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Jarzynski equality for the transitions between nonequilibrium steady states
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Jarzynski equality@Phys. Rev. E56, 5018~1997!#, which has been considered to be valid for the transitions
between equilibrium states, is found to be applicable to the transitions between nonequilibrium stationary states
satisfying certain conditions. Also numerical results confirm its validity. Its relevance for nonequilibrium
thermodynamics of the operational formalism is discussed.@S1063-651X~99!51211-7#

PACS number~s!: 05.70.Ln, 05.40.2a, 05.20.2y
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The framework of nonequilibrium thermodynamics h
been sought by many authors@1# in order to treat various
nonequilibrium systems such as chemical reactions, trans
processes in solids, moleculer motors, etc. So far, all th
attempts seem to be based on the fluid-dynamical
proaches, which mostly have the assumption of local eq
librium at its starting point. Recently, Oono and Paniconi@2#
present a different type of nonequilibrium thermodynam
whose framework corresponds to equilibrium thermodyna
ics. The unique feature of their work lies in the fact that it
a set of laws concerning operation from the outside, as w
as equilibrium thermodynamics. We refer to their theory
the operational formalism. This formalism is so importa
that the concept of entropy in equilibrium thermodynamics
introduced concerning with the adiabatic operation@3#. The
relation between dynamical entropy and thermodynamic
tropy is also discussed from this viewpoint@4#. Hence, it is
interesting to construct nonequilibrium thermodynam
from the operational point of view, apart from the existin
fluid-dynamical approach.

Operation from the outside can cause an energy excha
between the system and the external operator. In equilibr
thermodynamics, there is a principle of the minimum wo
for the system in the isothermal environment:

DF<^W&, ~1!

where DF denotes the free energy difference between
initial state and the final state of the system, andW denotes
the work done by the external operator. The average o
physical quantityf is written as^ f &, as usual. Note that th
sign of W is positive when the work is performed on th
system. The equality holds when and only when the proc
is reversible. Jarzynski recently proposed the intrigu
equality for the finite time transition between the equilibriu
states@5#,

exp~2bDF !5^exp~2bW!&, ~2!

whereb denotes the inverse temperature. Crooks@6# gives
another intriguing derivation of Eq.~2! using the fluctuation
theorem@7#. This equality is confirmed to be valid in th
finite time transition between equilibrium states. In th
Rapid Communication, however, we show that Eq.~2! is
indeed applicable to the finite time transition between n
equilibrium steady states which satisfy certain conditio
The derivation is given below by roughly following Ref.@5#.
PRE 601063-651X/99/60~5!/5017~4!/$15.00
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Consider the system with the following Hamiltonian:

H5H0~p!1H~x;a!2xF~ t !, ~3!

where a is a parameter andF(t) denotes the perturbativ
driving force which may be responsible for the nonequil
rium situation, andH0(p) is independent of time. The exter
nal agent manipulates the system by varying the param
a. The system may be in contact with a heat bath or sev
heat baths of different temperatures. In any case, we desc
the dynamics of the system by the stochastic process in
phase space spanned byx andp. We introduce the probabil-
ity distribution functionf (G,t) and the transition probability
P(G,tuG8,t8), whereG denotes bothx andp, to get

f ~G,t !5E dG8P~G,tuG8,t8! f ~G8,t8!. ~4!

This leads to

] f ~G,t !

]t
5E dG8R~GuG8;t ! f ~G8,t !, ~5!

where

R~GuG8;t !5 lim
Dt→10

P~G,t1DtuG8,t !2P~G,tuG8,t !

Dt
. ~6!

The dynamics of our nonequilibrium system is described
Eq. ~5! together with the initial condition. Then we make a
important assumption that the steady state of our system
characterized by the following distribution function:

f steady~G;a!}F~x,p!exp@2b̄H~x;a!#, ~7!

whereF(x,p) is an arbitrary function ofx andp, andb̄ is a
parameter that should be regarded as the effective inv
temperature. In other words, we confine the theory to
systems whose stationary distribution functions are rep
sented by Eq.~7!. By the definition of the stationary state
Eq. ~5! leads to

] f steady

]t
5E dG8R~GuG8;t !F~x8,p8!exp@2b̄H~x8;a!#50.

~8!

Our goal is to obtain the steady state version of Eq.~2!,
R5017 © 1999 The American Physical Society
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^exp~2b̄W!&5exp~2b̄DF !, ~9!

while the meaning ofDF is unclear at this point. Note thatb̄
is identical to the one appearing in the distribution functi
Eq. ~7!. Adopting the path-integral expression, we write

^exp~2b̄W!&5E DG~ t !exp~2b̄W!P@G~ t !#, ~10!

whereP@G(t)# is a probability distribution functional of the
pathG(t) in the phase space. The work done to the system
defined as@8#

W5E dtȧ
]H~x;a!

]a
. ~11!

We manipulate the system by changing the value ofa from
a(0) to a(T).

Then we discretize time duration of the operation@0,T# as
(t0 ,t1 , . . . ,tN), and writeG(t i) asG i andT/N asDt, respec-
tively. As a result of the discretization, the distribution fun
tional P@G(t)# is represented in terms of transition probab
ity as follows:

P@G~ t !#5PN~GNuGN21!•••P1~G1uG0! f 0~G0!, ~12!

where f 0(G0) denotes the initial probability distribution
function. Similarly, Eq.~11! becomes

W5 (
i 50

N21

dHi 11~xi !, ~13!

where

dHi 11~xi !5H~xi ;a i 11!2H~xi ;a i !. ~14!

Due to Eqs.~12! and ~13!, Eq. ~10! is rewritten as

^exp~2b̄W!&5F)
i 50

N E dG i GPN~GNuGN21!

3e2b̄dHN(xN21)
•••P1~G1uG0!

3e2b̄dH1(x0) f 0~G0!. ~15!

The integrals on the right-hand side of Eq.~15! are repre-
sented by the following iteration:

gi 11~G!5E dG i Pi 11~GuG i !e
2b̄dHi 11(xi )gi~G i !, ~16!

where

g0~G!5 f 0~G!, ~17!

^exp~2b̄W!&5E gN~G!dG. ~18!

By taking the first order terms ofDt, we have

Pi 11~GuG i !5d~G2G i !1DtRi~GuG i !, ~19!

e2b̄dHi 11(xi )512b̄dHi 11~xi !. ~20!
is

Substituting Eqs.~19! and~20! into the recursive relation Eq
~16!, and taking the limitDt→0, we get

]g~G,t !

]t
52b̄ȧ

]H~x;a!

]a
g~G,t !

1E dG8R~GuG8;t !g~G8,t !. ~21!

This equation gives

g~G,t !}F~x,p!exp@2b̄H„x;a~ t !…#, ~22!

noting that the second term of the right-hand side of Eq.~21!
vanishes by Eq.~8!. Since Eq.~17! tells us thatg(G,0) is
identical to the initial probability distribution functionf 0(G),
the right-side of Eq.~22! must have an appropriate norma
ization factor,

g~G,t !5
F~x,p!

Z0
exp@2b̄H„x;a~ t !…#, ~23!

where

Z05E dGF~x,p!exp@2b̄H„x;a~0!…#. ~24!

From Eq.~18!, we finally obtain the desired quantity,

^exp~2b̄W!&5E dGg~G,T!5
ZT
Z0

, ~25!

where

ZT5E dGF~x,p!exp@2b̄H„x;a~T!…#. ~26!

Note thatZ0 andZT depend only on the value ofa(0) and
a(T), respectively, so that they are the state variab

Namely, the quantitŷ exp(2b̄W)& does not depend on th
transition process but only on the initial and final states. F
thermore, if we define the free energy by

F52b̄21logZ, ~27!

Eq. ~25! gives our goal Eq.~9!, which is rewritten as

DF52b̄21 log@^exp~2b̄W!&#. ~28!

This completes the derivations of the steady state versio
the Jarzynski equality Eq.~9!. In this derivation, the restric-
tion on the stationary distribution function, Eq.~7!, is im-
posed. It is quite unknown at this point if the Jarzyns
equality holds for the system whose stationary distribut
function does not satisfy the condition. Hereafter, we che
the validity of the results by numerical simulations on som
concrete models.

We consider two examples. First we treat the unifo
temperature system whose Hamiltonian is given by

H5
p2

2
1

k~ t !

2
x22xA sin~vt !. ~29!
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This is one of the simplest models of the nonequilibriu
steady state driven by external force. By changingk(t), we
can contribute work to the nonequilibrium system. Althou
the sinusoidal force contributes work to the system, its c
tribution is a stationary dissipation which characterizes n
equilibrium states; following Ref.@2#, we call the work
which stationarily dissipates ‘‘housekeeping work.’’ We d
not count its contribution to the work.

We employ the Langevin dynamics as a model of the h
bath,

ẍ1g ẋ1k~ t !x5A sin~vt !1j~ t !, ~30!

wherej(t) is the Gaussian white noise satisfying

^j~ t !&50, ^j~ t !j~ t8!&52gb21d~ t2t8!. ~31!

The control parameterk(t) is changed from 1/4 to 1 as

k~ t !5
1

4 S 11
3t

T D , ~32!

whereT denotes the time duration of the operation.
Let us discuss the statistical property of the station

state. The model Eq.~30! leads to a time-dependent Krame
equation which yields time-dependent distributions, if t
forcing period 2p/v is longer than the relaxation time of th
system. However, since the operation process is much slo
than the forcing period, we average out the sinusoidal mo
to get the stationary distribution. If the forcing period b
comes comparable to the relaxation time, the response o
system cannot follow the forcing so that the distributi
functions become Gibbsian in the high-frequency limit 1v
→0. Here we choose the parameter such that the relaxa
time of the positiontx;g is longer than the forcing period
and that of the momentumtp;g21 is shorter than the forc
ing period, i.e.,g21<2p/v<g. We can expect that the dis
tribution of the positionx(x) becomes Gibbsian and that o
the momentump(p) is non-Gibbsian in this paramete
range. The obtainedx(x) and p(p) are shown in Fig. 1,
where we can see that our expectation is realized,

f ~G;k!}expS 2bk
x2

2 Dp0~p!. ~33!

Note that this satisfies the condition of Eq.~7!. Following

Eq. ~27!, DF is calculated asb̄21log 2 for this process. Then
we check if Eq.~28! holds. Since the distribution function i

given by Eq.~33!, b̄ in Eq. ~28! corresponds tob. The quan-

tity to be focused on here,2b̄21 log^exp@2b̄W#&, is shown
in Fig. 2 together witĥ W&. As is clearly seen, whilêW&
changes its value depending onT, 2b̄21 log^exp@2b̄W#& is
an invariant with respect to the operation timeT, which has
been proved to be a state variable. AsT gets larger,̂ W&
seems to converge to a finite value, which is identical

2b̄21 log^exp@2b̄W#&; we can regard this quantity asDF.
These facts clearly indicate the validity of our main resul

On the other hand, by tuning parameters, we can get
ferent steady states whose distribution functions do not
-
-

at

y

er
n

he

on

if-
t-

isfy Eq. ~7!. In those cases, we found that our equality
longer holds. However, the principle of the minimum wo
still seems to be valid.

Second, we consider the system in contact with two h
baths of different temperatures. The model we treat her
two Brownian particles coupled via the linear interacting p
tential. The Hamiltonian of the systems is

H5
p1

2

2
1

p2
2

2
1

k

2
~x2y!2. ~34!

And the dynamics is written as

FIG. 1. The steady state distribution functions in the configu
tion spacex(x) ~diamonds! and in the momentum spacep(p)
~solid line!. Dashed line represents the Gaussian distribution co
sponding to exp@2bkx2/2#. Parameters are set ask51, b51, g
52, A52, andv53.

FIG. 2. Averaged work and the free energy of the two examp
in the text. Plots on the down side are for the sine forci
system. Open diamonds and circles denotêW& and

2b̄21 log^exp@2b̄W#&, respectively. All the parameters are th
same as Fig. 1. Plots on the up side are for the heat conduc
system. Closed diamonds and circles denote^W& and

2b̄21 log^exp@2b̄W#&, respectively. We set the parameters to
g15g251, b150.5, andb251. Dashed lines denote the free e
ergy difference calculated from the stationary distribution functio
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ẍ1g1ẋ1k~ t !~x2y!5j1~ t !, ~35!

ÿ1g2ẏ1k~ t !~y2x!5j2~ t !. ~36!

Again j1(t) andj2(t) are the Gaussian white noise,

^j i~ t !&50, ^j i~ t !j j~ t8!&52g ib id i j d~ t2t8!. ~37!

where

d i j 5H 1, ~ i 5 j !

0, ~ iÞ j !.
~38!

This may be the simplest heat conduction system, which i
course in nonequilibrium. This system has been intensiv
studied by Sekimoto@9#, and was found to have the follow
ing distribution:

f steady~G;k!}expS 2b̄k
~x2y!2

2 DexpS 2b̄
p1

21p2
2

2 D ,

~39!

where

b̄5
g11g2

g1b11g2b2
b1b2 . ~40!

The steady state of the system hence satisfies the cond
of Eq. ~7!. We again control the parameterk(t) as
given in Eq.~32! and check if the Jarzynski equality hold
With the knowledge on the distribution function,DF

is calculated to be b̄21 log 2 again. The numerica
,

of
ly

ion

result usingb̄ of Eq. ~40! is shown in Fig. 2. It is clear if the
Jarzynski equality is also valid in this heat conducting s
tems.

In this Rapid Communication, we derive the steady st
version of the Jarzynski equality and reconfirm its validity
numerical simulations. The condition in which the equal
holds is that the stationary distribution function is given
Eq. ~7!. Note that the principle of minimum work immedi
ately follows Eq.~28!. Namely, the principle of minimum
work is also valid for the transition between nonequilibriu
steady states.

However, the equality has clear limitations on its applic
tion. The condition Eq.~7! is rather crucial in that it canno
describe the steady state of the system where the temper
depends on position; e.g. the Brownian particle in the n
uniform temperature environment@10#. It is unclear to what
extent Eq.~7! is satisfied in various nonequilibrium system

Another open question is the definition of the free ene
in nonequilibrium systems. As we have seen in the numer
simulations above, Eq.~27! seems to be valid in the system
satisfying Eq.~7! regardless of the statistical property of th
momentum space. However, in more general systems,
definition of the nonequilibrium free energy as well as e
tropy is still unclear, although it may appear as the minimu
work as is stated in Eq.~1!. Broader application and furthe
development of the framework stated in Ref.@2# should be
fruitful for nonequilibrium thermodynamics and should b
the main focus of future investigation of the problem.
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