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We study the lowest-lying excitation of a classical ferromagn&fitspin chain, in the presence of a
symmetry breaking magnetic field. Extremizing the energy of this system leads to a two-dimensional nonlinear
map, whose allowed phase space shrinks with increasing field in a nontrivial manner. The orbits of the map
represent the set of extremum energy spin configurations. For each field, we compute the energy of the
members of this set and find the lowest energy among them, excluding the obvious ground state configuration
with all spins parallel along the field direction. This state turns out to be the unstable fixed point of the map.
We show that up to a certaifprimary) critical field, a separatrixlike 2 soliton configuration is the lowest-
energy excitation, with an energy very close to the ground state energy. For any field beyond this critical field,
the soliton disappears and lowest excitation is a librational configuration corresponding to the outermost orbit
in the phase plot at that field. Further, its energy is found to be much higher than the ground state energy,
leading to a sharp jump in the difference in energy between the former and the latter at this field. With further
increase in the field, sharp jumps in the excitation energy arise at certain secondary critical fields as well. We
show that these appear when the corresponding spin configurations become commensurate. This complex
behavior of the energy is interpreted and its effect on the magnetization and static susceptibility of the system
is also studied.

PACS numbds): 05.45-a

[. INTRODUCTION mentally tunable nonlinearity parameter in the map. Prelimi-
nary results presented there showed that the map can support

During the past three decades, a considerable amount spatially chaotic spin configurations. As we shall show, the
work has been carried out on the subject of discrete nonlinesgame map also arises in the case of the isotrodcspin
maps that exhibit deterministic chafl§. The possibility of ~ chain with a(symmetry breakingexternal magnetic fiel@
interpreting amorphicity in solids as arising due to spatiallyin the x direction. This is the model studied in this paper. Its
chaotic atomic configurations was considered some yearfd@miltonian is given by10,11]
ago[2] by identifying them with the trajectories of a chaotic
map such as the _Baker mgj. Such ideas have continued to H= _Jz (S8, +99, 1) —MBZ s~ 1)
attract the attention of several auth¢8. Needless to say, i i
such studies would be all the more interesting and amenable
to physical interpretation when the map concerned can bklere, in customary notatior, is a positive exchange con-
derivedfrom a microscopic physical model in a systematic stant for a ferromagnetic chain ap is the field energy. In
fashion. A well known example is the standard nidp This  this model, the spin vecto&§ are constrained to rotate in the
map can be obtained from the extremization condition on theXY plane. Since =% is a constant, we defines
energy of the Frenkel-Kontorova modgd] for a chain of =(S',S)=S(cos¢,sin¢;). The Hamiltonian in Eq(1) can
interacting atoms adsorbed on a substrate: Its trajectories repe then be written in units afS* as
resent the extremum energy configuratipisof the system.

In the field of magnetism, pioneering work carried out by
Thompsoret al.[7] showed that the planar states of the dis- H=- 2 [cos ¢i1— i) +T COSi], @
crete anisotropi€XY2 Heisenberg spin chain were time in-
dependent and could be spatially chaotic. It is clear that iRyhere
analogy with the amorphicity of atomic configurations in sol-
ids mentioned in the beginning, such chaotic states would r=uBlJS. ©)]
imply spin-glass-like configurations in the magnetic context.
Around the same time, the presence of order and chaos inEhus the dimensionless parametefs proportional to the
classicalXY spin chain was studied by Belobret al.[8] by  external magnetic field.
analyzing the equilibrium spin configurations of the system. The statistical mechanics of this classical system was
The above studies were in tlasenceof an external mag- studied many years add2]. Forr=0, the exact partition
netic field. TheXY anisotropy essentially played the role of function can be found. For finitg its high temperature be-
the nonlinearity parameter in the respective maps obtainedhavior can be found perturbatively, by using the transfer ma-
Subsequently, a map describing planar states of the isotroptox method[10]. More recently, certain nonlinear dynamical
Heisenberg spin chain in th@esenceof an external, planar properties of this system have also been studiied, with
magnetic field was derivef@]. The advantage of such a special reference to the connection with sine-Gordon soliton-
study is that the external field provides a convenient, experiike behavior for the excitations in the continuum version of
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the model. Furthermore, Monte Carlo and molecular dynamthe map derived in an earlier pagéi to describe the planar
ics calculations have suggestgB] similarities between the (S’=0) states of a Heisenberg chain in a magnetic field. It is
discrete XY Hamiltonian[Eq. (1)] and CsNik, a realistic  interesting to note that all planar states of CsNiRd theXY
ferromagnetic Heisenberg chain with a positieasy-plang  chain [given by the Hamiltonians in Eq4) and Eq.(1),
anisotropy energ¥, described by the Hamiltonian respectively are necessarily time independent and are deter-
mined by the same spin map. For the former case, this is
_ ) 72 _ X verified by considering the following dynamical equations
H JEi 3 S+1+D2i (S) MBzi s @ arising from Eq.(4): On usingdS /dt=[S ,H], where[ , ]

] denotes the Poisson bracket, we get
for certain parameter values.

_ T_he grognd state of th)éY_spin chain in a fielc[E_q. (1] dS/dt=—3(9_;+9, )+ IS+ )Y
is simple, i.e., it has all spins parallel to theaxis. The

ground state energy is (1+r). At this point it is pertinent -D(§/§/+9'S)),

to mention that the ground states of a classarited XYspin

chains given essentially by the HamiltoniarH d9/dt=3(S"_,+S,1)S—I(S_,+S,)S+BS,

=—3i[cos (. 1— P —a)+rcospg ], a being the canted-

ness parameter, aman integer, are more complicated and ds/dt=—-J(S",+S )Y+IS_,+9,,)S-BY.

their phase diagrams have been studied in the literffide

But the behavior of the IOW—Iying eXCitationS, i.e., Spin CoN-QOn Setting SZ:O in the above equationsy one obtains
figurations with energy closest to the ground state energy ha&s’(/dt:ds"/dt: dS/dt=0, showing that these states are
hot been considered so far. In_this paper, this i§ carried OurIiecessarin time independent. Furthermore, usi8j, %)

for Eq. (2), anuncantedspin chain which is a special case of _ S(cosd, ,sindy) together with Eq(6), it is readily seen that

the above Hamiltonian, witv=0 andp=1. As we shall —0 vi o
see, even for this system with a simple ground state, thgszldt 0 yields the map(7). (A similar argument holds
ood for theXY chain)

excitation energy displays a complex behavior as the parang- In the spin magEq. (7)], the nonlinearity parameter is

eterr (in this case, the magnetic figlés varied. . . g

! ) . . ... Thus for a fixed exchange interactidrthis parameter can be

Our procedure is as follows: We first find all the equilib- ) ™
. ) . o tuned by changing the magnetic fieRBl[see Eq.(3)]. The
rium configurations by extremizing the eneldyq. (1)] for a g o S .
. ) ) : . ap has the following physical interpretation: Given the spin
fixed field. We show that these configurations are described . ; . X .
orientation ¢y and ¢, of the first two sites, which are the

by the trajectories of a two-dimensional nonlinear map,. ... s ) . .

. . . initial conditions, the map generates spin orientations at the
which we call the spin map. We compute the energies of th?est of the sites. For some initial conditions and for nonzero
members of the set of configurations of this map. From . : e
among them, we then identify the excitation with energyvalues ofr, i.e., the magnetic fieldX;| becomes greater than
closest to the ground state for that field. This is repeated bgnlty after a finite number of iterations. Since this is unphysi-

varying the field. We then study the dependence of thi% al [see Eq.(6)], such initial conditions are not allowed in
e , he phase space. Whether a given initial condition is allowed

lowest-energy excitationlmeasured with respect to the or n%t turnspout to depend 3nas well as the number of

ground statg on the magnetic field. We show that sharp iterationsN

jumps in this energy occur at a primary critical field as well :

as at a hierarchy of several secondary critical magnetic ﬁeIdaiszﬂgsp:(?nireIifotﬁg?ézetgr: I)(;”t(r)]vgsé Iir:] ?neacs';rl];ngclgl'l V_VGI"n
at which the period of the spin configurations become com- P P Y y:

mensurate with the natural peridde., unity of the lattice. particular, the ground state is shown to be ttignamically

We interpret this result and analyze its physical implicationszﬂfrgzzlf;legsﬁﬁlsmoﬁf :Eg (r:r;]aa[:;i VeV?nng\;]Vat\?ig: séofrrtlﬁeof ;gie
on the behavior of the magnetization and the static suscept|—Ortraits with apolied field can %e understood b analpzin
bility of the spin chain, highlighting the effect of both spatial P pp y analyzing

chaos and field-induced transitions which are inherent in thi.l,he map using a continuum approximation. Intngunjglly, the
system. discrete and continuum phase portraits look very similar for

We bedin by extremizing the enerav of they Hamil- this system. In Sec. IV, the lowest-excitation energy, as well
tonian in g (2)yusin aH/ai:o This%gads to as the corresponding magnetization and the susceptibility for
9 9 e the lowest excitation are computed numerically as a function
Sin( i, 1— &;) —SiN(;— i _1) =T Sing; . (5)  of the magnetic field. Section V contains the summary of our
results and their physical interpretation.
Defining

: Il. THE SPIN MAP AND STABILITY OF FIXED POINTS
SIN( i1~ hi)=Xis1, (6)
) Before undertaking the numerical investigation of the spin
Egs.(5) and(6) can be written as map[Eq. (7)], let us understand some of its basic features
Xi1=Xi+rsing;, ¢ 1=[¢+sin* X;.,](mod 27-2)7) 2&?}'?;2'%5;%& very small the spin map reduces to the

Here, —1<X;<1 and 0<¢;<2. These equations repre- Xi+1=Xitrsing;,
sent a two-dimensional nonlinear map. We call this the spin (8
map. As mentioned in the beginning, this map is identical to i 1= P+ X1
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This is a well-studied map that exhibits chaos. It can also be
verified that for smallX;, Eq. (2) reduces to the Frenkel-
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[(Feaasns:

Kontorova Hamiltoniari5], on using Eq.(6). 05
The connection with a static sine-Gordon like configura- r

tion arises on writing EQ.(8) in the form ¢;.;—2d¢; <

+¢;_1=r sing;. Then, making the continuum approxima-

tion ¢;— ¢(&),di+1— P(£xa), (a being the nearest neigh-

bor distance in the lattigewe get

a’p=rsing 9

with the well-known soliton(antisoliton solution,

H(&)=4tan Yexp = \Jréla)]l.

The soliton solution interpolates between=0 and ¢p=27 :
asé— + oo, Thus under the above approximations, the sine- s |
Gordon soliton is present faall fields r>0. Furthermore,

there is no possibility of chaotic configurations in this con- -1
tinuum approximation. This is because the continuum equa-
tion[Eqg. (9)] has the same form as the equation of motion of

a simple pendulum, on using the transformatign- (¢ FIG. 1. Phase portrait of the spin map E#). () r=0.1; (b)
+ 1), when¢ is identified with time. This is a one degree of ' =0.25;(c) r=0.38.

freedom Hamiltonian system which is integrable by defini-
tion and hence cannot have chaotic solutions. As we shall
see, these features will not be present in the discrete spin
map [Eq. (7)], in the sense that, first, there is chaos and,

second, the soliton disappears for large enough fields. ) ) o ) _

The properties of the spin map are quite different fromAs is well known, a fixed point is stable |f.the corresponding
that of the standard map. First, it is important to note that th&/alue of| Tr(Ly)| <2 and unstable otherwise. For the ground
sin~! term, being multiple valued, gives rise to an ambiguity State fixed point|Tr(Ly)|=[2+r|. Hence the ground state
in the definition of the spin map. We remove this ambiguityiS @n unstable fixed point for all positive On the other
by restricting the map to a specific branch of the $ifunc- ~ hand, the fixed poink,=0,¢ = can be shown to be dy-
tion, — m/2<sin 1 X;<m/2. This is justified since in the Nhamically stable for aIIr<4. In thls_paper, we have pre-
present paper our study is restricted to the low energy regimgented results for<0.5, since spatial chaos is most pro-
and as is clear from the structure of the Hamiltonian systempounced for smalf.
the second branch corresponds to higher energy than the
branch selected for thevalues considered in this paper.

It should be noted that sinag=0 and¢=27 are iden-
tified, and— 1<X=<1, the spin map is defined on a cylinder
of finite height. Next, we consider the stability of the fixed
points of the spin map. Equatioit8) and (6) show that the
ground state of the model corresponds<ie= ¢, =0 for all |
and the energy per site for the ground state-{d+r). The ] i . ]
fixed points of the spin map are easily found to (X, (7], in contra_lst,_alth_ough the continuum version does miss
=0,¢,=0 (the ground stajeand (i) X,=0,¢,= 7. The “dy- all the ‘local’ intricacies of the trajectories, it turns out to be

namical” stability of the fixed points can be determined by useful in the sense that it is able to predict analytically the

oK

(10

I COS¢,
JI—(X,+rsing))?

Tr(Ly)=2+ (13)

Ill. SIMILARITIES BETWEEN THE DISCRETE AND
CONTINUUM PHASE PORTRAITS

Generically, if a discrete map has complicated chaotic
trajectories, studying its continuum version rarely gives any
useful information about it. The logistic map and the stan-
dard map are typical examplé&]. For the spin magEq.

finding the eigenvalues of the Jacobian matrjx given be-

low, at the fixed points:

1 I COS¢,
Ly= 1 I COS¢,

11
_ 2 (11)
V1-X2, VI-XF,,

primary critical field parameter, for which a global change

in the topology of the allowed spin configurations takes
place. In this section we discuss this intriguing feature of the
spin map.

First we present the numerical results for thie X) phase
portraits of the discrete map. Figurega)l 1(b), and Xc)
correspond to three differentvalues ¢ =0.1,0.25,0.38). For
a givenr, each phase trajectory represents an extremum en-

Since detL, =1, the map is area preserving. Eigenvalues ofergy spin configuration. For=0.1, three regions appear,

Ly are given by
12

1
7\1,225[1—"('—1\/0i VITr(Ly)]°—4],

where

with librational and rotational-type orbits, respectively.
These regions are segregated by separatrixlike sets of points.
Asr increases the separatrix moves towaXgds =1, respec-
tively, and simultaneously starts to break down into chaotic
orbits. The allowed phase space decreases with increase in
and so the phase space area covered by rotational orbits also
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decreases. In other words, some rotational orbits become 1/ =
nonallowed and the chaotic region also increases. With fur- A
ther increase im, more and more points in the chaotic re- °-5-_/_\
gime become forbidden, till at a critical value of=r,
=0.26, the main chaotic regime in the neighborhood of the x 0
hyperbolic fixed point disappears completely. Thus athe o5k @
ground state becomes disjoint from the rest of the allowed \_\//—
phase space. Asis increased beyond this, the chaotic re- ") V
gions in phase space diminish considerably. As the phase o o1 ¢lam o8 1
plot shrinks further, there appears a floating-island structure 4
in the outermost region of the phase fls¢e Fig. {c)]. The / \
region around this island chain is nonallowed and this struc- 0.51.
ture is disjoint from the rest of the allowed phase spfldéée
remark that in Fig. (c), the two curves just below the float- ® @
ing island chain are actually full curves but look broken, 0.5k
since we have not plotted all 5000 iterations for those initial \ A
conditions] As already stressed, these features of the spin -1 . L
map are quite different from the standard map where the o o2 glahy 0¥ 1
chaotic region keeps increasing with increase in the pertur- 1
bation parameter and the full phase space is allowed for all
values of the perturbation parameter. Further, such disjoint 0:5r
structures do not appear in the standard map.
Next we consider the following continuum equations de- =0
rived analytically from Eq(7): o5l
©
((jj_? =gin~ ! X, 1.0 oL $/am o5 1
dx (14) FIG. 2. Phase trajectories for the continuum verdigg. (14)]
d_§:r sin¢. of Eq. (7). (@ r=0.1; (b) r=0.25;(c) r=0.38.

. . in the continuum, with Fig. 1, the numerically found trajec-
(These would, of course, reduce to the sine-Gordon equatlotﬁ(;ries for the spin mapEq. (7)], for the above values af

[Eg. (9)] on using the approximation sihX=X). Equations N )
(14) represents an integrable system of two coupled ordinar ]though there are nontrivial differences between Fig. 1 and

differential equations, with the following constant of motion . |g._2, for example, there can be no chaos or ro_atmg islands
= in Fig. 2, nevertheless, a comparison of these figures shows

that the overall shape and extent of the librational regions are

E=Xsin X+ VI—X2+r cos¢. 15 ~ Very similar. o
! ¢ (19 The physical message of the results of this section is as

The separatrix corresponds do=X=0, giving Eq=(1+r). follows: For theXY spin chain with a field in the direction,

SettingE=E, yields the following equation for the separa- whose planar spin configurations are the orbits of the spin
trix of Eq. (14): map[Eg. (7)], there exists a primary critical magnetic field

B.=r.JS/u [see Eq.3)] beyond which the spin configu-
X< sin L X+ \/1——X§=1+2r SirPpy/2. (16) rations spanning the full range of angles frap=0 to ¢
=2 (i.e., 2 soliton configurationsbecome forbidden. We
The subscrips stands for the separatrix. It can be checkedh@ve also shown an intriguing result that by merely analyz-
that the extremum value oKX= X4, COIresponds top, ing t_he continuum version of the_s_,pln map, we are able to get
— 7. It is also easy to see th¥i,,, increases with increase @ fairly accurate value of this critical field.
in r. To find the value of =r. beyond which the separatrix
becomes forbidden, we s¥t,,,=1 and¢s= 7 in the sepa-
ratrix equation. This gives.= 3 (7/2— 1)=0.285, which is
quite close to our numerical result=0.26 discussed in the
beginning of this section. As already stated, the ground state energy per site of the
The phase trajectories of the continuum equafiigq.  system is easily found to be (1+r) analytically. We would
(14)] are given by expression E¢L5) for E. Using this ex- like to compute the energy of the lowest excited state, i.e. the
pression, the trajectories corresponding to different values afonfiguration with energy closest to the ground state energy.
E are plotted in Figs. @), 2(b), and Zc), for r=0.1, To find this numerically we systematically scan the full al-
r=0.25, andr =0.38, respectively(Note that the outermost lowed phase space for each figldBut before stating those
curves in these figures are actually not allowed, since theiresults, it turns out to be instructive to also find tbeation
missing parts would lie in the forbidden regipiit is inter-  in phase space, of the trajectory corresponding to the lowest-
esting to compare Fig. 2, the analytically found trajectoriesenergy excitation. As we shall see, this will help us interpret

IV. FIELD DEPENDENCE OF EXCITATION ENERGY,
MAGNETIZATION, AND SUSCEPTIBILITY
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FIG. 3. Energy per sitén units of JS? versus initial conditions FIG. 4. Lowest-excitation energy per sitmeasured with re-

X on the symmetry linep=. (a) r=0.15; (b) r=0.25; (c) r spect to the ground-state energy per site, in unitd®) versusr.
=0.35; (d) r=0.45.
lations. It was found that the dynamical soliton disappears

our results. The following method suggested by Grddi®%  aroundr =0.3. This disappearance could not be understood
proves to be useful for doing this. For a large class of mapin terms of the sine-Gordon approximatiptid]. In contrast,
it can be shown that there exist certain symmetry curves othis phenomenon can now be understood using the spin map
which periodic orbits will lie generically. For the spin map which is more appropriate for the system. As we have seen,
these curves aré=0, ¢=, and X=sin2¢, as shown in the steady-state soliton indeed disappeans=ad.26, which
the Appendix. We select initial conditions on a symmetryis quite close to the simulation estimate.
curve(e.g.,¢o= 7 would cover both rotational and librational As mentioned in the beginning of this section, we now
orbits for allr) and iterate the map to find the correspondingcompute the energy more accurately, by scanning the full
spin configuration. For a given we then calculate the en- phase space for each We then plot the energy of the
ergy per site of each configuration by using E2). lowest-lying excitation(as measured from the ground sjate

Figure 3 reveals the following interesting behavior. Onas a function of the applied field This is given in Fig. 4.
the x axis, we have the values of the different initilse- N=5000 as before. Here, excitation energy is measured with
lected on the symmetry curwg= 7 in the phase space. En- respect to the ground state energyl+r). Note that jumps
ergy per site of the spin configurations corresponding to eachn the energy appear at certain critical valuesrofThe
of these initial conditions is plotted on theaxis. Four dif- mechanism of these jumps is as follows. Forralhlues less
ferent values ofr (0.15, 0.25, 0.35, and O.4%have been than the primary critical field., the value of the excitation
chosen. For smaller values, i.e., 0.15 and 0.25, there is aenergy is very close to the ground state energy. This is be-
steep increase in the energy of the rotational and librationatause although chaos sets in even for smathe orbit cor-
configurations close to, but on either side of, the separatrix asesponding to the lowest excitation continues to start and end
can be verified by comparing with the phase portraits in Figin the region in the vicinity of the unstable fixed point
1. In other words, there are cusps in the energy values at thground state However, forr=r. the chaotic orbit sur-
separatrix. The separatrix corresponds to the lowest-energpunding the ground state becomes nonallowed and the loca-
configuration. The distance between the two cusps thus irtion of the lowest-excitation orbit jumpsn phase spageo
creases withr for r<r., as can be seen in Fig. 3. However, the outermost region of a central area. This leads to a sharp
the separatrix would first break and finally disappear aincrease in the energy of the lowest excitatiom at Asr is
aroundr=r.=0.26 as seen in the previous section. Correfurther increased, chaos gets reduced considerably. At a cer-
spondingly, the cusps also first flatten, with a lot of fluctua-tain stage, the outermost region contains “floating islands,”
tions especially near 0.2&lue to increased chaoand then  which appears disjoint from the rest of the allowed phase
disappear fully beyond.. For the larger values(0.35 and  space. With further gradual increaserirthe outer orbits of
0.45 Fig. 3 shows that there are no cusps, and the spithe islands start becoming nonallowed and at some point the
configuration corresponding to the outermost trajectory ofowest-excitation orbit becomes a commensurate configura-
the allowed phase space has the lowest energy. tion, where only the centers of the islands survive. This orbit

Interestingly the steady state behavior seems to influencappears disjoint from the rest of the allowed phase space.
the dynamical behavior of the system in a simple manner adust a little increase in beyond this value makes this com-
can be seen from an earlier wark3]. There, the dynamics mensurate orbit nonallowed and thus its location once again
of the spin system has been studied using Monte Carlo simuias to make a jump in phase space to the outermost orbit of
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FIG. 5. Transition from a commensurate configuration associ-
ated with the energy jump at=0.38 in Fig. 4:(a) r=0.38;(b) r
=0.381;(c) r=0.3817;(d) r=0.382.

FIG. 6. MagnetizatioS,) (in arbitrary unit$ versusr.

this system. Fluctuations are also present at all the secondary
the (nexd outermost island chain. This in turn causes a cor{ields when the spin configurations become commensurate,
responding jump in the energy, and so on. as described earlier.

To understand this more clearly, we show in Fig. 5, the
change in the phase-space structure corresponding to one
such jump in energy found near=0.38 in Fig. 4. Only a
part of the phase space is shown to give a clearer picture. At
r=0.381 there exists an island chdiRig. 5a)] which is In this paper we have studied the change in the behavior
disjoint from the central island and which contains the lowesbf the spin configuration with energy closest to the ground
excitation configuration. With increase in [r=0.381, state, for theXY spin chain as the applied external field along
r=0.3817 in Figs. &) and Fc)], the island area decreases the x direction is varied. Physically, these configurations
gradually till only the island center survives. Just beyondwould be the relevant ones at sufficiently low temperatures.
this, atr =0.382[Fig. 5(d)] the island chain itself becomes The results of such a study are amenable to experimental
nonallowed, and disappears, causing a jump is the position oferification, since the magnetic field which essentially plays
the lowest excitation configuration from the disjoint island the role of the nonlinearity parameter, can be tuned easily.
chain towards the central island. This in turn causes the jump
in energy at thig value. This behavior keeps repeating. Thus L
energy increases sharply at all those secondary critical- g
ues, when the lowest excitation becomegdajoint) com-
mensurate configuration. The jump in the energy is a mea-
sure of the magnitude of the jump of the corresponding
commensurate orbit in phase space at that critical field.

The physical manifestation of the above jumps that appeal
at and beyonda . is best understood by computing the aver-
age magnetizatiofS,) = 1/NX; cos¢; for the lowest-energy
configurations. The plot ofS,) as a function of is given in
Fig. 6. The magnetization takes on a constant maximal value
(corresponding to that of the ground spafer all r<r.

There is a sudden drop in the magnetization at the primary 1% b
critical field r=r.=0.26 which also signals the disappear- I
ance of maximal chaos. There appear secondary minima ir
the magnetization at all the secondary critical fields where
the energy jumps occurred. -200 |- 7

In Fig. 7, the static susceptibility=d(S,)/dr is plotted | |
as a function of. y is negligible for allr <r, but starts to S S S S SR
fluctuate at the primary critical field. Thus the onset of fluc- 0.1 02 03 0.4 05
tuations iny can be regarded as the signature of the disap-
pearance of the maximal spatial chaos in the phase space in

V. SUMMARY AND PHYSICAL INTERPRETATION
OF RESULTS

100 - b

bility

Suscepti

FIG. 7. Static susceptibility (in arbitrary unit$ versusr.
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We have also investigated the effect on certain magnetiassociated with a discontinuous change in the location of the
properties of the system. In particular, we have studied théowest excitation orbit in the phase plot. The mechanism of
susceptibility by retaining the underlying discreteness of thesuch a jump in the energy near0.38 in Fig. 4 can be
magnetic chain. We predict that there should be large flucelearly understood from Fig. 5. Physically, this implies that
tuations in the measured susceptibility at certain primary anthe character of the lowest-energy spin configuration changes
successive secondary fields, arising due to the specific nobruptly from a periodic configuration at these critical fields.
linear effects inherent in this system. These phenomena in turn result in a hierarchy of jumps
Our results are summarized as follows: As is obvious, for(gaps in the graph of the excitation energy as a function of
any field, the ground state of the system has all the spinthe field.
parallel to thex direction i.e.,¢»;=0(27). We have shown We wish to emphasize that although systems where the
that the extremal energy spin configurations for any field willallowed phase space shrinks with a nonlinear parameter have
be given by the spin mapEqg. (7)]. Since this is a two- been considered in the literatu(Befs.[8], [[9], and[14]),
dimensional map, given the initial spin orientations at thethe nontrivial change in the phase-space topology as it
first two sites, the spin orientations at all the other sites caishrinks has not been reported earlier. Further we have shown
be found by iterating this map. This is first carried out for ahere for the first time that there is a direct correlation be-
fixed magnetic field, and we find the energy as well as théween the changes in phase-space topology and jumps in the
nature of the spin configuration that corresponds to thexcitation energy that appear at certain special fields.
lowest-energy excitation above the ground state. This is then This complex behavior of the energy gives rise to a mag-
repeated for different magnetic fields. For very low fields, tonetization versus field plofFig. 6) which suggests a field-
a good approximation, the lowest-energy excitation is anduced transition at the primary critical field . Further,
2m-soliton spin configuration on the lattice, where the spinthere are sharp minima in the magnetization at all the sec-
orientation along the chain ranges frotn=0 to 27 in a  ondary critical fields. This in turn leads to the onset of fluc-
regular fashion. As the field is increased, this excitation betuations in the static susceptibiligyprecisely ar . as seen in
comes a spatially chaotic orbit. Physically, this means thaFig. 7, and can be regarded as an experimentally observable
the soliton starts to get destabilized in the sense that whilsignal for the disappearance of maximal spatial chaos in the
the spin configuration spans the full range of orientationsspin orientations. There are fluctuationsynat all the sec-
from 0 to 2w, after a distance down the lattice, the succes-ondary critical fields as well.
sive spins point in a seemingly random fashion due to spatial We parenthetically remark that the sine-Gordon approxi-
chaos. Due to sensitivity to initial conditions, there are fluc-mation fails to describe the full nature of tie/ spin chain.
tuations in the energy, making it difficult to compute it in the This is because this approximation not only misses the time
chaotic regime. evolution of the inherent chaotic spatial configurations, but
With increase of the field, the chaotic region increasesnore importantly, italso misses the change in topology of
steadily till there is maximal chaos in the phase plot. Justhe phase ploti.e., the disappearance of the solitaat a
beyond this, at a critical field, the ground state gets isolatedertain critical fieldr .=0.26, which is inherent in the exact
from the orbit and chaos subsides considerably. The physicapin map. Recall that in contrast, for the sine-Gordon ap-
interpretation of this is that at thiprimary) critical field, the  proximation of the map, the soliton persists for all fields.
lowest energy excitation spanning the full range 0 to8 2 Now, simulations of the dynamics of a spin chain show the
becomes forbidden, essentially because for the correspondisappearance of the soliton around0.3. As mentioned in
ing initial orientations, the iteration of the map leads to aexisting literature(Refs. [11] and [13]) this phenomenon
complex angle of orientation at some successive site on theould not be understood using the sine-Gordon picture. From
lattice. Further with this change of topology the lowest-our present results this can be understood: We see that such
energy excitation in the phase plot makes a finite jump to the disappearance should indeed occur, since the correct de-
outermost region of théby now somewhat shrunlallowed  scription of the spin configurations of the chain is given by
phase space. This region is composed of an elliptic chain dhe spin map which in fact predicts this phenomenon. We
islands. This jump is shown to lead to a steep increase in thieave also shown that our estimate fgr which corresponds
excitation energy at this critical field. As the field is in- to the disappearance of the steady-state soliton is quite close
creased further, the outer orbits of the islands start becomintp the field value for disappearance of a dynamical soliton,
forbidden due to the same reasons as given above. At a cehie computation of which is usually much more involved.
tain field, the excitation becomes a commensufpéziodio Soliton excitations in magnetic chains with different sym-
configuration, which is seen to be disjoint from the rest ofmetries have been extensively studigdd], both theoreti-
the allowed phase space. Hence with a very slight increase aflly and experimentally. In contrast, the possible physical
field, at a secondary critical field, this commensurate orbitmanifestations of spatially chaotic spin configurations that
also becomes forbidden, and thus once again there is a finigge inherent in many magnetic chains have not received
jump in the location of the excitation orbit to the outermostmuch attention. Although, to our knowledge, 2Y spin
region of the allowed phase space. This in turn leads to ahain has not been fabricated so far, this model and a realis-
sharp increase in the excitation energy, at this secondaryc easy-plane ferromagnetic chain such as CgMéve been
field as well. This(secondarybehavior keeps repeating, giv- shown to possess identical behavior in the presence of a
ing way to a hierarchy of transitions between commensurateymmetry breaking field for some parameter values by ear-
spin configurations to noncommensurate ones at correspontler workers[11]. This connection is further substantiated by
ing critical field values. Each transition which causes theour results in Sec. IV where we have pointed out that the
sharp increase in the excitation energy as seen in Fig. 4, itical magnetic field at which a soliton disappears inxhe
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spin map is very close to that at which a soliton disappears in dis1=di+T(Xi11).
Monte Carlo work[13].

Our theoretical results should motivate the fabrication of} ot 5 symbolically denote this map by
an XY spin chain, and we also suggest the following experi-
ments and further theoretical work on this system: First, by X. X.
using neutron scattering techniques at low temperatures and T( ') :( '+1)_
low fields, the static structure fact§&(k) should be found at b Div1
a fixed field. Since théisothermal susceptibility is directly
related to this factof16], the experiment should be repeated Provided f; is an odd function of¢, i.e., fi(—¢;)=
for different finely tuned fields. One must then look for criti- —f1(¢;), one can decomposeinto the following two com-
cal fields at which fluctuations in the susceptibility occur, ponentsT=T,T; so thatT=T5=1 (I denotes the identity
and compare with Fig. 7. It would also be worthwhile to transformation, as follows:
investigate whether similar results would appear in CgNiF

(A1)

using experimental techniques that effectively probe only the X X+ ()
planar states of this system, for which there is a close con- 1( ) = ) (A2)
nection to the physics of th&Y chain, as we have shown in ¢ —¢
Sec. |.
Second, the following extension of our theoretical study X X
would give further insight into this nonlinear system that 2 o) T\ 00— (A3)

supports both order and chaos. Since there is an inherent
self-similarity in the spin magsee Ref[7]), it would be of
interest to use renormalization group techniques, and inves- It was shown by Greenfd5] that when such a decompo-

. o . . sition is possible, generically all the rational periodic orbits
tigate the possibility of predicting analytically, the SUCCES- 't~ ve points on the fixed point curves B andT,. Thus
sive critical fields at which the fluctuations in the suscepti- P point and fa. 1AUS .
bility occur. to compare the energy of two different rational orbits, in-

Third, the nature of the analogous low-energy configura—Stead of scanning the whole phase plane, one is required to

tions for acanted XYspin chain are also worth investigating, scan only the symmetry curves defined by fixed points of

as a function of both the field and the cantedness parameteq‘ngTKZFOtrhthe spin Tap Ed7), compe_lring ‘k’)VitTthfs(ﬁl).
Finally, although chaos subsides for high fields for the2" (A2), the symmetry curves are given by the following

system studied, it is worth studying if other observable ef—ﬁxed points ofT, andT,, i.e.,

fects such as the changes in thanmetryof the low-energy )
spin configurations can take place at such fields. Extension ¢=—¢, fi(p)=rsing=0, X=0,
of this work to anisotropic spin chains is underway.
fo(X)=sin"t X=24¢.
APPENDIX

Consider a class of area-preserving maps defined by These yield the curves

Xi+1=Xi+11( i), ¢=0, ¢=m, X=0, X=sin2¢.
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