWLEDGMENTS
ua*l

_ Financial support from the German-Israeli Foundation
u*+ K k2—iK Fk/(kgT)

(GIF) is acknowledged. R.M. was supported by the Minerva
foundation and by the Alexander von Humboldt Stiftung,
The inverse Fourier-Laplace transform of this equation hagonn am Rhein, Germany. R.M. thanks Israela Becker for
been analyzed extensively within the biased CTRSl We  helpful comments. E.B. thanks Professor A. I. Saichev for
have recently showfi.8] that the FFPE is consistent with the his correspondence.
generalized Einstein relatiof89—41] (i.e., linear response
theory. The relaxation of modes of the FFPE follow a
Mittag-Leffler decay{42], with a power-law tail, which re-
places the ordinary exponential decay found in the linear The solution of the FFPE witlr(x)=0, for D=1 and
Fokker-Planck equatiofil). We have also found a solution K,=1 in (x,u) space is
for the harmonic oscillator and showed how to use tech-
niques[5] developed for solving the ordinary Fokker-Planck U2~ Lexp( — [x|u’?)
equation to solve the FFPE. P(x,u)=

From a physical point of view it has been shown that 2
some models exhibiting anomalous diffusiGncluding the
CTRW) are sensitive to initial conditions even in the long The inverse Laplace transform of E@\l) is

P(k,u) (44)

APPENDIX

(A1)
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(A2) Let us now show the relation between the solution Eq.
(A1), expansion Eq(A6), and the FFPE results obtained in
the literature in terms of Fox functions. The result obtained
by Schneider and Wyss in Rg®1], for one dimension

1 t t wherec=I'(1-a/2)/T(1— a).
P(X’t):; |X|1+2/a I“/2 |X|2/a ’

| ,2(2) is a one sided Ley stable density whose Laplace
transform follows

© 1,1
Iaxz(u)=f0 e Y4 (z)dz=exp —u?). (A3) 11 g | x|/ (1.9
Pixt)= alm WHLZ 22y (E,i),(li) (A8)
Fora=1 2« a

can be shown, by simple manipulations employing the prop-

(A4) erties of the Fox functiof32], to be equivalent to

2 1 1
|1/2(Z)=\/—; WGX T

and it can be checked th&(|x|,t) is Gaussian. Forx o a
R o |53

’

2ta/2 1 ]_ 1
(05)'(5'z>

. By using the duplication rule of the Gamma function, one
1 > (—1)ngn can show that Eq(A9) can be simplified to

P(x,t) =323 B[ |x|/(31) 2], (A5) POLD= Hi2 - (A9)

\V16mt®

where Ai(x) is the Airy function. Taylor expanding the ex-
ponential in Eq.(A1), and transformingi—t, we find

PO=""% & niTfi—amr 1z A®
a o
The expansion is valid for smadl. In Eq. (A6) terms with 1 Xl [|1-%, 5
. : : P(x,t)= W= 2°2 (A10)
a(n+1)/2 an integer should be omitted from the series. ' Jate 1Y tal2
Hence foré<1 the Green function, for<<1, decays ac- (0,
cording to
Relation(A10) can also be obtained by Laplace inversion of
P(x,t) xp( — c|x|/t72), (A7) Eqg. (Al). The theorem for the series expansion of the Fox

~=——— ¢
2T (1— al2)t*? function [32] then results in EQ(A6).
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