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Diffusion over a saddle with a Langevin equation
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The diffusion problem over a saddle is studied using a multidimensional Langevin equation. An analytical
solution is derived for a quadratic potential and the probability to pass over the barrier deduced. A very simple
solution is given for the one-dimensional problem and a general scheme is shown for higher dimensions.
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I. INTRODUCTION

The Langevin equation@1# has been applied to most field
of physics. It was solved several times for parabolic poten
wells, see, e.g., Refs.@2–4#. As analytical solutions can b
derived for quadratic potentials only, it has really rather b
come widely used in numerical simulations.

Our purpose is to establish an analytical expression
the diffusion over a potential barrier. In order to have a so
able problem, we assume that, around the saddle point
potential can be approximated by quadratic functions. So
very simple expressions are obtained in one dimension.
cause many processes obviously involve more than one
ordinate, we extend our analysis to multidimensional ca
We thus derive an analytic expression for the distribut
function of the Langevin equation, valid for multidimen
sional models, and then study the probability to overpass
barrier.

Our approach is only valid for classical diffusion satisf
ing the dissipation-fluctuation theorem. A solution for t
one dimension Langevin equation in the overdamped lim
derived in Ref.@5# for Lévy flights @6#, but it cannot be
simply extended to multidimensional Langevin equations

The interest of our approach will be shown in the case
heavy-ion fusion problems, for which Langevin equati
type simulations have been used by several groups@7–9#.
The very small cross section of such a mechanism ma
numerical simulations very difficult, because very large s
tistics have to be computed. Our analytical expressio
though using somewhat crude approximations, could be
ful to extract some general trends. The problematics of r
istic calculations is out of the scope of this paper, where
only discuss general considerations concerning the Lang
formalism.

II. LANGEVIN EQUATION

A. Introduction

To study the diffusion over a one-dimensional~1D! para-
bolic potential barrier,V(q1)52m1v1

2q1
2/2 with a given ini-

tial condition q10,0 and p10.0, the Langevin equation
reads

q̈11b1q̇12v1
2q15r 1~ t !, ~1!
PRE 611063-651X/2000/61~2!/1125~9!/$15.00
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wherer 1(t) is a Gaussian stochastic force. As discussed
Appendix B, we rule out any anomalous diffusion proce
The first two moments of this force are

^r 1~ t !&50 and ^r 1~ t !r 1~ t8!&5
2Tb1

m1
d~ t2t8!, ~2!

in agreement with the dissipation-fluctuation theorem. In
previous equations,T, m1, and b1 denote the temperature
the mass, and the reduced friction, respectively. All the
parameters are assumed to be time, position, and velo
independent, or at most very slowly varying, in the vicini
of the saddle. The angle brackets indicate an ensemble a
age.

For any n-dimensional problem, one can generalize t
previous approach, replacing the (q1 ,q̇1) variables by vec-
tors (Q,Q̇),

Q̈1bQ̇2V2Q5R~ t !. ~3!

Such a canonical form of the problem results from two s
cessive, very standard manipulations:~i! change the repre
sentation by transforming all tensorsT, such as the friction
tensor and the spring tensor, into a formM 21/2TM 21/2,
whereM is the usual mass tensor, naturally,~ii ! change again
the representation so that the spring tensor becomes di
nal.

More precisely, assume some initial representation wit
vector of degrees of freedomZ[$z1 , . . .zn%, driven by a
constant, symmetric mass tensorM, a constant, symmetric
friction tensorG, a constant, symmetric spring tensorS and a
random vector forceF. The initial dynamical equation read

MZ̈1GŻ2SZ5F~ t !. ~4!

This is equivalent to

M1/2Z̈1M 21/2GM 21/2M1/2Ż2M 21/2SM 21/2M1/2Z

5M 21/2F~ t !. ~5!

Now let U be that orthogonal matrix which lists the righ
eigenvectors ofM 21/2SM 21/2 as columns. Accordingly,
M 21/2SM 21/25UDU21, whereD is diagonal.~Throughout
this argument we rule out, naturally, those very exceptio
1125 ©2000 The American Physical Society
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cases where diagonalizations and/or inversions are singu!
Then the dynamical equation reads as well,

U21M1/2Z̈1U21M 21/2GM 21/2UU21M1/2Ż2V2U21M1/2Z

5U21M 21/2F~ t !. ~6!

With the definitions, Q[U21M1/2Z, b[U21M21/2

3GM 21/2U, andR(t)5U21M 21/2F(t), this is nothing but
the canonical form, Eq.~3!.

For 2D, for instance, we may obtain the first final degr
of freedom as a ‘‘valley’’ direction to the saddle and th
other final degree as a ‘‘confining’’ direction

Q5Fq1

q2
G , V25Fv1

2 0

0 2v2
2G , b5F b1 b12

b12 b2
G , ~7!

andR(t) is a random force with two components. Such tw
components are correlated whenb is nondiagonal but can b
related, through a suitable matrixG, to a vector of indepen-
dent random numbers

R~ t !5GFn1~ t !

n2~ t !
G , ~8!

with

^n1~ t !n1~ t8!&5d~ t2t8!, ^n2~ t !n2~ t8!&5d~ t2t8!,

and ^n1~ t !n2~ t !&50. ~9!

The matrix G is real, but usually not symmetric. Th
fluctuation-dissipation theorem, incidentally, which is ea
to derive from the initial form, Eq.~4!, states thatGGT

52Tb, whereT is the temperature and where the supersc
T indicates transposition. All necessary details are found
Appendix A.

It will be stressed again here that the matricesb, V2, and
G take into account an overall multiplication of motion equ
tions by the inverse of the~square root of the! mass tensor. It
is easy to prove that this manipulation does not change
signs of the eigenvalues of the resulting matrices, and
such resulting matrices are usually non diagonal. In turn,
final spring tensorV2 can be made diagonal by the add
tional manipulation~ii !. The generalization ton dimensions
is trivial.

B. Analytical solution

Defining P5Q̇, it is easy to transform Eq.~3! into a first-
order differential equation, in a (2n)-dimensional space,

d

dt FQ

PG5F 0 1

V2 2bGFQ

PG1F 0

RG . ~10!

In the following we call the block matrix

D5F 0 1

V2 2bG
appearing in Eq.~10! the drift matrix~DM!. In the upper-left
and upper-right corners of this 2n32n matrix, the symbols 0
and 1 denote, respectively, the null and the unitn3n matri-
r.

e

y

t
in
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ces, naturally. Whenever this DM can be diagonalized, a
in the limit where the time and space derivatives of all phy
cal parameters such as masses, drifts, frequencies, etc.
be neglected, the previous system can be transformed in

d

dt F X1

A

X2n

G5DF X1

A

X2n

G1u21F 0

RG , ~11!

whereD is the diagonal drift matrix~DDM!,

D5u21Du5F a1 0 0

0 ••• 0

0 0 a2n

G , ~12!

andu is the ‘‘rotation’’ matrix,

3
q1

A

qn

p1

A

pn

4 5u3
X1

A

A

A

A

X2n

4 . ~13!

This matrixu is the matrix of right~column! eigenvectors of
the DM. Any normalization may be chosen for such eige
vectors.

It can be stressed here that the eigenmodesXi are linear
combinations of both positions and momenta, hence
saddle dynamics should be visualized in phase space ra
than coordinate space only. All such eigenmodes are
pected to decay exponentially with time, except just o
corresponding to a resulting preferred direction along
valley, in phase space.

In that same limit where the derivatives of the physic
parameters~masses, etc.! can be neglected, such first ord
differential equations can be formally integrated into

xi~ t ![Xie
2ai t2Xio

5E
0

t

dt e2ait@a i1n1~t!1•••1a innn~t!#,

i 51,2, . . . ,2n. ~14!

Here thea i j ’s are defined from the effects of bothu21 andG
matrices~in matrix notation,a5u21@G

0 #, wherea is a 2n
3n matrix, and 0 andG are n3n ones! and then i ’s are
uncorrelated white random numbers, extending Eqs.~9! to n
dimensions. Then, the Euler type variables (x1 , . . . ,x2n)
should have the same statistical properties as those of

S E
0

t

dt e2a1t@a11n1~t!1•••1a1nnn~t!#, . . . ,

E
0

t

dt e2a2nt@a (2n)1n1~t!1•••1a (2n)nnn~t!# D .

~15!
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These are Gaussian random numbers whose correlation
easily evaluated from those of then i ’s,

Ai j ~ t !5^xi~ t !xj~ t !&

5E
0

t

dt e2(ai1aj )t~a i1a j 11•••1a ina jn!

5
12e2t(ai1aj )

ai1aj
(
k51

n

a ika jk . ~16!

In a more compact matrix notation,

A5E
0

t

dt e2tDaaTe2tD. ~17!

Notice the occurrence of the matrix

aaT5u21F0 0

0 2TbG~uT!21,

which is trivially positive definite ifu is real.
Using functional integral techniques, the full distributio

function can then be easily evaluated~see Appendix B for
details! and reads

W~x1 , . . . ,x2n ,t;X10, . . . ,X(2n)0!

5
1

~2p!n

1

AdetA
expS 2

1

2
@x1 , . . . ,x2n#A21F x1

A

x2n

G D ,

~18!
e

w
en
arewhere the matrix elements ofA are those defined by Eq.~16!.
This makes also a Gaussian distribution, naturally. If nec
sary, it is then easy to return to the original variabl
(q1 , . . . ,qn ;p1 , . . . ,pn). Since

3
q1

A

qn

p1

A

pn

4 5u3
x1ea1t

A
A
A
A
A
A
A
A

x2nea2nt

4 1u3
X10e

a1t

A
A
A
A
A
A
A
A

X2n0ea2nt

4 , ~19!

where the second term of the right-hand side is the aver
trajectory and the first one is the diffusion part, it is obvio
that

3
^q1~ t !&

A

^qn~ t !&

^p1~ t !&

A

^pn~ t !&

4 5etD3
q10

A

qn0

p10

A

pn0

4 , ~20!

and
A~ t !57 3
q12^q1~ t !&

A

qn2^qn~ t !&

p12^p1~ t !&

A

pn2^pn~ t !&

4 @q12^q1~ t !&,...,qn2^qn~ t !&,p12^p1~ t !&,...,pn2^pn~ t !&#8 ~21!

5uetDA~ t !etDuT52TE
0

t

dte~ t2t!DF0 0

0 bGe~ t2t!DT
. ~22!

Eventually, the full distribution function reads

W~q1,...,pn,t;q10,...,pn0!5
1

~2p!n

1

AdetA~ t !
expS 2

1

2
@q12^q1~ t !&,...,pn2^pn~ t !&#A21~ t !F q12^q1~ t !&

A

pn2^pn~ t !&
G D , ~23!
after renormalization with the Jacobian. This result is w
known; see, e.g.,@2#.

C. Probability of passing over the saddle

To evaluate the probability of passing over the barrier,
are interested in the ‘‘reduced’’ distribution obtained wh
ll

e

all degrees of freedom butq1 are integrated out. It is also
necessarily a Gaussian distribution

W~q1 ,t;q10, . . . ,qn0 ,p10, . . . ,pn0!

5
1

A2psq1
~ t !

expF2
„q12^q1~ t !&…2

2 sq1

2 ~ t ! G . ~24!



e
y

vi
t

l b

ity
n

fir
di
n

be
-
to

e of

er,
a

one

1128 PRE 61ABE, BOILLEY, GIRAUD, AND WADA
The only remaining task is then to evaluate^q1(t)& and
sq1

(t). From Eqs.~20!, ~22! one gets

^q1~ t !&5u11X10e
a1t1•••1u1(2n)X(2n)0ea2nt ~25!

and

sq1

2 ~ t !5^~u11x1ea1t1•••1u1(2n)x2nea2nt!2& ~26!

5(
i 51

2n

(
j 51

2n

u1iu1 jAi j ~ t !e(ai1aj )t

5(
i 51

2n

(
j 51

2n

u1i

e(ai1aj )t21

ai1aj
u1 j~aaT! i j ~27!

52T(
i 51

2n

(
j 51

2n

u1i

e(ai1aj )t21

ai1aj

3u1 j (
v51

n

(
w51

n

~u21! i ,n1vbvw~u21! i ,n1w . ~28!

To go further and do more physics, one needs the eig
values and the eigenvectors of the DM. This is not alwa
feasible analytically for any dimension. However, the pre
ous scheme can be applied to particular problems where
drift matrix is explicitly known. Let us first consider the 1D
and the 2D cases, for which some general features wil
shown.

III. ONE DIMENSION PROBLEM

The 1D approach is interesting because of its simplic
Intuitively, choosing as unique variable, the valley one a
averaging all over the others should be enough in a
approximation. In this approach, the DM can be easily
agonalized and the diffusion energetical condition, time, a
probability can be easily calculated.

A. Solution of the Langevin equation

There are only one mass and one random force,m1 and
R1, respectively. The latter is related to one random num
n1, normalized according to Eq.~9!. The corresponding ma
trix G boils down to one number only, which, according
the fluctuation-dissipation theorem, readsG5(2b1T/m1)

21/2.
The eigenvalues of the DM area5(b182b1)/2 and b5

2(b181b1)/2, with b185(b1
214v1

2)1/2. Note thata.0 and
b,0. The matrixu and its inverse read

u5~b18!21F 1 21

~b182b1!/2 ~b181b1!/2G ,

u215F ~b181b1!/2 1

~b12b18!/2 1G . ~29!

The matrixa5u21@G
0 # is thus
n-
s
-
he

e

.
d
st
-
d

r

a5~2Tb1 /m1!1/2F1

1G . ~30!

The eigencoordinates read, withp15q̇1

FX

YG5F ~b181b1!/2 1

~b12b18!/2 1G Fq1

p1
G . ~31!

The Euler type variables,x andy, are then defined as

x~ t !5Xe2at2X0 ,

y~ t !5Ye2bt2Y0 , ~32!

and their statistical properties must be the same as thos

~2Tb1 /m1!1/2S E
0

t

dt e2atn1~t!,E
0

t

dt e2btn1~t! D ,

~33!

see Eqs.~14!,~15!. The random numbern1(t) being Gauss-
ian, x andy are also Gaussian random variables, with

^x2~ t !&5
Tb1

am1
~12e22at!, ^y2~ t !&5

Tb1

bm1
~12e22bt!,

^x~ t !y~ t !&5
2Tb1

~a1b!m1
@12e2(a1b)t#, ~34!

see Eq.~16!.
To evaluate the probability for passing over the barri

one needs the following distribution function, necessarily
Gaussian in the present model:

W~q1 ,t;q10,p10!5
1

A2psq1
~ t !

exp2
@q12^q1~ t !&#2

2sq1

2 ~ t !
.

~35!

According to the first row ofu, see Eq.~29!, the valley
coordinate is, in terms of the eigencoordinates,

q15
1

b18
~xeat2yebt!1

1

b18
~X0eat2Y0ebt!. ~36!

The first part corresponds to the diffusion and the second
to the average trajectory. It is trivial to obtainX0 and Y0
from q10 andp10 according to Eq.~31!, hencê q1&. It is also
trivial to obtain ^q1

2& from Eq. ~34!. All told, elementary
manipulations yield

^q1~ t !&5q10e
2b1t/2F coshS 1

2
b18t D1

b1

b18
sinhS 1

2
b18t D G

12
p10

b18
e2b1t/2 sinhS 1

2
b18t D , ~37!

and
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PRE 61 1129DIFFUSION OVER A SADDLE WITH A LANGEVIN EQUATION
sq1

2 ~ t !5^q1
2&2^q1&

2

52
T

m1v1
2 H 12e2b1tF2

b1
2

b18
2

sinh2S 1

2
b18t D

1
b1

b18
sinh~b18t !11G J . ~38!

These results are in agreement with the well-known calc
tion done for harmonically bound particles@3,4#, where the
sign of the spring force should be changed.

B. The critical initial kinetic energy

Defining the critical energy as the kinetic energy,K
5 1

2 m1p10
2 , necessary to have half of the particles to pa

over the barrier, it is obvious that it corresponds
limt→1`^q1(t)&50. From Eq.~37! it can be easily shown
that

Kc5S b11b18

2v1
D 2

B, ~39!

whereB5m1v1
2q10

2 /2 is the barrier height. In the weak fric
tion limit, b1.0, this condition becomesKc5B which is a
trivial result. In the overdamped limit,b1@2v1, it becomes
Kc5(b1 /v1)2B.

In the case of nuclei, using typical values,\v151MeV
andb155.1021s21, the overdamped limit is usually a goo
approximation and a big kinetic energy is necessary to o
pass even a very small barrier.Kc.10B.

C. Diffusion time

As for many physical problems the diffusion process d
namically competes with some other processes, it is inter
ing to extract also the time necessary to reach the top of
potential barrier. When the previous condition, Eq.~39!, is
exactly fulfilled, then

^q1~ t !&5q10e
2[(b11b18)/2]t. ~40!

The average trajectory exponentially converges to the to
the barrier with a typical time equal to 2/(b11b18), which
becomes 1/v1 in the weak damping limit and 1/b1 in the
overdamped one.

When the initial kinetic energy is higher than the critic
one, Eq.~39!, the average trajectory reaches the top of
potential barrier att top such as

cothS 1

2
b18t topD5

2v1

b18
SAK

B
2

b1

2v1
D . ~41!

The previous equation becomes

coth~v1t top!5AK

B
~42!

in the weak damping case,
-

s

r-

-
st-
e

of

e

cothS 1

2
b1t topD5S 2v1

b1
AK

B
21D ~43!

in the overdamped one.

D. Passing probability

In this model the probability at a given time that the pa
ticle has passed over the barrier is simply

P~ t;q10,p10!5E
0

1`

W~q1 ,t;q10,p10!dq1 ~44!

5
1

2
erfcS 2

^q1~ t !&

A2sq1
~ t !D . ~45!

For large times (t@1/b18),

2
^q1&

A2sq1

→
b11b18

A2~b1
21b1b18!

FAB

T
2

2v1

b11b18
AK

TG
~46!

→A v1

Tb1
~AB2AK ! ~47!

in the underdamped limit,

→AB

T
2

v1

b1
AK

T
~48!

in the overdamped one. The passing probability is th
known as a function of the initial kinetic energy and th
temperature. It increases from 0 to 1 around the critical va
Kc when increasing the initial kinetic energy. The higher t
temperature, the smoother is this increase.

E. Heavy-ion fusion

When two nuclei are colliding, the kinetic energy of th
projectile should be higher than the contact energy deri
by Bass@10# to observe some fusion events. This so-cal
extra-push energy is generally interpreted as an additio
barrier due to nuclear forces that has to be overcome by
viscous nuclear matter@11#. The critical energy derived
above can then be seen as the extra-push energy here.

To calculate the fusion probability of two cold collidin
nuclei, the difficulty is then to evaluate the temperature. F
particles that can reach the barrier top, at a distanceR12, we
will assume that all the remaining energy is totally dis
pated. Therefore, with a level densityalev , we assume tha
alevT

25K2B, neglecting the collective kinetic energy. The
the fusion probability is

P~q10,p10!5
1

2
erfcF S alevB

2

K2B D 1/4

3
b11b18

A2~b1
21b1b18!

S 12
2v1

b11b18
AK

BD G .

~49!
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In this formula,K is the available kinetic energy when th
two nuclei are in contact, andB is the remaining barrier
height:

K5Ec.m.2Erot2BBass. ~50!

In this equation,BBassis the Bass barrier@10# andErot is the
rotational energy,Erot5Ec.m.bimp

2 /R12
2 , wherebimp is the im-

pact parameter.
Therefore, the fusion probability reads

P~Ec.m.,b!5
1

2
erfcF S alevB

2

Ec.m.~12bimp
2 /R12

2 !2BBass2B
D 1/4

3
b11b18

A2~b1
21b1b18!

S 12
2v1

b11b18

3AEc.m.~12bimp
2 /R12

2 !2BBass

B D G . ~51!

To compare this probability with other theoretical calcu
tions, we need to choose parameters specific to our prob
and deduce the potential and dissipation terms. The pre
paper being rather dedicated to a good qualitative un
standing of the Langevin model, numerics with realistic p
rameters will be kept for a future paper. However, numeri
simulations already available seem to indicate that at le
two dimensions are necessary to really have a good un
standing of the diffusion phenomena in this problem@8#.

IV. THE TWO-DIMENSIONAL MODEL

Passing probability

Choosingq1 as the valley variable, the associated dis
bution functionW(q1 ,t;q10,q20,p10,p20) is a Gaussian and
the probability at a given time to pass over the saddle re

P~ t;q10,q20,p10,p20!5E
0

1`

W~q1 ,t;q10,q20,p10,p20!dq1

~52!

5
1

2
erfcS 2

^q1~ t !&

A2sq1
~ t !D . ~53!

The difficulty is then to find^q1(t)& and sq1
(t), see Eqs.

~25! and ~27!. When the two degrees of freedom are unc
related, namely, whenb1250, the eigenvalues of the DM
are, obviously,

a15~2b11Ab1
214v1

2!/2,

a25~2b12Ab1
214v1

2!/2,

a35~2b21Ab2
224v2

2!/2,

a45~2b22Ab2
224v2

2!/2,

or ~54!
-
m
nt
r-
-
l
st
r-

-

ds

-

a15~2b11Ab1
214v1

2!/2,

a25~2b12Ab1
214v1

2!/2,

a35~2b21 iA2b2
214v2

2!/2,

a45~2b22 iA2b2
214v2

2!/2,

if v2,b2/2 or v2.b2/2, respectively. Note that onlya1 is
positive, the other eigenvalues are negative or have a n
tive real part.

Whenb12Þ0, it is easy to show that there are always tw
real roots. The first onea1 is positive and increasing as
function ofb12. The other onea4 is negative and decreasin
as a function of the same. When the other two roots are r
it is also trivial to show that they remain negative. For lar
values ofb12, which start reaching significant fractions o
that maximum (b1b2)1/2, which is acceptable for a semipos
tivity of friction, the other two roots may become comple
conjugate. But the statement Re(ai),0 for i .1, is still true.
To illustrate the behavior of the eigenvalues, we consider
special case whereb15b251 andv15v25v. The equal
diagonal viscosities being taken as a unit, the polynom
equation whose roots are the eigenfrequencies of the p
lem reads

a412a31a22v45b12
2 a2. ~55!

Figure 1 shows, whenb12 increases from 0 to 1, the graph
of the four roots, or of their real parts when some of the
become complex. Herev50.35, which corresponds to ove
damping at the beginning, whenb1250. The merging of the
two intermediate roots and their complexification are tra
parent. Once such roots have become complex conjug
their common real part, however, remains negative. Th
Fig. 2 shows the casev50.6, where the two intermediat
roots are always complex, with a negative, common r
part.

Hence, whent→`, only the ‘‘a1 mode’’ survives. The
leading terms in Eqs.~25! and ~27! for long times are

^q1~ t !&5u11X10e
a1t, sq1

2 ~ t !5
u11

2 e2a1t~aaT!11

2a1
. ~56!

The result fort→` reads

P~q10,q20,p10,p20!→
1

2
erfcS 2

X10

A2Ā11

D ,

Ā115~aaT!11/~2a1!. ~57!

It is similar to the result obtained in 1D, provided we choo
the proper coordinate

X15v1
2q11a1p12b12

a1

v2
21a1

21b2a1

~2v2
2q21a1p2!.

~58!

The condition to have half of the particles to overpass
barrier is thenX1050. When the two degrees of freedom a
uncorrelated (b1250), one gets the same condition as in o
dimension, Eq.~39!. But in general, it is not possible to
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simply express it in terms of the initial kinetic energy b
cause it also depends on the orientation of the initial velo
in the potential landscape. For the same reasons, the d
sion time is not easy to evaluate either.

Note that in the previous graphs~Figs. 1 and 2!, a1 is
almost constant and could be approximated by the va
given in Eqs.~54!.

Then we can evaluateĀ11,

Ā115
T

a1
@b1~u21!13

2 1b2~u21!14
2 12b12~u21!13~u21!14#,

~59!

provided the diagonalization of the drift matrix can be don
Note that only (u21)13 and (u21)14 occurs, which are cou
pling X1 with the velocity coordinatesp1 andp2. From Eq.
~58!, one gets

Ā115Ta1S b12b12
2 a1

2
2v2

212a1
21b2a1

~v2
21a1

21b2a1!2D . ~60!

Again, when the two degrees of freedom are uncorrela
(b1250), one gets the same probability as in one dimens
Eqs.~45! and ~46!.

V. CONCLUSION

In this paper, we showed a general scheme to solve m
tidimensional Langevin equations near a saddle point. In
dimension, the solution is very simple and the diffusion co
dition, time, and probability can be easily expressed. T
means that in the case of a simple one dimension mode
heavy-ion fusion, one can analytically estimate the ex
push energy, the fusion time and its probability.

For higher dimensions, the stochastic dynamics is ag
easily solved, but a difficulty remains, namely, the expli
diagonalization of the drift matrix. In such conditions, a ge
eral analytic solution cannot be written, but the main featu
we found could be easily applied to very specific physi
problems. In particular, we showed the difference betw
the dominant degree of freedom and the damped ones.
possible occurrence of complex eigenvalues correspond
residual oscillations in subdominant degrees.

In every case, the Gaussian solution to the problem c

FIG. 1. Real part of eigenvalues as functions of nondiago
friction. Overdamped regime,v50.35,b/250.5. Notice how two
real roots fuse, then become complex conjugate, to generate
branch instead of two.
y
u-

e

.

d
n,

l-
e
-
is
or
-

in
t
-
s
l
n
he
to

n-

tradicts the naive, intuitive expectation of a distribution wi
two peaks moving apart from the fusion barrier. In fact, t
way over the barrier simply results from a competition b
tween the drift of the center of the Gaussian and its spre
ing.

For exotic noises leading to anomalous diffusion, such
Lévy flights, the Langevin equation can be analytica
solved for a one-dimensional overdamped motion where
Langevin equation reduces to a Smoluchowski one. In t
case, the solution is given in Ref.@5#.
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APPENDIX A

In order to avoid possible confusion brought by the thr
successive changes of representation expressed by the m
ces M 21/2, U, and u, we prove again the well-known
fluctuation-dissipation theorem. Our precise purpose is to
rametrize the random forceR, see Eq.~3!, in terms of dimen-
sionless, independent random numbersn i , normalized to
unity, see Eq.~9!. The starting point is a simplified form o
Eq. ~4!, namely, a situation where just the friction and t
random force are present,

MZ̈1GŻ5F~ t !. ~A1!

This leads at once to a simplified form of Eq.~5!,

M1/2Z̈1M 21/2GM 21/2M1/2Ż5M 21/2F~ t !. ~A2!

It is convenient at this stage to diagonalize the real, symm
ric, positive definite matrixB[M 21/2GM 21/2, and obtain its
representation in terms of its eigenvectorsu i & and eigenval-
uesl i ,

B5(
i 51

n

u i &l i^ i u. ~A3!

l

ne

FIG. 2. Real parts of eigenvalues as functions of nondiago
friction. Underdamped regime,v50.6.b/250.5. Since two ei-
genvalues are complex conjugate, only three curves appear.
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This decouples Eq.~A2! into independent modes, relaxin
separately towards thermal equilibrium for large times,

^ i uM1/2Z̈&52l i^ i uM1/2Ż&1^ i uM 21/2F~ t !&, ~A4!

namely,

^ i uM1/2Ż&→ t→1`E
0

t

dt e2l i (t2t)^ i uM 21/2F~t!&. ~A5!

The left-hand side of this limit, Eq.~A5!, can now be
squared as a kinetic energy and then ensemble averaged

equated with the Boltzmann energyT5(^ i uM1/2Ż&)2. ~We
set the Boltzmann constant as a unit,k51, as usual.! The
right-hand side of Eq.~A5!, in turn, can be constrained b
the following ansatz for ensemble averaging

^ i uM 21/2F~t!&^ i uM 21/2F~t8!&5r id~t2t8!, ~A6!

where r i is an unknown normalization. The square of t
right-hand side of Eq.~A5! thus becomes

r iE
0

t→`

dt e22l i (t2t)5
r i

2l i
, ~A7!

hence the normalization result,r i52Tl i . Let L be the di-
agonal matrix defined by the square roots (2Tl i)

1/2 of such
normalizationsr i . Let U be that orthogonal matrix which
lists the eigenvectorsu i & as columns. Letn[$n1 , . . . ,nn% be
a column vector of normalized, Gaussian, independent
dom numbers. Since our fluctuation-dissipation theor
states thatM 21/2F5( i 51

n u i &(Tl i)
1/2n i5ULn, the stochastic

force R present in Eq.~3! readsR5Gn, with G5U21UL.
This explains whyG is not expected to be symmetric. Eve
tually, the fluctuation-dissipation can be written in a mo
classical way,

GGT52Tb, ~A8!

whereb5U21M 21/2GM 21/2U is the reduced friction ma
trix.

APPENDIX B

The solution of multidimensional Langevin equations
shown here for Markovian noises. Using the fact that
Euler type variables (x1 , . . . ,x2n) have the same statistica
properties as those of Eq.~15!, we find

W~x1 , . . . ,x2n ,t;X10, . . . ,X2n0!

5^d@x12x1~ t !#•••d@x2n2x2n~ t !#&, ~B1!

5E dk1

2p
•••

dk2n

2p

3K expS i @k1 , . . . ,k2n#F x12x1~ t !

A

x2n2x2n~ t !
G D L , ~B2!

where thexi(t)’s are shown in Eq.~14!. The time integral
will be discretized, withdt5t/L,
be

n-

e

F x1~ t !

A

x2n~ t !
G5E

0

t

dt e2tDaF n1~t!

A

nn~t!
G

5 lim
L→`

(
l 51

L

e2(l 21/2)dtDaF n1~dt!

A

nn~dt!
G . ~B3!

Here, D is the diagonal drift matrix, see Eq.~12! and
n j (dt)5* (l 21)dt

l dt dt n j (t) are the results of random walks i
the force space during the time intervaldt. Then the distri-
bution function can be evaluated in its Fourier space, us
the statistical properties of such random walks,

W~x1 , . . . ,x2n ,t;X10, . . . ,X(2n)0!

5E dk1

2p
•••

dk2n

2p
expS i @k1 , . . . ,k2n#F x1

A

x2n

G D
3p~k1 , . . . ,k2n ,t !, ~B4!

with

p~k1 , . . . ,k2n ,t !5 lim
L→`

)
l 51

L K expS 2 i @k1 , . . . ,k2n#

3e2(l 21/2)dtDaF n1~dt!

A

nn~dt!
G D L . ~B5!

We have used the fact that the random numbers are Mar
ian to say that the average of a product is the product of
averages of its factors.

In the case of a Gaussian noise, the distribution funct
of the random numbers reads

p~n1 , . . . ,nn!5
1

A~2p!n
expS 2

1

2
@n1 , . . . ,nn#F n1

A

nn

G D
~B6!

and, due to their Markovian properties, their integration o
a time stepdt leads to

p@n1~dt!, . . . ,nn~dt!#

5
1

A~2pdt!n

3expS 2
1

2dt
@n1~dt!, . . . ,nn~dt!#

3F n1~dt!

A

nn~dt!
G D . ~B7!

Therefore,
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p~k1 , . . . ,k2n ,t !

5 lim
L→`

)
l 51

L

expS 2
dt

2
@k1 , . . . ,k2n#

3e2(l 21/2)dtDaaTe2(l 21/2)dtDF k1

A

k2n

G D .

~B8!

Reintroducing the time integral, one obtains

p~k1 , . . . ,k2n ,t !

5 expS 2
1

2
@k1 , . . . ,k2n#AF k1

A

k2n

G D , ~B9!

where the matrixA is defined by Eq.~17!. Inverting the
Fourier transform, uponp(k1 , . . . ,k2n ,t), one eventually
gets

W~x1 , . . . ,x2n ,t;X10, . . . ,X(2n)0!

5
1

~2p!n

1

AdetA
expS 2

1

2
@x1 , . . . ,x2n#A21F x1

A

x2n

G D .

~B10!

For Lévy flights, we will restrict ourselves to a one dime
sion problem. The noise is defined by its characteristic fu
tion p(k) in the Fourier space
G

-

p~k!5E dn e2 iknp~n!5exp@2Dukum#, ~B11!

and is the source of an anomalous behavior characterize
a mean square displacement of the form^sq(t)&}2Dtg @12#.
As the fluctuation-dissipation theorem is not satisfied a
more, we keep a generalized diffusion coefficient,D. For the
special casem52, the noise is Gaussian. Similarly to th
Gaussian case, the integration over a time stepdt leads to

p8~k!5E dn~dt!e2 ikn(dt)p@n~dt!#

5exp@2D~dt!12mukum#, ~B12!

after renormalization@13#. Therefore, the average value
the right-hand side of Eq.~B5! can be calculated as

^exp@2 idtn i~dt!~k1e2a(l 21/2)dt1k2e2b(l 21/2)dt!#&

5exp@2Ddt~k1e2a(l 21/2)dt1k2e2b(l 21/2)dt!m#.

~B13!

Reintroducing the time integral, one finally gets

p~k1 ,k2 ,t !5expF2DE
0

t

~k1e2at1k2e2bt!mdtG .
~B14!

For m52, i.e., in the Gaussian case, the time integral can
evaluated analytically, but such is not the case for any va
of m. The only favorable situation occurs for a on
dimensional Smoluchowski equation where

p~k1 ,t !5expS 2DE
0

t

k1
me2amtdt D , ~B15!

see Ref.@5#. This is why we restrict our study to classic
Gaussian noises.
za,
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