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Crossover between a displacive and an order-disorder phase transition
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The phase transition in a three-dimensional array of classical anharmonic oscillators with harmonic nearest-
neighbor couplinddiscrete¢* mode) is studied by Monte Carl@MC) simulations and by analytical methods.
The model allows us to choose a single dimensionless paramdetermining completely the behavior of the
system. Changing from 0 to +o allows to go continuously from the displacive to the order-disorder limit.
We calculate the transition temperatufg and the temperature dependence of the order parameter down to
T=0 for a wide range of the paramegerThe T, from MC calculations shows an excellent agreement with the
known asymptotic values for small and lar@eThe obtained MC results are further compared with predictions
of the mean-field and independent-mode approximations as well as with predictions of our own approximation
scheme. In this approximation, we introduce an auxiliary system, which yields approximately the same tem-
perature behavior of the order parameter, but allows the decoupling of the phonon modes. Our approximation
gives the value of ; within an error of 5% and satisfactorily describes the temperature dependence of the order
parameter for all values .

PACS numbd(s): 05.70.Fh

I. INTRODUCTION
V=2 V(X)) ~CX XXy o(n,n'), )

One of the basic classification schemes for structural A n.n’
phase transitions consists of assigning them to the orde(y;i gn «
disorder or the displacive type. The displacive transition can
be described as a freezing of a phonon mode, which shows A B
“critical softening” at the phase transition point. The occur- V(X)= ?x2+ Zx“, A'=A+12C. 3
rence of a soft mode is often used as a criterion for a displa-
cive transition in a real system, since the frequency of thqt is known that the behavior of the system is governed by
phonon modes is accessible by spectroscopic experiments.[he ratio

In the order-disorder case, there are two or more locations
for each atom in the unit cell. Occupation numbers for these a=—A/C. (4)
locations are the same above the transition temperature, and
differ below. Forma"y, as in the diSpIaCive case, the SyStem At small a>0 the System shows a disp|acive phase tran-
can be described in “phonon” language. sition, while for largea the system behaves as the Ising

There is a simple model which shows that one can ganodel, which shows a typical order-disorder phase transi-
from the order-disorder to the displacive typentinuously  tion. The transition temperaturég, in the limit cases are

[1]. This model can be defined as a three-dimensié88)  known from Ising-model and self-consistent phonon calcula-
cubic lattice of classical anharmonic 1D oscillators withtions, to be, respectivel§2,4,8,9,

nearest-neighbor harmonic couplif@-7]:

on-site” single particle potential

T.(a]0)~2.64C|A|/B,
A B c (5)
V=2 2 a7 2 Xits 2 (X=X 2o(n,n), Te(a— +)~9.12C|Al/B,
2 < 44X &

) assuming here and below that the temperature is expressed in
energy units(the Boltzmann constant equal tg. 10On the
other hand, despite the important role of the above model in

whereA,B, andC are model parameters, the indicegand  the theory of structural phase transitioi, the actual de-

n’ run over all oscillators, andr(n,n’) is equal to 1 for pendence ofT;(a) is not known. The results of previous
neighbouring particles and vanishes elsewhere. The systemolecular dynamics and Monte Carlo studies are collected in
undergoes a phase transition from the higher symmetry to thEig. 1. They obviously do not give a consistent quantitative
lower symmetry phase at a certain temperafligefor any  picture. So far the analytical study was restricted to the
A<0,B>0,C>0, i.e., the statistical average of each coor-mean-field approacf2,10].

dinatex, takes a nonzero valug=(x,) belowT. and van- Recently, it was observed that knowledge of the depen-
ishes above. It is often convenient to express the potgijial denceT.(a) can be useful in the quantitative analysis of the
as properties of crystalline SR,Sg which has a ferroelectric
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FIG. 1. The critical temperature vs 4n The curve shows the FIG. 2. The role of the finite size of the system studied numeri-
mean-field result; thin horizontal lines show the asymptotic valuegally. Numerical data for the square of the order parameter plotted
of T.. Results of previous molecular-dynamifs,3] and Monte asa function ofT. Filled circles: 5<5X5 oscillators; open circles:
Carlo [4] calculations are plotted with filled and open circles, re- 15X 15X 15 oscillators. Both results are obtained o+ 5 in Eq.
spectively. (7) by averaging over 3000 realizations at each point. The solid line

shows the interpolation used to obtdip.
phase transition showing simultaneously features typical for
both the order-disorder and displacive tyjd]. 7?=N"YAX5-X3), @)

The aim of this paper is to establish this dependence of I )

T (a) as well as the temperature behavior of the order paWhereX,=N""22x.,e/" is the Fourier transform of,, and
rameter. Let us stress that, similar to some related papef iS the total number of particles.

[4-7], we are not interested here in the details of critical For the case of an infinite slabl,”*2X? is negligible, and
behavior in the very vicinity of the phase transition. The EQ. (7) gives purely the square of the order parameter. For a
critical behavior of this model is thoroughly described, for finite slab, the termX? allows to remove fluctuations from
example, in Ref[2]. the high-temperature branch.

The paper is organized as follows. Section Il describes The results of the calculations are presented in Figs. 2—4.
our Monte Carlo(MC) simulations performed for a wide It is crucial to check the dependence of the results on the
range of values of parametar In Sec. lll, we first compare System size. Figure 2 presents the temperature dependence of
the MC results with rather poor predictions of the standardX for sizes 15 15X 15 and 5<5X5. It is clear that chang-
decoupling schemes and suggest an improved self-consisteng of the size of the slab affects practically only the fluc-
equation for the order parameter that allows us to calculatéuation region neaf .. The value ofT. calculated from the
both the transition temperature and the order parameter witfit of the dependencésee Fig. 2 remains almost unchanged.

a reasonable accuracy for all valuesaof This type of size dependence of data is found for the whole
range ofa.

II. MONTE CARLO SIMULATIONS ‘o

For numerical simulation it is convenient to rescale coor-
dinates and energy units. This allows the reduction of the
potential energy(1) into the form

a a 1
Vred=—52 x§+zz xﬁ+§ > (Xg—Xp)20(n,n’), 08
n n n,n’ |
(6) =

with a single dimensionless parameter —A/C. Then the
rescaled order parameter at zero temperature is equal to 1 fc

anya>0.
The typical size of the array of atoms studied in our MC W L
simulations is 1& 10X 10 atoms, with periodic boundary 00—t Q‘E} ek

conditions. We perform Monte Carlo steps consecutively for
each atom, and accefir rejec) them accordingly to stan-
dard criteria. Additionally, we perform “magic” steps for  FIG. 3. The temperature dependence of the square of the order
the case of large, when the sign of the coordinate of the parameter for values od varying from 0.98 to 4000. There is a
given atom may flip. These steps allow the system to therfactor 2 between the values for the neighboring curves. The data
malize in the order-disorder limit as well. We calculate theare obtained using Eq7) by averaging over 1000 realizations at
square of the order parameter as the average each point; the relative amount of, “magic” steps is 0.02.

T
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o . - . , . - . - — ated by assuming a “critical” phonon dispersi@nith zero
ol e = frequency of the zone-center mode

L o0 i
’r o* ] T d3k T
7| o - [(T)~ 3 J — — — = ,

I ] 4C(2m)3) 3—cosk,—cosk,—cosk, 3Cxk
s o* ) (10)
5F ¢ -

ot o* 1 where k~2.638. Note that the stability limifT; ya=

Air ..o' ] —ACk/B of the high temperature phase as obtained from
3 !.." - Egs. (9) and (10) provides an exact prediction fdr. and

7n(T) in the displacive limit. However, for the order-disorder
limit, the IMA values differ considerably from the exact val-
ues.

2 0 2 4
In(a)

[
o]

B. Mean-field approximation

In the mean-field approximatiotMFA) for the system
FIG. 4. Numerical results for the critical temperatdigvs Ina. with harmonic coupling, the behavior of the original system
The values ofT. are extracted from the data presented in Fig. 3.js modeled by an auxiliary system in which all direct inter-
Thin horizontal lines show the asymptotic valuesTef site interactions are replaced by an effective external field
i , _ but the on-site anharmonicity is kept without any approxima-
Figure 3 presents data for(T) obtained for the potential {jgn Taking the on-site potential as given by H8), the

(6) for different values of the parameter Note that the gnsemble averages in such an auxiliary system at fixed ex-
Landau theory yields a linear temperature dependence Qg nal field are given by

7(T).

Values ofT, are extracted from the data presented in Fig.
3. The plot forT.(a) is given in Fig. 4 where a logarithmic
scale for thea axis is used. The monotonic dependence ap- 7= (Xn)=gr(E)= .
proaches known limit values with good accuracy. The f exp{ —[v(x)—Ex]/T}dx
change ina is for which T.(a) varies significantly is about
two orders of magnitude.

xexp{ —[v(x)—Ex]/T}dx

(11)

Since at finite temperatures tigge(E) is a monotonic func-
1. ANALYTICAL APPROACHES tion, it can be inverted and the self-consistent equation for

. . the order parameter in the auxiliary system can be written as
Two standard decoupling schemes have been used in the P y sy

literature to make the phase transition in the model tractable, E=g7 (7). (12)
usually referred to as mean-fieldr independent-sijeap-

proximation and self-consistent phondor independent- The effective fielcE is defined as the force og, supplied by
mode approximation. In this section we first analyze thethe interaction terms separated in Eg), assuming that the
advantages and disadvantages of these standard approxinggsplacement of the six nearest-neighboring sitesat least

tions and then we propose a modified approximation schemgeir sunj is frozen at the equilibrium value:
that combines the advantages of both schemes.

E=12Cny. (13
A. Independent-mode approximation
, . Self-consistent solution of Eq&l2) and(13) defines the or-
_In the independent-mode approximatidMA ), the de-  ger parameterye, in MFA. The phase transition tempera-
viations from the average value given by the order parametey, e Te wra(@) at which nyea vanishes is shown in Fig. 1. It
® was previously remarked by Aubryl,2] that the relative
overestimation ofT, by MFA is almost the saméabout
are represented by Fourier coordinatgs=N~Y2S y,elkn. 30% for bo'gh limit casesd— +0,a— +). Comparison of _
Interaction between Fourier coordinates is simplified by as¥c.mra(@) with our MC results shows that the discrepancy is
suming that each Fourier coordinate is influenced only by théeally systematic for all intermediate cases. Although this
average of its interactions with the other coordinates. Thi€for is rather large, its systematic character strongly sug-
leads to an effective harmonic approximation. The order pagests that the physics of the crossover is already well taken

Yn=Xn— 7

rameter in IMA is defined by the equatig] into account by the MFA.
Let us analyze the functiog(E) describing the auxiliary
An+B73+3B7l(T)=0, (99  ensemble of the uncoupled on-site oscillators in more detail.
Let us stress the following points.
where the function (T)=N"12,Y,Y_, is calculated from (1) The variation of T, with a is within MFA entirely

the phonon dispersion relation renormalized by the givergiven by the slope of the functiogy(#) at »=0.
value of the order parameter and the thermal fluctuations. In (2) Unlike the on-site potential(x), the functiong;(E)
the vicinity of the phase transition poirt,T) can be evalu- at finite temperature is a smooth monotonic odd functgme



PRE 61 CROSSOVER BETWEEN A DISPLACIVE AND AN . .. 129

100

T : T . : — . . C. Combined scheme

N : We have seen that the IMA predicts well the phase tran-
' ! ! sition temperature in the displacive limit, while MFA pre-
\ y i i dicts rather well its variation witl. It would be desirable to
{ ] have an approximate equation of state for the systbrthat
| -+ combines the advantages of both above discussed ap-
o == proaches. The key idea of our approach is the assumption of
the existence of an effective potenti@ith temperature de-
pendent coefficienjsfor which the self-consistent phonon
approximation correctly gives the order parameter. In deter-
mining the coefficients of such an effective potential, we use
i the properties of the free enerdy(#,T) [respectively, its
T T 4 o 1+ 2 s derivativeg; (#)] of the auxiliary system of uncoupled an-
harmonic oscillators discussed above.
More precisely, the self-consistent equation g(T) is
constructed in three steps, as follows.

50 -

g’

50

FIG. 5. Typical dependence @f; *(7) at smalla (solid line)
and largea (dashed lingThe inset shows the on-site potential for

both cases|Calculated for Eq(11) with T=5 anda=1 and 100, (1) We look for an effective on-site potential of the form
respectively] o

u(x)=?x2+ §X4* (19
Fig. 5 at anyT,a [10]. Both gr(E) and its inversag; (%)

can be expanded in Taylor series: wherea’ andg are defined by the expressions that appear in

- the above discussed inverse probl€&iB):
gr(E)=2, xai-1(TE* ™,

) 33T
(14 a'=§&— & B=¢&s. (20
ar i ()= & (TP L This potential obviously coincides witli(x) in the weak
=1

anharmonic limit.
(2) We introduce a functio ¢ T, 7), which allows to

(3) The functiong{l(n) can be identified with the deriva- \ ite g{l formally as a finite polynomial:

tive of its free energy-(»,T), which can thus be written in

the form g1 (M= Ered T, m) nt+ E3(T) 7. (21)
Z & q(T) . These functions; .(T) are used instead of;(T) in the
F(nT)= F(O,T)+Z,l —a 7 . (15  definitions(20), so that we have
. . - , 3¢a(MT
(4) Obviously, the Taylor expansion coefficientsgyf( E) a' =& (T, m)— B=E&3(T). (22

andg; () are related £, x;=1, &x5+ x3=0, etc) This E1er( T.7)

allows to expressty —4(T) in the limit case of the weak Note that the potentiali(x) still coincides withv(x) in the
anharmonicity B<A )zby expandingyr(E) in powers ofB.  \yeak anharmonic limit for smalh, since&; ««{T,7) goes
With an accuracyD(B?) we obtain to &(T) for 7—0. '

(3) We consider Eq(2) and replacey(x) with coefficients
E(T)=A"+ SEI' £(T)=B (16) A’ andB by an expression(x) with temperature-dependent
! A3 ' coefficientse’ and B8 defined in Eq.(22). Then we apply
IMA to this auxiliary system. Equatiof®) then becomes
In the strongly anharmonic order-disorder limi&'(<0,T

, - : 5 - T 3&(MT
<A'?B), expressingy(E) via averagegx?),(x*) yields &1 e T, ) —12C+ £3(T) _ £3(T) n+ E5(T) 3=0.
Ck 'fl,eff(Ta 7])
&(T) il &(T) i 17 29
BT A SR g This equation is to be solved together with formuas$) and

(11), definingé; o andgr, respectively. The value @f(T),
(5) Finally, let us note that in the weak anharmonicity entering these equations, is given by sefis$.

case we can solve the inverse problem—express the param- For the calculation of the phase transition temperature
eters of the on-site potential via the first two free energyonly, the second step can be omitted. It is obvious from its
coefficients £;(T),&3(T). With the same accuracy as EQ. construction that the suggested method provides the same
(16) (exac} result for theT, in the displacive limit as the usual
IMA. In the extreme order-disorder limit, the value ®f
A =g(T) - 3&(T)T B=¢4(T) (18) defined by Eq.(23) can be obtained analytically using Eq.
1 £(T) s (17). The resulting value ofT, overestimates the known
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R . , . : R replaces the real strongly correlated systdynwith an aux-
"nr ] iliary one, which allows decoupling. It is also worth noting
10 = that the theory is carried out in terms gf(#), which is
I = always a smooth monotonic function. Moreovgf(7) does
not change drastically wheais varied from O to+co—the
calculation of parameter§, and ¢; at T, shows that their
dimensionless values lie within the relatively narrow ranges
9.7-12 and 0-4, respectively. Therefore the replacement
procedure works uniformly well for all values of the param-
eters.
It would be interesting to investigate possible extensions
] to higher-order terms. A systematic extension of the present
r ] method should contain a larger number of terms in the effec-
: . : . : . : . : . tive on-site potentia{19) and in the expression for the func-
tion g7 *(#) in Eq. (22), and solve the self-consistent equa-
tion for the auxiliary system more accurately than EzB).
FIG. 6. Numerical data foif;(Ina) compared with results of As a simplification we can consider a purely linear auxil-
calculations by Eqs(23), (11), and(21) (the solid ling. The mean-  iary system, i.e., neglect the term in Eq.(19) and3(T) in
field approximation is given by the dashed line. Eq.(22). We obtaing; *(7)= ¢, (T, 7) 7 and Eq.(23) then
reduces simply to the mean-field equation of stﬁé(n)
Ising value by less than 7%. The principal advantage of the=12C#. Therefore, the scheme proposed here can also be
modified approach is that it allows to calculate fhe[and  considered as a generalization of the mean-field approxima-
»(T)] with the above or better accuracy for all valuesapf tion.

, o = NN W0 2 O O N 0O O

In(a)

as can be seen from the comparison with our MC dBig. Our method can be applied to more complicated models
6). The MC result for5?(T) is satisfactorily described as for which the self-consistent phonon theory is exact in the
well (Fig. 7). weak anharmonic limit. This is particularly interesting for

the analysis of the DIFFOUR modEgl2] in which the addi-
tional second-neighbor harmonic coupling shows a phase
transition to an incommensurate phase for which the MC

Let us analyze the proposed model in comparison with th&alculations are much more difficult.
standard decoupling schemes. The latter treat the system as a
gas of elementary excitations, which are supposed to interact
weakly. The assumption of weak interaction allows to re- V. CONCLUSIONS
place the interaction between the elementary excitations with
an interaction with an average field. Choice of the elemen-
tary excitations as the plane waves or on-site oscillator
yields IMA or MFA, respectively. It is clear, however, that
the assumed weakness of the interaction is actually not re
ized for the general case, no matter what elementary excitd
tions we choose.

The main advantage of our approach is that it virtually

IV. DISCUSSION

We have studied the crossover from a displacive to an
rder-disorder phase transition in the discréfemodel with
irst-neighbor coupling.. The crossover is governed by the
a:'f;_ingle parametera. Quantitative information aboul(a)
nd z(T,a) in this simple model may be helpful in elucidat-

Ing the behavior of some real crystals with phase transitions
of a mixed displacive and order-disorder type.

In terms of the dimensionless paramedere determined
' . , the change of the transition temperature by Monte Carlo cal-
culations. These show a crossover from the displacive to the

------- g,

10 T T

order-disorder limit.

Monte Carlo calculations have shown an excellent agree-
ment for T in the two limit cases in which exact results are
known. We expect that the same precision is obtained for the
intermediate region. Thus, the presented Monte Carlo results
can be taken as quite reliable estimate3 gfa) with a pre-
cision of the order of 1% and we believe that a comparable
precision was achieved for the temperature dependence of
the order parametdiexcept in the critical region in the vi-
cinity of the phase transition

We have presented an analytical approach, which goes
beyond the conventional decoupling schemes. For this, we
introduce the auxiliary array of oscillators th@) can be

FIG. 7. The temperature dependence of the square of the ordéfeated in the independent-mode approximation ding
parameter at several valuesalf=0.98, 3.9, 15.6, 62.5, 250, 1000, Yields approximately the same values Bf and the order
4000. T, grows with increasinga: numerical data(pointy and  parameter, as the real system. The method combines the
calculation from Eqs(23), (11), and(21) (lines). equation of state of the self-consistent phonon theory with
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the response function of the system of uncoupled anharsion we have used. The formalism can be used to study in-
monic oscillators used in the the mean-field theory. It can b€ommensurate phase transitions as well.
presented as a generalization of the mean-field scheme.

The analytical results foiT. agree with Monte Carlo ACKNOWLEDGMENT
simulations with about 5% accuracy. Further improvement This work was supported by the INCO Copernicus pro-
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