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Spreading and shortest paths in systems with sparse long-range connections
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Spreading according to simple rulés.g., of fire or diseasgsnd shortest-path distances are studied on
d-dimensional systems with a small dengitper site oflong-range connectiong'small-world” lattices). The
volumeV/(t) covered by the spreading quantity on an infinite system is exactly calculated in all dimensions as
a function of timet. From this, the average shortest-path distasi€e) can be calculated as a function of
Euclidean distance. It is found that/(r)~r for r<r.=[2pI'q(d—1)!]"*log(2pI',L% and /(r)~r for
r>r.. The characteristic length., which governs the behavior of shortest-path lengtingergeslogarithmi-
cally with L for all p>0.[S1063-651X99)50312-7

PACS numbd(s): 05.10—a, 05.40--a, 05.50+q

Regulard-dimensional lattices with a small densipyper “Small-world” networks [1] are intermediate between

site of long-ranged bond®r “small-world” networks) [1]  the regular lattice, wher&~L, and the totally random net-
model the effect of weak unstructuréchean-field interac- work.  where /-~ logL. They consist of a regular

tions in a system where the dominant interactions have § jinensional lattice witiN=L¢ sites. on whichpL? addi-
regulard-dimensional structure, and have many application§ional long-range bonds have been ,connected between ran-

in physic_s as well as in other scienqkél&lf:’]. The recent domly chosen pairs of sites. The key finding of Watts and
observatior{1] that a very small density of long-range con- Strogatz[1] is that a vanishingly small density of long-

necthns has a draspc |nflueqce on shortest?;()alrche'rm- range bonds is enough to make shortest-path distances pro-
cal) distance properties has triggered a lot of interest in thesBOrtional to log. instead ofL. If L9p<1, the system typi-

systems. .
. . cally contains no shortcuts, and the average shortest-path
Most of the recent work in this field has been essentially y g P

numerical[1-13. Here we report on an analytical calcula- distance/ = UN? 5[ 7ij]p scales ad. If, on the other
tion of the average shortest-path distande) between two hand,L%p=>1, one finds”~logL [1,4,7]. For any fixed den-
points separated by an Euclidean distancas a function of ~ Sity p of long-range bonds, persistence-size*i(p) exists

p andd. We first study for this purpose the closely related[4,5], above which shortest-path distances are only logarith-
problem ofspreading which is defined as follows. Consider mically increasing withL. This persistence size diverges as
(see, e.g.1,11] and references thergisome influencée.g., p~ Y [4,7,9 when p—0. The precise nature of the small-
a forest fire, or an infectious diseaghat spreads according world transition atp=0 is still controversia[7,9,11,13.

to the following simple law: at each time step, the fire or In this work we calculate the volumé(t) that is covered,
disease propagates from a bufat infected site to all un-  on a small-world network, by a spreading quantity as a func-
burnt (uninfected sites connected to it by a link. Long-range tion of time [11] when the spreading law is the simple rule
connections, oshortcutsrepresent sparks that start new fires gpove. Using our knowledge df(t) an exact expression for

far away from the original front, or individuals who, when the average shortest-path(r) is derived. Our result for
first infected, move to a random location amongst the unin-/(r) has been verified numericalfiL3].

fected population. For the dynamics of this simple problem, “sqq me a disease spreads with constant radial velocity
an important network property is the set of shortest-path dis:

N 7 here/ - is defined as the mini ber of v=1 from an original infection sité, as shown in Fig. 1.
.ances{,/ ij}, where/; is define as the minimum number o Let p=2p be the density ohortcut-end®n the system. We
links one has to traverse betweénand j. On isotropic

) . . o . ) work on the continuum for simplicity, so that the infected
d-dimensional latticeg’; is proportional tod® , the Euclid- ety

: . ! ij 2 volume V(t) will initially grow as a sphere of radiusand
ean distance betwednandj. On regular lattices, both the surfacel’ td-1. We call the sphere stemming frof “pri-

number of sites within an Euclidean distancéom i, and mary sphere.”

the number of sites withim nearest-neighbor steps from Each time the primary sphere hits a shortcut end, which

d
ber(l:ave %55 : doml ted network d happens with probabilitypT't®~* per unit time, a new
d onsider now a randomly connected network, made up ol‘.phere(“secondary") starts to grow from a random point in
L™ sites sitting on a _regulaﬂ—d|men3|onal Igtuge, but con- uninfected spacéthe other end of the shortqutThese in
qected at ra”d‘gm with an average coord|na_1t|on_ nuner turn later give rise to further secondary spheres in the same
(i.e., a total ofL°C/2 bonds$. The number of sites in a vol- fashion

ume of radiusr is still r¥, but we can visit~C sites ink Following Newman and Watt@\W) [11], we notice that
d o iaitad i d '
steps. Thus, all” sites can be visited 'ﬁ)(IOQ_L steps, and  he total infected volume is the sum of the primary volume

therefore the typical shortest-path distanceis of order I'yfi79 1dr plus a contributionV(t—7) for each new

logL, much shorter than the typical Euclidean distange sphere born at time. Thus, in the continuum the average
~L. total infected volume satisfies
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FIG. 1. Consider the spreading of fire or diseases on small-
world systems. Assume thatL? points are drawn at random in
d-dimensional spacéopen dots The mean distanc& between
neighboring points is proportional to~ . Now connect pairs of
points at random. The mean separation between “mates” will be of A general property of Eq4) is thatV grows ast?/d! for

the order ofL, the system size. Paired points represent Iong-rangq<1, and later exponentially &/d. Thus, the characteristic

bonds(shaded lines across which fire or diseases travel instanta-

neously. Now a disease starts to spread flankach time that the

resulting sphere hits a shortcut-end, a secondary sphere will be born
somewhere else. These in turn later give rise to other secondary
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written as a sum ofl exponentials, each with a different
d-root of 1 in its argument. In this way, powers which are
not multiples ofd cancel out,

~ 1 d-1
VD=5 2 exdudii-1, (5)

whereuy=¢€'2"9, Some specific examples are

Vt)=e'—-1 in 1D,

V(t)=cosht—1 in 2D,
U anat 4 aua’t

~7):%_1 in 3D.

The one-dimensional solution is the same as that derived by
NW [11].

timescale[11] for the spreading process i =(pl'y(d
1)!)—1/d_
Notice that Eq(1), and thus also Ed4), only hold in an

spheres. The proliferation of secondary spheres produces an explinite system. On a finite system withf>1, V will satu-

nentially fast growth of the infected volume for times S.

V(t)ZFthTdil{l-i-pV(t—T)}dT, (1)
0

This equation has been solved by NW in one dimenfidi
For generald we rewrite (1) in terms of rescaled variables

V=pV andt=(pl4(d—1)) %t as

o LA

v(f):(d—l

2

It is interesting to notice thaV/ is the total number of
infected shortcut-ends, whiie?/d! is the total number of

shortcut-ends infected by the primary sphere. On an infinite

system, the functional relatiof2) that links these two vari-

ables has no parameters except for the space dimensionality

d.
On a system of finite volum&4L%d, an important pa-

rameter is the rescaled linear size=[ pI'4(d—1)!1*L, or
equivalently the total numbeX, of shortcut-ends in the sys-

tem: Ng=L%d!
Deriving Eq.(2) d times with respect ta we obtain

d

%V(T) =1+V(1), ©)
whose solution is

. *® 'fdk

VO=2 G @

Notice that Eq.(4) is a series expansion oé?(—l) with
all powers not multiples ofl removed. Thus, Eq4) can be

rate after a timef g, that can be estimated by equatiig
~elsayd~L9d! and therefore

Toar—log[ LY (d—1)1], (6)
which can be rewritten as
tsar-[pTa(d—1)!1] ¥ log(pl4L). (7)

If on the other hand.9<1, the spreading stops af,=L,
before reaching the exponential growth regime. Thus, for a

finite system withL9>1 one has
t9dr for t<1
Td

V(t)d~ CE)

e’d  for 1<T<Tsat~log( ) (8

LYd! for T>Tgq.
Assume now thal 9>1. Because of the exponentially
fast spreading process, the fraction of the total volume cov-

ered by the disease is negligible for't,, and saturates to 1
abruptly att=t.,;. Therefore, on a large system most of the

points become infected essentially at the same tige

Now let us see how to calculate the average shortest-path
distance/(r) as a function of the Euclidean separation
between two points. Since we assumed that the disease
spreads with unit velocity, it is clear that the tirhat which
a pointx becomes first infected is exactly the shortest-path
distance/ (A,x) from A to x. By definition, no part of the
finite system remains uninfected afterts,;, SO we con-
clude that no shortest-path distance can be largertthaon
a finite system. Assuming thaf(r) cannot decrease with
increasingr, we conclude that
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Z(r)=tga for r=tgy. 9 It is interesting to notice that the rescaled shortest-path
distance” = //r, is a simple function of the rescaled Euclid-

In order to calculate/(r) for r<tg,, let us writeV(t) ean distance=r/r
(o]

=V (t) +V,(t), whereV, is the primary volume an¥/, the

volume infected by secondary spheres. Ip(t) be the T for T<1
probability to become infected by the secondary infection 7(r)= _ (14)
exactly at timet<tg,;. Consequentlyl,(t)=[tp,(7)dT is 1 for r=1.

the probability for a point to become infected at tirner ) —

earlier. Assuming thap,(t) is known, it is easy to calculate ~ Using Eq.(13) we can calculate’(p,L), the (globa) av-
the average shortest-path distan@e) as a function of Eu- erage shortest-path lengfth,4,7], whenL%>1. One has
clidean distance, according to the following. If an indi-

vidual atx becomes infected by a secondary sphere at time 2 _ i '-/ d-14
7<dE(A,x), its shortest-path distane& A,x) to Ais 7. Oth- /(p,L)= Ld)o” (r r
erwise ifx is still uninfected at time=d(A,x) {which hap-
pens with probability *1,[d5(A,x)]}, then /(A,Xx) d rre red (L
=d5(A,x), since at that time the primary sphere hitwith = —dJ rodr+ —df rd-tdr (19
probability 1. Therefore, the average shortest-path satisfies L=/o L™ Jre
; 1 [r\¢
/(r)=fotpz(t)dtﬂ{l—lz(r)} (10) =fc[1—m f) } (16)
. So that the “order parameterZ=//L [9,13] reads
=r—f I,(t)dt. (12) §
0 y4
£:Z( 1- m , (17)

The fact that the secondary volunwg is randomly dis-
tributed in space makes this problem relatively simple. Theyherez=r /L.

probability I ,(t) for a point to be infected by the secondary Whenp—0 faster tharL 1@ (so thatl 9<1), formula(15)

version of the disease at time or earlier is simplyl, . . -
:yz(t)/(lldFde), i.e., the fraction of the total volume ?hoédjtrﬁ:hhgnd I}é)ggdot:;séls ﬂ;ﬂ;?ﬁeﬁ)ﬁrﬁiﬁﬁn
which is covered by the secondary infection. Thus, thus £L—0 in this limit. Therefore,£ undergoes a disconti-

) nuity atp=0 in theL—o limit [9,13].
- J V,(t)dt. (12) Notice thatrC/_ng |og(p_rd|_d)/|_[prd(d—1)!]1’%|og(|_/s)/

0 (L/s), wheres~p [11] is the mean separation between

shortcut-ends. Thus{ can be written as a function df/s

If there are no shortcuts on the systeviy, is zero at all  only. Therefore, if we measuré on systems with several
times and thug’(r) =r as expected. But it is also clear from values ofL andp and plot the data versus's, we would find
this expression that(r)=r whenL —, for all finite , i.e.,  that theycollapse[4,5,7,11. Because of this behavior it has
in the thermodynamic limit the shortest-pat distanC@')  been suggested,11] that the transition gb=0 is acritical
coincides with the Euclidean distancefor all finite r, N0 point with a size-independent characteristic length-s
matter whatp is. ~p~ Y Our results here and in previous wdi®,13] sug-

On a finite system witi.9>1, V,(t)/L% is negligible for ~ gest that this is not the case. According to our calculation,
all t<tg,;, as we have already noticed. Therefofér) =r if the only characteristic length in regard to shortest-paths is

Z(r) ‘
/(r)y=r—
Iy

r<ts,:. Combining this with Eq(9) we have re, and it diverges with system site On the other hand, the
scaling behavior of£(L,p) is entirely compatible with a
r for r<re=[plg(d—1)!T *log(pI4L?) normalfirst-order transition[9,13].
/(= ro forr=r.. We have thus shown that, on a finite system wittp

(13 >1, two widely separated timescales for spreading can be
identified. The first one* =[2pT'y(d—1)!]~ ' determines

Detailed knowledge of’(r) for r~r_ would only be pos- the crossover from normdi.e., proportional ta%) to expo-
sible if the finite-size effects that we ignored in E8) were  nential spreading. A much larger timescalg; given by Eq.
exactly known, but the interesting remark is that the lack of(7) determines the saturation of the spreading process. This
this knowledge has little or no importance fo#r . second timescale coincides with the lengthsealat which

We thus see that onfinite system, a characteristic length the behavior of shortest path lengtfiér) saturates, as given
re=[pTg(d—1)11"Ylog(pl'sL%) exists, that governs the be- by Eq. (193).
havior of average shortest-path distances as a function of It is clear from our calculation that, diverges withL
Euclidean separation. This characteristic length divergebecause the locations of the secondary spheres are uncorre-
whenL—oo, for any p>0. The typical separatiog=p lated with the location of the primary infection. In other
between shortcut end&1], which is size-independent, i®t  words, because on a system of sizehe typical separation
relevantfor //(r). The validity of Eq.(13) has been verified between both ends of a shortcut scalesLasA different
numerically in one dimension recenfl§3]. situation would certainly arise if shortcuts had a length-
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dependent distribution. For example one can connect eacliould be no short-distance regime, even for 1. We are

sitei, with probability p, to a single other sitg chosen with
probabilityr;; “, wherea is a free parameter. Far—0, this
model is the same as discussed here, whileofdarge one
would only have short-range connections and thus ther

presently studying this more general mofief].
Note addedFor recent related analytical work, sgib].

| wish to acknowledge useful discussions with M. Argollo
eéle Menezes. This work was supported by FAPERJ.

[1] D. J. Watts and S. H. Strogatz, Natufeondon 393 440
(1998.

[2] H. Herzel, Fractal®, 4 (1998.

[3] S. A. Pandit and R. E. Amritkar, Phys. Rev6E, 1119(1999.

[4] M. Barthdémy and L. A. N. Amaral, Phys. Rev. Le82, 3180
(1999.

[5] A. Barrat, e-print cond-mat/9903323.

[6] R. Monasson, e-print cond-mat/9903347.

[7] M. E. J. Newman and D. J. Watts, Phys. Lett.(t& be pub-
lished.

[8] A. Barrat and M. Weigt, Eur. Phys. J. @ be publisheg

[9] M. Argollo de Menezes, C. Moukarzel, and T. J. P. Penna,
e-print cond-mat/9903426.

[10] R. Kasturirangan, e-print cond-mat/9904055.
[11] M. E. J. Newman and D. J. Watts, Phys. Rev(t& be pub-
lished.

[12] R. V. Kulkarni, E. Almaas, and D. Stroud, e-print
cond-mat/9905066.
[13] C. Moukarzel and M. Argollo de Menezes, e-print

cond-mat/9905131.

[14] M. Argollo de Menezes, C. Moukarzel, and T. J. P. Penna
(unpublished

[15] M. E. J. Newman, C. Moore, and D. J. Watts, e-print
cond-mat/9909165; R. V. Kulkarni, E. Almaas, and D. Stroud,
e-print cond-mat/9908216; S. N. Dorogovtsev and J. F. F.
Mendes, e-print cond-mat/9907445.



