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Spreading and shortest paths in systems with sparse long-range connections
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~Received 6 August 1999!

Spreading according to simple rules~e.g., of fire or diseases! and shortest-path distances are studied on
d-dimensional systems with a small densityp per site oflong-range connections~‘‘small-world’’ lattices!. The
volumeV(t) covered by the spreading quantity on an infinite system is exactly calculated in all dimensions as
a function of timet. From this, the average shortest-path distancel (r ) can be calculated as a function of
Euclidean distancer. It is found thatl (r );r for r ,r c5@2pGd(d21)!#21/d log(2pGdL

d) and l (r );r c for
r .r c . The characteristic lengthr c , which governs the behavior of shortest-path lengths,divergeslogarithmi-
cally with L for all p.0. @S1063-651X~99!50312-7#

PACS number~s!: 05.10.2a, 05.40.2a, 05.50.1q
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Regulard-dimensional lattices with a small densityp per
site of long-ranged bonds~or ‘‘small-world’’ networks! @1#
model the effect of weak unstructured~mean-field! interac-
tions in a system where the dominant interactions hav
regulard-dimensional structure, and have many applicatio
in physics as well as in other sciences@1–13#. The recent
observation@1# that a very small density of long-range co
nections has a drastic influence on shortest-path~or chemi-
cal! distance properties has triggered a lot of interest in th
systems.

Most of the recent work in this field has been essentia
numerical@1–13#. Here we report on an analytical calcul
tion of the average shortest-path distancel (r ) between two
points separated by an Euclidean distancer, as a function of
p and d. We first study for this purpose the closely relat
problem ofspreading, which is defined as follows. Conside
~see, e.g.,@1,11# and references therein! some influence~e.g.,
a forest fire, or an infectious disease! that spreads accordin
to the following simple law: at each time step, the fire
disease propagates from a burnt~or infected! site to all un-
burnt ~uninfected! sites connected to it by a link. Long-rang
connections, orshortcutsrepresent sparks that start new fir
far away from the original front, or individuals who, whe
first infected, move to a random location amongst the un
fected population. For the dynamics of this simple proble
an important network property is the set of shortest-path
tances$l i j %, wherel i j is defined as the minimum number o
links one has to traverse betweeni and j. On isotropic
d-dimensional latticesl i j is proportional todi j

E , the Euclid-
ean distance betweeni and j. On regular lattices, both th
number of sites within an Euclidean distancer from i, and
the number of sites withinr nearest-neighbor steps fromi
behave asr d.

Consider now a randomly connected network, made up
Ld sites sitting on a regulard-dimensional lattice, but con
nected at random with an average coordination numbeC
~i.e., a total ofLdC/2 bonds!. The number of sites in a vol
ume of radiusr is still r d, but we can visit;Ck sites ink
steps. Thus, allLd sites can be visited inO(logLd steps, and
therefore the typical shortest-path distancel̄ is of order
logL, much shorter than the typical Euclidean distancer̄
;L.
PRE 601063-651X/99/60~6!/6263~4!/$15.00
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‘‘Small-world’’ networks @1# are intermediate betwee

the regular lattice, wherel̄ ;L, and the totally random net

work, where l̄ ; logL. They consist of a regula
d-dimensional lattice withN5Ld sites, on whichpLd addi-
tional long-range bonds have been connected between
domly chosen pairs of sites. The key finding of Watts a
Strogatz@1# is that a vanishingly small densityp of long-
range bonds is enough to make shortest-path distances
portional to logL instead ofL. If Ldp!1, the system typi-
cally contains no shortcuts, and the average shortest-

distance l̄ 51/N2(^ i j &@ l i j #p scales asL. If, on the other

hand,Ldp@1, one findsl̄ ; logL @1,4,7#. For any fixed den-
sity p of long-range bonds, apersistence-size L* (p) exists
@4,5#, above which shortest-path distances are only logar
mically increasing withL. This persistence size diverges
p21/d @4,7,9# when p→0. The precise nature of the smal
world transition atp50 is still controversial@7,9,11,13#.

In this work we calculate the volumeV(t) that is covered,
on a small-world network, by a spreading quantity as a fu
tion of time @11# when the spreading law is the simple ru
above. Using our knowledge ofV(t) an exact expression fo
the average shortest-pathl (r ) is derived. Our result for
l (r ) has been verified numerically@13#.

Assume a disease spreads with constant radial velo
v51 from an original infection siteA, as shown in Fig. 1.
Let r52p be the density ofshortcut-endson the system. We
work on the continuum for simplicity, so that the infecte
volume V(t) will initially grow as a sphere of radiust and
surfaceGdtd21. We call the sphere stemming fromA ‘‘pri-
mary sphere.’’

Each time the primary sphere hits a shortcut end, wh
happens with probabilityrGdtd21 per unit time, a new
sphere~‘‘secondary’’! starts to grow from a random point i
uninfected space~the other end of the shortcut!. These in
turn later give rise to further secondary spheres in the sa
fashion.

Following Newman and Watts~NW! @11#, we notice that
the total infected volume is the sum of the primary volum
Gd*0

t td21dt plus a contributionV(t2t) for each new
sphere born at timet. Thus, in the continuum the averag
total infected volume satisfies
R6263 © 1999 The American Physical Society
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V~ t !5GdE
0

t

td21$11rV~ t2t!%dt, ~1!

This equation has been solved by NW in one dimension@11#.
For generald we rewrite ~1! in terms of rescaled variable
Ṽ5rV and t̃ 5(rGd(d21)!)1/dt as

Ṽ~ t̃ !5
1

~d21!! E0

t̃
~ t̃ 2 t̃ !d21$11Ṽ~ t̃ !%dt̃. ~2!

It is interesting to notice thatṼ is the total number of
infected shortcut-ends, whilet̃ d/d! is the total number of
shortcut-ends infected by the primary sphere. On an infi
system, the functional relation~2! that links these two vari-
ables has no parameters except for the space dimension
d.

On a system of finite volumeGdLd/d, an important pa-
rameter is the rescaled linear sizeL̃5@rGd(d21)!#1/dL, or
equivalently the total numberNs of shortcut-ends in the sys
tem: Ns5L̃d/d!

Deriving Eq.~2! d times with respect tot̃ we obtain

]d

] t̃ d
V~ t̃ !511V~ t̃ !, ~3!

whose solution is

Ṽ~ t̃ !5 (
k51

`
t̃ dk

~dk!!
. ~4!

Notice that Eq.~4! is a series expansion of (et̃21) with
all powers not multiples ofd removed. Thus, Eq.~4! can be

FIG. 1. Consider the spreading of fire or diseases on sm
world systems. Assume thatrLd points are drawn at random i
d-dimensional space~open dots!. The mean distanceS between
neighboring points is proportional tor21/d. Now connect pairs of
points at random. The mean separation between ‘‘mates’’ will be
the order ofL, the system size. Paired points represent long-ra
bonds~shaded lines!, across which fire or diseases travel instan
neously. Now a disease starts to spread fromA. Each time that the
resulting sphere hits a shortcut-end, a secondary sphere will be
somewhere else. These in turn later give rise to other secon
spheres. The proliferation of secondary spheres produces an e
nentially fast growth of the infected volume for timest.S.
te

lity

written as a sum ofd exponentials, each with a differen
d-root of 1 in its argument. In this way, powers which a
not multiples ofd cancel out,

Ṽ~ t̃ !5
1

d (
n50

d21

exp$md
nt̃ %21, ~5!

wheremd5ei2p/d. Some specific examples are

Ṽ~ t̃ !5et̃21 in 1D,

Ṽ~ t̃ !5cosht̃ 21 in 2D,

Ṽ~ t̃ !5
et̃1em3 t̃1em3

2 t̃

3
21 in 3D.

The one-dimensional solution is the same as that derived
NW @11#.

A general property of Eq.~4! is thatṼ grows ast̃ d/d! for
t̃ ,1, and later exponentially aset̃ /d. Thus, the characteristic
timescale @11# for the spreading process ist* 5(rGd(d
21)!)21/d.

Notice that Eq.~1!, and thus also Eq.~4!, only hold in an
infinite system. On a finite system withL̃d@1, Ṽ will satu-
rate after a timet̃ sat that can be estimated by equatingṼ

;et̃ sat/d;L̃d/d! and therefore

t̃ sat; log@ L̃d/~d21!! #, ~6!

which can be rewritten as

tsat;@rGd~d21!! #21/d log~rGdL !. ~7!

If on the other handL̃d!1, the spreading stops att̃ sat5L̃,
before reaching the exponential growth regime. Thus, fo
finite system withL̃d@1 one has

Ṽ~ t̃ !d;5
t̃ d/d! for t̃ !1

et̃ /d for 1! t̃ , t̃ sat; logS L̃d

~d21!!
D

L̃d/d! for t̃ . t̃ sat .

~8!

Assume now thatL̃d@1. Because of the exponentiall
fast spreading process, the fraction of the total volume c
ered by the disease is negligible fort̃ , t̃ sat and saturates to 1
abruptly att5tsat . Therefore, on a large system most of t
points become infected essentially at the same timet̃ sat .

Now let us see how to calculate the average shortest-
distancel (r ) as a function of the Euclidean separationr
between two points. Since we assumed that the dise
spreads with unit velocity, it is clear that the timet at which
a point x becomes first infected is exactly the shortest-p
distancel (A,x) from A to x. By definition, no part of the
finite system remains uninfected aftert5tsat , so we con-
clude that no shortest-path distance can be larger thantsat on
a finite system. Assuming thatl (r ) cannot decrease with
increasingr, we conclude that
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l ~r !5tsat for r>tsat . ~9!

In order to calculatel (r ) for r ,tsat , let us writeV(t)
5V1(t)1V2(t), whereV1 is the primary volume andV2 the
volume infected by secondary spheres. Letp2(t) be the
probability to become infected by the secondary infect
exactly at timet<tsat . ConsequentlyI 2(t)5*0

t p2(t)dt is
the probability for a point to become infected at timet or
earlier. Assuming thatp2(t) is known, it is easy to calculate
the average shortest-path distancel (r ) as a function of Eu-
clidean distancer, according to the following. If an indi-
vidual atx becomes infected by a secondary sphere at t
t,dE(A,x), its shortest-path distancel (A,x) to A is t. Oth-
erwise ifx is still uninfected at timet5dE(A,x) $which hap-
pens with probability 12I 2@dE(A,x)#%, then l (A,x)
5dE(A,x), since at that time the primary sphere hitsx with
probability 1. Therefore, the average shortest-path satisfi

l ~r !5E
0

r

tp2~ t !dt1r $12I 2~r !% ~10!

5r 2E
0

r

I 2~ t !dt. ~11!

The fact that the secondary volumeV2 is randomly dis-
tributed in space makes this problem relatively simple. T
probability I 2(t) for a point to be infected by the seconda
version of the disease at timet or earlier is simply I 2
5V2(t)/(1/dGdLd), i.e., the fraction of the total volume
which is covered by the secondary infection. Thus,

l ~r !5r 2
d

GdLdE0

r

V2~ t !dt. ~12!

If there are no shortcuts on the system,V2 is zero at all
times and thusl (r )5r as expected. But it is also clear from
this expression thatl (r )5r whenL→`, for all finite r, i.e.,
in the thermodynamic limit the shortest-pat distancel (r )
coincides with the Euclidean distancer for all finite r, no
matter whatr is.

On a finite system withL̃d@1, V2(t)/Ld is negligible for
all t,tsat , as we have already noticed. Therefore,l (r )5r if
r ,tsat . Combining this with Eq.~9! we have

l ~r !'H r for r ,r c5@rGd~d21!! #21/d log~rGdLd!

r c for r>r c .
~13!

Detailed knowledge ofl (r ) for r'r c would only be pos-
sible if the finite-size effects that we ignored in Eq.~2! were
exactly known, but the interesting remark is that the lack
this knowledge has little or no importance forrÞr c .

We thus see that on afinite system, a characteristic lengt
r c5@rGd(d21)!#21/d log(rGdL

d) exists, that governs the be
havior of average shortest-path distances as a functio
Euclidean separation. This characteristic length diver
whenL→`, for any r.0. The typical separations5r21/d

between shortcut ends@11#, which is size-independent, isnot
relevantfor l (r ). The validity of Eq.~13! has been verified
numerically in one dimension recently@13#.
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It is interesting to notice that the rescaled shortest-p
distancel̃ 5l /r c is a simple function of the rescaled Euclid
ean distancer̃ 5r /r c ,

l̃ ~ r̃ !5H r̃ for r̃ ,1

1 for r̃>1.
~14!

Using Eq.~13! we can calculatel̄ (r,L), the ~global! av-
erage shortest-path length@1,4,7#, whenL̃d@1. One has

l̄ ~r,L !5
d

LdE0

L

l ~r !r d21dr

5
d

LdE0

r c
r ddr1

r cd

Ld Er c

L

r d21dr ~15!

5r cF12
1

d11 S r c

L D dG . ~16!

So that the ‘‘order parameter’’L5 l̄ /L @9,13# reads

L5zS 12
zd

d11D , ~17!

wherez5r c /L.
Whenr→0 faster thanL1/d ~so thatL̃d!1), formula~15!

holds with r c→L, and thusL→d/(d11) as expected. On
the other hand ifr.0 one has thatr c!L whenL→`, and
thusL→0 in this limit. Therefore,L undergoes a disconti
nuity at r50 in theL→` limit @9,13#.

Notice that r c /L5 log(rGdL
d)/L@rGd(d21)!#1/d; log(L/s)/

(L/s), wheres;r21/d @11# is the mean separation betwee
shortcut-ends. Thus,L can be written as a function ofL/s
only. Therefore, if we measureL on systems with severa
values ofL andr and plot the data versusL/s, we would find
that theycollapse@4,5,7,11#. Because of this behavior it ha
been suggested@7,11# that the transition atr50 is acritical
point with a size-independent characteristic lengthj;s
;r21/d. Our results here and in previous work@9,13# sug-
gest that this is not the case. According to our calculati
the only characteristic length in regard to shortest-path
r c , and it diverges with system sizeL. On the other hand, the
scaling behavior ofL(L,p) is entirely compatible with a
normalfirst-order transition@9,13#.

We have thus shown that, on a finite system withLdp
@1, two widely separated timescales for spreading can
identified. The first onet* 5@2pGd(d21)!#21/d determines
the crossover from normal~i.e., proportional totd) to expo-
nential spreading. A much larger timescaletsat given by Eq.
~7! determines the saturation of the spreading process.
second timescale coincides with the lengthscaler c at which
the behavior of shortest path lengthsl (r ) saturates, as given
by Eq. ~13!.

It is clear from our calculation thatr c diverges withL
because the locations of the secondary spheres are unc
lated with the location of the primary infection. In othe
words, because on a system of sizeL, the typical separation
between both ends of a shortcut scales asL. A different
situation would certainly arise if shortcuts had a leng
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dependent distribution. For example one can connect e
site i, with probabilityp, to a single other sitej, chosen with
probability r i j

2a , wherea is a free parameter. Fora→0, this
model is the same as discussed here, while fora large one
would only have short-range connections and thus th
na
ch

re

would be no short-distance regime, even forp51. We are
presently studying this more general model@14#.

Note added. For recent related analytical work, see@15#.
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@4# M. Barthélémy and L. A. N. Amaral, Phys. Rev. Lett.82, 3180

~1999!.
@5# A. Barrat, e-print cond-mat/9903323.
@6# R. Monasson, e-print cond-mat/9903347.
@7# M. E. J. Newman and D. J. Watts, Phys. Lett. A~to be pub-

lished!.
@8# A. Barrat and M. Weigt, Eur. Phys. J. B~to be published!.
@9# M. Argollo de Menezes, C. Moukarzel, and T. J. P. Pen

e-print cond-mat/9903426.

,

@10# R. Kasturirangan, e-print cond-mat/9904055.
@11# M. E. J. Newman and D. J. Watts, Phys. Rev. E~to be pub-

lished!.
@12# R. V. Kulkarni, E. Almaas, and D. Stroud, e-prin

cond-mat/9905066.
@13# C. Moukarzel and M. Argollo de Menezes, e-prin

cond-mat/9905131.
@14# M. Argollo de Menezes, C. Moukarzel, and T. J. P. Pen

~unpublished!.
@15# M. E. J. Newman, C. Moore, and D. J. Watts, e-pri

cond-mat/9909165; R. V. Kulkarni, E. Almaas, and D. Strou
e-print cond-mat/9908216; S. N. Dorogovtsev and J. F.
Mendes, e-print cond-mat/9907445.


