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Diffusion over a saddle with a Langevin equation

Yasuhisa Abé, David Boilley? Bertrand G. Giraud,and Takahiro Wada
yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
2GANIL, Bote Postale 5027, 14 076 Caen Cedex 05, France
3Service de Physique Ttique, DSM, CE Saclay, F-91191 Gif-Sur-Yvette, France
4Konan University, Okamoto 8-9-1, Higashinada, Kobe 658, Japan

(Received 9 August 1999

The diffusion problem over a saddle is studied using a multidimensional Langevin equation. An analytical
solution is derived for a quadratic potential and the probability to pass over the barrier deduced. A very simple
solution is given for the one-dimensional problem and a general scheme is shown for higher dimensions.
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[. INTRODUCTION wherer(t) is a Gaussian stochastic force. As discussed in
Appendix B, we rule out any anomalous diffusion process.

The Langevin equatiofi] has been applied to most fields The first two moments of this force are
of physics. It was solved several times for parabolic potential 278
wells, see, e.g., Ref$2—4]. As analytical solutions can be _ I\ _ Lo o
derived for quadratic potentials only, it has really rather be- (ry(1)=0and (ry(Ory(t")= m; -1,
come widely used in numerical simulations. ) _ o )

Our purpose is to establish an analytical expression fol agreement Wlth the dissipation-fluctuation theorem. In the
the diffusion over a potential barrier. In order to have a solv-Previous equationsT, m;, and 8, denote the temperature,
able problem, we assume that, around the saddle point, tHg€ mass, and the reduced friction, respectively. All these
potential can be approximated by quadratic functions. Somgarameters are assumed to be time, position, and velocity
very simple expressions are obtained in one dimension. Bdndependent, or at most very slowly varying, in the vicinity
cause many processes obviously involve more than one c&f the saddle. The angle brackets indicate an ensemble aver-
ordinate, we extend our analysis to multidimensional cases9¢-

We thus derive an analytic expression for the distribution For anyn-dimensional problem, one can generalize the
function of the Langevin equation, valid for multidimen- previous approach, replacing thg,(q,) variables by vec-
sionel models, and then study the probability to overpass thgyrs (Q,Q),

barrier.

Our approach is only valid for classical diffusion satisfy- O+ BO-02Q=R(t). 3
ing the dissipation-fluctuation theorem. A solution for the
one dimension Langevin equation in the overdamped limit isSuch a canonical form of the problem results from two suc-
derived in Ref.[5] for Lévy flights [6], but it cannot be cessive, very standard manipulatiorig: change the repre-
simply extended to multidimensional Langevin equations. sentation by transforming all tensofs such as the friction

The interest of our approach will be shown in the case otensor and the spring tensor, into a forkh~Y27M ~ 2,
heavy-ion fusion problems, for which Langevin equationwhereM is the usual mass tensor, naturally) change again
type simulations have been used by several grdip®)]. the representation so that the spring tensor becomes diago-
The very small cross section of such a mechanism makesal.
numerical simulations very difficult, because very large sta- More precisely, assume some initial representation with a
tistics have to be computed. Our analytical expressionsyector of degrees of freedo@i={z,, ...z,}, driven by a
though using somewhat crude approximations, could be useonstant, symmetric mass tenddy a constant, symmetric
ful to extract some general trends. The problematics of realfriction tensorg, a constant, symmetric spring tensdand a
istic calculations is out of the scope of this paper, where weandom vector forcer. The initial dynamical equation reads
only discuss general considerations concerning the Langevin

formalism. MZ+GZ—SZ=F(t). (4)
Il. LANGEVIN EQUATION This is equivalent to
A. Introduction M 1/22+ M~ l/2gM — l/ZM l/ZZ_ M~ l/ZSM — l/ZM l/ZZ
To study the diffusion over a one-dimensionaD) para- =M~ Y2x(1) (5)

bolic potential barrierV(q;) = — m; w2q3/2 with a given ini-
tial condition g;0<0 and p;c>0, the Langevin equation Now let U be that orthogonal matrix which lists the right
reads eigenvectors ofM~Y2SM 12 as columns. Accordingly,
. , ) M ~Y28M ~Y2=yUDU !, whereD is diagonal.(Throughout
1+ B0~ w10y =ry(t), (1) this argument we rule out, naturally, those very exceptional
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cases where diagonalizations and/or inversions are singulaices, naturally. Whenever this DM can be diagonalized, and
Then the dynamical equation reads as well, in the limit where the time and space derivatives of all physi-

) cal parameters such as masses, drifts, frequencies, etc., can
U IMYZ+U M Y2gM-Y2yu-IMY2Z2— 02U IMY2Z  be neglected, the previous system can be transformed into

=U"M Y2F1). (6) X, X,
d 0
With the definitions, Q=U'MY?z, p=U"M 12 ail P IFP | 0*[4, (13)
XGM Y2y, andR(t)=U "M~ Y2£(t), this is nothing but Xon Xon

the canonical form, Eq.3).
For 2D, for instance, we may obtain the first final degreewhereD is the diagonal drift matriXDDM),
of freedom as a “valley” direction to the saddle and the

other final degree as a “confining” direction a; O 0
—p1 =10 ... 0 12
9 a1 Q2 wi 0 B1 ,312} @ D=6"D¢ o o ’ (12
= L = L = 1 a
a2 0 —w Bz B2 2n
andR(t) is a random force with two components. Such twoand 0'is the "rotation” matrix,
components are correlated whgns nondiagonal but can be "qy] [ X, ]
related, through a suitable matrix to a vector of indepen- )
dent random numbers :
On :
vy(t) =0 . (13
R(t)=I : (8) p1 :
vy(t) : -
with P | Xan
(ra(Om(t))=at=t"),  (wa(hry(t'))=d(t-1"), This matrix ¢ is the matrix of right(column eigenvectors of
and (vq(t)vy(1))=0. (9)  the DM. Any normalization may be chosen for such eigen-
vectors.

The matrix I' is real, but usually not symmetric. The It can be stressed here that the eigenmd¢ieare linear

fluctuation-dissipation theorem, incidentally, which is easycombinations of both positions and momenta, hence the

to derive from the initial form, Eq(4), states tha'I'"  saddle dynamics should be visualized in phase space rather

=2Tp, whereT is the temperature and where the superscripthan coordinate space only. All such eigenmodes are ex-

T indicates transposition. All necessary details are found irpected to decay exponentially with time, except just one,

Appendix A. corresponding to a resulting preferred direction along the
It will be stressed again here that the matriges2?, and  valley, in phase space.

I" take into account an overall multiplication of motion equa- In that same limit where the derivatives of the physical

tions by the inverse of thesquare root of themass tensor. It parameter§masses, ett.can be neglected, such first order

is easy to prove that this manipulation does not change thdifferential equations can be formally integrated into

signs of the eigenvalues of the resulting matrices, and that

such resulting matrices are usually non diagonal. In turn, the x(D=Xje a4 =X,

final spring tenso2? can be made diagonal by the addi- ;

tional manipulation(ii). The generalization ta dimensions :J’ dre @ a; vy(7)+ - +aivy(1],

is trivial. 0

B. Analytical solution i=12,...,2. (14

DefiningP=Q, it is easy to transform Eq3) into a first-  Here thea;;’s are defined from the effects of both * andl’
order differential equation, in a (§-dimensional space, matrices(in matrix notation,a=6"[2], where« is a 2n
Q o 0 Xn matrix, and 0 and” arenXn oneg and thew;'s are

+

0 1 (10) uncorrelated white random numbers, extending E@jsto n
P R|
In the following we call the block matrix

0z -

d
dt

dimensions. Then, the Euler type variables (... Xs,)
should have the same statistical properties as those of

t
0o 1 (J' dre 8T a7+ +apva(nl, ...,
D= 0
0% -p
t
appearing in Eq(10) the drift matrix(DM). In the upper-left deT<372’12r‘7[a(2n)17)1(T)Jr cFannvn(] ]

and upper-right corners of thimX 2n matrix, the symbols 0
and 1 denote, respectively, the null and the unitn matri- (15
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These are Gaussian random numbers whose correlations ambere the matrix elements éfare those defined by E(L6).

easily evaluated from those of thg's,
Ajj (D) =(xi(t)x;(1))
t
:J' dref(a“ai)T(ailajl-l— B +ainajn)
0

1— e t@i+ay) n

= ai—|—aj “~ aikajk. (16)
In a more compact matrix notation,
t
AIJ dre Paa’e . a7
0

Notice the occurrence of the matrix

This makes also a Gaussian distribution, naturally. If neces-
sary, it is then easy to return to the original variables

(d1, - --QniP1s - - - Pn)- Since
[ ql- r Xlealt b r X]_Oealt 1
q :
p" =0 +o| : (19
1 H
Pn | Xon€%2' || Xpnoe®2n'|

where the second term of the right-hand side is the average

0O 0 trajectory and the first one is the diffusion part, it is obvious
T_p-1 Ty —1 that
aa'=40 {0 ZTB}(G) , a
which is trivially positive definite ifd is real. r <q1(t)>- " Q10]
Using functional integral techniques, the full distribution i )
function can then be easily evaluatéske Appendix B for ; ;
detailg and reads (gn(t)) o0 Ono 20
W(Xl ..... Xon ,t;xlo, A YX(ZFI)O) <pl(t)> plO
11 1 “ | |
= expl —=[Xq,... X ALY , _<pn(t)>_ _pno_
(2’77)” detA P 2[ 1 2n]
X2n
(189 and
|
[a1—(au(t)) ]
dn—(dn(t))
At)= p:_<p:(t)> [d1=(a2(D), -, An=(An(1)), P1=(P1(D)), - ,Pr—(Pn(1))] (21)
L pn_<pn(t)>_
t 0
= 0ePA(D)e'P o =2T jodre(t’f)p 0 B elt=n?", (22
Eventually, the full distribution function reads
1 1 1 d1—(qa(1))
. - — Zlg.— - -1 :
W(qla---rpnrtanO!"'ipnO)_(zﬂ_)n detA(t) eXp 2 [ql <ql(t)>1!pn <pn(t)>]A (t) < (t)> ’ (23)
Pn—=(Pn

after renormalization with the Jacobian. This result is wellall degrees of freedom bw; are integrated out. It is also

known; see, e.gl2].

C. Probability of passing over the saddle

To evaluate the probability of passing over the barrier, we
are interested in the “reduced” distribution obtained when

necessarily a Gaussian distribution

W(qllt;qIO! e !an!plo! EEEE ’pnO)
- 1 B (@:—(q:(H))?
a V2w (1) exr{ 202 (1) ] 24
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The only remaining task is then to evaluate,(t)) and 1
oq,(t). From Eqgs.(20), (22) one gets a=(2T By /my)*3 1l (30)

(92(1)) = 012X108%'+ -+ + 0120 X(2m08™" (25 The eigencoordinates read, with =,

and X] [(B1+B2 1|[a, -
= . 1
Y] [(B1=B1I2 1]|ps
crﬁl(t)=<(0nxlealt+ <o+ 01 2n)X2n€%2")?) (26) o
The Euler type variables; andy, are then defined as
2n  2n
= D 040A;(t)e@Tat x(t)=Xe *'—=X,,
s y()=Ye Py, (32)
2n  2n e@+a)t_q
= Gliﬁﬂlj(aa-r)ij (27) and their statistical properties must be the same as those of
i=1j=1 iTa;
t t
2n  2n (ai+a)t (2TB,/my)Y? J‘dTefafvl(T),f dre P (1) |,
esiTa—1 0 0

ST ata (33

non see Eqs(14),(15). The random number,(t) being Gauss-
X 01 21 21 (0™ DinsvBul 0 Dinsw- (28)  ian, x andy are also Gaussian random variables, with
v=1w=
T8 T8
To go further and do more physics, one needs the eigen- (x*(t))= a—r;(l—e‘zat), (y3(1))= b—ml(l—e_zm),
1 1

values and the eigenvectors of the DM. This is not always
feasible analytically for any dimension. However, the previ-
ous scheme can be applied to particular problems where the (x(Oy(t))= 2Th [1—e (DY (34)
drift matrix is explicitly known. Let us first consider the 1D (a+b)ym; '

and the 2D cases, for which some general features will be

shown. see Eq(16).

To evaluate the probability for passing over the barrier,
one needs the following distribution function, necessarily a
lll. ONE DIMENSION PROBLEM Gaussian in the present model:

The 1D approach is interesting because of its simplicity.

Intuitively, choosing as unique variable, the valley one and 1 [g1—(q.(1))]?
averaging all over the others should be enough in a first W(qlrt;qIOvplo):\/——eXp_ 5,
approximation. In this approach, the DM can be easily di- ZWUql(t) qul(t)
agonalized and the diffusion energetical condition, time, and (35

probability can be easily calculated. . )
According to the first row off, see Eq.(29), the valley

. ) ] coordinate is, in terms of the eigencoordinates,
A. Solution of the Langevin equation

There are only one mass and one random fomeceand 1 at ot 1 at bt
R,, respectively. The latter is related to one random number q1=— (Xe*'—ye”) + —(Xoe*' = Yoe™). (36)
vy, hormalized according to E@9). The corresponding ma- 1 1

trix I' boils down to one number only, which, according to
the fluctuation-dissipation theorem, redds:(23,T/m;) .
The eigenvalues of the DM ara=(8;—81)/2 and b=
—(By+ B1)/2, with B;=(B%+4w3)* 2 Note thata>0 and
b<0. The matrixd and its inverse read

The first part corresponds to the diffusion and the second one
to the average trajectory. It is trivial to obtak, and Y,

from g, andp,o according to Eq(31), hence(q,). It is also
trivial to obtain (q2) from Eq. (34). All told, elementary
manipulations yield

-1
0= Dt ' 2 :|1
SR (VR AR RTAY (qu(t)=qye A1t cosr(%ﬂit +%sinr<%ﬂit”
1
(B1+B)2 1 1
is . 29 P10 gz gin = g/
(Bi-pl2 1 (29 +2,31e 1 sml-(zﬁlt), (37

The matrixa=6"*[%] is thus and
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2 2 2
g (H)=(a7) —(qy) '_<1 (20’1\/R
a1 _ Y N
. cot 5 Batiop 5 VB 1 (43
T 1 1
=- 1—9_Blt[2—3in|"?(—ﬁit) in the overdamped one.
mlwi[ ,Biz 2 P
By D. Passing probability
+ ESIHHBJH 1 (38) In this model the probability at a given time that the par-

ticle has passed over the barrier is simply

These results are in agreement with the well-known calcula-

+ 00
tion done for harmonically bound particl§3,4], where the P(t;qlo,p10)=f W(Qq,t;010,P100d 01 (44
sign of the spring force should be changed. 0

B. The critical initial kinetic energy =_erf ( _ (9u(1)) ) _ (45)
Defining the critical energy as the kinetic enerdy, 2 ‘/E‘qu(t)
=%m1pf0, necessary to have half of the particles to pass ) ,
over the barrier, it is obvious that it corresponds to FOr [arge times(1/8;),
lim;_ . ..(q.(t))=0. From Eq.(37) it can be easily shown
M. (a1(1)) q.(37) y (a0 B+ B, \/E 20, K
2o, 2BBBD| VT Bt VT
B+ Bl 2 a; 1T P1b1 1T Py
K= B, (39 (46)
2(1)1
w
whereB=m, w3q%42 is the barrier height. In the weak fric- —\/ %( VB—K) (47)
tion limit, B8,=0, this condition becomel.=B which is a !
trivial result. In the overdamped limi3,>2w,, it becomes in the underdamped limit,
Ke=(B1/w1)?B.
In the case of nuclei, using typical valuésp,=1MeV B w; |K
and 8,=5.10%s" 1, the overdamped limit is usually a good “NT~ E\[? (48)
approximation and a big kinetic energy is necessary to over-
pass even a very small barrié¢,~10B. in the overdamped one. The passing probability is then
known as a function of the initial kinetic energy and the
C. Diffusion time temperature. It increases from 0 to 1 around the critical value

. o K. when increasing the initial kinetic energy. The higher the
As for many physical problems the diffusion process dy-emperature, the smoother is this increase.
namically competes with some other processes, it is interest-
ing to extract also the time necessary to reach the top of the

potential barrier. When the previous condition, E89), is E. Heavy-ion fusion

exactly fulfilled, then When two nuclei are colliding, the kinetic energy of the
) projectile should be higher than the contact energy derived
(q1(1))=q e (At AL, (40) by Bass[10] to observe some fusion events. This so-called

extra-push energy is generally interpreted as an additional
The average trajectory exponentially converges to the top dfarrier due to nuclear forces that has to be overcome by the
the barrier with a typical time equal to Z(+3;), which  viscous nuclear mattef11]. The critical energy derived
becomes 14, in the weak damping limit and B4 in the  above can then be seen as the extra-push energy here.
overdamped one. To calculate the fusion probability of two cold colliding
When the initial kinetic energy is higher than the critical nuclei, the difficulty is then to evaluate the temperature. For
one, Eq.(39), the average trajectory reaches the top of theparticles that can reach the barrier top, at a distdige we

potential barrier at,,, such as will assume that all the remaining energy is totally dissi-
pated. Therefore, with a level densiy.,, we assume that
1 20, K B ae,T2=K— B, neglecting the collective kinetic energy. Then
cotf(zﬂitmp) :B_i( \/%— 2—w1> (41)  the fusion probability is
1 alev82 1/4
The previous equation becomes P(d10,p10 =5 €0 | ¢

coth( w1tiop) = \/E (42) % B+ By ( 1 2w, \/E

2B+ BB\ B+,

in the weak damping case, (49
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In this forr_nula,K is the availablg kinetic energy when.the a,=(— B+ m)/Z.
two nuclei are in contact, an8 is the remaining barrier 5 5
height: a;=(— 1~ VB +4w1)/2,

az=(—BotiV—pB5+4w3)l2,
a,=(—Bo—iN— B +4w))2,

if wy,<B,/2 or w,>B,/2, respectively. Note that only, is
positive, the other eigenvalues are negative or have a nega-
tive real part.

Wheng,,#0, it is easy to show that there are always two
real roots. The first on@, is positive and increasing as a

K=Ecm—Et— Bgass (50

In this equationBg,ssis the Bass barridrl0] andE,, is the
rotational energyE o= E¢ mbi /Ry, wherebyy, is the im-
pact parameter.

Therefore, the fusion probability reads

1/4
P(E. b= Eerf aje,B function of 81,. The other on@, is negative and decreasing
emo SS9 _p2 JR2) _ _ as a function of the same. When the other two roots are real,
Ec.m.(l b|mp/R12) BBass B o . . .

it is also trivial to show that they remain negative. For large

B1+ B} 20, values of,Blz, Whichl/sztart reaghing significant fractio.ns Qf

X - that maximum 3, 8,)~'4, which is acceptable for a semiposi-

\/2( 24 /) +3! Mo T
Bit B1p1 B1t By tivity of friction, the other two roots may become complex

conjugate. But the statement Re (<0 fori>1, is still true.

(51  Toillustrate the behavior of the eigenvalues, we consider the
special case wherg;=pB,=1 andw;=w,=w. The equal
diagonal viscosities being taken as a unit, the polynomial

To compare this probability with other theoretical calcula-€quation whose roots are the eigenfrequencies of the prob-

tions, we need to choose parameters specific to our probletim reads

and deduce the potential and dissipation terms. The present

paper being rather dedicated to a good qualitative under-

standing of the Langevin model, numerics with realistic pa—Sg

\/Ec.m.(l_ bﬁnp/Riz) - BBass)
X B .

a*+2a’+a’— w*=pLa’. (55)

igure 1 shows, whep,, increases from 0 to 1, the graphs
f the four roots, or of their real parts when some of them
ecome complex. Here=0.35, which corresponds to over-
Hamping at the beginning, whe#y,=0. The merging of the
two intermediate roots and their complexification are trans-
parent. Once such roots have become complex conjugate,
IV. THE TWO-DIMENSIONAL MODEL their common real part, however, remains negative. Then
Fig. 2 shows the case=0.6, where the two intermediate
roots are always complex, with a negative, common real
Choosingq; as the valley variable, the associated distri-part.
bution functionW(q,t;910,920,P10:P20) IS @ Gaussian and Hence, whert—o, only the “a; mode” survives. The
the probability at a given time to pass over the saddle readgading terms in Eqg25) and(27) for long times are

rameters will be kept for a future paper. However, numerical
simulations already available seem to indicate that at lea
two dimensions are necessary to really have a good unde
standing of the diffusion phenomena in this problggh

Passing probability

+o0 gile2al’[(a,aT) 1

P(t;010,020,P10,P20 = o W(d1,t;d10,020,P10, P20 d 1 (g1(1)) = 61X, €711, Uﬁl(t):T (56)

1

(52)
The result fort—« reads
t
=—erfc _ {@®) : (53 1 X10
2 \/Ea-ql(t) P(d10,020,P10,P20 — erfe| — —|,
V2A1,
The difficulty is then to find(q4(t)) and o (t), see Egs. —

) (D)) and o, (1), e £ Ay (aa")y,/(2ay). )

(25 and(27). When the two degrees of freedom are uncor-
related, namely, wheiB1,=0, the eigenvalues of the DM |t s similar to the result obtained in 1D, provided we choose

are, obviously, the proper coordinate
a;=(— B+ VB +4w?)/2, ay
1= (TAt VAL dw) X1= 0i01+aip;— o5 ——(— w50,+aip,).
a,=(— B~ B +4w)2, wytayt Bra; -
2= (et NP du)l2 The condition to have half of the particles t th
e condition to have half of the particles to overpass the
3= (= B2— VB3~ 4w3)/2,

barrier is thenX,;,=0. When the two degrees of freedom are
uncorrelated 8,,=0), one gets the same condition as in one
or (54) dimension, Eq.(39). But in general, it is not possible to
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FIG. 1. Real part of eigenvalues as functions of nondiagonal FIG. 2. Real parts of eigenvalues as functions of nondiagonal
friction. Overdamped regimey=0.35< 3/2=0.5. Notice how two friction. Underdamped regimap=0.6>3/2=0.5. Since two ei-
real roots fuse, then become complex conjugate, to generate oggnvalues are complex conjugate, only three curves appear.
branch instead of two.

. o S tradicts the naive, intuitive expectation of a distribution with
simply express it in terms of the initial kinetic energy be- two peaks moving apart from the fusion barrier. In fact, the
cause it also depends on the orientation of the initial velocitywvay over the barrier simply results from a competition be-
in the potential landscape. For the same reasons, the diffuween the drift of the center of the Gaussian and its spread-

sion time is not easy to evaluate either. ing.

Note that in the previous graph&igs. 1 and 2 a, is For exotic noises leading to anomalous diffusion, such as
almost constant and could be approximated by the valugévy flights, the Langevin equation can be analytically
given in Eqs.(54). _ solved for a one-dimensional overdamped motion where the

Then we can evaluat® 4, Langevin equation reduces to a Smoluchowski one. In that

case, the solution is given in R¢b].

T
A= a [B1(0™ Y st B0 T4+2B12(0™ D130 14l
(59
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, 205+2a%+ Ba,

2 5 . 5 1. (60) APPENDIX A
(w3+aj+ Bray)

A=Tay| 1~ pia
In order to avoid possible confusion brought by the three
Again, when the two degrees of freedom are uncorrelate§Uccessive changes of representation expressed by the matri-

(B1,=0), one gets the same probability as in one dimensionc€S M__m, U, and #, we prove again the well-known
Eqs. (45) and (46). fluctuatlon—d|SS|pat|on theorem. Our precise purpose is to pa-

rametrize the random ford®, see Eq(3), in terms of dimen-
sionless, independent random numbers normalized to
unity, see Eq(9). The starting point is a simplified form of
In this paper, we showed a general scheme to solve muEg. (4), namely, a situation where just the friction and the
tidimensional Langevin equations near a saddle point. In ongandom force are present,
dimension, the solution is very simple and the diffusion con-
dition, time, and probability can be easily expressed. This MZ+GZ=F(t). (A1)
means that in the case of a simple one dimension model for
heavy-ion fusion, one can analytically estimate the extraThis leads at once to a simplified form of E&),
push energy, the fusion time and its probability.
For higher dimensions, the stochastic dynamics is again M Y27+ M~ Y2GM ~ VM 127 = M~ 12 t). (A2)
easily solved, but a difficulty remains, namely, the explicit

diagonalization Of. the drift matrix. !n such conditior_ls, a 98Nt i convenient at this stage to diagonalize the real, symmet-
eral analytic solution cannot be written, but the main features; . positive definite matrix3=M ~Y2GM ~ Y2, and obtain its

we found could b.e easily applied 1o Very.specmc phySIcaIrepresentation in terms of its eigenvectfirsand eigenval-
problems. In particular, we showed the difference between S\
) i
the dominant degree of freedom and the damped ones. The
possible occurrence of complex eigenvalues corresponds to n
residual oscillations in subdominant degrees. B= 2 NG (A3)
In every case, the Gaussian solution to the problem con- i=1 '

V. CONCLUSION
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This decouples Eq(A2) into independent modes, relaxing X1(t) v1(7)
separately towards thermal equilibrium for large times, ) dre-™
: = T o
(iIMY2Z) = = \(i[MY2Z) + ([ [MTY2F(1),  (A4) Xe)] " vn(7)
namely, L v1(67)
t =lim >, e /"1yl | (B3)
. . (=) I — /=1
<||M1/22>etﬁ+xfod7e MNEDGIMTY2E( 7). (A5) L vn(87)

The lefi-hand side of this limit, Eq(AS), can now be Her®:D Is_the dd'agona' drit matr, see '30[12) and
squared as a kinetic energy and then ensemble averaged to ?é 7)=J(/ 1)5,d7 vj(7) are the results of random walks in
o the force space during the time intervét. Then the distri-

- T 27 2
equated with the Boltzmann energy= ((i[M™*Z))*. (We 1 ion function can be evaluated in its Fourier space, using
set the Boltzmann constant as a utkit; 1, as usual. The e siatistical properties of such random walks,

right-hand side of Eq(A5), in turn, can be constrained by

the following ansatz for ensemble averaging W(Xq, . .. Xan,t;X10, + - - X(2n)o)

H - H — ’ ’ X

(iIM~Y2F(n))W(iIM 2R )y =pid(7—7"), (AB) dk,  dkyy _ !

i . i = 2_ . 2 eXp |[k1, ...,kzn]
where p; is an unknown normalization. The square of the 7 ™
right-hand side of Eq(A5) thus becomes Xan
X p(kll e 1k2n 1t)! (84)
toe .
pifo dre‘”‘i(‘_”=2p—)ii, (A7) with

hence the normalization resuli;=2T\;. Let A be the di- L
agonal matrix defined by the square rootd§2)¥2 of such  p(ky, ... kon,t)=lim [T { exp| —i[ky, ... Kon]
normalizationsp; . Let ¢/ be that orthogonal matrix which Lo /=1
lists the eigenvector$) as columns. Let={v4, ... ,v,} be
a column vector of normalized, Gaussian, independent ran- v1(87)
dom numbers. Since our fluctuation-dissipation theorem xe (/U2 . (B5)
states thaM ~Y2F=3"_,[i)(T\;)Y2s;=UA v, the stochastic vo(S7)

force R present in Eq(3) readsR=T"v, with ['=U"1/A.
This explains whyl is not expected to be symmetric. Even- We have used the fact that the random numbers are Markov-
tually, the fluctuation-dissipation can be written in a morejan to say that the average of a product is the product of the

classical way, averages of its factors.
- In the case of a Gaussian noise, the distribution function

I'r=21p, (A8) of the random numbers reads
where B=U "M ~¥26M ~1/2y is the reduced friction ma- ”
trix. 1 1

(v, ... vy)= expl —=[vq, ...,V
p 1 n (2,”_)” p 2[ 1 n]
APPENDIX B Vn

B6
The solution of multidimensional Langevin equations is (B6)

shown here for Markovian noises. Using the fact that theand, due to their Markovian properties, their integration over
Euler type variablesxy, . .. Xpn) have the same statistical a time stepdr leads to
properties as those of E¢L5), we find

PLve(87), ... wn(67)]

W(Xq, -+« Xon,t; Xq0s -« - Xono)

1
= (X1 =X (D] - - [ Xon—X2n(D)]), (B1) " J2mon
C(dky  dky, 1
") 27 2m X ex —2—57[1;1(57),...,1;”(57)]
X1—X1(t)
X\ exp| i[Ky, ... Kol : , (B2) v1(07)
X2n_X2n(t) X S (87)
vo(67)

where thex;(t)'s are shown in Eq(14). The time integral
will be discretized, withér=t/L, Therefore,
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p(Ky, ... Kon,t)

L

ot
= lim [] exp — =[kq, ... ko]
L~>oo/:1 2

ki
x @ (/=125 ,  Ta=(/~1/2)67D
Kan
(B8)
Reintroducing the time integral, one obtains
p(Ky, ... Kop,t)
ki
1
= ex - E[kl, P ,k2n]A y (Bg)
Kan
where the matrixA is defined by Eq.(17). Inverting the
Fourier transform, upomp(ky, ... ky,,t), one eventually
gets

W(Xq, ... Xon,t;X10, - - - X(2n)0)

X
11 !

" (2m)" JdetA

— E A*l
exp 2[le e 1X2n]
X2n
(B10)

For Levy flights, we will restrict ourselves to a one dimen-

P(k)=Jdve_ik”P(V)=eXd—A|k|“], (B11)

and is the source of an anomalous behavior characterized by
a mean square displacement of the fdiom(t))c2At” [12].

As the fluctuation-dissipation theorem Is not satisfied any
more, we keep a generalized diffusion coefficientfor the
special caseu=2, the noise is Gaussian. Similarly to the
Gaussian case, the integration over a time gtepeads to

b (k)= J du(57)e Kol o( 57 ]

=exd —A(57) 1 #k|#], (B12)

after renormalizatiof13]. Therefore, the average value in
the right-hand side of EqB5) can be calculated as

<eXF[ —i 57-Vi( 57')(k1e_a(/_ 1/2)5T+ kze_ b(/—1/2)57)]>
— exp{ —A 57.( klefa(/f 1/2)6T+ kzef b(/— l/2)57),u] )
(B13)

Reintroducing the time integral, one finally gets

t
p(kl,kz,t):exp[ —AJ (ke 37+ kze_bT)”dr}.
0
(B14)

For u=2, i.e., in the Gaussian case, the time integral can be
evaluated analytically, but such is not the case for any value
of u. The only favorable situation occurs for a one-
dimensional Smoluchowski equation where

t
p(kl,t):exr{ —AJ k‘fea’”dr), (B15)
0

sion problem. The noise is defined by its characteristic funcsee Ref[5]. This is why we restrict our study to classical

tion p(k) in the Fourier space

Gaussian noises.
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