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Nonequilibrium first-order phase transition induced by additive noise
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We show that a nonequilibrium first-order phase transition can be induced by additive noise. As a model
system to study this phenomenon, we consider a nonlinear lattice of overdamped oscillators with both additive
and multiplicative noise terms. Predictions from mean field theory are successfully confirmed by numerical
simulations. A physical explanation for the mechanism of the transition is gig4063-651X99)51912-0

PACS numbe(s): 05.40—a, 47.54+r, 05.70.Fh

Among all the counterintuitive phenomena observed inthe coupling is measured Iy, andd is the dimension of the
nonlinear systems with noisguch as stochastic resonancelattice, which hadN=L¢ elements. The noise tern§gt) and
[1], noise-induced transpoff], coherence resonand8],  ¢;(t) are mutually uncorrelated, Gaussian distributed, with
resonant activatiof4], etc) an important place is occupied zero mean and white in both space and time,
by noise-induced transitions. Discovered in the 1980sind

confirmed by numerous experimerisee, for exampldg]), (ED&))=025 ;8(t—t"), 2
noise-induced transitions have attracted intensive attention 5
due to the surprising ability of noise to produce order in the (GO )y =076 j6(t—t"). 3

system. These transitions can be characterized by a qualita- . _

tive change in the probability distribution of the systéerg., For the sake of simplicity, the functiori¢x) andg(x) are

by a change in the number of maximan the 1990s other taken to be of the form11]

kinds of transitions were found, such as those giving rise to f(x)=—x(1+x2)2,  g(x)=a’+x? (4)
noise-induced oscillations in single nonlinear oscillators ' ’

[7,8]. On the other hand, systems of spatially coupled oversg that two different sources of additive noise can be consid-
damped oscillators have been recently shown to displagred to exist in this system: the first one, controllecby is
noise-induceghasetransitions. In this case, contrary to the completely uncorrelated with the multiplicative noise; the
previous phenomena, the system exhibits ergodicity breakingecond one, controlled b, is strongly correlated with it.

and the transition can be characterized by standard tools in The behavior of this system can be analytically studied by
equilibrium statistical mechanid®]. Several models have means of a standard mean-field the@WFT) procedurd9].
exhibited so far the existence of noise-induced Second'ordqfhe mean-field approximation consists of rep|acing the
(continuous phase transitions leading to the creation of anearest-neighbor interaction by a global term in the Fokker-
nonzero mean fiel@-12). In [13] it was shown that noise- planck equation corresponding to H@). In this way, one
induced phase transitions can also be of first ofdescon-  obtains the following steady-state probability distribution

tinuous. We!

In the majority of the above-mentioned studies, phase
transitions are induced by multiplicative noise. However, re- C(m) x f(y)—D(y—m)
cent result§14—16 have shown that additive noise can play Ws(X,M)=————=exX f YN
a crucial role in this phenomenon, and even induce a transi- Vo9 (x) + oy 0 og(y)toa;

tion by itself. Such an influence has been observed both in ®)
oscillatory[14] and in nonoscillatoryoverdampep systems where C(m) is a normalization constant armd is a mean
[15,16. The present Rapid Communication shows that addifie|d, defined by the equation
tive noise can also indud@st-order nonequilibrium transi-
tions in spatially extended systems. These puee noise- ol
induced phase transitions, in the sense that they do not exist m:f mstt(x,m)dx. (6)
in the system in the absence of noise. The study is performed
on a nonlinear lattice of coupled stochastic overdamped os- By solving Eq.(6) self-consistently with respect to the
cillators introduced in [11] and further studied in variable m, one can find transitions between ordered (
[15,16,18.,19 It is described by the following set of Lange- +0) and disorderedni=0) phases. As shown ifL1], for
vin equations: a=1 ando =0 the system exhibits a disorder-order phase
b transition, followed by a reentrant transition back to disorder,
Y f(y. N = oy : both induced by multiplicative noise. Wheror o, are used
=100+ &(0+ 54 2 (=x)+ &, @) to control the system, additive noise is seen to fead to similar
transitions[15,1€]. In all cases, the transitiofwhich exists
wherex;(t) represents the state of thin oscillator, and the only in the presence of noisé of second order. But when
sum runs over all nearest neighbors of ¢elfhe strength of the complete system is analyzed more carefully, new aspects
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FIG. 1. Phase transition boundaries on the plaa®j for o, FIG. 2. First-order phase transition induced by additive noise.

=0 and two different intensities of the multiplicative noigairve ~ Order parametersn, m, vs a for D=20, 0%=3.0 anda?=0.0.
1' a—g: 16, curve 2,0-?:30) The dashed regic(starting W|th the MFT predictions(solid I|ne) and numel’ica| Simulatior@iamond$

dot) corresponds to the coexistence of the disordered and orderedf€ presented. The dotted line delimits the coexistence region ex-
phases. hibited by MFT. The unstable state is plotted by the dashed line.

arise. Figure 1 shows order-disorder transition lines in thehat MFT overestimates the size of the coexistence region.
plane @,D), for o,=0 and two different values of the mul- Thjs effect, analogous to what was observed for
tiplicative noise intensityré. Curve 1 separates regions of multiplicative-noise-induced transitionsl1], can be ex-
disorder(below the curvg and order(above the curvefor  plained in terms of an “effective potential” derived for the
small multiplicative noise intensity. In this case, the orderedsystem at short timegsee the discussion beldwFor in-
region is characterized by three self-consistent solutions oftance, as increases the system leaves the disordered phase
Eq. (6), one of them unstablen{=0) and the other two not when this state becomes unstable but earlier, when the
stable and symmetrical. These new solutions appear contingotential minima corresponding to the ordered states become
ously from m=0 in the course of the transition. Hence, much lower than the minimum corresponding to the state
curve 1 corresponds tosecond-ordephase transition from m=0. It should also be mentioned that the numerical simu-
disorder to order aa increases, followed by a reentrant tran- |ations did not show hysteresis, because in the coexistence
sition back to disordefalso of second ordgr region the system occupied any of the three possible states,
The situation changes noticeably when the multiplicativeindependently of the initial conditions. This fact can be ex-
noise intensity increases. In that cdserve 2 in Fig. }, @  plained by the small size of the simulated system, which
region appears where E(f) has five roots, three of which permits jumps between steady states when the system is suf-
(m=0 and two symmetrical pointsire stable. This region is ficiently perturbed(e.g., by slightly changing the parameter
shown as dashed in the figure. Thus, for large enough valueg)
of D, a region of coexistence appears in the transition be- Now we consider the second kind of additive noise
tween order and disorder. This region is limited by discon-present in the system, namely, the one uncorrelated with the
tinuous transition lines between=0 and a nonzero, finite mu]tip”cative noise a:O anda-ggﬁ 0) MFT results are pre-
value ofm. Hence, additive noise is seen to inducéirst-  sented in the phase diagram of Fig. 3, which shows transi-
order phase transition in this system for large enough valuegons Jines in the p|aneO(§ ,D) for three different values of
of the coupling strength and multiplicative noise intensity.the additive noise intensitty? A coexistence region is again

The reentrant transition Is again of sgpond order. found in the disorder-order transitiofkeft) branch for all
When the first-order phase transition appears, hystereS{ﬁree values ofaf. For points in the dashed regiginset

can be expeCt.ed to occur in the coexistence regjfom cer- plot in Fig. 3, the system is in a disordered phase for small

tain algorithm is applied17]). The dependence of the order dl I o2 di ordered oh for int

parametem on the control parameteras predicted by MFT andlarge values ay,, and in an ordered pnase for Interme-
diate values of this parameter. Hence, in that region additive

is shown in Fig. 2 by a solid line. The region of possible <™~ " ; . "
g y 9 P noise is able to induce two consecutive phase transitions

hysteresis is bounded by dotted lines. . .
In order to contrast the previous MFT results, we havefrom disorder to order and back to disorder. The character of

performed simulations of the complete mod#l—(4) using the fwstgranlsmoln is very sle:r]snaije to trle p?jran}eter values:
the numerical methods described #)18]. The order param- as can be clearly Seeg n |_g_.( fves L an 2 for very
eterm, is computed as close values oD andoy, additive noise can induce either a
rameter, the width of the coexistence region as predicted by
MFT decreases with an increase of the additive noise inten-
dimensional lattice with lateral size=32 are shown with shown as diamonds in Fig. 4, again for a two-dimensional
diamonds in Fig. 2. Analyzing this figure one can observdattice with L=32. MFT overestimates once more the loca-

1 N
[z 2%

second- or a first-order phase transition. Note also that, if we
|
sity.

> consider the multiplicative noise intensity as a control pa-
where () denotes time average. Results for a two- Numerical simulations for this kind of additive noise are
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FIG. 5. “Effective” potential for the short-time evolution ah

FIG. 3. Phase diagram in the planeZ(D) for a=0 and three ~ for a®=0.25 (curve 1, 0.28(curve 2, and 0.34(curve 3. Other
different values of the additive noise intensity;= 0.3 (thick solid ~ parameters are?=3.0 ande?=0.0.
line), 0.5 (thin solid ling, and 1.0(dashed ling For large coupling
D additive noise shrinks the region of coexisting solutions, whereas . g
its left boundary coincides for different? and remains unaffected. x=f(x)+ ?gg(x)g’(x), (7)
The inset plot shows peculiarities of the transition lines in the small
box. Inside the dashed region an increase of additive noise induces
disorder-order and the reentrant transitisee the text and Fig)4  for which an “effective” potential can be derived. It is de-
scribed by U(X)=Uq(X) + Uppise= — S F(X)dx— aggz(x)m,
tion of the transition, hence if, according to MFT, a transitionWhere Unse represents the influence of the multiplicative
is observed foD=4.15, in numerical simulations it occurs noise. We can trace the behavior of this potential in the pres-
for D=6.5. The region of possible hysteresis for this set ofence of multiplicative noise, for the cas¢=0 and nonzero
parameters is too thin to be shown in Fig. 4; this fact is als@ Its evolution for increasing is shown in Fig. 5. This
confirmed by numerical simulations. But if we slightly in- approach can be clearly seen to successfully explain the
creaseD, hysteresis appeafd7]. For example, foD=7.0 mechgnism of the first-order trans_ition: fir;t, only the zero
the hysteresis region spans even fm@,: 0.0 t0 0.2. state is stablécurve 1), then there is a region where three
We have thus seen so far that numerical simulation$table states coexisturve 2, and finally, the disordered
qualitatively confirm the existence of a first-order phase tranState becomes unstableurve 3. This approach also ex-
sition induced by additive noise in this system, as predicted/@ins why a variation of the multiplicative noise Intensity
by MFT. We note that in the two limiting cases of correla- influences the order of the transition: for anotkiemwer) o
tion between multiplicative and additive noise, the transitionthere is no region where ordered and disordered phases si-
occurs. We also note that variation of both the multiplicativemultaneously exist. We emphasize that the “effective” po-
noise intensity and the coupling strength can change the ofential is derived only for short-time evolution, and should
der of this transition. not be confused with the “stochastic” potentid], which
Let us now present a possible physical mechanism behinf®r this system remains always monostable. For the other
this effect. In[16,18 it was argued that the short-time evo- case of correlation between multiplicative and additive noise,

lution of the average value of the local field can be describedn the region of additive noise induced transition, the “effec-
by the equation tive” potential always has three miniméwo symmetric

minima are lower than the central gn®©vercritical additive
noise causes an escape from zero state and leads to the tran-

05 sition. Hence, the “effective” potential approximation does
04l not explain all results of MFT: it explains well the transition
' but not an existence of threshold in the additive noise inten-
sity. It is important to add that the transition under consider-
=03 ; : .
= ation has much in common with th_e pheno_menqn of stochas-
£ 02 tic resonance: in both cases there is a multistability, and there
exists an optimal value of the additive noise intensity for
which the ordering is the most effective one. This similarity
01 is limited by the fact that here the multistability is induced
o only in short-time terms, and there is no external signal to be
°'°0‘_'c',"w"_ synchronized witi{see alsd16]).

In conclusion, we have reported the existence of nonequi-
librium first-order phase transitions induced by additive
FIG. 4. First- and second-order phase transitions induced byl0ise. Such a phenomenon can be expected to be experimen-
uncorrelated additive noise. Curves D35, ¢2=12.0) and tally observed18] in systems exhibiting shifts in a transition
2 (D=4.15, ¢2=11.0) correspond to MFT results, diamonds to induced by multiplicative noise. Possible candidates could be
numerical simulations@=6.5, o2=11). photosensitive chemical reactio®0,21], liquid crystals
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[22,23, and Rayleigh-Beard convection under a fluctuating properties in coupled ratchef26], and relation between
temperature gradieri24]. It should also be mentioned that noise-induced transitions and stochastic resonance in sys-
another form of coupling, Swift-Hohenberg, is possible intems with external forcing. Finally, these results could be of
the presented model. In that case, one can observe ordergslevance for the stochastic modeling of transitions and ir-
spatial patterns appearing as a result of a first-order phasegular oscillations that have been explained in the frames of
transition induced by additive noise. deterministic theory8,14,27.

The results presented here open up several questions.
First, it should be determined whether the behaviors reported
are universal. Second, one should investigate the translation It is a pleasure to thank J. Kurths for useful discussions.
of these effects into other phenomena, such as globally syrA.Z. acknowledges financial support from MRGermany
chronized oscillations in subexcitable medl#5], transport and J.G.O. from DGE$Spain).
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