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Generation of compound non-Gaussian random processes with a given correlation function

S. PrimaK
Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
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A compound representation of random processes is considered. Each independent component of such a
process is considered as the solution of the proper stochastic differential eq&iBn This guarantees that
the process obtained is stationary and ergodic. The analytical expressions are developed for nonlinear coeffi-
cients of the generating SDE. Theoretical results are compared with numerical simulation.

PACS numbd(s): 05.10.Cc, 05.40-a, 02.50.Ga

[. INTRODUCTION transition probability density functionr(x,t|xq,tg)] obeys
the Fokker-Planck equatioi-PE) [9]
A need for accurate computer simulation of random pro- ;

cesses with a given non-Gaussian probability density func- _
tion (PDP and certain correlation properties arises in appli- ~ o PO = 2 TK 0P D] = 5 25 [Ka()p(X, D],
cations ranging from communications, mechanical 2
vibrations, and sea surface clutter modeling to large scale
astronomical phenomendl—3]. Conventional methods, Whereg(t) is a WGN of unit intensity, and
based either on linear filtering or memoryless nonlinear

2

transformation of Gaussian correlated processes are limited Ki(x)=1(x), 3
as far as analytical results are concerf®]. Moreover, an o,
accurate and simultaneous reproduction of the correlation Ka(x)=9"(x) (4)

function (CF) and PDF would require complicated optimiza-
tion techniques. A general approach to generate a stationa bnstationary PDRb(x.t) of the proces(t), which con-

random process with a given PDF and an exponential-typ . g
CF based on nonlinear transformation, with memory of the/®rges to the stationary PO¥(x) whent approaches infin-

white Gaussian noiseVGN) was presented in Ref§6,7]. ity, l.e.,

This approach is based on the treatment of the process with

the required characteristics as the solution of a proper sto-

chastic differential equatiofSDE) [8]. Such an interpreta-

tion is attractive because it takes advantage of the Markov There is a simple relation betwed€y(x), K,(x), and

process theorj9]. As shown in Refs[7,10] it is possible to  p,(x) [9]:

generate a continuous random process with any given PDF

and exact exponential correlation function. C x Kq(X)
In this paper we develop a procedure allowing us to px(X):meXF{ Jamd

model non-Gaussian random processes with an arbitrary cor-

relation function and marginal PDF restricted to a specifiqynere a constart is chosen to normalize the POg(X).
class of so-called compound PDF. In contrast to the ap- At the same time. the correlation functiok (7)

proach presented in Refsl1-13, our method generates an — (y(t)x(t+ 7)) can be considered as the solution of the fol-
ergodic stationary Markov process. lowing ordinary differential equatiofe]:

S/re the drift and diffusion of the Markov proces&). The

limp(x,t)=py(X).

t—ox

X/, )

Il. SDE MODEL OF THE EXPONENTIALLY
CORRELATED RANDOM PROCESS a7 KD = (XK (x(t+ 7)) 6

In order to make this paper self-explanatory, we repro

‘ . : : : ‘with the initial condition
duce some basic equations, earlier obtained in Réf.

which allow us to generate an exponentially correlated ran- K (0)=02=((x—<x>)2)=((x—m )2). 7)
dom process with an arbitrary probability density function X X X
(PDP). The solution of a SDElto form [9]), Here(+) stands for the statistical average over the realizations

) [9]. If one chooses
x=1(x)+g(x)&(1), (1)
Ki(X)=—=A(x—my), (8
is a Markov random process, whose PPE,t) [and the
then Eq.(6) has the solution of the form

2
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After substituting Eqg.(8) into Eq. (5) and solving for 1 n2
K,(x), one can obtain that n,s)= exp{— S). 1
2( ) pn,s( ) 27TBn(O) ZBn(O) pS( ) ( 7)
2N (X
Ka(X)=— mf (X=my) py(x)dx. (100 This immediately produces
X —o0
The drift K,(x) and the diffusionK,(x) now define the o(X)=2 f ”;GX;{_LZ Pss) o
SDE: X 0 \27B,(0) 2B,(0)s?| s
o " \/ 2\ fx ( N Jw 1 p[ x? Ps(s)
X=—N(X—m - X—m X)dxE(t), = | ————eXg — 55—~ 3|—ds,
x pe0x) J o X P 0 \27B,0) 2B,(0)s] s
(11 18)
whose solution has the given stationary PRX) and ex- h
ponential correlation functiof®). In turn, SDE(11) can be where
numerically simulated, using a technique suggested in Ref. 0 if s<0
[8], providing one with a convenient tool of generating non- ps(s):[ ) (19
Gaussian exponentially correlated random processes. 2py(s) if s=0.

As we can see, the marginal distribution xft) does not
depend on correlation properties of its components. Thus, if
. . it is possible to find a distributiopg(s) that gives rise to the
Following Refs[11-13, let us consider the random pro- gesjred marginal distributiop,(x), then one can adjust the
cessx(t) as being a product of a zero mean Gaussian randorgyrelation properties of components to achieve the desired
processn(t) with the marginal PDFpn(n), and ¢) a sym-  correlation properties of the compound process itself. There-
metric exponentially correlated random procegs), with  fore the marginal distribution of compones(t) allows us
the marginal PDFpg(|s|), which is independent ai(t): to obtain the desired distribution, while the desired correla-
x(1) =n()s(t) (12) tion pr(_)perties are defined by the correlation properties of the
' Gaussian component.

We will refer to the process(t) as a compound process to 10 Prove the last proposition, let us assume that the de-
emphasize that it is obtained as a product of two processegired correlation function of the procest) should be a sum
The random processest) ands(t) can be considered as the Of exponentswe assume here that any desired correlation

IIl. SDE REPRESENTATION OF COMPOUND PROCESSES

components of the corresponding compound progégs function can be well approximated by a rational correlation
Let function)
K
= = +
Ba(7)=Kn(m)=(n(t)n(t+1) (13 )=, axexiisr] 20
and -

_ _ where K is the order of approximation. Poleg and the
Bo(7)=Ks(7)=({s(D)s(t+7)) (14) corresponding resi_dueak should appear in complex-

be the correlationcovariation functions of the processes conjugate pairs. Let be defined as

n(t) ands(t), respectivelyboth n(t) and s(t) have zero —

mear]. Then, using the independencergft) ands(t), one a=maxrealsg} <0, @D

can write which means tha,(7)—0 whenr—o. If we then choose

B,(7)={(x(t)x(t+ 7)) =(n(t)n(t+ 7)s(t)s(t+ 7))

o
= (N(ON(E+ D)(SOS(t+ 7)) =By(7BY(7). =Kol 22
(15  and
The last equality means that the correlation functiyg() K (1) —
of the compound procesgt) is just a product of the corre- Ko(7)= — T ex;{gr => . ex;{ S+ E) T},
lation functionsR,(7) andRg(7) of its componentsi(t) and Ks(0) 772 ] =1 Ky(0) 2 -
s(t). 23

The marginal PDF of the Gaussian compone(t) can

be written as
max real s+ =
(16) o

1 n®
n)= exg —
Pa(n) J27B,(0) % 2B,(0)
soK,(7)—0 whenrt—o and

and, taking into account the independence of its components
n(t) ands(t), the joint PDFp, s(n,s) of n(t) ands(t) is Kn(m)Ks(7) =Ky (7). (25

(24)
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If we can then find a functiopg(s) that gives rise to the
random process(t) with the given PDFp,(x), then an SDE

generating a random process with a given marginal PDF an

given correlation function is found. The class of PDF, allow-
ing such a representation, can be found in Réf$-13. The
processs(t) can be obtained using SDE1). The Gaussian
process, with the correlation functidf,(7), can be gener-
ated as a component of the solutint) of K-dimensional
SDE of the form[14]:

%n(t)zAn(t)—kBE(t), (26)

where A, B are the constant matrices, arEl(t) is the
K-dimensional WGN with independent components.

IV. AN EXAMPLE OF A NARROW BAND K-DISTRIBUTED
RANDOM PROCESS

Using the random process with a marginal distribution,
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FIG. 1. Theoreticaldashed lingand estimatedsolid line) PDF,
obtained from the solution of Eq$30) and (31).

Py (X)=Ko(ax), (27) V. CONCLUSIONS
. L . This paper addresses the problem of modeling a com-
and the covariation function in the following form: pound non-Gaussian random process with a given PDF and
o, - ) correlation function. It was suggested that the desired ran-
Ku(X) = 0” exp(—o| 7| )cog ), o°=(2m)/a%, dom process is represented by a product of the correlated
(28) Gaussian random process and the exponentially correlated
_ non-Gaussian random process, which are independent of
the desired procesgt) can be represented as a product of ag, 1y other. Both the components of the compound process

normally distributed random procesg(t), with covariation
function

Ao
Kxnxn(x) =g? ex;{ ey | 7] ) cofwT), (29

and them-distributed random\ processs(t) with m=0.5
andQ=1[7].
In this case, the process(t) is generated by the SDE

. Mo, o
Ko+ EX”J”U Xn=0é&p(1), (30
ands(t) is generated by7]
. )\o( \/E
S=——|s—\/—|+F(s)&t), (31
2 T
whereF(s), according to Eq(10), is given by
B \/ 2N (s
F(s)= —mﬁm(x—mx)Ko(ax)dx
= (32)

andI’(e, ¢, ¢) is the generalized function[15]. The results of
the numerical simulation foa=1 andy=10"°s are given
in Figs. 1 and 2.

are represented as solutions of corresponding SDE. These
methods enable one to generate an ergodic random process,
in sharp contrast to the method frequently used in the litera-
ture[11-13. Both components can be completely described
by their corresponding transition probability density func-
tions, and thus, using the Markov property of SDE solution,
the joint probability density function of any order can be
obtained. Part of these results can be found in REf.and

are the subject of a future publication. Numerical simulation
confirms the theoretical derivations. We believe that the sug-

__________________________________________________

__________________________________________________
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FIG. 2. Theoreticaldashed lingand estimatedsolid line) CF,
obtained from the solution of Eq$30) and (31).
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