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Nonequilibrium first-order phase transition induced by additive noise
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We show that a nonequilibrium first-order phase transition can be induced by additive noise. As a model
system to study this phenomenon, we consider a nonlinear lattice of overdamped oscillators with both additive
and multiplicative noise terms. Predictions from mean field theory are successfully confirmed by numerical
simulations. A physical explanation for the mechanism of the transition is given.@S1063-651X~99!51912-0#
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Among all the counterintuitive phenomena observed
nonlinear systems with noise~such as stochastic resonan
@1#, noise-induced transport@2#, coherence resonance@3#,
resonant activation@4#, etc.! an important place is occupie
by noise-induced transitions. Discovered in the 1980s@5# and
confirmed by numerous experiments~see, for example,@6#!,
noise-induced transitions have attracted intensive atten
due to the surprising ability of noise to produce order in
system. These transitions can be characterized by a qua
tive change in the probability distribution of the system~e.g.,
by a change in the number of maxima!. In the 1990s other
kinds of transitions were found, such as those giving rise
noise-induced oscillations in single nonlinear oscillato
@7,8#. On the other hand, systems of spatially coupled ov
damped oscillators have been recently shown to disp
noise-inducedphasetransitions. In this case, contrary to th
previous phenomena, the system exhibits ergodicity brea
and the transition can be characterized by standard too
equilibrium statistical mechanics@9#. Several models have
exhibited so far the existence of noise-induced second-o
~continuous! phase transitions leading to the creation o
nonzero mean field@9–12#. In @13# it was shown that noise
induced phase transitions can also be of first order~discon-
tinuous!.

In the majority of the above-mentioned studies, pha
transitions are induced by multiplicative noise. However,
cent results@14–16# have shown that additive noise can pl
a crucial role in this phenomenon, and even induce a tra
tion by itself. Such an influence has been observed bot
oscillatory @14# and in nonoscillatory~overdamped! systems
@15,16#. The present Rapid Communication shows that ad
tive noise can also inducefirst-order nonequilibrium transi-
tions in spatially extended systems. These arepure noise-
induced phase transitions, in the sense that they do not
in the system in the absence of noise. The study is perfor
on a nonlinear lattice of coupled stochastic overdamped
cillators introduced in @11# and further studied in
@15,16,18,19#. It is described by the following set of Lange
vin equations:

ẋi5 f ~xi !1g~xi !j i~ t !1
D

2d (
j

~xj2xi !1z i~ t !, ~1!

wherexi(t) represents the state of thei th oscillator, and the
sum runs over all nearest neighbors of celli. The strength of
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the coupling is measured byD, andd is the dimension of the
lattice, which hasN5Ld elements. The noise termsj i(t) and
z i(t) are mutually uncorrelated, Gaussian distributed, w
zero mean and white in both space and time,

^j i~ t !j j~ t8!&5sj
2d i , jd~ t2t8!, ~2!

^z i~ t !z j~ t8!&5sz
2d i , jd~ t2t8!. ~3!

For the sake of simplicity, the functionsf (x) andg(x) are
taken to be of the form@11#

f ~x!52x~11x2!2, g~x!5a21x2, ~4!

so that two different sources of additive noise can be con
ered to exist in this system: the first one, controlled bysz , is
completely uncorrelated with the multiplicative noise; t
second one, controlled bya, is strongly correlated with it.

The behavior of this system can be analytically studied
means of a standard mean-field theory~MFT! procedure@9#.
The mean-field approximation consists of replacing
nearest-neighbor interaction by a global term in the Fokk
Planck equation corresponding to Eq.~1!. In this way, one
obtains the following steady-state probability distributio
wst:

wst~x,m!5
C~m!

Asj
2g2~x!1sz

2
expS 2E

0

x f ~y!2D~y2m!

sj
2g2~y!1sz

2
dyD ,

~5!

where C(m) is a normalization constant andm is a mean
field, defined by the equation

m5E
2`

`

xwst~x,m!dx. ~6!

By solving Eq. ~6! self-consistently with respect to th
variable m, one can find transitions between ordered (m
Þ0) and disordered (m50) phases. As shown in@11#, for
a51 andsz50 the system exhibits a disorder-order pha
transition, followed by a reentrant transition back to disord
both induced by multiplicative noise. Whena or sz are used
to control the system, additive noise is seen to lead to sim
transitions@15,16#. In all cases, the transition~which exists
only in the presence of noise! is of second order. But when
the complete system is analyzed more carefully, new asp
R6275 © 1999 The American Physical Society
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arise. Figure 1 shows order-disorder transition lines in
plane (a,D), for sz50 and two different values of the mu
tiplicative noise intensitysj

2 . Curve 1 separates regions
disorder~below the curve! and order~above the curve! for
small multiplicative noise intensity. In this case, the orde
region is characterized by three self-consistent solution
Eq. ~6!, one of them unstable (m50) and the other two
stable and symmetrical. These new solutions appear con
ously from m50 in the course of the transition. Henc
curve 1 corresponds to asecond-orderphase transition from
disorder to order asa increases, followed by a reentrant tra
sition back to disorder~also of second order!.

The situation changes noticeably when the multiplicat
noise intensity increases. In that case~curve 2 in Fig. 1!, a
region appears where Eq.~6! has five roots, three of which
(m50 and two symmetrical points! are stable. This region is
shown as dashed in the figure. Thus, for large enough va
of D, a region of coexistence appears in the transition
tween order and disorder. This region is limited by disco
tinuous transition lines betweenm50 and a nonzero, finite
value of m. Hence, additive noise is seen to induce afirst-
order phase transition in this system for large enough val
of the coupling strength and multiplicative noise intensi
The reentrant transition is again of second order.

When the first-order phase transition appears, hyster
can be expected to occur in the coexistence region~if a cer-
tain algorithm is applied@17#!. The dependence of the orde
parameterm on the control parametera as predicted by MFT
is shown in Fig. 2 by a solid line. The region of possib
hysteresis is bounded by dotted lines.

In order to contrast the previous MFT results, we ha
performed simulations of the complete model~1!–~4! using
the numerical methods described in@9,18#. The order param-
etermn is computed as

mn5K U 1

L2 (
i 51

N

xiU L ,

where ^ & denotes time average. Results for a tw
dimensional lattice with lateral sizeL532 are shown with
diamonds in Fig. 2. Analyzing this figure one can obse

FIG. 1. Phase transition boundaries on the plane (a,D) for sz

50 and two different intensities of the multiplicative noise~curve
1, sj

251.6; curve 2,sj
253.0). The dashed region~starting with the

dot! corresponds to the coexistence of the disordered and ord
phases.
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that MFT overestimates the size of the coexistence reg
This effect, analogous to what was observed
multiplicative-noise-induced transitions@11#, can be ex-
plained in terms of an ‘‘effective potential’’ derived for th
system at short times~see the discussion below!. For in-
stance, asa increases the system leaves the disordered ph
not when this state becomes unstable but earlier, when
potential minima corresponding to the ordered states bec
much lower than the minimum corresponding to the st
m50. It should also be mentioned that the numerical sim
lations did not show hysteresis, because in the coexiste
region the system occupied any of the three possible sta
independently of the initial conditions. This fact can be e
plained by the small size of the simulated system, wh
permits jumps between steady states when the system is
ficiently perturbed~e.g., by slightly changing the paramet
a).

Now we consider the second kind of additive noi
present in the system, namely, the one uncorrelated with
multiplicative noise (a50 andsz

2Þ0). MFT results are pre-
sented in the phase diagram of Fig. 3, which shows tra
tions lines in the plane (sj

2 ,D) for three different values of
the additive noise intensitysz

2 . A coexistence region is agai
found in the disorder-order transition~left! branch for all
three values ofsz

2 . For points in the dashed region~inset
plot in Fig. 3!, the system is in a disordered phase for sm
and large values ofsz

2 , and in an ordered phase for interm
diate values of this parameter. Hence, in that region addi
noise is able to induce two consecutive phase transiti
from disorder to order and back to disorder. The characte
the first transition is very sensitive to the parameter valu
as can be clearly seen in Fig. 4~curves 1 and 2!, for very
close values ofD andsj

2 , additive noise can induce either
second- or a first-order phase transition. Note also that, if
consider the multiplicative noise intensity as a control p
rameter, the width of the coexistence region as predicted
MFT decreases with an increase of the additive noise in
sity.

Numerical simulations for this kind of additive noise a
shown as diamonds in Fig. 4, again for a two-dimensio
lattice with L532. MFT overestimates once more the loc

ed

FIG. 2. First-order phase transition induced by additive noi
Order parametersm, mn vs a for D520, sj

253.0 andsz
250.0.

MFT predictions~solid line! and numerical simulations~diamonds!
are presented. The dotted line delimits the coexistence region
hibited by MFT. The unstable state is plotted by the dashed lin
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tion of the transition, hence if, according to MFT, a transiti
is observed forD54.15, in numerical simulations it occur
for D56.5. The region of possible hysteresis for this set
parameters is too thin to be shown in Fig. 4; this fact is a
confirmed by numerical simulations. But if we slightly in
creaseD, hysteresis appears@17#. For example, forD57.0
the hysteresis region spans even fromsj

250.0 to 0.2.
We have thus seen so far that numerical simulati

qualitatively confirm the existence of a first-order phase tr
sition induced by additive noise in this system, as predic
by MFT. We note that in the two limiting cases of correl
tion between multiplicative and additive noise, the transit
occurs. We also note that variation of both the multiplicat
noise intensity and the coupling strength can change the
der of this transition.

Let us now present a possible physical mechanism be
this effect. In@16,18# it was argued that the short-time ev
lution of the average value of the local field can be descri
by the equation

FIG. 3. Phase diagram in the plane (sj
2 ,D) for a50 and three

different values of the additive noise intensity:sz
25 0.3 ~thick solid

line!, 0.5 ~thin solid line!, and 1.0~dashed line!. For large coupling
D additive noise shrinks the region of coexisting solutions, wher
its left boundary coincides for differentsz

2 and remains unaffected
The inset plot shows peculiarities of the transition lines in the sm
box. Inside the dashed region an increase of additive noise ind
disorder-order and the reentrant transition~see the text and Fig. 4!.

FIG. 4. First- and second-order phase transitions induced
uncorrelated additive noise. Curves 1 (D53.5, sj

2512.0) and
2 (D54.15, sj

2511.0) correspond to MFT results, diamonds
numerical simulations (D56.5, sj

2511).
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ẋ̄5 f ~ x̄!1
sj

2

2
g~ x̄!g8~ x̄!, ~7!

for which an ‘‘effective’’ potential can be derived. It is de
scribed by U(x)5U0(x)1Unoise52* f (x)dx2sj

2g2(x)/4,
where Unoise represents the influence of the multiplicativ
noise. We can trace the behavior of this potential in the pr
ence of multiplicative noise, for the casesz

250 and nonzero
a. Its evolution for increasinga is shown in Fig. 5. This
approach can be clearly seen to successfully explain
mechanism of the first-order transition: first, only the ze
state is stable~curve 1!, then there is a region where thre
stable states coexist~curve 2!, and finally, the disordered
state becomes unstable~curve 3!. This approach also ex
plains why a variation of the multiplicative noise intensi
influences the order of the transition: for another~lower! sj

2

there is no region where ordered and disordered phase
multaneously exist. We emphasize that the ‘‘effective’’ p
tential is derived only for short-time evolution, and shou
not be confused with the ‘‘stochastic’’ potential@5#, which
for this system remains always monostable. For the ot
case of correlation between multiplicative and additive noi
in the region of additive noise induced transition, the ‘‘effe
tive’’ potential always has three minima~two symmetric
minima are lower than the central one!. Overcritical additive
noise causes an escape from zero state and leads to the
sition. Hence, the ‘‘effective’’ potential approximation doe
not explain all results of MFT: it explains well the transitio
but not an existence of threshold in the additive noise int
sity. It is important to add that the transition under consid
ation has much in common with the phenomenon of stoch
tic resonance: in both cases there is a multistability, and th
exists an optimal value of the additive noise intensity
which the ordering is the most effective one. This similar
is limited by the fact that here the multistability is induce
only in short-time terms, and there is no external signal to
synchronized with~see also@16#!.

In conclusion, we have reported the existence of noneq
librium first-order phase transitions induced by additi
noise. Such a phenomenon can be expected to be experi
tally observed@18# in systems exhibiting shifts in a transitio
induced by multiplicative noise. Possible candidates could
photosensitive chemical reactions@20,21#, liquid crystals
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y

FIG. 5. ‘‘Effective’’ potential for the short-time evolution ofm

for a25..0.25 ~curve 1!, 0.28 ~curve 2!, and 0.34~curve 3!. Other
parameters aresj

253.0 andsz
250.0.
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@22,23#, and Rayleigh-Be´nard convection under a fluctuatin
temperature gradient@24#. It should also be mentioned tha
another form of coupling, Swift-Hohenberg, is possible
the presented model. In that case, one can observe ord
spatial patterns appearing as a result of a first-order ph
transition induced by additive noise.

The results presented here open up several quest
First, it should be determined whether the behaviors repo
are universal. Second, one should investigate the transla
of these effects into other phenomena, such as globally
chronized oscillations in subexcitable media@25#, transport
v.
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properties in coupled ratchets@26#, and relation between
noise-induced transitions and stochastic resonance in
tems with external forcing. Finally, these results could be
relevance for the stochastic modeling of transitions and
regular oscillations that have been explained in the frame
deterministic theory@8,14,27#.
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