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Field-induced transitions and spatial chaos in the classicalXY spin chain
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~Received 19 August 1998; revised manuscript received 14 October 1999!

We study the lowest-lying excitation of a classical ferromagneticXY spin chain, in the presence of a
symmetry breaking magnetic field. Extremizing the energy of this system leads to a two-dimensional nonlinear
map, whose allowed phase space shrinks with increasing field in a nontrivial manner. The orbits of the map
represent the set of extremum energy spin configurations. For each field, we compute the energy of the
members of this set and find the lowest energy among them, excluding the obvious ground state configuration
with all spins parallel along the field direction. This state turns out to be the unstable fixed point of the map.
We show that up to a certain~primary! critical field, a separatrixlike 2p soliton configuration is the lowest-
energy excitation, with an energy very close to the ground state energy. For any field beyond this critical field,
the soliton disappears and lowest excitation is a librational configuration corresponding to the outermost orbit
in the phase plot at that field. Further, its energy is found to be much higher than the ground state energy,
leading to a sharp jump in the difference in energy between the former and the latter at this field. With further
increase in the field, sharp jumps in the excitation energy arise at certain secondary critical fields as well. We
show that these appear when the corresponding spin configurations become commensurate. This complex
behavior of the energy is interpreted and its effect on the magnetization and static susceptibility of the system
is also studied.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

During the past three decades, a considerable amou
work has been carried out on the subject of discrete nonlin
maps that exhibit deterministic chaos@1#. The possibility of
interpreting amorphicity in solids as arising due to spatia
chaotic atomic configurations was considered some y
ago@2# by identifying them with the trajectories of a chaot
map such as the Baker map@1#. Such ideas have continued
attract the attention of several authors@3#. Needless to say
such studies would be all the more interesting and amen
to physical interpretation when the map concerned can
derived from a microscopic physical model in a systema
fashion. A well known example is the standard map@4#. This
map can be obtained from the extremization condition on
energy of the Frenkel-Kontorova model@5# for a chain of
interacting atoms adsorbed on a substrate: Its trajectories
resent the extremum energy configurations@6# of the system.

In the field of magnetism, pioneering work carried out
Thompsonet al. @7# showed that the planar states of the d
crete anisotropic~XYZ! Heisenberg spin chain were time in
dependent and could be spatially chaotic. It is clear tha
analogy with the amorphicity of atomic configurations in s
ids mentioned in the beginning, such chaotic states wo
imply spin-glass-like configurations in the magnetic conte
Around the same time, the presence of order and chaos
classicalXYspin chain was studied by Belobrovet al. @8# by
analyzing the equilibrium spin configurations of the syste
The above studies were in theabsenceof an external mag-
netic field. TheXY anisotropy essentially played the role
the nonlinearity parameter in the respective maps obtain
Subsequently, a map describing planar states of the isotr
Heisenberg spin chain in thepresenceof an external, planar
magnetic field was derived@9#. The advantage of such
study is that the external field provides a convenient, exp
PRE 611063-651X/2000/61~2!/1312~8!/$15.00
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mentally tunable nonlinearity parameter in the map. Prelim
nary results presented there showed that the map can su
spatially chaotic spin configurations. As we shall show,
same map also arises in the case of the isotropicXY spin
chain with a~symmetry breaking! external magnetic fieldB
in thex direction. This is the model studied in this paper.
Hamiltonian is given by@10,11#

H52J(
i

~Si
xSi 11

x 1Si
ySi 11

y !2mB(
i

Si
x . ~1!

Here, in customary notation,J is a positive exchange con
stant for a ferromagnetic chain andmB is the field energy. In
this model, the spin vectorsSi are constrained to rotate in th
XY plane. Since Si

25S2 is a constant, we defineSi

5(Si
x ,Si

y)5S(cosfi ,sinfi). The Hamiltonian in Eq.~1! can
be then be written in units ofJS2 as

H52(
i

@cos~f i 112f i !1r cosf i #, ~2!

where

r 5mB/JS2. ~3!

Thus the dimensionless parameterr is proportional to the
external magnetic fieldB.

The statistical mechanics of this classical system w
studied many years ago@12#. For r 50, the exact partition
function can be found. For finiter, its high temperature be
havior can be found perturbatively, by using the transfer m
trix method@10#. More recently, certain nonlinear dynamic
properties of this system have also been studied@11#, with
special reference to the connection with sine-Gordon solit
like behavior for the excitations in the continuum version
1312 ©2000 The American Physical Society
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PRE 61 1313FIELD-INDUCED TRANSITIONS AND SPATIAL CHAOS . . .
the model. Furthermore, Monte Carlo and molecular dyna
ics calculations have suggested@13# similarities between the
discreteXY Hamiltonian @Eq. ~1!# and CsNiF3, a realistic
ferromagnetic Heisenberg chain with a positive~easy-plane!
anisotropy energyD, described by the Hamiltonian

H52J(
i

Si•Si 111D(
i

~Si
z!22mB(

i
Si

x , ~4!

for certain parameter values.
The ground state of theXY spin chain in a field@Eq. ~1!#

is simple, i.e., it has all spins parallel to thex axis. The
ground state energy is2(11r ). At this point it is pertinent
to mention that the ground states of a class ofcanted XYspin
chains given essentially by the HamiltonianH
52( i@cos (fi112fi2a)1r cospfi#, a being the canted-
ness parameter, andp an integer, are more complicated an
their phase diagrams have been studied in the literature@14#.
But the behavior of the low-lying excitations, i.e., spin co
figurations with energy closest to the ground state energy
not been considered so far. In this paper, this is carried
for Eq. ~2!, anuncantedspin chain which is a special case
the above Hamiltonian, witha50 and p51. As we shall
see, even for this system with a simple ground state,
excitation energy displays a complex behavior as the par
eter r ~in this case, the magnetic field! is varied.

Our procedure is as follows: We first find all the equili
rium configurations by extremizing the energy@Eq. ~1!# for a
fixed field. We show that these configurations are descri
by the trajectories of a two-dimensional nonlinear ma
which we call the spin map. We compute the energies of
members of the set of configurations of this map. Fr
among them, we then identify the excitation with ener
closest to the ground state for that field. This is repeated
varying the field. We then study the dependence of t
lowest-energy excitation~measured with respect to th
ground state! on the magnetic field. We show that sha
jumps in this energy occur at a primary critical field as w
as at a hierarchy of several secondary critical magnetic fi
at which the period of the spin configurations become co
mensurate with the natural period~i.e., unity! of the lattice.
We interpret this result and analyze its physical implicatio
on the behavior of the magnetization and the static susce
bility of the spin chain, highlighting the effect of both spati
chaos and field-induced transitions which are inherent in
system.

We begin by extremizing the energy of theXY Hamil-
tonian in Eq.~2! using]H/]f i50. This leads to

sin~f i 112f i !2sin~f i2f i 21!5r sinf i . ~5!

Defining

sin~f i 112f i !5Xi 11 , ~6!

Eqs.~5! and ~6! can be written as

Xi 115Xi1r sinf i , f i 115@f i1sin21 Xi 11#~mod 2p!.
~7!

Here, 21<Xi<1 and 0<f i<2p. These equations repre
sent a two-dimensional nonlinear map. We call this the s
map. As mentioned in the beginning, this map is identica
-
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the map derived in an earlier paper@9# to describe the plana
(Si

z50) states of a Heisenberg chain in a magnetic field. I
interesting to note that all planar states of CsNiF3 and theXY
chain @given by the Hamiltonians in Eq.~4! and Eq. ~1!,
respectively# are necessarily time independent and are de
mined by the same spin map. For the former case, thi
verified by considering the following dynamical equatio
arising from Eq.~4!: On usingdSi /dt5@Si ,H#, where@ , #
denotes the Poisson bracket, we get

dSi
x/dt52J~Si 21

y 1Si 11
y !Si

z1J~Si 21
z 1Si 11

z !Si
y

2D~Si
zSi

y1Si
ySi

z!,

dSi
y/dt5J~Si 21

x 1Si 11
x !Si

z2J~Si 21
z 1Si 11

z !Si
x1BSi

z,

dSi
z/dt52J~Si 21

x 1Si 11
x !Si

y1J~Si 21
y 1Si 11

y !Si
x2BSi

y .

On setting Si
z50 in the above equations, one obtai

dSi
x/dt5dSi

y/dt5dSi
z/dt50, showing that these states a

necessarily time independent. Furthermore, using (Si
x ,Si

y)
5S(cosfi ,sinfi) together with Eq.~6!, it is readily seen that
dSi

z/dt50 yields the map~7!. ~A similar argument holds
good for theXY chain.!

In the spin map@Eq. ~7!#, the nonlinearity parameter isr.
Thus for a fixed exchange interactionJ this parameter can be
tuned by changing the magnetic fieldB @see Eq.~3!#. The
map has the following physical interpretation: Given the s
orientationf0 and f1 of the first two sites, which are the
initial conditions, the map generates spin orientations at
rest of the sites. For some initial conditions and for nonz
values ofr, i.e., the magnetic field,uXi u becomes greater tha
unity after a finite number of iterations. Since this is unphy
cal @see Eq.~6!#, such initial conditions are not allowed i
the phase space. Whether a given initial condition is allow
or not turns out to depend onr as well as the number o
iterationsN.

The paper is organized as follows: In Secs. II and III, w
discuss some of the features of the spin map analytically
particular, the ground state is shown to be the~dynamically!
unstablefixed point of the map. We show that some of th
numerical results on the change in behavior of the ph
portraits with applied field can be understood by analyz
the map using a continuum approximation. Intriguingly, t
discrete and continuum phase portraits look very similar
this system. In Sec. IV, the lowest-excitation energy, as w
as the corresponding magnetization and the susceptibility
the lowest excitation are computed numerically as a funct
of the magnetic field. Section V contains the summary of o
results and their physical interpretation.

II. THE SPIN MAP AND STABILITY OF FIXED POINTS

Before undertaking the numerical investigation of the s
map @Eq. ~7!#, let us understand some of its basic featu
analytically. ForXi very small the spin map reduces to th
standard map@2#:

Xi 115Xi1r sinf i ,
~8!

f i 115f i1Xi 11 .
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1314 PRE 61RADHA BALAKRISHNAN AND MITAXI MEHTA
This is a well-studied map that exhibits chaos. It can also
verified that for smallXi , Eq. ~2! reduces to the Frenkel
Kontorova Hamiltonian@5#, on using Eq.~6!.

The connection with a static sine-Gordon like configu
tion arises on writing Eq.~8! in the form f i 1122f i
1f i 215r sinfi . Then, making the continuum approxim
tion f i→f(j),f i 61→f(j6a), (a being the nearest neigh
bor distance in the lattice!, we get

a2fjj5r sinf ~9!

with the well-known soliton~antisoliton! solution,

f~j!54 tan21@exp~6Ar j/a!#. ~10!

The soliton solution interpolates betweenf50 andf52p
asj→7`. Thus under the above approximations, the si
Gordon soliton is present forall fields r .0. Furthermore,
there is no possibility of chaotic configurations in this co
tinuum approximation. This is because the continuum eq
tion @Eq. ~9!# has the same form as the equation of motion
a simple pendulum, on using the transformationf→(f
1p), whenj is identified with time. This is a one degree
freedom Hamiltonian system which is integrable by defi
tion and hence cannot have chaotic solutions. As we s
see, these features will not be present in the discrete
map @Eq. ~7!#, in the sense that, first, there is chaos a
second, the soliton disappears for large enough fields.

The properties of the spin map are quite different fro
that of the standard map. First, it is important to note that
sin21 term, being multiple valued, gives rise to an ambigu
in the definition of the spin map. We remove this ambigu
by restricting the map to a specific branch of the sin21 func-
tion, 2p/2<sin21 Xi<p/2. This is justified since in the
present paper our study is restricted to the low energy reg
and as is clear from the structure of the Hamiltonian syst
the second branch corresponds to higher energy than
branch selected for ther values considered in this paper.

It should be noted that sincef50 andf52p are iden-
tified, and21<X<1, the spin map is defined on a cylind
of finite height. Next, we consider the stability of the fixe
points of the spin map. Equations~2! and ~6! show that the
ground state of the model corresponds toXl5f l50 for all l
and the energy per site for the ground state is2(11r ). The
fixed points of the spin map are easily found to be~i! Xl
50,f l50 ~the ground state! and~ii ! Xl50,f l5p. The ‘‘dy-
namical’’ stability of the fixed points can be determined
finding the eigenvalues of the Jacobian matrixLM given be-
low, at the fixed points:

LM5S 1 r cosf l

1

A12Xl 11
2

11
r cosf l

A12Xl 11
2
D . ~11!

Since detLM51, the map is area preserving. Eigenvalues
LM are given by

l1,25
1

2
@Tr~LM !6A@Tr~LM !#224#, ~12!

where
e

-

-

-
a-
f

-
ll
in
,

e

e
,

he

f

Tr~LM !521
r cosf l

A12~Xl1r sinf l !
2

. ~13!

As is well known, a fixed point is stable if the correspondi
value ofuTr(LM)u,2 and unstable otherwise. For the grou
state fixed point,uTr(LM)u5u21r u. Hence the ground stat
is an unstable fixed point for all positiver. On the other
hand, the fixed pointXl50,f l5p can be shown to be dy
namically stable for allr ,4. In this paper, we have pre
sented results forr ,0.5, since spatial chaos is most pr
nounced for smallr.

III. SIMILARITIES BETWEEN THE DISCRETE AND
CONTINUUM PHASE PORTRAITS

Generically, if a discrete map has complicated chao
trajectories, studying its continuum version rarely gives a
useful information about it. The logistic map and the sta
dard map are typical examples@1#. For the spin map@Eq.
~7!#, in contrast, although the continuum version does m
all the ‘local’ intricacies of the trajectories, it turns out to b
useful in the sense that it is able to predict analytically
primary critical field parameterr c for which a global change
in the topology of the allowed spin configurations take
place. In this section we discuss this intriguing feature of
spin map.

First we present the numerical results for the (f,X) phase
portraits of the discrete map. Figures 1~a!, 1~b!, and 1~c!
correspond to three differentr values (r 50.1,0.25,0.38). For
a givenr, each phase trajectory represents an extremum
ergy spin configuration. Forr 50.1, three regions appea
with librational and rotational-type orbits, respectivel
These regions are segregated by separatrixlike sets of po
As r increases the separatrix moves towardsXi561, respec-
tively, and simultaneously starts to break down into chao
orbits. The allowed phase space decreases with increaser
and so the phase space area covered by rotational orbits

FIG. 1. Phase portrait of the spin map Eq.~7!. ~a! r 50.1; ~b!
r 50.25; ~c! r 50.38.
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PRE 61 1315FIELD-INDUCED TRANSITIONS AND SPATIAL CHAOS . . .
decreases. In other words, some rotational orbits bec
nonallowed and the chaotic region also increases. With
ther increase inr, more and more points in the chaotic r
gime become forbidden, till at a critical value ofr 5r c
.0.26, the main chaotic regime in the neighborhood of
hyperbolic fixed point disappears completely. Thus atr c the
ground state becomes disjoint from the rest of the allow
phase space. Asr is increased beyond this, the chaotic r
gions in phase space diminish considerably. As the ph
plot shrinks further, there appears a floating-island struc
in the outermost region of the phase plot@see Fig. 1~c!#. The
region around this island chain is nonallowed and this str
ture is disjoint from the rest of the allowed phase space.@We
remark that in Fig. 1~c!, the two curves just below the floa
ing island chain are actually full curves but look broke
since we have not plotted all 5000 iterations for those ini
conditions.# As already stressed, these features of the s
map are quite different from the standard map where
chaotic region keeps increasing with increase in the per
bation parameter and the full phase space is allowed fo
values of the perturbation parameter. Further, such disj
structures do not appear in the standard map.

Next we consider the following continuum equations d
rived analytically from Eq.~7!:

df

dj
5sin21 X,

~14!
dX

dj
5r sinf.

~These would, of course, reduce to the sine-Gordon equa
@Eq. ~9!# on using the approximation sin21 X.X). Equations
~14! represents an integrable system of two coupled ordin
differential equations, with the following constant of motio
E:

E5X sin21 X1A12X21r cosf. ~15!

The separatrix corresponds tof5X50, giving Es5(11r ).
SettingE5Es yields the following equation for the separ
trix of Eq. ~14!:

Xs sin21 Xs1A12Xs
25112r sin2fs/2. ~16!

The subscripts stands for the separatrix. It can be check
that the extremum value ofXs5Xmax corresponds tofs
5p. It is also easy to see thatXmax increases with increas
in r. To find the value ofr 5r c beyond which the separatri
becomes forbidden, we setXmax51 andfs5p in the sepa-
ratrix equation. This givesr c5 1

2 (p/221).0.285, which is
quite close to our numerical resultr c50.26 discussed in the
beginning of this section.

The phase trajectories of the continuum equation@Eq.
~14!# are given by expression Eq.~15! for E. Using this ex-
pression, the trajectories corresponding to different value
E are plotted in Figs. 2~a!, 2~b!, and 2~c!, for r 50.1,
r 50.25, andr 50.38, respectively.~Note that the outermos
curves in these figures are actually not allowed, since t
missing parts would lie in the forbidden region.! It is inter-
esting to compare Fig. 2, the analytically found trajector
e
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in the continuum, with Fig. 1, the numerically found traje
tories for the spin map@Eq. ~7!#, for the above values ofr.
Although there are nontrivial differences between Fig. 1 a
Fig. 2, for example, there can be no chaos or floating isla
in Fig. 2, nevertheless, a comparison of these figures sh
that the overall shape and extent of the librational regions
very similar.

The physical message of the results of this section is
follows: For theXYspin chain with a field in thex direction,
whose planar spin configurations are the orbits of the s
map @Eq. ~7!#, there exists a primary critical magnetic fie
Bc5r cJS2/m @see Eq.~3!# beyond which the spin configu
rations spanning the full range of angles fromf50 to f
52p ~i.e., 2p soliton configurations! become forbidden. We
have also shown an intriguing result that by merely anal
ing the continuum version of the spin map, we are able to
a fairly accurate value of this critical field.

IV. FIELD DEPENDENCE OF EXCITATION ENERGY,
MAGNETIZATION, AND SUSCEPTIBILITY

As already stated, the ground state energy per site of
system is easily found to be2(11r ) analytically. We would
like to compute the energy of the lowest excited state, i.e.
configuration with energy closest to the ground state ene
To find this numerically we systematically scan the full a
lowed phase space for each fieldr. But before stating those
results, it turns out to be instructive to also find thelocation
in phase space, of the trajectory corresponding to the low
energy excitation. As we shall see, this will help us interp

FIG. 2. Phase trajectories for the continuum version@Eq. ~14!#
of Eq. ~7!. ~a! r 50.1; ~b! r 50.25; ~c! r 50.38.
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1316 PRE 61RADHA BALAKRISHNAN AND MITAXI MEHTA
our results. The following method suggested by Greene@15#
proves to be useful for doing this. For a large class of m
it can be shown that there exist certain symmetry curves
which periodic orbits will lie generically. For the spin ma
these curves aref50, f5p, andX5sin 2f, as shown in
the Appendix. We select initial conditions on a symme
curve~e.g.,f5p would cover both rotational and librationa
orbits for all r ) and iterate the map to find the correspondi
spin configuration. For a givenr, we then calculate the en
ergy per site of each configuration by using Eq.~2!.

Figure 3 reveals the following interesting behavior. O
the x axis, we have the values of the different initialX se-
lected on the symmetry curvef5p in the phase space. En
ergy per site of the spin configurations corresponding to e
of these initial conditions is plotted on they axis. Four dif-
ferent values ofr ~0.15, 0.25, 0.35, and 0.45! have been
chosen. For smallerr values, i.e., 0.15 and 0.25, there is
steep increase in the energy of the rotational and libratio
configurations close to, but on either side of, the separatri
can be verified by comparing with the phase portraits in F
1. In other words, there are cusps in the energy values a
separatrix. The separatrix corresponds to the lowest-en
configuration. The distance between the two cusps thus
creases withr for r<r c , as can be seen in Fig. 3. Howeve
the separatrix would first break and finally disappear
aroundr 5r c.0.26 as seen in the previous section. Cor
spondingly, the cusps also first flatten, with a lot of fluctu
tions especially near 0.25~due to increased chaos! and then
disappear fully beyondr c . For the largerr values~0.35 and
0.45! Fig. 3 shows that there are no cusps, and the s
configuration corresponding to the outermost trajectory
the allowed phase space has the lowest energy.

Interestingly the steady state behavior seems to influe
the dynamical behavior of the system in a simple manne
can be seen from an earlier work@13#. There, the dynamics
of the spin system has been studied using Monte Carlo si

FIG. 3. Energy per site~in units ofJS2 versus initial conditions
X on the symmetry linef5p. ~a! r 50.15; ~b! r 50.25; ~c! r
50.35; ~d! r 50.45.
s
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lations. It was found that the dynamical soliton disappe
aroundr 50.3. This disappearance could not be understo
in terms of the sine-Gordon approximation@11#. In contrast,
this phenomenon can now be understood using the spin
which is more appropriate for the system. As we have se
the steady-state soliton indeed disappears atr 50.26, which
is quite close to the simulation estimate.

As mentioned in the beginning of this section, we no
compute the energy more accurately, by scanning the
phase space for eachr. We then plot the energy of the
lowest-lying excitation~as measured from the ground stat!
as a function of the applied fieldr. This is given in Fig. 4.
N55000 as before. Here, excitation energy is measured w
respect to the ground state energy2(11r ). Note that jumps
in the energy appear at certain critical values ofr. The
mechanism of these jumps is as follows. For allr values less
than the primary critical fieldr c , the value of the excitation
energy is very close to the ground state energy. This is
cause although chaos sets in even for smallr, the orbit cor-
responding to the lowest excitation continues to start and
in the region in the vicinity of the unstable fixed poin
~ground state!. However, for r 5r c the chaotic orbit sur-
rounding the ground state becomes nonallowed and the l
tion of the lowest-excitation orbit jumps~in phase space! to
the outermost region of a central area. This leads to a sh
increase in the energy of the lowest excitation atr c . As r is
further increased, chaos gets reduced considerably. At a
tain stage, the outermost region contains ‘‘floating island
which appears disjoint from the rest of the allowed pha
space. With further gradual increase inr, the outer orbits of
the islands start becoming nonallowed and at some point
lowest-excitation orbit becomes a commensurate config
tion, where only the centers of the islands survive. This o
appears disjoint from the rest of the allowed phase spa
Just a little increase inr beyond this value makes this com
mensurate orbit nonallowed and thus its location once ag
has to make a jump in phase space to the outermost orb

FIG. 4. Lowest-excitation energy per site~measured with re-
spect to the ground-state energy per site, in units ofJS2) versusr.



or

h
o

.

es

s
n
s
n
nd
m
us

e
in

e
r

lu

a
r-
a
er

c
ap
ce

dary
ate,

vior
nd

ng
ns
es.
ntal
ys
ily.

oc

PRE 61 1317FIELD-INDUCED TRANSITIONS AND SPATIAL CHAOS . . .
the ~next! outermost island chain. This in turn causes a c
responding jump in the energy, and so on.

To understand this more clearly, we show in Fig. 5, t
change in the phase-space structure corresponding to
such jump in energy found nearr .0.38 in Fig. 4. Only a
part of the phase space is shown to give a clearer picture
r 50.381 there exists an island chain@Fig. 5~a!# which is
disjoint from the central island and which contains the low
excitation configuration. With increase inr @r 50.381,
r 50.3817 in Figs. 5~b! and 5~c!#, the island area decrease
gradually till only the island center survives. Just beyo
this, at r 50.382 @Fig. 5~d!# the island chain itself become
nonallowed, and disappears, causing a jump is the positio
the lowest excitation configuration from the disjoint isla
chain towards the central island. This in turn causes the ju
in energy at thisr value. This behavior keeps repeating. Th
energy increases sharply at all those secondary criticalr val-
ues, when the lowest excitation becomes a~disjoint! com-
mensurate configuration. The jump in the energy is a m
sure of the magnitude of the jump of the correspond
commensurate orbit in phase space at that critical field.

The physical manifestation of the above jumps that app
at and beyondr c is best understood by computing the ave
age magnetization̂Sx&51/N( i cosfi for the lowest-energy
configurations. The plot of̂Sx& as a function ofr is given in
Fig. 6. The magnetization takes on a constant maximal va
~corresponding to that of the ground state! for all r ,r c .
There is a sudden drop in the magnetization at the prim
critical field r 5r c50.26 which also signals the disappea
ance of maximal chaos. There appear secondary minim
the magnetization at all the secondary critical fields wh
the energy jumps occurred.

In Fig. 7, the static susceptibilityx5]^Sx&/]r is plotted
as a function ofr. x is negligible for allr ,r c , but starts to
fluctuate at the primary critical field. Thus the onset of flu
tuations inx can be regarded as the signature of the dis
pearance of the maximal spatial chaos in the phase spa

FIG. 5. Transition from a commensurate configuration ass
ated with the energy jump atr .0.38 in Fig. 4:~a! r 50.38; ~b! r
50.381;~c! r 50.3817;~d! r 50.382.
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this system. Fluctuations are also present at all the secon
fields when the spin configurations become commensur
as described earlier.

V. SUMMARY AND PHYSICAL INTERPRETATION
OF RESULTS

In this paper we have studied the change in the beha
of the spin configuration with energy closest to the grou
state, for theXYspin chain as the applied external field alo
the x direction is varied. Physically, these configuratio
would be the relevant ones at sufficiently low temperatur
The results of such a study are amenable to experime
verification, since the magnetic field which essentially pla
the role of the nonlinearity parameter, can be tuned eas

i-
FIG. 6. Magnetization̂Sx& ~in arbitrary units! versusr.

FIG. 7. Static susceptibilityx ~in arbitrary units! versusr.
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We have also investigated the effect on certain magn
properties of the system. In particular, we have studied
susceptibility by retaining the underlying discreteness of
magnetic chain. We predict that there should be large fl
tuations in the measured susceptibility at certain primary
successive secondary fields, arising due to the specific
linear effects inherent in this system.

Our results are summarized as follows: As is obvious,
any field, the ground state of the system has all the sp
parallel to thex direction i.e.,f i50(2p). We have shown
that the extremal energy spin configurations for any field w
be given by the spin map@Eq. ~7!#. Since this is a two-
dimensional map, given the initial spin orientations at t
first two sites, the spin orientations at all the other sites
be found by iterating this map. This is first carried out for
fixed magnetic field, and we find the energy as well as
nature of the spin configuration that corresponds to
lowest-energy excitation above the ground state. This is t
repeated for different magnetic fields. For very low fields,
a good approximation, the lowest-energy excitation is
2p-soliton spin configuration on the lattice, where the sp
orientation along the chain ranges fromf50 to 2p in a
regular fashion. As the field is increased, this excitation
comes a spatially chaotic orbit. Physically, this means t
the soliton starts to get destabilized in the sense that w
the spin configuration spans the full range of orientatio
from 0 to 2p, after a distance down the lattice, the succ
sive spins point in a seemingly random fashion due to spa
chaos. Due to sensitivity to initial conditions, there are flu
tuations in the energy, making it difficult to compute it in th
chaotic regime.

With increase of the field, the chaotic region increas
steadily till there is maximal chaos in the phase plot. J
beyond this, at a critical field, the ground state gets isola
from the orbit and chaos subsides considerably. The phys
interpretation of this is that at this~primary! critical field, the
lowest energy excitation spanning the full range 0 to 2p
becomes forbidden, essentially because for the corresp
ing initial orientations, the iteration of the map leads to
complex angle of orientation at some successive site on
lattice. Further with this change of topology the lowe
energy excitation in the phase plot makes a finite jump to
outermost region of the~by now somewhat shrunk! allowed
phase space. This region is composed of an elliptic chai
islands. This jump is shown to lead to a steep increase in
excitation energy at this critical field. As the field is in
creased further, the outer orbits of the islands start becom
forbidden due to the same reasons as given above. At a
tain field, the excitation becomes a commensurate~periodic!
configuration, which is seen to be disjoint from the rest
the allowed phase space. Hence with a very slight increas
field, at a secondary critical field, this commensurate o
also becomes forbidden, and thus once again there is a fi
jump in the location of the excitation orbit to the outermo
region of the allowed phase space. This in turn leads t
sharp increase in the excitation energy, at this second
field as well. This~secondary! behavior keeps repeating, giv
ing way to a hierarchy of transitions between commensu
spin configurations to noncommensurate ones at corresp
ing critical field values. Each transition which causes
sharp increase in the excitation energy as seen in Fig.
ic
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associated with a discontinuous change in the location of
lowest excitation orbit in the phase plot. The mechanism
such a jump in the energy nearr 50.38 in Fig. 4 can be
clearly understood from Fig. 5. Physically, this implies th
the character of the lowest-energy spin configuration chan
abruptly from a periodic configuration at these critical field
These phenomena in turn result in a hierarchy of jum
~gaps! in the graph of the excitation energy as a function
the field.

We wish to emphasize that although systems where
allowed phase space shrinks with a nonlinear parameter h
been considered in the literature~Refs. @8#, @@9#, and @14#!,
the nontrivial change in the phase-space topology a
shrinks has not been reported earlier. Further we have sh
here for the first time that there is a direct correlation b
tween the changes in phase-space topology and jumps in
excitation energy that appear at certain special fields.

This complex behavior of the energy gives rise to a m
netization versus field plot~Fig. 6! which suggests a field
induced transition at the primary critical fieldr c . Further,
there are sharp minima in the magnetization at all the s
ondary critical fields. This in turn leads to the onset of flu
tuations in the static susceptibilityx precisely atr c as seen in
Fig. 7, and can be regarded as an experimentally observ
signal for the disappearance of maximal spatial chaos in
spin orientations. There are fluctuations inx at all the sec-
ondary critical fields as well.

We parenthetically remark that the sine-Gordon appro
mation fails to describe the full nature of theXY spin chain.
This is because this approximation not only misses the t
evolution of the inherent chaotic spatial configurations, b
more importantly, italso misses the change in topology o
the phase plot~i.e., the disappearance of the soliton! at a
certain critical fieldr c50.26, which is inherent in the exac
spin map. Recall that in contrast, for the sine-Gordon
proximation of the map, the soliton persists for all field
Now, simulations of the dynamics of a spin chain show t
disappearance of the soliton aroundr 50.3. As mentioned in
existing literature~Refs. @11# and @13#! this phenomenon
could not be understood using the sine-Gordon picture. F
our present results this can be understood: We see that
a disappearance should indeed occur, since the correc
scription of the spin configurations of the chain is given
the spin map which in fact predicts this phenomenon. W
have also shown that our estimate forr c , which corresponds
to the disappearance of the steady-state soliton is quite c
to the field value for disappearance of a dynamical solit
the computation of which is usually much more involved.

Soliton excitations in magnetic chains with different sym
metries have been extensively studied@11#, both theoreti-
cally and experimentally. In contrast, the possible physi
manifestations of spatially chaotic spin configurations t
are inherent in many magnetic chains have not recei
much attention. Although, to our knowledge, anXY spin
chain has not been fabricated so far, this model and a re
tic easy-plane ferromagnetic chain such as CsNiF3 have been
shown to possess identical behavior in the presence
symmetry breaking field for some parameter values by e
lier workers@11#. This connection is further substantiated b
our results in Sec. IV where we have pointed out that
critical magnetic field at which a soliton disappears in theXY
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spin map is very close to that at which a soliton disappear
Monte Carlo work@13#.

Our theoretical results should motivate the fabrication
an XY spin chain, and we also suggest the following expe
ments and further theoretical work on this system: First,
using neutron scattering techniques at low temperatures
low fields, the static structure factorS(k) should be found at
a fixed field. Since the~isothermal! susceptibility is directly
related to this factor@16#, the experiment should be repeat
for different finely tuned fields. One must then look for cri
cal fields at which fluctuations in the susceptibility occu
and compare with Fig. 7. It would also be worthwhile
investigate whether similar results would appear in CsNi3,
using experimental techniques that effectively probe only
planar states of this system, for which there is a close c
nection to the physics of theXY chain, as we have shown i
Sec. I.

Second, the following extension of our theoretical stu
would give further insight into this nonlinear system th
supports both order and chaos. Since there is an inhe
self-similarity in the spin map~see Ref.@7#!, it would be of
interest to use renormalization group techniques, and in
tigate the possibility of predicting analytically, the succe
sive critical fields at which the fluctuations in the suscep
bility occur.

Third, the nature of the analogous low-energy configu
tions for acanted XYspin chain are also worth investigatin
as a function of both the field and the cantedness param

Finally, although chaos subsides for high fields for t
system studied, it is worth studying if other observable
fects such as the changes in thesymmetryof the low-energy
spin configurations can take place at such fields. Exten
of this work to anisotropic spin chains is underway.

APPENDIX

Consider a class of area-preserving maps defined by

Xi 115Xi1 f 1~f i !,
n

sh

.

in

f
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n

f i 115f i1 f 2~Xi 11!.

Let us symbolically denote this map by

TS Xi

f i
D 5S Xi 11

f i 11
D . ~A1!

Provided f 1 is an odd function off, i.e., f 1(2f i)5
2 f 1(f i), one can decomposeT into the following two com-
ponentsT5T2T1 so thatT1

25T2
25I (I denotes the identity

transformation!, as follows:

T1S X

f D 5S X1 f 1~f!

2f D , ~A2!

T2S X

f D 5S X

f 2~X!2f.D . ~A3!

It was shown by Greene@15# that when such a decompo
sition is possible, generically all the rational periodic orb
will have points on the fixed point curves ofT1 andT2. Thus
to compare the energy of two different rational orbits, i
stead of scanning the whole phase plane, one is require
scan only the symmetry curves defined by fixed points ofT1
andT2. For the spin map Eq.~7!, comparing with Eqs.~A1!
and ~A2!, the symmetry curves are given by the followin
fixed points ofT1 andT2, i.e.,

f52f, f 1~f!5r sinf50, X50,

f 2~X!5sin21 X52f.

These yield the curves

f50, f5p, X50, X5sin 2f.
ao,

a
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Tret’yakov, Zh. Éksp. Teor. Fiz.87, 310 ~1984! @Sov. Phys.
,

-

JETP60, 180 ~1984!#.
@9# G. Ananthakrishna, Radha Balakrishnan, and Bai-lin H

Phys. Lett. A121, 407 ~1987!; 124, 526~E! ~1989!.
@10# See, for example, D.C. Mattis,The Theory of MagnetismII

~Springer, Berlin, 1984!.
@11# H.J. Mikeska and M. Steiner, Adv. Phys.40, 191 ~1991!; 40,

224 ~1991!; 40, 313 ~1991!.
@12# M.E. Fisher, Am. J. Phys.32, 343 ~1964!.
@13# R.W. Gerling and D.P. Landau, Phys. Rev. B37, 6092~1988!;

41, 7139~1990!.
@14# A. Banerjea and P.L. Taylor, Phys. Rev. B30, 6489 ~1984!;

C.S.O. Yokoi, Lei-Han Tang, and Weiren Chou,ibid. 37, 2173
~1988!; Y. Fukui and T. Horiguchi, Physica A199, 580
~1993!.

@15# J.M. Greene, J. Math. Phys.20, 1183~1979!.
@16# H.E. Stanley, Phase Transitions and Critical Phenomen

~Clarendon Press, Oxford, 1971!.


