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We show that absolute sonic band gaps produced by two-dimensional square and triangular lattices of rigid
cylinders in air can be increased by reducing the structure symmetry. In the case of square lattices, symmetry
reduction is achieved by a smaller diameter cylinder placed at the center of each unit cell. For triangular lattices
the reduction is achieved by decreasing the diameter of the cylinder at the center of the hexagons in the lattice.
Theoretical predictions are also demonstrated experimentally: starting from a honeycomkuattigecylin-
ders of 4 cm of diameter size and 6.35 cm nearest-neighbor distamcéave studied the transition to a
triangular symmetry by putting rods with increasing diametarthe range 0.6—4 cjnat the center. The
greatest enhancement of the attenuation strength observed in transmission experiments has been obtained in the
high frequency region for diameter ratios in the range 0.1{®3063-651X99)51212-9

PACS numbds): 43.20:+g, 42.25.Bs, 52.35.Dm

Since the seminal work of Yablonovit¢h] and Johr2], square and honeycomb lattices. The latest conclusion awak-
who open the research in photonic crysté®<), we have ened our interest about whether this sort of mechanism is
witnessed the appearance of new devices based on the ex@ffective in creating large SBG and/or enhancing the attenu-
tence of photonic band gagBBG) in these dielectric peri- ation measured in some 2D sonic crysteC) previously
odic structures. Also, because the underlying theory is applistudied by u$8]. In this Rapid Communication we show that
cable to other kind of waves, acoustic and elastic, a searciiis mechanism is also effective in SC, being the cause for
for periodic structures having properties of sonic band gauch SBG enlargement a combination of two mechanigm:
(SBG) or elastic band gagEBG), respectively, is currently the achievement of higher filling fractions, afid) the sym-
being performed. Therefore, the design, construction, andnetry reduction. Also, here we demonstrate that mechanism
technological applications of a completely new type of crys-(ii) is much more effective than mechanigm
tals that could be called classical wave crystals is becoming a The wave equation for the propagation of pressure waves
very promising project at the beginning of the new century.p(r), with harmonic frequencyw, in a 2D-space =(X,y)

In the field of acoustics much theoretical work has beerflefined by a composite system having a sound velocity,
done proposing structures having SBG’s properfigs6].  V(r), and densityp(r), can be written as
The existence of SBG is due to a complex interplay between

the sound velocity and density ratios of the composite mate- vp(r) w?
rials, and their spatial arrangement. Experimentally, a few v ( 0 )=— 5 p(r). 1)
works have claimed to observe absolute band dapg. p vare(r)

Therefore, the actual possibility of building up composite
material having SBG open a new technological research on This equation closely resembles to that of transverse-
environmental protection. magnetic waves propagating through a 2D composite dielec-
One of the goals of PBG and SBG theory is the search offic medium &(r). The corresponding magnetic fielty
materials and/or topologies producing large gaps at the de= H(r)f, verifies the equation
sired range of frequencies. In PC it has been shown that full
PBG can be enlarged by decreasing the crystal symmetry VH(r) w2
through the introduction of a two-point basis set. Thus, for ( ): ——H(n), 2
example, 3D PC based on a face-centered-cubic structure do c
not possess a full PBG between the first and second bands,
but the ones having a diamond structure do because the adherec is the light velocity. The resemblance between Eqgs.
ditional point basis lifts the degeneracy of some bd®dsin (1) and(2) suggests that the results found in Rdf0] could
the same manner, in two-dimensiong&D) structures, be extended to sound waves. Nevertheless, extrapolation of
Anderson and Giapi§10] obtained larger gaps when they results obtained on PBG theory to SC can be misleading
add a different size rod at the center of each unit cell ofbecause of the different magnitudes involved in both equa-
tions. Also, the different kind of waves involvédectorial in
PC and scalar in SCthe position dependence of the bulk
* Authors to whom correspondence should be addressed. Eleenodulus\ (r)=v2(r)p(r), and the huge contrast between
tronic addresses: jsdehesa@uamca3.fmc.uam.es, fmese@fis.upvis@terial parameters in the SC under research requires that

e(r)

1063-651X/99/6(6)/63164)/$15.00 PRE 60 R6316 © 1999 The American Physical Society



RAPID COMMUNICATIONS

PRE 60 LARGE TWO-DIMENSIONAL SONIC BAND GAPS R6317
1.0
5 08 ‘90
E |00 .
® 06 ——= &
& o4f >
s | e [0
3 5
g o2t S
— o
2
00 n 1 n 1 1 1 n 1 n =
0.0 0.2 0.4 0.6 0.8 1.0 I
filling fraction 0.0 e
& (f) 0.0 0.2 0.4 0.6 0.8 1.0
FIG. 1. Gap map for a square lattice of rigid cylinders in air. cyl_ diameter ratio (ﬁ )
The dotted(solid) line defines the limits of the first pseudogap
along thel'’X (I'M) direction. An absolute sonic band géghaded FIG. 2. Gap map for the reduced-symmetry square lattice of

zoneg occurs when the gaps along the two high symmetry direction$igid cylinders in air. The filling fractiorf =0.415 at8=0. For 8
overlap. The maximum gap will be produced at the closed-packing=.1 the gaps are significatively larger than the ones of the square
condition, f(CP)=0.78, which is indicated by the vertical line.  |attice with equaf (see Fig. 1 The maximum gap will be achieved

at the close-packing conditiof(CP)=0.94, which is defined by
the conclusions of Anderson and Giapl®)] for PC must be the vertical line.
confirmed both theoretically and experimentally in SC. ) o )

We have obtained the acoustic band structure by solving!"® Py adding a smaller rigid cylinder at the center of each
Eq. (1) using a variational method introduced by some of usoquare unit cell. Although the point group symmetry of the
[11]. The pressure is developed as a linear combination gBravais lattice C,,) does not change, the new crystal struc-
localized waves and the differential problem is transformedl{fe_ has Io_vver symmetry since the_unlt c_eII contams_t_wo
into a matrix problem. A brief report of the method can pedistinct basis umts with no_symmetry inversion. The addition
found elsewherd8]. Here the results were obtained using Of the new cylinder, of diameted,, at the center of the
225 |ocalized functions. lattice enhances the filling fraction, which takes the value

With regard to experiments, they have been performed byjr = 7(d3 +d3)/(4a?). If the starting square lattice has a fill-
using the same set up as described in R&¥. Briefly, in a  Ing fractionf<0.39 the diameted, can be increased up to
echo-free chamber, we study how the sound is scattered B, and therefore, the gap of a square lattice with periodicity
different samples, which resemble minimalist sculpturesa/y2 is recovered. On the other hand, when the starting
[12]. The sound transmitted across these structures is réattice has 0.3&f<f(CP), d, is limited by the close-
corded by a sample microphone and is compared to thgiacking condition;d,max= J2a—d;. In this case, one can
recorded by a reference microphoihich received the obtain maximunf, when the close-packing condition is ful-
sound without any attenuation by the sampkeach sample filled, f, ,,,(CP)=0.92. After extensive calculation with
consists of 1 m long aluminum bars hanging on a framehis structure, we found a general behavior. The gap between
which can rotated around the vertical axis to explore anythe first and the second ban(lsit exists) decreases when we
direction of thek wave vector perpendicular to the cylinders increase the diameter rati@&d,/d;) due to the bands ap-
axis. Thus, to analyze the honeycomb-triangular transitionproaching at théM point of the BZ[the (110 point]. At the
cylinders with diameted; =4 cm are initially arranged in a same time, new gaps appear at higher frequencies. In Fig. 2
honeycomb lattice, being the nearest neighbor distance 6.3Be show this effect for the case in which a square lattice with
cm. Afterwards, an additional cylinder with a variable diam- f=0.415 get additional gaps by using the symmetry reduc-
eter sized, (between 0.6 and 4 cnis placed at the center of tion mechanism.
each hexagon in the starting lattice. Apart from the zero- In the case of triangular latticétheir point group i<C5,),
order transmission experimentsvhere the source and the gap magnot shown hergpresents the first absolute gap
sample microphone are colingare have also investigated (the one between the first and second baxifl=0.5[8]. For
possible energy transfer to Bragg waves of higher orders byshe honeycomb latticéa reduced-symmetry lattice of the tri-
putting the sample microphone at angles tilted with respecangulaj, its gap map is plotted in Fig. 3. The honeycomb
to theI'X or I'J direction of the Brillouin zondBZ). lattice always has larger gaps than the triangular one pro-

First, we start with the square lattice whose properties/ided both lattices have equiavalues. This is an example of
have been studied by different grouf&12—-13. Figure 1 how symmetry reduction produce and enlarge the absolute
summarizes the result of our calculations for this lattice. Thegaps.
gap map shows that both directions of high symmetry have We have measured the evolution of the gaps when the
pseudogaps that overlap each other for filling fractions, honeycomb lattice is transformed into a triangular lattice by
=0.3. The maximum absolute gap occurs when the cylinderscreasing the diameted,, of the cylinder placed at the
are close-packed(CP)=0.78. We have modified this struc- center of each hexagon. We started with the structure having
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FIG. 3. Gap map for the honeycomb lattice of rigid cylinders in
air. The first absolute gap is defined by the overlap between the

pseudogaps at th® point (whose limits are represented by the
dotted lineg, and at theM point (the continuous lines define its
limits). The vertical line defines the close-packing condition in this

lattice, f(CP)=0.605.

f=0.24, which is indicated by an arrow in Fig. 3. Experi-
mental details have been explained previously. In Fig. 4 we . . -
: . . . tan produce attenuation bands in zero-order transmission ex-
display typical attenuation spectra taken along the two high
symmetry direction of the BZ. Figure 5 shows the compari
son between the absolute gaps calculated as a functigh of
and the borders of the attenuation band measured in tran
mission experimentg&.g., the arrows in Fig.)4lt is remark-
able how the magnitude of the first gap decreases althbugh_. . . Lo
) ) T sive results supporting that this mechanism is the only one
increases. The reason for this behavior is the enhancementP
the symmetry ag3 increases. The full symmetry is finally
achieved aj3=1, the triangular lattice condition. Also, no-
tice the agreement between the experimentally deduced bo
ders of the low frequency gap and the calculated one. Th

disagreement observed for the high frequency gap can b&
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FIG. 5. Gap map for the reduced-symmetry triangular lattice of
rigid cylinders in air. The shaded areas represent the calculated gap.
The dots define the limits of the overlap between attenuation bands

observed in transmission spectra measured aloxXgnd I'M, re-

spectively.

understood taking into account two other mechanisms that

periments:(1) the existence of deaf band8], and (2) an
“energy transfer to Bragg waves of higher orders. The latest
mechanisms have been experimentally explored through the
detection of the scattered sound along a direction different
from the incidentk wave vector. We have found no conclu-

esponsible of such big attenuation bands. In addition, the
analysis of the pressure pattern of states in the bands existing
on that frequency range shows that they are antisymmetric
trégarding the plane defined by the incident wave-vector and
e cylinder axis, and this property is the fingerprint of deaf

ates. Therefore, we conclude that attenuation bands in the
frequency region 2700-3500 Hz are mainly due to deaf

05| bands.
In soundshielding devices not only the frequency range of
gaps is important but also the strength of attenuation ob-
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FIG. 4. Attenuation spectra taken along thd andI'X direc-

tions, for the case of a reduced-symmetry trianguliyr=(4 cm,

cyl. diameter ratio ([3)

FIG. 6. Area, normalized to the filling fractiof) of the first

andd,=1 cm). The first two overlaps between attenuation bandsattenuation-band-overlap observed in transmission pectra taken
are the hatched zones in the plot and their bor@edicated by the along thel’d andI'X directions, in the reduced-symmetry honey-
arrows are plotted in Fig. 5. as full circles. comb lattice. The line is a guide for the eye.
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tained in the sound transmitted. In Fig. 6 we plot the area oD square and triangular sonic crystals result in a band-gap
the first attenuation band normalized to the filling fraction asenlargement as in photonic crystals. Experiments performed
a function ofg for the honeycomb-triangular transition stud- N the honeycomb-triangular transition confirm our theoreti-

ied in Fig. 5. This normalized area could be considered as 8a| findings with regards 1o the behavior of the low fre_z-
ency band gap. For the high frequency gap, our theoretical

: . . . qu
smgle parameter defining the attenuation strength of a gllVeanalysis and experimental characterization indicates that the
sonic structure. We observe that the attenuation strength iSyisience of deaf bands can explain the disagreement be-
maximum whenB~0.2. This result lets us conclude that in tween experiments and theory.

order to improve soundproofing devices it is preferable to This work was supported by the Comiisitnterministerial

sacrifice a little of band-gap-width in order to have strongery. ciencia y Tecnoldgi of Spain, Contract No. MAT97-

attenuation effects. 0698-C04, and the Generalitat Valenciana, Contract No. GV-
In summary, we have shown that symmetry reduction inD-CN-08-129-96.
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