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Generation of compound non-Gaussian random processes with a given correlation function

S. Primak*
Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B

~Received 20 July 1999!

A compound representation of random processes is considered. Each independent component of such a
process is considered as the solution of the proper stochastic differential equation~SDE!. This guarantees that
the process obtained is stationary and ergodic. The analytical expressions are developed for nonlinear coeffi-
cients of the generating SDE. Theoretical results are compared with numerical simulation.

PACS number~s!: 05.10.Cc, 05.40.2a, 02.50.Ga
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I. INTRODUCTION

A need for accurate computer simulation of random p
cesses with a given non-Gaussian probability density fu
tion ~PDF! and certain correlation properties arises in app
cations ranging from communications, mechani
vibrations, and sea surface clutter modeling to large sc
astronomical phenomena@1–3#. Conventional methods
based either on linear filtering or memoryless nonlin
transformation of Gaussian correlated processes are lim
as far as analytical results are concerned@4,5#. Moreover, an
accurate and simultaneous reproduction of the correla
function ~CF! and PDF would require complicated optimiz
tion techniques. A general approach to generate a statio
random process with a given PDF and an exponential-t
CF based on nonlinear transformation, with memory of
white Gaussian noise~WGN! was presented in Refs.@6,7#.
This approach is based on the treatment of the process
the required characteristics as the solution of a proper
chastic differential equation~SDE! @8#. Such an interpreta
tion is attractive because it takes advantage of the Mar
process theory@9#. As shown in Refs.@7,10# it is possible to
generate a continuous random process with any given P
and exact exponential correlation function.

In this paper we develop a procedure allowing us
model non-Gaussian random processes with an arbitrary
relation function and marginal PDF restricted to a spec
class of so-called compound PDF. In contrast to the
proach presented in Refs.@11–13#, our method generates a
ergodic stationary Markov process.

II. SDE MODEL OF THE EXPONENTIALLY
CORRELATED RANDOM PROCESS

In order to make this paper self-explanatory, we rep
duce some basic equations, earlier obtained in Ref.@7#,
which allow us to generate an exponentially correlated r
dom process with an arbitrary probability density functi
~PDF!. The solution of a SDE~Ito form @9#!,

ẋ5 f ~x!1g~x!j~ t !, ~1!

is a Markov random process, whose PDFp(x,t) @and the
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transition probability density functionp(x,tux0 ,t0)# obeys
the Fokker-Planck equation~FPE! @9#

2
]

]t
p~x,t !5

]

]x
@K1~x!p~x,t !#2

1

2

]2

]x2 @K2~x!p~x,t !#,

~2!

wherej(t) is a WGN of unit intensity, and

K1~x!5 f ~x!, ~3!

K2~x!5g2~x! ~4!

are the drift and diffusion of the Markov processx(t). The
nonstationary PDFp(x,t) of the processx(t), which con-
verges to the stationary PDFpx(x) when t approaches infin-
ity, i.e.,

lim
t→`

p~x,t !5px~x!.

There is a simple relation betweenK1(x), K2(x), and
px(x) @9#:

px~x!5
C

K2~x!
expF2E

a

x K1~x!

K2~x!
dxG , ~5!

where a constantC is chosen to normalize the PDFpx(x).
At the same time, the correlation functionKx(t)

5^x(t)x(t1t)& can be considered as the solution of the f
lowing ordinary differential equation@9#:

d

dt
Kx~t!5^x~ t !K1„x~ t1t!…& ~6!

with the initial condition

Kx~0!5sx
25Š~x2^x&!2

‹5^~x2mx!
2&. ~7!

Here^•& stands for the statistical average over the realizati
@9#. If one chooses

K1~x!52l~x2mx!, ~8!

then Eq.~6! has the solution of the form

Kxx~t!5sx
2 exp~2lutu!. ~9!
100 ©2000 The American Physical Society
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After substituting Eq.~8! into Eq. ~5! and solving for
K2(x), one can obtain that

K2~x!52
2l

px~x!
E

2`

x

~x2mx!px~x!dx. ~10!

The drift K1(x) and the diffusionK2(x) now define the
SDE:

ẋ52l~x2mx!1A2
2l

px~x!
E

2`

x

~x2mx!px~x!dxj~ t !,

~11!

whose solution has the given stationary PDFpx(x) and ex-
ponential correlation function~9!. In turn, SDE~11! can be
numerically simulated, using a technique suggested in R
@8#, providing one with a convenient tool of generating no
Gaussian exponentially correlated random processes.

III. SDE REPRESENTATION OF COMPOUND PROCESSES

Following Refs.@11–13#, let us consider the random pro
cessx(t) as being a product of a zero mean Gaussian rand
processn(t) with the marginal PDFpn(n), and (t) a sym-
metric exponentially correlated random processs(t), with
the marginal PDFps(usu), which is independent ofn(t):

x~ t !5n~ t !s~ t !. ~12!

We will refer to the processx(t) as a compound process
emphasize that it is obtained as a product of two proces
The random processesn(t) ands(t) can be considered as th
components of the corresponding compound processx(t).

Let

Bn~t!5Kn~t!5^n~ t !n~ t1t!& ~13!

and

Bs~t!5Ks~t!5^s~ t !s~ t1t!& ~14!

be the correlation~covariation! functions of the processe
n(t) and s(t), respectively@both n(t) and s(t) have zero
mean#. Then, using the independence ofn(t) ands(t), one
can write

Bx~t!5^x~ t !x~ t1t!&5^n~ t !n~ t1t!s~ t !s~ t1t!&

5^n~ t !n~ t1t!&^s~ t !s~ t1t!&5Bn~t!Bs~t!.

~15!

The last equality means that the correlation functionRxx(t)
of the compound processx(t) is just a product of the corre
lation functionsRn(t) andRs(t) of its componentsn(t) and
s(t).

The marginal PDF of the Gaussian componentn(t) can
be written as

pn~n!5
1

A2pBn~0!
expF2

n2

2Bn~0!G ~16!

and, taking into account the independence of its compon
n(t) ands(t), the joint PDFpn,s(n,s) of n(t) ands(t) is
f.
-

m

s.

ts

pn,s~n,s!5
1

A2pBn~0!
expF2

n2

2Bn~0!Gps~s!. ~17!

This immediately produces

px~x!52E
0

` 1

A2pBn~0!
expF2

x2

2Bn~0!s2G ps~s!

s
ds

5E
0

` 1

A2pBn~0!
expF2

x2

2Bn~0!s2G p̂s~s!

s
ds,

~18!

where

p̂s~s!5H 0 if s,0

2ps~s! if s>0.
~19!

As we can see, the marginal distribution ofx(t) does not
depend on correlation properties of its components. Thu
it is possible to find a distributionps(s) that gives rise to the
desired marginal distributionpx(x), then one can adjust th
correlation properties of components to achieve the des
correlation properties of the compound process itself. The
fore, the marginal distribution of components(t) allows us
to obtain the desired distribution, while the desired corre
tion properties are defined by the correlation properties of
Gaussian component.

To prove the last proposition, let us assume that the
sired correlation function of the processx(t) should be a sum
of exponents~we assume here that any desired correlat
function can be well approximated by a rational correlati
function!

Kx~t!5 (
k51

K

ak exp@skt#, ~20!

where K is the order of approximation. Polessk and the
corresponding residueak should appear in complex
conjugate pairs. Letā be defined as

ā5max$real~sk!%,0, ~21!

which means thatKx(t)→0 whent→`. If we then choose

Ks~t!5Ks~0!expF2
ā

2
tG ~22!

and

Ks~t!5
Kx~t!

Ks~0!
expF ā2 tG5 (

k51

K
ak

Ks~0!
expF S sk1

ā

2 D tG ,
~23!

then

maxH realS sk1
ā

2 D J 52
ā

2
,0, ~24!

so Kn(t)→0 whent→` and

Kn~t!Ks~t!5Kx~t!. ~25!
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If we can then find a functionps(s) that gives rise to the
random processx(t) with the given PDFpx(x), then an SDE
generating a random process with a given marginal PDF
given correlation function is found. The class of PDF, allo
ing such a representation, can be found in Refs.@11–13#. The
processs(t) can be obtained using SDE~11!. The Gaussian
process, with the correlation functionKn(t), can be gener-
ated as a component of the solutionn(t) of K-dimensional
SDE of the form@14#:

d

dt
n~ t !5An~ t !1BJ~ t !, ~26!

where A, B are the constant matrices, andJ(t) is the
K-dimensional WGN with independent components.

IV. AN EXAMPLE OF A NARROW BAND K-DISTRIBUTED
RANDOM PROCESS

Using the random process with a marginal distribution

px~x!5K0~ax!, ~27!

and the covariation function in the following form:

Kxx~x!5s2 exp~2l0utu!cos~vt!, s25~2p!/a2,
~28!

the desired processx(t) can be represented as a product o
normally distributed random processxn(t), with covariation
function

Kxnxn
~x!5s2 expS 2

l0

2
utu D cos~vt!, ~29!

and them-distributed randomL processs(t) with m50.5
andV51 @7#.

In this case, the processxn(t) is generated by the SDE

ẍn1
l0

v
ẋn1v2xn5sjn~ t !, ~30!

ands(t) is generated by@7#

ṡ52
l0

2 S s2A2

p D 1F~s!j~ t !, ~31!

whereF(s), according to Eq.~10!, is given by

F~s!5A2
2l

K0~as!
E

2`

s

~x2mx!K0~ax!dx

5
Al0&GS 1

2
,0,

s2

2 D
p

, ~32!

andG~•, •, •! is the generalizedg function@15#. The results of
the numerical simulation fora51 andg51029 s are given
in Figs. 1 and 2.
d
-

V. CONCLUSIONS

This paper addresses the problem of modeling a co
pound non-Gaussian random process with a given PDF
correlation function. It was suggested that the desired r
dom process is represented by a product of the correla
Gaussian random process and the exponentially correl
non-Gaussian random process, which are independen
each other. Both the components of the compound proc
are represented as solutions of corresponding SDE. Th
methods enable one to generate an ergodic random pro
in sharp contrast to the method frequently used in the lite
ture @11–13#. Both components can be completely describ
by their corresponding transition probability density fun
tions, and thus, using the Markov property of SDE solutio
the joint probability density function of any order can b
obtained. Part of these results can be found in Ref.@7#, and
are the subject of a future publication. Numerical simulati
confirms the theoretical derivations. We believe that the s

FIG. 1. Theoretical~dashed line! and estimated~solid line! PDF,
obtained from the solution of Eqs.~30! and ~31!.

FIG. 2. Theoretical~dashed line! and estimated~solid line! CF,
obtained from the solution of Eqs.~30! and ~31!.
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gested approach can be extended to the case when th
sired distribution has infinite moments—one may try to u
nonstationary Gaussian components of the compound
cess with growing variance. However, this is a matter
further research.
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