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Nonlinear measures for characterizing rough surface morphologies
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We develop an approach for characterizing the morphology of rough surfaces based on the analysis of the
scaling properties of contour loops, i.e., loops of constant height. Given a height profile of the surface we
perform independent measurements of the fractal dimension of contour loops, and the exponent that charac-
terizes their size distribution. Scaling formulas are derived, and used to relate these two geometrical exponents
to the roughness exponent of a self-affine surface, thus providing independent measurements of this important
quantity. Furthermore, we define the scale-dependent curvature, and demonstrate that by measuring its third
moment departures of the height fluctuations from Gaussian behavior can be ascertained. These nonlinear
measures are used to characterize the morphology of computer generated Gaussian rough surfaces, surfaces
obtained in numerical simulations of a simple growth model, and surfaces observed by scanning-tunneling
microscopes. For experimentally realized surfaces the self-affine scaling is cut off by a correlation length, and
we generalize our theory of contour loops to take this into account.

PACS numbg(s): 05.40:—a, 68.35.Bs, 64.60.Ak, 06.36k

[. INTRODUCTION ably from surfaces produced in equilibrium or by a linear
process, even if they share the same scaling exponents. This
Random surfaces are widely used in the physical sciencesotivates a search for roughness measures independent of
to model phenomena ranging from the extremely smalthe quadratic onese.g., the mean-squared heighivhich
(quantum gravity to the very large(Earth’s reliej. They  might identify important distinctions between different sur-
describe crack fronts in materials scierldd, ripple-wave face models that have similar spatial power spectra. Such
turbulence 2], passive tracers in two-dimensional fluid flows measures, although motivated here in the context of self-
[3,4], cloud perimeterd5,6], and shapes of stromatolites affine or multiaffine surfaces, should be handy even for sur-
(conjectured fossil accretions of ancient bactefid], to  faces showing no self-affine regime. They can quantify fea-
mention but a few recent examples. Our focus in this paper isures of morphology which are presently characterized by
on the morphology of deposited metal films, which developeye, which should permit a more systematic comparison be-
random self-affine surfaces under several quite different nontween observations and models than at present. One can
equilibrium growth conditions, as indicated by theoretical,imagine that, armed with two or three kinds of roughness
numerical, and experimental results over the past decad@easures tuned to different qualitative aspects of the surfaces
[8,9]. morphology, one could construct empirical “phase dia-
Surface configurations are parametrized by a twograms” in this two- or three-dimensional parameter space,
dimensional fieldh(x) which represents the height of the e.g., mapping out domains in the parameter space that corre-
surface above a reference plapg. Theoretically the dy- spond to various growth conditions.
namics of a growing surface are described by a continuum Given the surface as parametrized by an array of
(Langevin equation givingdh(x)/dt as a sum of a Gaussian heights—obtained, e.g., from a simulation or a scanning-
white noise term, to mimic the random deposition of atoms tunneling-microscopéSTM) experiment[10}—we ask, in
and a polynomial of various gradients bd{x), to model what different ways can the surface morphology be charac-
relaxation processes on a coarse grained scale. The noneqtérized? In general, one requires more than one characteriza-
librium growth behavior is due to the interplay of the depo-tion to confirm a match between experimental and simulation
sition and relaxation terms. data, or to convincingly verify self-affineness. For the ap-
One would guess that even a snapshot of the morphologylied problems of growing flat surfaces.g., for semicon-
should carry evidence of the nonequilibrium, nonlinearductor devicesor regularly modulated one®.g., to nano-
growth process which produced it, and should differ measurtabricate arrays of quantum dtst is also desirable to
develop independent measures that quantify different aspects
of a rough surface’s geometry. In this paper, we propose two
*Present address: Physics Department MSO057, Brandeisategories of measure for characterizing spatial correlations
University, Waltham, MA 02454. Electronic address: of rough surfaces. These measures are usable on any kind of

kondev@brandeis.edu rough model, and require no dynamical information, so they
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H2X 3CB. films, but all the diverse phenomena mentioned above.
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Outline of the paper height profileh(x). A self-affine surface isoughif «>0.

We start with a short reviewSec. 1) of self-affine geom-  Furthermore, for the surface to exhibit a two-dimensional
etry in terms of its rea|-spaCE, Fourier space, and fractgﬂ:haracter(at distances much Iarger than the surface width
properties. In Sec. Ill we introduce the nonlinear measureghe rescale factor in the vertical direction) cannot exceed
the scale-dependent curvature, and the loop measures, féie one in the horizontal directionb), i.e., we require
which various scaling relations are derived in Sec. IV. Thesa=<1.
scaling relations are modified in the presence dfirae de-
pendenk cutoff length scale, above which the height fluctua- A. Real-space properties
tions are no longer self-affine, and this situation is described . . S .
toward the end of Sec. IV. This concludes the first half of the, The se]f—afflne scalllng of th? height is typically measured
paper, which deals with the theory of nonlinear measures. by the height-correlation function

The se_cond half of the paper is devoted tp ana_lyzmg data D,(r)=([h(x+1)—h(x)12)~]|r|?, 2.2
obtained in numerical simulations and experimargigthe

measures introduced in the first part. It starts off with Sec. there the scaling with separatior] is a direct consequence
where we present the results of our simulations of randorrg)f the self-affine property, Eq2.1), which states that has a
Gaussian surfaces for various values of the rogghness ex.pgéaling dimensionx. In éxperiménts, the correlations that
nent 0=a=1. These simulations serve to confirm the vari-|o, 1 seif-affine scaling of the surface develop over time,

ous scaling relations derived earlier. In Sec. VI the nonlinea(Nhich we take to be measured from the start of the deposi-
measures are applied to a nonequilibrium growth model, th on process. That is, after tinteself-affine scaling will be

so-called single-step model, which is known to belong to theobserved only up to length scales smaller thandbeela-

Kargar—Parltsrfh?ﬁg unlfvelrsallty fclass. Finally, '? Sec. IVI!tion length £(t). Physically the height correlations develop
we demonstrate the USETUINess of our measures 1or analyzing e 1, ‘the various surface relaxation processes that are

experimental data on the example provided by a STM imag resent under the given growth conditions

of a growth roughened metal film. The discussion sectio Numerical simulations of various surface growth models,

((:i(rer?.a\r/iggnszgtc]v:gﬁe?hgu;evv?minrter?)glli’egIvrﬁZazu(r:ggcglnﬁ well as experiments under different conditions, have
b y own that¢ grows with the duration of the deposition pro-

those used previously, and points out some interesting ne ; - ; Lo,
directions in which progress can be made. The three appen\él-ess't’ according to the dynamical scaling relatidre]:

dixes are reserved for details of the calculation of the loop
correlation exponent in the case of equilibrium rough sur-
faces(Appendix A), details of the derivation of percolation

exponents for contours of uncorrelated heighAppendix X
B), as well as a full description of the loop finding algorithm C12SSes of growth each characterized by the exponearsd

which is at the heart of the numerical simulations and the? [9,12]. Experimental efforts have been _focused_on eXtraCt'
loop analysis of STM datéAppendix O. Ing these exponents from data obtained using various

surface-sensitive methods: x-ray or helium diffraction, STM
scans, etc[8] In this paper, we will be almost entirely con-
cerned with the spatigkequal-time correlations.

()~ 2.3

It is believed that there are only a few different universality

Il. SELF-AFFINE GEOMETRY

Here we review the scaling properties of self-affine inter-
faces in real space and in Fourier space, as well as the fractal B. Fourier-space properties
geometry of their level sets. The surface is fully specified by
the height fieldh(x), which may be the microscopic heights
of individual surface atoms above the substrate, as measured
by a STM, or it may be a coarse grained quantity represent-
ing the average of individual atomic heights over a region,
[11]. Also, we assume that any overall tilt of the surface had
been subtracted.

The defining property obelf-affinesurfaces is their in- "H(q):J d2xh(x)e 19X, (2.5
variance under rescaling. That is, the probability distribution
function (PDF) for h(x) is such that

The power spectrum of a self-affine surface
S(a)=([h()[*) (2.4

s defined in terms of the Fourier transformed height

The height correlation function ignearly related to the

h(x)=b~*h(bx) (2.2 height power spectrum,
for any b>1, wherec« is theroughness exponentere the D :zf d? 1— ) 26
symbol= means ‘“statistically equivalent with respect to the 2(1) aS(@)[1-cosq-n], (2.6

PDF.” In other words, if we stretch the surface by a rescale

factor b in the horizontal directiorfparallel to the reference as is any other translation-invariant expectation quadratic in
planex), then to obtain a statistically equivalent surface, weheights, such as the net variance. Equati¢hé) and (2.2
must stretch by a factds® in the vertical directiorjithe per-  imply the scaling

pendicular direction of the heighlgx) ]. A central theme of

this paper is the different ways of determining given a S(q)~|q| 2@+, (2.7
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for small values ofq|. In the case of a surface with a finite ¥
correlation lengthS(q) crosses over to a constant value for 2007
|g| < 1/&(t); this situation is discussed in more detail in Sec.
IVE.

Clearly, S(g) does not uniquely characterize a self-affine 4441
ensemble of surfaces. For example, it is invariant under
h(x)— —h(x), yet surfaces produced in nonequilibrium
growth typically break the up-down symmetry. Furthermore, .
given anyS(q) one can always construct a Gaussian en-300f .- -
semble by linear addition of Fourier components—we do e
this in Sec. V—yet the real growth process is typically non-
linear, and the surface is non-Gaussian. Indeed, confirmatiol
of the scaling given by Eq92.2) or (2.7) in experiments
cannot be interpreted as conclusive evidence for a self-affine
geometry: that is a property of the whole ensemble, and sc
requires proper scaling of all moments and correlations, not, ;4|
just the second moment.

Quadratic roughness measures

The height-correlation functiofEq. (2.2)], is the most ° 0 100 200 300 200 500
standard measure in theoretical discussions, in that “rough- X
ness” is defined by the divergence of this function as its
argumentr approaches infinity(Nonmonotonic behavior of
this function has also been usgtB] to measure the charac-
teristic spatial scale of mounds or other patternaanself-
affine surfaces. We will show that the scaling of contour loops uniquely

On the other hand, the Fourier power spectflig. (2.4]  specifies the scaling of the associated self-affine rough sur-
is central in theoretical derivations but rarely used in experiface; this will be expressed in formulas giving the geometri-
mental analysigexcept for Ref[14]). This seems to be the cal exponents in terms of the roughness exporentt is
best quadratic measure, in that it most cleanly separates tR@mewhat surprising that, by doing measurements solely on
contributions from fluctuations on different length scales,the level set, information can be obtained about the out-of-
and it shows the sharpest knéen a log-log plot where  plane fluctuations of the surface. For experiments that yield

FIG. 1. Contour plot of aw=0.4 random Gaussian surface
h(X,Y); X andY are in units of the lattice spacing, ahd=512 is
the system size.

self-affine scaling is cut off. _ _ only level-set data without the heights.g., electron micro-
Another quadratic measure is the total variancl(f) in  scope images of stacks of lamellae in soft matter after they
a box of sizeb, as a function ob [15,16]: have been freeze-fractured along a perfectly flat p[a@d)
our contour-loop analysis is thanly route to extracting the
((h(x)=hp))p, (2.9  roughness exponent.

T . . I1l. NONLINEAR MEASURES
whereh,=(h(x)),, and(- - - ), means the spatial average is

only taken over a square of sidecentered orxy; this vari- In the past the analysis of rough surfaces mostly relied on
ance should be averaged over different choices,of measures which probed the second moment of the heights,
such as the height-correlation function or the power spec-
trum [defined in Egs.(2.2) and (2.7) below]. But that is
inherently insufficient to distinguish different growth en-
Self-affine surfaces are fractals only in a generalizedsembles or even to verify self-affineness.
sense, since the horizontal direction rescales differently from Therefore, to more fully characterize rough surfaces, in
the vertical direction. On the other hand, the level set of suclthis section we introduce two types nbnlinear measures,
a surfacgdefined as its intersection with a horizontal plane i.e., measures that amot linearly related to the structure
is a fractal objec{17]; see Fig. 1 below. Different planes of function of the height field. Nonlinear measures of the first
intersection give statistically equivalent level sets, since theype (Sec. Il A) are moments of the “scale-dependent cur-
height fluctuations of a rough surface are unbounded. Levalature” a modification of the standard height correlation
sets consist of contour loops which are the connected confunction which can identify deviations from Gaussianness of
ponents. We expect these to be fractal as well, with a fractahe height fluctuations, in particular the skelup-down
dimensionsmallerthan the dimension of the whole level set, asymmetry at various length scale§Ne will compare these
which is simply the union of all contour loops of the sameto existing nonquadratic roughness measures in the discus-
height. Furthermore, contour loops come in all sizes limitedsion part of Sec. VIII\.
only by the system size, and an exponent can be defined that Measures of the second type were introduced in RéX;
characterizes their size distribution. Since contour loops arthey are distributions of three different geometrical quantities
connected clusters thejeometricalexponents are analogous defined for contour loopsgor simply “loops™) of constant
to those defined for percolation clusters. height, which make up the level sets of the height function.

C. Fractal properties
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These measures are associated with geometrical exponeirsthe behavior of the function in different rangestobr r
that characterize contour loops on self-affine rough surfaceseveal qualitative differences of the surface morphology on
the loop correlation exponent, the fractal dimension of ahe corresponding length scales.

loop, and the length distribution exponent. In principle, gth order moments may scale with well-
defined exponenta,, yet the surface is not self-affine since
A. Scale-dependent curvature aq#qa violating Eq.(3.5); this is called a “multifractal”

more precisely, “multiaffine” surfac¢20]. Slow tran-

nts of multiaffine behaviofup to ~10 steps ind=1

+1 and~10? steps ind=2+1) have been seen recently in
(Th(x+1)—h(x)13); (3.1) numerical simulations of growth mod€J&1] (which, how-

ever, are believed to be asymptotically self-affin@he

however, this is identically zero on an isotropic surfémed  analogous higher order structure functions are a central issue

wheneverr— —r is a symmetry. To escape this problem, in turbulence, where the violation of self-affif&olmog-

we observe thdu(x+ r) — h(x) is a sort of first difference at orov) scaling is well established and is associated with inter-

scaler, and replace it by a sort of second difference. That ismittency of the velocity field fluctuation2].
we define the “curvature at on scaleb” as The scale-dependent curvature can be contrasted with
Krug's height-difference momen{&0],

. . .__.or,
The obvious real-space-based nonquadratic generahzatmg*ine
of the height-correlation function is

M

Co(0= 2, [n(x+bem) =N() 3.2 Dy(r=(|h(x+1)~h(x)|%, (3.6

where the offset direction$e,,} are a fixed set of vectors o ) ) )
summing to zero. In our numerical implementation of this@ natural generalization of the height-correlation function us-
measure, wheréx} is a square lattice, we choose four suching an absolute value to avoid the trivial cancellation in Eq.
offsets related by 90° rotations, pointing either along the(3-1. Das Sarma and co-workef83,21] used Eq.(3.6) to
{10}- or {11-type directions. These two sets of offsets test for multiaffine behaviotwhereby the If power of theq
should give equivalent resultfor the sameb), provided the ~Moment scales with exponedepending on qunlike the
surface is statistically invariant under rotations in the referSimpler self-affine cageFor odda, Eq.(3.6) is insensitive to

ence plane. We then define curvature moméai for in- € up-down symmetryor lack thereof since it is nonzero

teger powers). anyhow. Our “curvature” seems to be the simplest function
The first moment ofC, is manifestly zero; the second that detects the skew locally.

moment is linearly related to the height-correlation function:

B. Fractal dimension of contour loops

M M
1
(Ch(x)%)=M E D,(be,) — > E Dy(b(en—e€y)). For the remainder of this section, we must defineltiog
m=1 mn=1 ensembleConsider a contour plot of a rough surface with a
(3.3 fixed spacing\ between heights of successive level sets. We

This is shown by inserting Eq3.2) and then decouplin takg it to be an arpitrary constant much smaller than the
([each term of trzle doublg sgm )using the identitr;zm(g typical (rms) fluctuation ofh(x). The value OTA dc_)es not
—hg) (Ny—ho) = 1/2{(hy,— ho) 2+ (hy— ho)2— (= ) 2} affecf[ our exponents, and we need_ to consider it explicitly
oA 0 only in the arguments of Sec. IV A; in other places we may
implicitly scale h(x) such thatA=1. In STM images of
ough metal surfaceA is usually the height of a single step

The higher moments &, serve to measure thpossible
deviation of the height fluctuations from the Gaussian distri
bution. For example, if the surface has up-down symmetr

he—h (as all Gaussian surfaces)dé[Cy(x)]?) vanishes, °n the surface. . . o
On the other hand, non-equilibrium grown surfaces often The contour plot consists of closed nonintersecting lines

have rounded “hilltops” and sharp “valleys”; that tends to in the plane that connect points of equal height, which we

make(Cg>>O a signature of “skew” in the distribution. call contour loops(see Fig. 1 Every random-surface con-

L figuration maps to a configuration of contour-loops; when
Similarly, the_: fourth moment can also be used to test whethetrhe probability weights of the respective configurations are
the surface is Gaussian, since in that case

taken into account, this defines a mapping of the random-

4 22_ surface ensemble to tlwwntour-loop ensembl&he contour
{LCCOIDAICH0 =3 349 loop ensemble arising from self-affine random surfaces is
For a self-affine surface (we shall argugself-similar; the loops are connected clusters
that can be studied using scaling, jusfastical) percolation
([Cp(x)]¥)=constb9” (3.5 clusters have been analyzed in previous W@#.

For every contour loop in the loop ensemble we define a
follows from Eq. (2.1); of course the coefficient might be loop lengths and a loop radiuRR. In all the examples we
zero as is the case for odfl when the height field has up- study the heights are defined onlax L square lattice with
down symmetry. lattice constana. The loop length is measured with a ruler of

Functions such aéCy)) (as a function ob) or D4(r) (as lengtha while the loop radiugreally a diameteris defined
a function ofr) can also be used as “spectra” of the height as the side of the smallest box that completely covers the
fluctuations fornonself-affine surfaces. That is, differences loop; see Fig. 18.
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In the loop ensemble we define a joint distributiofs, R) P(s)=sP(s); (3.12
(independent of the contour spaciag such that the number
of loops with length in §,s+ds) and radius in R,R+dR), the additional factor of is because each site could be the

per unit area, is origin in the definition ofP(s).
5 Assuming that the loop ensemble is scale invariant we can
A~ In(s,R)ds dR (3.7  define the length distribution exponenty
The factor A~! has the obvious significance that if one P(s)~s ("1 P(s)~s . (3.13

halves the contour spacing, one has twice as many contours. . .
Assuming that the loop ensemble is scale invariant, welhis is to hold for large contour loops, i.e., those of radius
expect than(s,R) has a scaling form much bigger than the microscopic scalelndeed, inserting
' Eq. (3.9 into Eq.(3.11) gives Eq.(3.13, with
~ ey b
n(s,R)~s Yf (s/R""). (3.9 y=1+1/D;. (3.14)
HereD; is the fractal dimension, anglis simply related to

the length distribution exponent which we define in Sec. ~ ©On the other hand, we could also defingR) such that

Il C. A~'n(R)dR is the total number of loops, per unit area,
In practice, the exponerid; is measured by the scaling Whose radius is in the rang&(R+dR). Obviously
relation .
(s)(R)~RPr, 3.9 n(R)=fO n(s,R)ds. (3.15
where Doing the integral and then eliminatingusing Eq.(3.14)
. gives
sn(s,R)ds -
fo (.R) n(R)~R~ @ +Pi(r=1)) (3.1
(SHR)=—F—— (3.10
f n(s,R)ds We would have obtained the same result more quicahd
0 more dubiously had we assumed a strict relationship be-

. S tween radius and lengtis=(cons)RP, rather than write
is the average loop length for loops whose radiuR.ighe Eq. (3.9). gis=( )

scaling in Eq.(3.9 follows immediately from the assumed
scaling form in Eq.(3.9).

The dimension defined in Eq3.9) is really thescaling
dimension of the loop length, i.e., it defines the relation be- The loop correlation functiorG(r) measures the prob-
tween larger and smaller loops in the distribution. On theability that two points separated Ioylie on the same contour
other hand, theproper fractal dimension(either the Haus- loop. This correlation function is nonlocal, for the connect-
dorff dimensionD, or the self-similarity dimensionrefers  edness of the two points depends on every site on the portion
to the relation between bigger and smaller pieces of the sant® loop between them. Thi®op correlation function should
loop. ThusDy, is defined bys~a PH, i.e., how the loop be distinguished from thdevel-set correlation function

D. Loop correlation function

length scales with the ruler size. When the contour-loop diswhich simply measures the probability that two points sepa-
tribution is self similartas we shall assumehe two kinds of  rated byr are at the same height. For the loop correlation

dimensions are equivalent. function to be well defined the contour lines are considered
to be of finite width given by the microscopic scaeDue to
C. Loop length distribution exponent rotational symmetry of the loop ensembi&(r) depends on

- r=|r| only, and for large separationssa) we expect it to
We define the loop number densitP(s) so that fall off as a power law:

A~1P(s)ds s thetotal number of loops, per unit arémea-
sured in siteg with lengths in §,s+ds); a related distribu-
tion of loop lengthsP(s), is defined such that “1P(s)dsis
the number of loops passirfrough a fixed poinfsay the
origin) with lengths in the ranges(s+ds). In lattice models  This equation defines the loop correlation exponenthich
(including our numerical examples in Secs. V, VI, and)VIl s at the heart of the scaling theory of contour loops devel-
sis an integer andP(s) is essentially the probability that the oped below.
loop has lengtls.

1
G(r)~— (3.1

r2X ’

From comparison to E(3.7) it is obvious that IV, SCALING RELATIONS
= “ In this section we derive scaling relations among the
P(s)=| n(s,R)dR. 3.1 ?
(8) fo (SR) (3.1 roughness exponenta, and the three geometrical

exponents—B;, 7, and x,—associated with contour loops
Since the total number of sites along a loop is equal to iteind defined in Sec. Ill. These formulas are corollaries of the
lengths, we have self-affineness of the rough surfadeg. (2.1)]. Furthermore,
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for grOWth on an |n|t|a”y flat substrate the helghts will be also holds for the new contour ensemb|e, thnﬁlé(R)
uncorrelated beyond a certain time-dependent length scaI%ﬁ(R)_ So we obtainn(R/b)=b3"“R(R), which implies
and the large contour loops are best modeled as hulls %e scaling '
percolation clusters. This implies a crossover to a different
set of exponents as worked out in Sec. IVE. The scaling A(R)~R~3+, 4.2)
relations—including the finite-size and finite-time forms in
Secs. IVD1 and IV E 1—will serve as a useful tool for ana-  Equating Eqs(4.2) and (3.16 leads to the first scaling
lyzing the surface morphologies obtained from numericakelation (called “hyperscaling’)
simulations and in experimenfsee Secs. VI and VIl

There are three stages of the main derivation. First, we Di(r—1)=2-a. 4.3

establish a relationship between the self-affine expoagent ) ) ) ) )
the fractal dimensio;, and the loop-size distribution ex- 1NiS scaling relation was derived previously by Hukewl.

ponentr: it is analogous to the hyperscaling relation among[26] ina sllghtl'y different context, and in a somewhat differ-
percolation exponents. Second, we find a sum fakalo- €Nt form by Isichenko and Kald@7]. Unlike the usual hy-
gous to the susceptibility sum raleelating the loop correla- p_erscalmg relation for p_ercolatlon clusters which can be de-
tion exponent, of Sec. IllD, Dy, and. Third, we present rived from the assumptlon that the nu_mber of large clusters
a conjecture that the loop correlation exponent has a valu8®€S nNot grow with scale of observation, here that number
x,=1/2, which is superuniversal in the sense that it is inde-drOWs as & power with exponeat[28].

pendent ofe. [This conjecture is supported by an exact cal-

culation ofx, in the extreme cases, i.ex=0 (equilibrium B. Sum rule

rough casp and a=1.] Finally, these relations taken to- A second scaling relation can be derived from a sum rule.
gether yield formulas foD; and 7 [Eq. (4.13] as functions  To start off, let us separately consider the loop correlation
of a. function for different loop sizes. Let G4(r) be the probabil-
ity that pointx+r is on the same loop as given that the
. . loop has lengtts. In light of the self-similarity of the loop
A. Hyperscaling relation Y
ensemble, it is reasonable to assume that
If we parametrize a loop d$¢s), wheres s the arc length
as measured by a ruler of lenggh then after the rescaling Gy(r)~sMr|~2fgy(r/s'Pr), (4.4

iven by Eq.(2.1) it is mapped to
g yEa.2 PP wherem anda are as-yet undetermined exponents, &gd)

I(s)—b~1(bPrs). (4.1 s a scaling function. The reason we must scaly s'P1 is
that this is the typical diametd® of the loop 6~ RP").
) ] o Now the sum oiG4(r) over all lattice points is the expec-
This scaling property of the contour ensemble justifies thgation of the total number of points in the loop, which was

power law dependence @(r) onr andP(s) ons, in EGs.  given to bes, hence[substituting from Eq(4.4)] [29]
(3.17 and(3.13 respectively.

In writing Eq. (4.1), we made a nontrivial hypothesis that 5 (2—a)/De+m
the contours of the height function obtained by coarse grain- S:f drGy(r)~s [ (4.5
ing a given realization oh(x) are statistically the same as
the coarse-grained version of the contourf). We know  which gives one relation between the exponemtand m
of no coarse-graining procedure for the height functionintroduced in Eq(4.4):
which assures that the contours will stay the same. It will
happen that, near a saddle pointhgk), two loops(both of 2—a=D¢(1-m). (4.9
heighth,,,) approach closely, but the coarse-graining shifts
the height of the saddle point acrdsg, so that the coarse-
grained versions of the loops coalesce into one loop )
Whether this phenomenon makes a relevant contribution tEq' (3.13; thus
our scaling relations depends on the frequency of close ap-
proacheg25] G(r)=f dsP(s)Gy(r)~r ~3(rPnmt2 7= bi3-7"2

To determine the scaling of(R), first apply the rescaling 4.7)
equation(2.1) to each configuration ofi(r); this maps the
contour ensemble to a new contour ensemble with a rescaleghere(4.6) was used to eliminateoth aandm in the result.
contour intervalA’ =b~*A. The total number of contours Equating the exponent &(r) in Eq.(4.7) to the one defined
with radii in the range R,R+dR), in a box of sideL, is by Eg.(3.17), we obtain the scaling relation

L2A~'n(R)dR, by our definition in Sec. IlIC. Since the
contours are mapped one-to-daecording to the hypothesis

implicit in Eq. (4_.1)], we can equate this with the number of o J1ove scaling relatio&qgs.(4.8) and(4.3)], can be
new contours in a box of side/b and of radius in  coypined into expression@hich were originally presented

(R/b,R/b+dR/b), which is (L/b)?A’ ~*n’(R/b)dR/b. On  in Ref.[19]) for the fractal dimensioD; and the exponent:
the other hand, by self-affineness the new height ensemble is

statistically identical to the original ondor large R); this Di=2—X—al2, (4.9

On the other hand, the total loop correlation is the integral
of G4(r) over the loop distribution functioP(s) given by

D((3—7)=2-2,. (4.9
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1= 4.1 S
T2 —al2 (4.19 T2
(4.13
The first scaling relation is reminiscent of the relation 1 4-2«
T = 3—61’ .
D=2—a (4.11

These relations form the basis of the contour loop analysis of
due to Mandelbrof17]. The important difference is that Eq. rough surfaces, which we implement in the following sec-
(4.11) gives the fractal dimensio® of the level setof a  tions.
random self-affine surface, amat the fractal dimension of a Our formula for D¢ differs from the one proposed by
single contour loop(We emphasize this point because therelsichenko[33],
has been some confusion in the literature where the two di-
mensions have been equajed. sichenkg_ 10— 3

Olami and Zeitak[30] considered the same loop en- Dj = (4.14
semble, but mostly focused their attention on the “islands”

contained in the loops rather than the contours; theif “ \yhich was derived from an approximate “multiscale” analy-
exponent(which we call 7;0) refers to the distribution of gjs e note that the formula f®; in Eq. (4.14 gives the

island sizes. They derived a formuigo=2—a/2 (in our  \yrong result in thex=0 case, wher®;=3/2 is exac{34].
notation). It is easy to show 2{,o—1)=D;(7—1)—the

“2" here is the fractal dimension of these island0]; upon Finite-size scaling
inserting this conversion, their formula turns out to say listi h surf h i-affi i il
D((7—1)=2— a, which is the same as our E(.10. For realistic rough surfaces the self-affine scaling will be

cut off at large lengths either by the correlation length or the
system size. In the case that self-affine scaling is cut off only
by the system sizk, we can extend the power laws derived

Now we turn our attention to the contour correlation ex-above for the average loop length, the size distribution of

C. Loop correlation exponent

ponent, and weonjecturethat loops, and the loop correlation function, into scaling forms
x=1/2 (4.12 (s)(R,L)=RPif(R/L),

is superuniversal in that it independentf «. In the case of P(s,L)=s"(""Df(s/LPr), (4.15

an =0 Gaussian surface, we knoxy=1/2 exactly for a

solvable statistical-mechanics model of contour loops, G(r,L)=|r|®fg(|r|/L).

equivalent to the criticaD(2) loop model on the honeycomb

lattice[31]. Details are in Appendix A. By invoking univer- |n the case that the self-affine scaling is cut off by a finite
sality this is valid for all logarithmically rough random correlation lengthé(t) <L, our three contour-loop measures

Gaussian surfaces. _ will display crossover effects to a different set of power
The exact value ok, can also be determined fer=1.  |aws; we turn to this problem next.

That is, the fractal dimensionD(;) of a contour loop must
satisfyD¢=<D since it is a subset of the level set, which has
dimensionD=2—-a=1 [Eq. (4.11)]. On the other hand,
D=1, since a loop has topological dimension 1. From these For a surface roughened by growth self-affine scaling is
inequalities we conclude that far=1 the fractal dimension €xpected to hold only up to a finite correlation lengi(t)
of a contour loop isD;=1. This in turn leads toq=1/2, growing with time as Eq(2.3). At early enough stages of
from Eq. (4.9). growth [i.e., while £(t)<L], the statistics at scales beyond
The validity of conjecturg4.12) for generala has been &(t) depend on the initial state. Then the contour loops of the
checked, to date, only through the numerical simulations resurface will also exhibit crossover behavior where loops
ported in Sec. V and in numerical simulations of Zasigal. ~ whose linear sizéas measured by the radi&® is less than
[32]. the correlation length will scale according to the formulas
Sincex,=1/2 for «=0 and 1, a proof of the monotonicity derived above, while the large loops will exhibit scaling with
of x, with @ would suffice to establish the conjecture. Evenpercolation exponents.

that is very difficult owing to the nonlocal definition of the ~ Say the initial surface is flafwhich we assume hence-
loop correlation function. forth). Then it turns out(see Appendix Bthat the contour

loops at scal&k> £(t) are boundaries of percolation clusters.
Although this new contour loop ensemble corresponds to a
non-self-affine surface, it still exhibits scaling and, we derive

Equipped with the(superuniversalconjectured value of its three loop exponents in terms of known percolation ex-
the loop exponenk,=1/2, and the scaling relation$4.9)  ponents. In some cases, it turns out that the exponent values
and(4.10, we find the following formulas for the geometri- from the percolation regime and from the self-affine surface
cal exponents of contour loops of a self-affine surface withare not so different; thus a careless analysis might yield spu-
roughness exponent: rious exponents.

E. Percolation crossover

D. Combined scaling relations
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{In(a)/®) G() (S)(Rit) =R (RIE(1)),
! P(sit)=s" " Dfp(s/&(1)°), (4.18
q° i G(r)=r 24fa(r/&(1).
1/|§(t) q g(}) In each case, the scaling function is unity for argument zero,

while for argument large it scales as a power law needed to

give the correct exponent for the percolation regime, as cal-
P_(s) culated in Appendix B 2. Thedependence for the prefactor
of each percolation-regime power law is given by the re-

02 quirement to patch the above two dependences together
-.. §05 when the scaling-function argument is of order unity.
. Figures 2b)—2(d) illustrate the shapes of the three loop
i(t)D measures. Notice that the “knee” aroumer £(t) appears
R L more strikingly in the Fourier analysis than in any of the loop

FIG. 2. Percolation crossover. In each figure, the solid line rep-analyses' Although the percolation-regime and self-affine ex-
resents the functiofplotted on a log-log scaleat a certain time, ponents have fairly similar values, the d.|ffere.nce QVOWS
and the dashed line represented the same function at a later tinfa'9€r asa becomes larger. The crossover is evident in our
when£(t) has increased. The exponents shown in the figures are forimulated Gaussian datsee Fig. 10
a=1/2, but the qualitative behavior is the same so long &0
<1. Each graph shows a crossover to percolation exponents at a V. SIMULATION: GAUSSIAN RANDOM SURFACES
“knee” which corresponds to a length scateé(t): (a) Fourier
spectrum(|ﬁ(q)|2), (b) loop correlation functiorG(r), (c) average
loop length(s)(R), and(d) cumulative distributiorP-.(s) of loop
lengths(through a given point

Here we test the validity of our scaling relations and the
effectiveness of determining from contour loops, under the
controlled circumstances provided by computer generated
surfaces with knownx. The surfaces we construct are self-

It is easy to see that for distances (t) we can model affine with Gaussian fluctuations of the height.

the actual heightsnot height differencesas statistically in- .
dependent, sincéby definition of the correlation lengttihe A. Construction
distanceé(t) is the farthest that an event can influence an- Random Gaussian surfaces are generated numerically as
other in timet. From this, in Appendix B, we derive the anL/axL/a matrix h(x) of real-valued heights associated
geometrical exponents with the verticedx} of a square lattice of size, with lattice
Dy ,=7/4=175, 7,=18/7=2.571, X,=5/4=1.25 c'onstama. A par'ﬂcular realization oh(x) is given by Fog
(4.1  er trar_15formmgh(q)_ where the wave vectorg take their
values in the first Brillouin zong— mr/a,w/a] X[ mw/a,w/a].

which apply to loops at scales larger thaj{t) (the Each Fourier componertt(q) is an independent Gaussian
percolation-regime scaling These exponents are the samerandom variable with @&-dependent variance given by
for any @. An important corollary is that power law scaling
in the loop analysis is1ot necessarily a signature of self- - 12

i i (Ihtal*= :
affine behavior. Indeed, most real surfaces never reach a 2\1+a

: : ; : (a°)

clear self-affine regime, hence their loops are probably in the

percolation regime. For O<a<1 surfaces generated in this way are self-affine
and rough, with a roughness exponent
Finite-time crossover scaling forms The a=0 case of random Gaussian surfaces is familiar as
The complete crossover between the self-affine and pefi) the equilibrium-rough surfadeompare Eq(A1)], (ii) the

colation regimes is described by scaling forms parallel to Egsurface in the Edwards-Wilkinson model, afiid) the Cou-
(4.15. First consider the height structure factor. Since, agomb gas representation of two-dimensional critical models
noted above, the heights are independent, tiigatia) [31] (see Appendix A The casea=1 appears in the
power spectrum is flat in Fourier spacg(q)~const, for ~Mullins-Herring (diffusive relaxation model of nonequilib-
|q|<1/£(t); on the other hand, fofq|>1/(t) the surface rium surface growtt35].
has already developed a self-affine state, so (Eg) does

(5.9

hold. The two behaviors should be combined via a scaling Comparison to other studies
function f(): A popular algorithm for generating self-affine surfaces is
“random midpoint displacement, with random successive
S(q;t)=[q| 2+ Dfg(qt'); (4.17  addition” [36,16. This method iterates a step in which,
starting with a self-affine surface on a coarse grid of lattice
see Fig. 2a). constant 2, one generates heights on a new grid of lattice

Thus, at times such thaté(t)<L, the behaviorg3.9), constanta by interpolation, and then adds to them random
(3.13, and(3.17) are generalized to increments proportional ta®. Such an ensemble need not be
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FIG. 4. Average loop lengtlis) as a function of loop radiuR,

FIG. 3. Scale-dependent curvature moments from Gaussian rafer random Gaussian surfaces wiit+ 0, 0.4, and 0.8from top to
dom surfaces with roughness exponeats 0.4 (circles and 0.8  bottom); system sizeL =512, and 18 loops were collected. The
(triangles. The third momentglower ploY are zero confirming the “direct” D; data in Table | are obtained by linear least-squares fits
up-down symmetry. The upper plot shows the second momentto such plots in the scaling regime, which is roughly<iR<100.
(open symbolsand fourth momentsfilled symbols.

C. Loop measurements

Gaussian or have up-down symmetry, but commonly does The primary motivation for our Gaussian surface simula-
[16]. We note thati) the variance of a site’s heiglitelative ~ tions was an initial test of the scaling predictions for the
to the initial flat surfacedepends on what iteration that site contour loop exponents from Sec. IV. A contour plot of a
appeared, i.e., on how many times 2 can be divided into théample surface configuration fer=0.4 is shown in Fig. 1.
site coordinates; andi) height-difference correlations do not (A similar plot for «=0 was published in Ref19].)
always grow with distancéthey are smaller between two
sites that appeared in early iteratipasd they have the an-
isotropy of the lattice even at large distances. We believe our In a single run, which would typically take 10 min on a
Fourier construction of self-affine surfacéSec. VA is  Sun Sparc5 workstation, 25 surfaces of specified roughness
preferable because the resulting ensembl@) ispatially ho-  « were generated. For each surface typically 400 points were
mogeneous andi) isotropic, on scales beyond a couple of chosen at random, and through each point a contour loop was
lattice constants. constructed using the loop finding algorithm as explained in
Appendix C. While each loop was being traced points along
the loop were used to evaluate the loop correlation function
B. Curvature measurements G(r). For each contour loop its radius and length were mea-
sured and used to determine the length distribution of con-

m —
We measured momentCy) (m=2, 3, and 4 of the 5,1 150psP(s), and the average loop lengt) as a func-
scale-dependent curvature, as defined in Sec. IlIA, fokign of the loop radiusR.

Gaussian surfaces generated by the Fourier method described
above. These datén Fig. 3) are a kind of check on the 2. Results
Fourier method, since the mean over an infinite number of
samples can be computed analytically.
Self-affine scaling is evident on the log-log plot of the

1. Measurement procedure

In order to measure the geometrical exponéhts 7, and
X|, we plotted the data for system sikze=512 on a log-log
R graph and performed least-squares linear fits. Data were se-
even mqments_m Fig. Supper plok. The rqughness_expo- lected for fitting from the range in which a well developed
n%nt 2o is obtained as the slope 02f a straight-lme fit to thepower law was observed: see Figs. 4, 5, and 6. The results
Cj, plot. Ideally, the slopes of th€;, and Cy, log-log plots e given in Table I. We find excellent agreement between
should be 2 and 4a, with exactly the inputr values used  the predictions of the scaling theory and the measured geo-
in constructing the random surfaces. This is spoiled somemetrical exponents. In particular, note that the simulations
what in practice by discrete-lattice effects fo=3 and by  confirm the super-universal nature of the loop correlation
finite-size effects wherb>L/4. Furthermore(C)/(C2)?>  exponentx;=1/2.
should be exactly 3 for every value, even those for which The loop correlation functios(r) has a size dependence
the power-law dependence dnfails, since this is true for which biases a direct fit to the exponeng, 2 finite-size scal-
any Gaussian random variable. Indeed, the measured ratioiisg (see below partially overcomes this systematic error.
close to 3. Our theory(Sec. IV Q indicates thaiG(r) has a universal
The third moment ofC,, is shown in Fig. 3. Independent exponent2x,=1; in fact, as shown in Fig. 6G(r) itself
of «, <Cg> is roughly zero, as expected for a random Gaussappears practically independent®f Closer examination re-
ian surface which possessesha: —h symmetry(i.e., the veals that the coefficient iG(r)~1/r decreases slightly as
valley bottoms and the hill tops are equivalent for a Gaussiam grows. Furthermore, the fitted values of, Zsee Table)l
surface. decrease a bit witlw, which we attribute to the systematic
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FIG. 5. Cumulative number of loops whose length is larger than 13 |
s for random Gaussian surfaces wiit=0, 0.4, and 0.&from bot- )
tom to top; system sizeL=512. Here and in all other plots of
P-(s), raw data are binned in intervals of forrg,{.1s).
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error just mentioned, combined with the smaidlependence a) €
of the shape of the “knee” in the finite-size behavior of Fig. & °x
8. There is no indication in the extracted,2alues of any w 03 3858 |
nonmonotonic dependence ari as shown in Sec. IVC, ‘5,.,"“”
monotonicity ofx,(«) is sufficient to prove =1, indepen-
dent of a. -0.2 ' | ‘

] -02 08 1.8 28 3.8
A better measure of the geometrical exponents was ob-

/L
tained from a finite-size scaling analysis of the data. Using
the scaling forms in Eq(4.15, we produced data collapses FIG. 7. (_:umulative loop-size distribution, for random Gaussian
(“scaling plots”). Sample data for the=0.4 case are given Surfaces witha=0.4. (a) Data for system size& =64 (O), L
in Figs. 7@ and §a); the data collapse is shown in Figgby =~ ~128 (&), L=256 (V), andL=512 (). (b) Collapse of these
and 8b). From the loop-size distribution plots like Fig(t¥, data in a finite-size scaling plot with—2=0.225 andD;=1.32.
we extracted both the exponems and 7—2. Similarly, we
obtained %, from the loop correlation functiofFig. 8(b)]; Note in Table | how the finite-size scaling exponents
in this case we do not fit another exponent sincbviously ~— agree better with the scaling theory of Sec. IV than the ex-
scales a4 *. (We did not carry out finite-size scaling of the Ponents obtained from “direct” fitting of the data to power
(s) versusR plots such as Fig. 4, since there was no obviougaws. The discrepancy becomes more obvious at larger val-
change in the slope as a function RfL.) The geometrical Ues ofa. We infer from this that Gaussian surfaces Wlt_h a
exponents giving the best data collapses are reported in tHarge value of the roughness have more pronounced finite-
“FSS” columns of Table I(see Fig. 9. The reported uncer- size effects which lead to an overestimateDgfand 7. This
tainties were estimated by the interval over which changes it Of relevance to experimental data where the system size is
the exponent value did not visibly worsen the data collapsetypically not a tunable parameter, and the geometrical expo-
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nents are necessarily measured using the direct-fit method.

3. Relation to a previous simulation

Numerical measurements of the fractal dimension of con-
tour loops have been done by Avellanestaal. [37]. They
foundD;=1.28+0.015 for ane= 0.5 surface, which is close
to the predicted valu®;=1.25, from Eq.(4.13. They also
measured the combinatidd;(7—2) (their “«a” ) which de-
scribes the scaling of the probability that a loop passing
through a fixed point has a radius larger thgrwith p. (We
evaluate this quantity by integratimys,R) =sn(s,R), from
Eq. (3.8), over allsand forR>p). The numerical result they
quote,D¢(7—2)=0.21+0.017, is in fair agreement with our
prediction D{(7—2)=(1—«a)/2=0.25 for a=0.5, which

FIG. 6. Loop correlation function for random Gaussian surfacedollows from Eq.(4.13.

with =0, 0.4, and 0.&from bottom to top; system sizd. =512.

Wagneret al. [36] simulated a form of invasion percola-

In this and all such plots, raw data are binned logarithmically intion where the threshold pressures have the form of a self-
intervals of form ¢,1.1r). The latter two graphs are offset verti- affine surface. Hence the perimeters of the invaded clusters
cally by factors of 10 for clarity; they are virtually identical except are the same as the contour lines of the surface. They
for a “knee” at slightly differentr values. claimed that the perimeter dimension is “consistent” with
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TABLE I. Geometrical exponents;, D;, and for loops on Gaussian surfaces with various roughness
exponentsy. Columns marked “direct” are from direct fits to a power law of the data from systemLsize
=512, inferring %, , D¢, and7—2 from plots such as Figs. 6, 4, and 5. Columns marked “FSS” were fitted
to finite-size scaling plots like Figs(l® and 1b). According to our conjecture, the “theory” value okpis
1, independent of, and this is supported by the measurements here. Notice a slight systematic deviation of
the “direct” exponents from theory whea>0.5, which we attribute to more severe finite size effects in
those cases. The “theory” formulas f@; and7—2 are in Eq.(4.13.

o 2X| Df T— 2
Direct FSS Direct FSS Theory Direct FSS Theory

0.0 1.072) 1.022) 1.481) 1.5012) 15 0.3%2) 0.331) 0.338...
0.2 1.041) 0.972) 1.391) 1.41(2) 1.4 0.3@1) 0.291) 0.2%. ..
0.4 1.011) 0.982) 1.312) 1.323) 1.3 0.241) 0.2255) 0.23L...
0.6 1.0@1) 0.972) 1.233) 1.193) 1.2 0.181) 0.1655) 0.165. ..
0.8 0.972) 0.972) 1.151) 1.112) 11 0.121) 0.11(2) 0.09. ..
1.0 0.9%1) 0.962) 1.062) 1.043) 1.0 0.082) 0.022) 0.00. ..

Isichenko’s formuld Eq. (4.14)], but did not quote an error; depend on correlations of the surface gradient, and might
perhaps their precision was such that the prediction of Eghave a somewhat different exponent.
(4.14) could not have been distinguished numerically from
the one we believe to be corrddq. (4.13]. D. Surfaces with a finite correlation length
Referencd 36] also mentioned measuring a behawior . . .
, . . . To test the percolation analysis of self-affine rough sur-
with y~0.9 for the correlation between successive filled ..\ i o cutoff, as derived in Appendix B and summa-

sites. If this were simply a correlation of two randomly cho- rized in Sec. IVE, we performed curvature and loop mea-

sen points along a perimeter, it would be identical t0 oulg,ements on Gaussian surfaces with a correlation lefigth
loop correlation functiongs(r) or G¢(r) defined in Egs.

- 0 The correlation length is incorporated into the Fourier
(3.17) or (4.4); in fact, the filling process would appear t0 method of generating Gaussian surfaces by changing the

variance ofh(q) in Eq. (5.1) to

(a) 10 ‘ - lg| "2+ for |q|>mlé
1" et %Q e% ", ([h([?= &y -21ka) g <q / (5.2
10° | S h % N (7l &q) or |gl=m/&,.
o & v x
~10" | o % 7 ] The effects of the cutoff are summarized in Fig. 10, which
= o a4 v should be compared to the theoretical prediction of Fig. 2.
(2 107 o 4 M The curvature and loop data shown in the figure are for sys-
& R A tem sizeL =512.
107 L ° N The second moment of the curvature displays self-affine
x scaling with roughness=0.4 up to a length scale set By,
10~ ‘ and beyond this scale it levels off; see Fig.(&0 We
10° 10’ 10° 10° checked that the third moment of the curvature vanishes, as
r
(b) 2.0 T T T T
5 B ]
mb 153 D¢ -
— L)
T 3 s | \
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FIG. 8. System-size dependence of the loop correlation function FIG. 9. Fractal dimensio®; and length distribution exponent
G(r) for Gaussian random surfaces wiit+0.4. (a) Data for sizes 7—2, as functions of the roughness exponertdf a random Gauss-
L=64 (O), L=128 (A), L=256 (V), andL=512 (*). (b) Data  ian surface, obtained from finite-size scaling fése Table)l The
collapse of these data withxg=0.98. solid and dashed lines correspond to the formulas in(E4.3.
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b) A. Single-step model
4
10 We implemented the “single-step mode[38-4Q in d
A =241 dimensions[41]. (More details on this model are
¥ 102 found in Sec. Il F of Ref[38], or Sec. Il A of Ref.[40].)
There is one control parametpr. . The allowed configura-
i tions are just those of the body centered solid-on-s@ia-

SO9 model: each site of a square lattice has an integer-
valued height and neighboring heights must differ byt .

The Monte Carlo rule is that in each time step a deposition
event occurs with probabilityp, or an evaporation event
(inverse of a deposition evenbccurs with probability 1
—p. ; once itis decided which type of event occurs, a site is
picked at random among those sites at which that event is
allowed[42].

We begin by an overview of the theoretical expectations.
Up-down symmetry switchep,«—1—p, ; thus we need
only report data for &p,<0.5. The cas@, =0.5 is special

S r as the dynamics satisfies detailed balance. This should pro-
duce an equilibrium-rough interface, namely, the BCSOS

FIG. 10. Finite correlation length effects for Gaussian randommodel with all configurations weighted equall¢3]. This
surfaces withe=0.4, and a crossover to white noise for wave vec-interface, at long wavelengths, is described by the Gaussian
tors smaller thanm/¢,, where ;=16 andL=512 is the system model of Sec. V witha=0 (Edwards-Wilkinson behavipr
size. Circles are used for data sets with no cutoff which are included  On the other hand, the growth model for # 1/2 is be-
here for comparison with the cutoff dattiangles. (a) Squared |ieved to asymptotically belong to the Kardar-Parisi-Zhang
curvature function—note the knee at=15. (b) Average loop  (Kpz) universality clasg38,40. It has been proposed that
length as a function of radius—kneeR#=20. (c) Cumulative dis- a=0.4 exactly for the2+1)-dimensional KPZ moddl44];
tribution of loop sizes—knee at~100. (d) Loop correlation o\ ever finite-size effects, small simulations, and naive fits
function—knee at ~20. systematically underestimate it as=0.38[45,46]. The KPZ

, . , , . behavior should be clearcut when is close to 1, but oth-
expected since the height fluctuations are still Gaussianyyise a crossover from initially Gaussian to asymptotic

while the fourth moment follows affine scaling up to roughly kp7 pehavior is expected, which will be sldas a function
the same correlation length as the second moment. of time or system si2eif p, is close to 1/2.

The loop measures exhibit distinct crossover behavior, as |t ;s out. in our numerical resultéelow), that p.,

seen in figures Figs. 10)-10d). For loops whose radius is _( 5 indeed shows Gaussian behavior and=0.1 shows

smaller than the correlation length, which is hére 20, we KPZ-like behavior, butp, =0.3 consistently resembles,
find values of the geometrical exponents consistent With. § 5 4t the sizes ’We coLId simuldtes., up toL =128). We

those extracted previously far=0.4 random Gaussian sur- auinte this to the above-mentioned crossover from initial
faces. For loops whose linear size exceeds the cutoff, a scak,ssian behavior.

ing consistent with the percolation analysis is found. The
actual numerical values extracted by fitting the<Z®<200
data to a power law are somewhat larger than expected
[2x,=1.466), D;=1.7(1), andr=2.631)], which we at- Starting from a flat surface, we ran the simulatigar
tribute to finite-size and/or crossover effects. To check thisystems of 128128 site$ for 2000 Monte Carlo steps
we also simulated a Gaussian surface with completely uncotMCS) per site to equilibratéfor p,. # 0.5 “equilibrate” re-
related heights, i.e., wit§=1 and system size=512, for  ally means “reach the steady-state ensempkaid then took
which we find(by the direct-fit method data for a period of 1200 MCS/site; one such run took 10-15
h of CPU time on a RISC-6000 workstation. The standard-
_ _ _ length runs(for size L=128) appeared to be insufficiently
24=1263), Dy=1702), 7=256810) (5.3 equilibrated forp, =0.1, since they failed to collapse on
finite-size-scaling plots with smaller systems. Therefore, we
in good agreement with E¢4.16). performed one run fob. =128, p, =0.1 with 12000 MCS/
site equilibration and 10000 MCS/site for data collection;
this is the run reported in our results. In all other cases, we
believe the run time was adequate, since much shorter runs
showed no gross differences. We performed about four runs
In this section, the linear and nonlinear roughness meafor each valugp. =0.1, 0.3, and 0.5, verifying the symmetry
sures of Sec. lll, which in Sec. V were tested on artificialp.<1—p, . [All measures are the same, apart from a
Gaussian random surfaces, are now applied to growthehange in sign o(Cﬁ).] Only one of the~4 runs was se-
roughened surfaces produced by a simple random depositidacted to be fitted and plotted here; the data sets presented as,
model, the well-known “single-step model.” Our results are e.g.,p, =0.1 are actuallyp_,=0.9 in some cases.
in support of the view that the single-step model produces Once every 100 MCS/sit@uring the data-collecting por-
self-affine morphologies. tion of a rurn, we performed a measurement step on the

B. Simulations

VI. SIMULATION: NONEQUILIBRIUM GROWTH
MODEL
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FIG. 11. Power spectrum of the height in the SSM model along (b) 50
the[1,0] (filled symbols and the 1,1] (open symbolsdirections in o
reciprocal space. The data fpe=0.3 (triangles and p, = 0.5 (dia- @ *
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by factors of 0.1 and 0.01 respectivelipr clarity). Note that the A - o
power spectrum is isotropic in Fourier space for small valuds|of 50| v |
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surface. The Fourier transform was takenhgf) using a

. . 5 -100 v .
fast-Fourier-transform routine, byth(q)|“) was accumu- B}
lated only for g values along thg1,0), (0,1, (1,1, and
(1,—1) directions. Also, in each measurement step 100 con- -150 ‘ z
tour loops were traced out from random initial points, as ! 1[? 100

described in Sec. V C and Appendix C. Statistics were accu-
mulated of the loop’s radiu®k and its number of sites FIG. 12. Second momeiid) and third momentb) of the scale-

(length s, but not the loop correlation function. dependent curvatur@,(x), for surfaces from the single-step model
with p,=0.1 (A), p.=0.3 (O), and p,=0.5 (*). In (b), the
C. Fourier and curvature results p.=0.3 and 0.5 data are consistent W(mg>:0, while thep,
. . . . =0.1 data show a stron@nd non-Gaussiarbreaking of up-down
The single-step modéSSM) is the only one simulated in symmetry. e 2 9 P

this paper for which we evaluated Fourier spectra, which are

plotted in Fig. 11; the log-log plot should have a slopecyryature which is plausibly consistent with the expected
—2(1+a) so a can be extracted from a linear fias in |ogarithmic behavior, just like that of the usual height-
Table 1)). Notice how the spectra are completely isotropic gifference functiorD,(b) [recall Eq.(3.3), which relates the
with respect to the lattice directions. two]. The (CZ) curve for p, =0.1 shows a larger slope,
The scale-dependent curvature moments were not eva"?'a~0.6(l),consistent with KPZ scaling. The values in

ateg durflng the rt']ns’ (ﬁm wetrﬁ (.:O”;ptl.“f.d only fromhthe findlrapie I were extracted from fits tCZ) plots. Slopes from
surtace from each ruthence tneir statistics are much worse plots of the(Cg) moments(not shown are consistent with

than for other measures reported her®/e computed Ao for the  values in the table
(Cy(x)™ as defined in Sec. Il A, fom=2,3,4, as a function ~¢ @ :
of the offsetb in the definition ofC,, as a discrete Laplacian.
The results fom=2 and 3 are plotted in Fig. 12All figures
of the SSM are from the largest system size; 128) Figure We analyzed the loop ensemble to plot the mean loop size
12(a) does not show well-defined power laws. The curve foras a function of its radiuéFig. 13 and the cumulative loop-
p.=0.5 shows a smallish apparent slope and a downwardize distributionP-(s) (Fig. 14. [Note thats must have

D. Loop analysis

TABLE II. Results of fits to roughness measures applied to surfaces generated by the single-step model.
The exponent values in the left two columns were derived in two direct ways, from the data plotted in Figs.
12(a) and 11. The direct-fit result§direct” ) for D; and 7— 2 used only theé. =128 data(shown in Figs. 13
and 14; the finite-size scaling resul{f§FSS” ) were obtained using system sizdes 32, 64, and 128. The
subheadings &” under Dy andr— 2 are estimates of the roughness exponent obtained from the FSS results
by inverting Eq.(4.13.

p: o Dy T—2

(Ch ([h(q)|2)  Direct FSS a Direct FSS a
0.1 0.332) 0.351)  1.381) 1352 0304) 0.301) 0241  0.373)
0.3 0.194) 0.092)  1.471) 1.462) 0.084 0381 0351  —0.08(5)

0.5 0.13%2) 0.081) 1.51(2) 1.502) 0.004) 0.402) 0.362) —0.13(5)
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FIG. 13. Average loop lengtiis) as a function of the loop
radiusR for p,=0.1 (V), p,=0.3 (O), andp,=0.5 (*), in the
single-step model. Note that the, =0.3 andp,=0.5 data are
almost indistinguishable.
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showed more obvious finite-size effects; direct fitsrtare
unreliable and only finite-size scaling plots give reasonable
results.

We remind the reader that in using E¢.13 to calculate
a from D¢ and 7, respectively, we implicitly assumexi
=1/2. Extracting about the samaevalues fromD; as from~
is equivalent to havind>¢ and 7 satisfy Eq.(4.8) with X,
=1/2, which can be verified explicitly from the entries in
Table II.

VII. ANALYSIS OF EXPERIMENTAL DATA

In this section we test our nonlinear measures against ex-
perimental scanning tunneling microscopy data sets. Rough
metal surfaces grown under several conditions are believed
to develop a morphology with self-affine scaling, but only up
to a time-dependent correlation lenggft) as discussed in
Sec. IVE.

The most detailed analysis was done for the vapor depos-

evenvalues; thus it is necessary to divide the nonzero valueged Ag surface on a quartz substrate of Palasantzas and Krim
by 2 in order to properly estimate(s), which was assumed [47]. we obtained a 408400 height array corresponding to

(in Sec. Il and Sec. IYto be a smooth monotonic functign.

a STM image of a 702-nm-thick Ag surface, and performed

As with the Gaussian simulation of Sec. V, the slopes Ofcyrvature and loop measurements. Note that all the results
straight-line fits to log-log plots of these data, give estimategyyoted below are from aingle height profile. All in-plane

of Dy and r—2; they are tabulated as “direct” in Table II.

lengths will be measured in units of the grid of this data,

Alternatively, we used data like Fig. 14 from smaller sizesyhich is 1.625 nm. We also report briefligec. VII O a less
L=32 and 64(as well asL =128) to produce scaling plots thorough analysis of an STM data set from a different, but

analogous to Fig. Tthese plots not shownextracting the
“FSS” data in Table Il.[We do not report on  since we
did not evaluate the loop correlati@r) in our SSM simu-
lations]

It is interesting to compare the four different measures of

a included in Table II. Those frortih(g|?) seem to have the
smallest statistical errognd the most sensible valye$he

closely related C2) result is expected to be worse, not only

still self-affine, growth regime showing KPZ scaling.

A. Quadratic measures and curvature moments
Palasantzas and Krif@7] originally evaluated the rough-
ness exponent

a=0.825) (7.0

because the statistics are poor in our implementation of the

SSM simulation(see above but also because it uségx)
values from more widely spacexi and is therefore more
sensitive to the system size.

The next best method seems to be Meloop analysis
from ((s),R) plots; curiously, it appears that tidg fits show
smaller run-to-run fluctuations than tfh(g|?) fits. As also
observed in the Gaussian ru(Bec. \}, the P_(s) analysis

0

10° pe
10" :
z
e e
107 | 5 3
T
s
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FIG. 14. Normalized, cumulative loop-size distribution for
=0.1(V), p.=0.3(), and p,=0.5(*), in the single-step
model. Again, thep, =0.3 andp, =0.5 plots are almost indistin-
guishable.

from a fit to the standar(quadrati¢ height correlation func-
tion D,(r) defined in Eq(2.2). That correlation is similar to
our second curvature mome(E2). This quantity shows a
power law dependence on the schleup to a correlation
length which was estimated to lde=25(5); seeFig. 15a).
A linear least-squares fit of the data with<¢ gave 2
=1.7(1),agreeing(as expectedwith Eq. (7.1).

The third momentCy(x)3) [Fig. 15b)], shows distinct
non-Gaussian behavior, as expected for nonequilibrium
growth. It reaches a maximum at length schte23 which
correlates well withé. This indicates a morphology consist-
ing of grains of typical siz& that are rounded at the top.
Such a morphology is clearly seen in three-dimensional ren-
derings of the STM data in Rdf47], or the gray-scale image
in Ref.[48].

Kleban's nonlinear measure

Recently, Klebaret al. defined a nonquadratic roughness
measure rather different from any of those mentioned in Sec.
IIl. First, for every scalé they constructed a smoothed ver-
sionH(x) of the height function, as the averagehgk’) for
x" in abXb square centered at(alternatively by convolv-
ing with a Gaussian weight function of width) Then they
calculated the histogram(H,) of Hy(x) values forx rang-
ing over the entire sample, and the skew moment of this
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FIG. 16. Mean contour lengfs) as a function of radiug, for
PR NS the Ag film of Ref.[47]. Here 1000 contour loops were collected
02t . ] from the STM data of Ref{47]. The solid line is the least-squares
° ® . ] best fit for radii 2<R<<125; its slope is the estimated fractal dimen-
A . . sionD; . The slope of the dashed line is equal to the hull dimension
G 00¢-ee . -e of critical percolation clusters.
v
loops constructed through randomly chosen points on the
=02 1 . 7 surface; however, we did not compute the loop correlation
function. These loop measures support the scenario that the
surface is self-affine up to a correlation lengts 25.
-0.4 1 10 100 1000 _ The average loop length is plotted against the I_oop radius
b in Fig. 16. We see a decade of power law scaling of the

length with the radius, and from a linear least-squares fit of
FIG. 15. Second momeri&) and third momentb) of the scale-  the data to a line, for 5§ R<50, we find

dependent curvature, as evaluated for a 702-nm-thick Ag film,
grown on quartz, from the STM data of Palasantzas and KRef. D;=1.062) (7.2
[47]).

for the fractal dimension of contour loops. Using the formula
distribution.[Of course P(Hy) is defined for a rough surface for D; [Eq. (4.13], we calculatex=0.884), in good agree-
only when a finite-size or finite-time cutoff is presdnt. ment with the reported valugEg. (7.1)]. In Fig. 16 the

When applied to the STM data of Palasantzas and Krintlashed line corresponds to the percolation vaddye=1.75;

[47], the distribution ofH,(x) appearsGaussian wheb  we see that loops at scales much larger thamow scaling
=0, i.e., for the raw data. That is rather mysterious, since theonsistent with this value.
surface certainly lacks up-down symmetry: it consists of Finally, the number of loops whose length exceexls
deep, narrow crevasses and rounded hills. Each crevasse (s), is plotted in Fig. 17. The data roughly show two
should contribute to a long tail on only the<h side of the  scaling regimes with different exponents, before they are cut-
distribution, while each hill contributes a peak and a suddemff by the system size. The knee occurs at loop lengths
drop to zero on thé1>h side. However, the fluctuation in =70 which, from Fig. 16, corresponds to a loop radius of 20
height from hilltop to hilltop smears out that sharp feature 0" SO; this again is comparable to the length scde25
making a spuriously symmetric distribution. As pointed outfoun_d from the curvature data. From loops whose length is in
in Ref. [48], their smoothing ofh(x) eliminates the deep the interval (10,30) we extract the exponent
crevasses so themoothedurfaceH ,(x) doeshave a skewed

height distribution(with skewness dependent on the obser- 7-2=0.0695), (7.3
vation scaleb). This is consistent with our own conclusion . ) . .
that the height fluctuations are non-Gaussian. while larger loops exhibit scaling consistent with the perco-

lation value(indicated by the dashed lineUsing Eq.(4.13
we find «=0.851), again in good agreement with the self-
affine exponent reported by Palasantzas and Krim. Further-
We perform loop measurements and check whether theore, inserting our result€7.2) and (7.3) into the scaling
different scaling relations derived in Sec. IV are satisfied.relation(4.8), we obtain
The moments of the scale dependent curvature are used as an
independent measurement of the roughness and to assess the x;=0.51(1), (7.9
Gaussianness of the height fluctuations.
Using the loop algorithmAppendix Q, we measure the in agreement with our fundamental conjectliegy. (4.12)].
loop radii and corresponding loop lengths for 1000 contouffAs also noted at the end of Sec. VID, EJ.4) is math-

B. Contour-loop analysis
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' T T consistent with aKPZ-like) self-affine morphology with a
10° -2=0.069(5) roughness ofx=0.4. That is, the loop data show a limited
range of scaling for loop radii X0R<<30. Direct fits to a
straight line of the log-log plots ofs)(R) andP-(s) in the
scaling regime yield;=1.31(4) andr—2=0.222). After
inverting the formulas foD(«) and 7(«) in Eq. (4.13 we
obtain the estimatea=0.38(8) and 0.44}), respectively.

o
10° + 3
VIIl. DISCUSSION
] Here we summarize our main results, compare and cri-
l“ tique previously introduced measures of surface roughness,
: and describe some open problems and interesting directions.
101 L L I3 s
10

A. Summary of results

We introduced(in Sec. ll) measures for characterizing
FIG. 17. Cumulative distribution of contour loop lengths from the spatial correlations of rough interfaces. Their common
STM data, for the Ag film of Refl47]. The solid line is the result 1, -oharty s that they are not linearly related to the structure
of a linear flt. to the data in the affine-scaling regime. The slppe ofunction of the height. First we introduced the scale-
the dashed line corresponds to the exponeng in the percolation o ondent curvature. Its third moment is an indicator of the
regime. skewness of the height distribution, and thus is a good crite-
rion for whether or not a surface’s height fluctuations are
ematically equivalent to the already noted agreement of the&aussian. Our chief focus, though, was on the ensemble of
a values obtained frond; and fromr using Eq.(4.13).] contour loopsas a means of characterizing surfaces. For a
To summarize, the two loop measures we evaluated, asugh self-affine surface, the loop ensemble is critical, and
well as the moments of the scale-dependent curvature, alfe introduced three kinds of geometrical exponents associ-
indicate self-affine scaling with a roughness exponent ated with it:x, for the loop correlation functiofiprobability
~0.85, up to a length scalé~25. Beyond this scale the that two points are on the same contour Ipojhe fractal
height fluctuations appear to be uncorrelated. dimension of a contour loof)s; and 7, associated with the
length distribution of loops. In particular, we conjectured a
superuniversalalue 2,=1 (see Sec. IV Cwhich has been
confirmed so far numericall{e.g., in Table ), but not ana-
The large value otr found for the silver-on-quartz STM |Iytically. The loop exponents satisfy scaling relatiofue-
data of Palasantzas and Krim is indicative of moleculartived in Sec. I\, and, granting the conjecture, their values
beam-epitaxy-type growth, which has surface diffusion as @re completely determined by the affii@ughnesk expo-
dominant relaxation process. This motivates the study ofenta.
other data sets which might correspond to different univer- Next we showed how numerical values of the geometrical
sality classes of growth. For example, the KPZ equation deexponents can be extracted in practice from height data ob-
scribes growth dominated by desorption and/or vacancy fortained from simulations or experiments. We first did this in
mation, both of which are relaxation processes that do nogec. V for artificial Gaussian surfacésown analytically to
conserve particle numb¢s,9]. be self-affing and in Sec. VI for surfaces obtained from
Loop measurements were carried out previously on golgimulations of the single-stejgrowth) model(believed to be
electrodeposits by Gomez-Rodrigueral. [49]. These au- self-affing; this served as a check to confirm the validity of
thors suggested the fractal dimension of contour loops as @ur scaling relations. Then in Sec. VIl we processed an ex-
useful measure for characterizing the surface morphologyperimental data set—an STM image of a growth roughened
What was lacking in their analysis was an equation relatingsilver film [47]—in the same fashion. The results here also
D; to the roughness exponeat From STM images of de- confirmed the scaling relations which in this case adds to the
posits grown in the fast and slow regimes, they determine@vidence of the self-affine nature of the height fluctuations.
the fractal dimension to b®;~1.5 and 1.3, respectively. The third moment of the scale-dependent curvature con-
Now using Eq.(4.13 we calculate the roughness in thesefirmed that the height fluctuations are non-Gaussian, while
two regimes to bex~0 and 0.4. The first is expected for the contour-loop fractal dimension and size distribution indi-
Edwards-Wilkinson-type growtha(=0), while the second is cated self-affine scaling witbr~0.85.
in good agreement with the Kardar-Parisi-Zhang vaiue Experimental data often exhibit self-affine scaling up to a
=0.38 (from most fit3 or 0.40(possibly exagt[45,46. correlation lengthé(t). We argued(in Sec. IVB that the
Csahoket al. [50] studied the surface morphology of Ni loop exponents, for loops whose linear size exceeds the cor-
films vapor deposited on a quartz substrgléhey were in-  relation length, are determined by exactly known percolation
terested mainly in the effects of subsequent ion sputtering oexponents. The crossover between the self-affine and perco-
the film.) We obtained a STM image of the as-grown Ni lative regime was visibléwith a consistent value in every
surface(before any sputteringin the form of a 25& 256  kind of measure on the experimental data in Sec. VIl—the
height array, and computed some of the contour-loop measame was true for Gaussian random surfaces with an artifi-
sures for it from a collection of 10000 loops. The results arecial length scale cutoftSec. V D. The numerical values of

C. Other data sets
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the percolative exponents were confirmed from simulations TABLE Ill. Roughness measures.
of Gaussian surfaces with a white-noise spatial power spec
trum. Quantity Description

Our results(see Sec. Y show that it is quite difficult to
obtain correct results from loop measurements whers
near to 1. The reason, we believe, is that the crossover t
asymptotic behavior occurs at very large loops; the inferre ° _ 2 ) .
a is thus smaller than the real one. It has been obsdiEd :<|h(2r) h(0)I%) Ee'ght Correlimon
that even the height-height correlation function tends to yielo(3) C) >2 OUrier spectrum )
too small a value ofr as compared to the Fourier power 4 ([Co(x)|) “ b-dependent curvature” variance
spectrum, even though the two measures have, in principle,

Quadratic measures
1) ([h(x) —hp]%)s variance inbx b patch

) Da(1)

the same information. Cubic and other nonquadratic measures
() ([h(r)—hp]®)p skew moment irb X b patch
B. Comparisons of roughness measures (6) ([h(r)—h(0)|% g-multiaffine height correlation

skew moment ob-smoothed height

_hi3
Roughness has often been analyzed based on a sing(IQ ([Hy(r)—hT%)
“curvature” skew moment

number, the overall variance of the height over the entird® ([Co(x)1°) .
system. However, spatial correlations in height fluctuationd® ([Cs(*)]%) “curvature” quartic moment
are central to the development of self-affine or other inter-

esting morphologies. Therefore, every form of roughness-0op measures

measure we discuss takes the form of a spapattrumi.e., (10 (s)z average loop length, given radiés
one measures an entire function whose argument has dimeti-d) P~(s) Prob (loop throughx is longer thars)
sions of length(calleds, R, b, or 1/q). The variation of the (12) G(r) loop connectedness correlation function

roughness measure with its argument is related to the varying

amount of interface fluctuations on the corresponding length

scale. invariant undeh(x)— —h(x), and so cannot possibly char-
Some previous measures of the self-affine exponents wetgcterize the breaking of up-down symmetry in the growth

reviewed in Ref[16]. They systematically compared the dif- process. Nor can they identify deviations from Gaussianness,

ferent measures using artificially constructed realizations o§ince one can produce a Gaussian enselfasién Sec. V A

h(x) (only in 1+1 dimensions and concluded that the with any given Fourier spectrum.

single best measure of is the Fourier power spectrum, our

Eqg. (2.4). [Oddly enough, Ref[16] did not include the 2. Nonquadratic roughness measures
height correlation function, our E¢R.2), in their selection of )
measures to compaie. Essentially all of these have been developed by analogy

Another approach is to measunéx) along a single line With quadratic measures, simply replacing the second power
in the x plane, corresponding to a line scan by the S[B]. by a hlgher power. (_)ur_curvature-mqment_functlon seems to
This section through the surface may then be analyzed as if he the first generalization of the height-difference function
were a (1 1)-dimensional profile. Referengs2] evaluated ~that captures the up-down asymmetry. , _
the variance over an interval of length,, which should A simple generalization of thé-box variance is the
scale asL2%, and applied this experimentally to the het- b-box gth moment ([h(r) —h,]%y. The q=3 moment
eroepitaxy of CuCl on thé111) surface of Caj The most characterizes the up-down asymmetry; when scaled by
useful roughness measures have been discussed and critiqugt(r) — hb]z)ﬁ’2 it defines a scale-dependent, dimensionless
in the sections related to them; they fall into three categoriesskewness that measures the deviation from Gaussianness

and are summarized here in Table llI. [53]. This appears to be a simple and attractive measure, but
_ we know of no applications to date; our curvature moment
1. Quadratic roughness measures (C2) is similar in spirit, but probably not linearly related.
The most familiar measures ageiadratic of which the We evaluated the quartic curvature moméat), but

first three were summarized in Sec. IIB1. Besides thredhese data were less useful than our other measures: they do
well-known quadratic measures, we include a fourth whichnot reveal the non-Gaussian nature as strikingly(@g)
has not been previously applied: the variance of scale-does. The dimensionless rati6g)/(C2)? is 3 in the Gauss-
dependent curvaturéC,(x)2), which we introduced in Eq. ian case, but may not differ very much in a non-Gaussian
(3.3). (Of course, the ensemble expectation cannot depend aensemble. Furthermore, the roughness exponent was fitted
x.) Its behavior is very similar to that of the height-difference less precisely fron{Cy) than from any other measure, prob-
correlationD,(r), so{C3) is of interest mainly for compari- ably due to the sensitivity of higher moments to rare events.
son with the higher moments @,(x). In practical applica- The analysis in Ref[48], summarized in Sec. VIIA1,
tions the Fourier spectrum is probably the best of these. appears to be the first application of a scale-dependent
A key fact about the quadratic measures is that, given theoughness measure to characterize the up-down asymmetry.
complete function for any one of them, one can compute thélowever, we believe a local roughness measure such as the
complete function for any other one as a linear transformb-box skewness aibette) our mean cubed curvature gives a
(convolution with some kernglThis property is not true for more meaningful characterization. In a sense, the smoothed-
higher moments. Notice also that the quadratic measures aheight skewness is the opposite of the local measures since it
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includes the fluctuations from all length scalagyer thanb, (sometimes monepoint correlations were measured by hot-
while the local measures include the fluctuations from scalewire probes, and the same correlations were the objects of
comparable to or smaller tham only the latter would be the Green'’s function method. As full images become avail-

expected to scale ds". able of the velocity field, many new measures are attempted
in order to capture more of the available information.
3. Loop measures Indeed, the measures introduced here might be adapted to
The other nonguadratic roughness measures, of course, geometrical description of turbulence. The advection of
are the loop measures defined in Sec. Ill. The length angassive tracers by turbulent flows seems to be an especially

connectedness of a loop, manifestly, depend on the heighfgomising problem. There is already considerable interest in
h(r) in a highly nonlinear fashion, and one might expect thecharacterizing the equal-time correlations through fractal
loop exponents to be independent of the roughness exponemeasures of the contours @fay constant tracer concentra-
a; then the loop properties might have distinguished betweetion [54,3,55,4. (To maintain the analog of a surface’s sym-
different universality classes of growth which happen tometry under global shifts of the height, one should study the
have similare: values. From this viewpoint, it is disappoint- |ogarithm of the concentration and use contours spaced
ing that we in fact find the loop exponents are functionsof equally on the logarithmic scaje.

(Sec. IV). Thus for self-affine interfaces the loop measure- \jeasurements of the fractal dimension of iso-
ments serve only as a check on other waysadratic and  concentration lines of a passive tracer advected by a mag-
nonquadratip of measuring «. Furthermore, when the aically driven, turbulent, two-dimensional flow were re-
heights at large separations are uncorrelated, implying thBOrted by Cardost al. [4]. They found D;=1.355),

loops are percolation hulisee Sec. IV_E the loop plots which, assuming the concentration field is self-affine, yields
show a weaker change of slope at this crossover than the — _
a roughness exponenttr=3—-2D;=0.3(1). Indeed, «

Fourier spectrum does. ~ .
It seems worthwhile nevertheless to compute loop mea- 0.30(3) was measured by the authors, by applyingghe

sures. In a sense they depend on higher order correlation + Multiaffine correlation measufentry (6) in Table Ill].
functions of the heights: then the agreement betweeruthe We therefore_ infer that their measurements are _Con5|stent
values extracted from loops and from other measures is afyith a self-affine morphology for the concentration field. De-
additional, stringent test of self-affineness. Also we empiri-tails of the complete loop and curvature analysis of this data
cally observe that loop measures, and in particular the aveg€t Will be reported in a separate papsé].
age loop length as a function of loop radius, are very self-
averaging, and measurement af from them produces 2. Other dimensions?
smaller errors than either the real-space or Fourier-space _ L . )
methods. Finally, although the loop exponents are the same [N this connection, it is interesting to consider the gener-
for different universality classes with the same we do alizations ofh(x) to spatial dimensions ok other than 2.
expect universal coefficients to be different. With each higher dimensionality there is greater richness in
For computer generated height data the loop-size distribudistinct geometrical measures that can be defined for iso-
tion is, perhaps, the single most valuable plot, because tweurfaces. For a hypersurface in-3 dimensions—like the
different exponents can be obtained from scaling plots suchoncentration function in three-dimensional passive tracer
as Fig. 7. This is not the case for experimental data where thadvection—the level set may be multiply connected and
system size is typically not a tunable parameter. even knotted. Nevertheless the size distribution expongnt
The loop correlation functiorG(r) is most tedious to the fractal dimensio;, andx, of the connectedness cor-
compute, and since its exponern; 2s superuniversal it does relations, can be generalized directly. But we see much less
not yield an estimate of. Nevertheles<(r) is a useful reason to expect a superuniversal connectedness correlation
check on the self-affineness, since the superuniversal behagxponent in dimensions higher thdr=2+1.
ior fails in other case$e.g., beyond the correlation length;
see Eq(4.16]. 3. Multifractality and scaling relations
Several mysteries remain about the scaling relations de-
) ) ) _ rived in Sec. IV. Above all, there is not yet any rigorous or
New experimental techniques which provide completeanalytic basis for our fundamental conject{iEay. (4.12)] of
real-space images of the fluctuating quantity of interesh syperuniversal loop correlation that scales asfds all
(rather than system-wide averages, or local measures probingygh self-affine surfaces—unaffected even by quenched dis-
the system at only a few pointsare being developed in  order that further roughens the interfd@2]. A second open
every physical science. Consequently, measures which Usgyestion is to check numerically the correlation exporent
fully exploit this Wealth_of information will gain in impor- i Eq. (4.4) for an individual loop of fixed size; we did not
tance. In turn, the ability to measure ngand nonlinear  eyajyate it in any of our numerical studies, but it should not
correlations may inspire new theories that can predict thge the same as the exponenx, Zor the ensemble average
correlation behavior. over loops of all sizes. Finally, it is intriguing to ask what
happens in a “multiaffine” systenfi20,21]. Here different
moments of the height variables have different scaling expo-
Fluid dynamics is a good example of the interplay justnents; which of theséf any) is the one entering our formu-
mentioned between theory and experiment: formerly twdas (4.9) and(4.10 for the loop exponents?

C. Future directions

1. Turbulence
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APPENDIX A: ANALYTIC DERIVATION OF  x,(a=0)

FOR AN EXACT SOLUBLE MODEL x=172, (AS)

Our purpose here is to support the conject(#el? in  as was to be shown.
Sec. IV C, by showing thakx,=1/2 in the case of a lattice Since we view theO(2) loop model simply as one of
model which can be mapped to an equilibrium-rough surmany possible lattice discretizations of a logarithmically
face. At long wavelengths height fluctuations are describedough (¢=0) self-affine surface, then the exponeqt 1/2
by the well-known free energy should necessarily appear in other lattice models that map to
rough surfaces. Indeed the same value of this exponent fol-
lows also from the exact solution of tli&(2) loop model on
the square latticE59], and then=2 fully packed loop model
on the honeycomb latticks0].

F= (constanlJ d?x| Vh(x)|?, (A1)

which by equipartition implies Eq2.7) with «=0, so in-

deed the surface is self-affine. This appendix only summa- .
rizes arguments made previously in Ref&9], [57], and APPENDIX B: PERCOLATION SCALING OF CONTOURS

[58]. FOR UNCORRELATED HEIGHTS

Consider a statistical model with microscopic heigts This appendix derives the scaling behavior of the loop
defined on a triangular latticg}, such thatz; changes by 0 ensemble when the random heighi) have a finite vari-
or £1 between nearest neighboring sites. The partition funcance andbeyond a correlation leng#(t)] areuncorrelated

tion of the model is this describes early stages of growth, as in Sec. IV E.
To model the contour loops at length scales greater than
Z=2 H w(z—2), (A2) &(t), first coarse grain the system into boxes of sif€).

@ ik The average heigtit in each box is an independent random
variable parametrized by(h), the probability that<<h.

Defining all the boxes witth<h as “filled” simply re-
oduces the(uncorrelatedl percolation clusters for occu-
pancyp(h). Then every contour of constahtis simply the
rperimeter of such a cluster. This mapping is well known
from Ref.[61], and is widely applied in the theory of the
uantum Hall effec{33,61].

The percolation clusters—as well as their perimeters—are
self-similar only atp(h)=p., the percolation threshold; we
will first discuss theirtknown) loop exponents. The behavior
when p#p. can easily be derived from well-known perco-
Z=2 KNb, (A3) lation scaling relations. The final step will be to integrate

y' these results ovep, since the loop ensemble we simulate
actually corresponds to the union of perimeter ensembles for

wherew(0)=1 andw(*=1)=K; the sum goes over all mi-
croscopic height configurations unrelated by a global heighbr
shift.

A contour-loop configuratiory’ is specified by drawing
closed(periodic boundary conditions ensure that all contou
lines are closexl oriented nonintersecting loops along the
bonds of the dual honeycomb lattice, which separate siteg
that differ in height by=1 (the sign determines the loops
orientatiorn). In terms of the loops, the partition function is

whereK is the fugacity of an occupied bor{de., one cov-

. : . allp.
ered by a loop andN, is the number of occupied bonds in alp
This model is equivalent to th®(2) loop model intro- 1. Contour loops and critical percolation
duced by Nienhui$31]. This is seen by rewriting the parti-  Fixing p=p, for a moment, the perimeter loop ensemble

tion function in terms of nonoriented loop configurations  may be characterized by exponefts and ,, with defini-
tions analogous to Eq$3.9) and (3.13 for D; and 7. (The
Zzz KNo2NI (A4) subscript ‘h” stands_ for “hull,” as the perimeter is often
Y called) The fractal dimension
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Dy=7/4 (B1)
is known exactly34].

The perimeter loops for percolation pt also satisfy a
hyperscaling relation analogous to E4.3), with « replaced
by zero. That is, the largest clust@r perimetey diameter
inside a box of sidéis least~|. From this follows a relation
for 7,:

w=1+2/D,=15/7. (B2)

Whenp#p., the clusterand perimeterensemble scal-
ing is cut off at the percolation correlation lengé(p),
which diverges neap. as

&p(P)~P—pc "7, (B3)
where v, is the usual percolation correlation-length expo-
nent, andv,=4/3 is known exactly62,34. In this case, the
loop length distribution is

Ph(sip)=s" (" Df(s/&,(p)°n), (B4)
where f,() is a scaling function, which falls off exponen-
tially fast for loops of radius greater thag(p).

2. Union of all percolation contours

In the percolation regime, evidently, the statistical prop-

erties of the contours of a particular level set depend on th
chosen leveh. (This was impossible in the self-affine re-
gime, since in that case the fluctuations lofwere un-
bounded. But we have previously studied thenion of all
contours with differenh, corresponding to all values pf h)
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FIG. 18. Construction of contour loops of a random surface on a
lattice. Heightsh(r) are indicated by numbers in the cells,, is
the height of the level set through the chosen pdiitied circle),
while hpaqis the height of the “saddle point{unfilled circlg. Our
definitions of the diameteR and loop lengtls are indicated. The
solid arrow connects points on the same loop, and thus contributes
to the loop correlation functios(r). The dashed arrow doemt
contribute: it connects points of the same level set, but they are on
disconnected loops.

2% p=4—2Dy+v, ' =5/4. (B7)

e
Equation(B7) could alternately be reached by first noting
that the corresponding exponent is 1/2 for the percolation
hull ensemble ap., and then averaging the loop connected-
ness correlation function analogous to EB5).

from 0 to 1. That is, indeed, the ensemble sampled by our

computer codessee Sec. V€ We will now derive the ex-
ponentsr, andx, , of this ensemble, defined analogously to
7 andx, in Egs.(3.13 and(3.17.

Most of the loops at a large length scdkecome from
levels sets at height with £(p(h))>R, rather than from the
exponential tails of the distributio(B4) for the otherh val-

APPENDIX C: LOOP FINDING ALGORITHM

Given a square lattic€ on which the height$ are de-
fined, and a poink, on the dual latticeC*, the task of the
loop finding algorithm is to construct a contour loop of the
surface which passes through the poipt The contour is a

ues. Thus these obey the percolation scaling and all hav¥alk along the bonds of* that cuts those bonds af that

fractal dimensionD; ,=Dy,. This behavior is illustrated in
Fig. 2(c).

Now, in the percolation regimeR(s) as defined in Sec.
Il C, is just proportional to the integral d?(s;p(h)) over
h. A weighting factor|dp/dh| should be included as the
contours are equally spaced, go(h) is normalized to unity.
Since the large contours come frgm=p., only that part of
the distribution matters. Inserting E@®3) into Eq.(B4), one
obtains

P(s)~f dps ("~ Df((consts|p—pc|Pr*e);  (B5)

henceP(s)~s~ (™1, with
7=+ (Dpry) " 1=18/7. (B6)

Finally, given Eg.(B6), the simplest route to the loop

have vertices with heights lying above and below the contour
height (Fig. 18. To implement this idea we first define the
level heighthy,, which is the average of the four heights
around the plaquette centeredxgt Second, we assign to all
the sites of£ + or — signs according to whether they are
above or below the chosen levsl,. Now, starting fromxg,

we form the contour loop by drawing links on the dual lattice
which cross the bonds af connecting+ and — sites. This

is repeated until the walk returns to the starting pagtthe
finite extent of the latticel is dealt with by implementing
periodic boundary conditions.

Special care must be taken whenever a “saddle-point”
plaquette is reached, that is one where the sites of the lattice
are assigned- — + — signs cyclically around the plaquette.
In this case four links meet at the point in the center and we
must resolve the connectivity there by an additional rule, so
as to convert this pattern into two 90 ° turns that are not quite
touching. One natural condition on the rule is that it should

(connectedneg<orrelation exponent is to use the exponentbe reversible, that is one should find the same loop whether

relation (4.8); this gives

one starts traversing it clockwise or counterclockwise. A sec-
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ond condition is that it ought to be invariant under reflectingfunction G(r); for every point on the loop that is a distance
all heights byh(x)— —h(x). A physically sensible rule re[i,i+1)(i is an integeraway from the starting point,,
which satisfies both conditions makes use of the averagghe array elemerg(i) is increased by 1. Wdefine Qr) for
height h,,q of the four heights around the saddle-pointour simulations agy(r)/2zr, which asymptotically is nor-
plaquette. Ith,,<hi,, we view the center of the plaquette malized the same &3(r) defined in Sec. llI C.

as being lower than the level of the contour loop and the So far we have assumed that the height variables are real
connectivity is resolved by having the sitesinsidethe 90°  and the conditio,q= he, is almost never fuffilled. This is
turns. In the opposite casgy . hiev, the + sites lieoutside  not the case for interfaces which arise from discrete growth
the 90° turns; see Fig. 18The agreement of loop data from simulations like the one presented in Sec. VI, where the

the single-step model with parametgrs and with 1-p, , height variable takes on integer values. In this case the reso-
as explained in Sec. VI was a valuable check of the up-dowtution of the connectivity should be completely random, but
symmetry of our loop-finding algorithm. we must ensure that we use the same choice if the loop

Once a contour loop througky has been constructed its returns to the same plaquette. The simplest way to do this,
length and radius are recorded, assuming that the loop ishich is what we have implemented, is to take the original
topologically trivial. (Due to periodic boundary conditions, integer heights and “dither” them—add small amounts of
loops with nonzero winding numbers are possible, and theseandom, uncorrelated Gaussian noise tohgi). This will
we discard. The contour loop lengthis equal to the number also solve the problem of choosirg,, ; it will be nonge-
of steps made during the loop construction, while the radiuseric for any two heights to precisely coincide, although this
Ris the size of the largest square which covers the loop, i.ewill happen occasionally as the price of roundoff error.
the maximum displacement in theor y direction. Every  When this does happen, we start over by choosing a new
topologically trivial loop also contributes to the correlation initial site xg.
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