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Jarzynski equalityPhys. Rev. 56, 5018(1997], which has been considered to be valid for the transitions
between equilibrium states, is found to be applicable to the transitions between nonequilibrium stationary states
satisfying certain conditions. Also numerical results confirm its validity. Its relevance for nonequilibrium
thermodynamics of the operational formalism is discuspg#i063-651X%99)51211-7

PACS numbegps): 05.70.Ln, 05.40-a, 05.20-y

The framework of nonequilibrium thermodynamics has Consider the system with the following Hamiltonian:
been sought by many authof$] in order to treat various
nonequilibrium systems such as chemical reactions, transport H=Hg(p)+H(X;a)—xF(1), 3

r in solids, moleculer motors, etc. far, all th : .
processes in solids, moleculer motors, etc. So far, a “Where « is a parameter ané(t) denotes the perturbative

attempts seem to be based on the fluid-dynamical apdr. ina force which mav be responsible for the noneauilib-
proaches, which mostly have the assumption of local equi- ving whi Y ponsi qurl

librium at its starting point. Recently, Oono and Panid@ji rium situation, gnd—|o(p) is independent of t?me. The exter-
present a different type of nonequilibrium thermodynamicsnal agent manipulates '_[he system by varying the parameter
a. The system may be in contact with a heat bath or several

whose framework corresponds to equilibrium thermodynamh t baths of diff tt " | q ib
ics. The unique feature of their work lies in the fact that it is cat baths of diierent temperatures. in any case, we describe

a set of laws concerning operation from the outside, as weﬁhe dynamics of the system by the stochastic process in the

as equilibrium thermodynamics. We refer to their theory asPhaS.e space spann.ed bpndp. We mtrodqu the proba_pn-
the operational formalism. This formalism is so important'ty d|str|t,>ut/|on functionf(I',t) and the transition probability
that the concept of entropy in equilibrium thermodynamics isP (I, t|T",t"), wherel" denotes bothx andp, to get
introduced concerning with the adiabatic operafi@8h The
relation between dynamical entropy and thermodynamic en- f(F,t)=J dI/P(T,t|T/ t")f(T,t"). (4
tropy is also discussed from this viewpoidt]. Hence, it is
interesting to construct nonequilibrium thermodynamicsThis |eads to
from the operational point of view, apart from the existing
fluid-dynamical approach. af(I",t) , ) )

Operation from the outside can cause an energy exchange T:J dIR(IIC 0 (I,0), ®)
between the system and the external operator. In equilibrium
thermodynamics, there is a principle of the minimum workwhere
for the system in the isothermal environment:

AF<(W), 1) R(F|F’;t)=AtIer1+0

P(T,t+At|T",t)—P(T,t|T’1)

At (6)

where AF denotes the free energy difference between the ) o ) )
initial state and the final state of the system, &dlenotes 1 "e dynamics of our nonequilibrium system is described by

the work done by the external operator. The average of gq. (5) together with the initial condition. Then we make an

physical quantityf is written as(f), as usual. Note that the IMmportant assumption that the steady state of our system is

sign of W is positive when the work is performed on the characterized by the following distribution function:

system. The equality holds when and only when the process —

is reversible. Jarzynski recently proposed the intriguing fsteaaf I'; @) @ (X,p)exd — BH(X; )], )

equality for the finite time transition between the equilibrium _

stateq 5], where®(x,p) is an arbitrary function ok andp, andg is a
parameter that should be regarded as the effective inverse

exp(— BAF) =(exp(— BW)), (2)  temperature. In other words, we confine the theory to the

systems whose stationary distribution functions are repre-

where 8 denotes the inverse temperature. Croffilsgives  sented by Eq(7). By the definition of the stationary state,
another intriguing derivation of Eq2) using the fluctuation Eq. (5) leads to

theorem[7]. This equality is confirmed to be valid in the

finite time transition between equilibrium states. In this 9fge,qy , ) o —

Rapid Communication, however, we show that E2). is ot =f dI'"R(I|T" ;1) D (x",p")ex — BH(X";a)]=0.
indeed applicable to the finite time transition between non- ®)
equilibrium steady states which satisfy certain conditions.

The derivation is given below by roughly following Ré5&]. Our goal is to obtain the steady state version of &4,
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9) Substituting Egs(19) and(20) into the recursive relation Eq.

(exp(—BW)) =exp(— BAF), (16), and taking the limitAt—0, we get

while the meaning oA F is unclear at this point. Note thﬁ ag(T' 1) — GH(x:a)
is identical to the one appearing in the distribution function —=—Ba —g(T,t)
Eq. (7). Adopting the path-integral expression, we write at da
(exp(~ W)= [ DI (Vexp- BWAT(®], (10 # [ orRarirogro. e
whereP[T'(t)] is a probability distribution functional of the This equation gives
athI'(t) in the phase space. The work done to the system is —
oo adg|  Prase <P Y oI xd(xpext - BH(a()], (22
COH(X:a) noting that the second term of the right-hand side of @d)
W=f dta———. (11)  vanishes by Eq(8). Since Eq.(17) tells us thatg(T",0) is
o identical to the initial probability distribution functiofy(I"),
We manipulate the system by changing the value dfom the right-side of Eq(22) must have an appropriate normal-
«(0) to a(7). ization factor,
Then we discretize time duration of the operati®7] as ®(x,p) -
(.to,tl, ...tn),and writel“.(ti) a_sl“i .and77N a.sA.t, respec- g(I',t)= Z’ exd — BH(X;a(1))], (23
tively. As a result of the discretization, the distribution func- 0
tional P[T'(t)] is represented in terms of transition probabil- Where
ity as follows:
PT(D)]=Pn(TNTN-1)- - - Pu(T1|To)fo(To), (12) zozf dT & (x,p)exd — BH(x; @(0))]. (24)

where fo(I'g) denotes the initial probability distribution

function. Similarly, Eq.(11) becomes From Eq.(18), we finally obtain the desired quantity,

N—1 o ZT
W= 20 SHi1(xp), (13 <9XP(—BW)>=f ng(F,D=Z—O, (25)

where where
PG ) GG ) (4 2~ [ arecpent-pHOGaM]. (26

Due to Egs(12) and(13), Eq. (10) is rewritten as
Note thatZ, and Z; depend only on the value @f(0) and

a(7), respectively, so that they are the state variables.

Namely, the quantityexp(—BW)) does not depend on the
_ transition process but only on the initial and final states. Fur-
X e AMNON-D. .. P (T4 |T) thermore, if we define the free energy by

N

(exp—gwW))=| I fdri}PNlerN_l)

=0

X e B0 (Ty). (15) F=-p YogZ, 27

The integrals on the right-hand side of H45) are repre- Eq. (25) gives our goal Eq(9), which is rewritten as
sented by the following iteration:
AF=—B""log[(exp(— BW))]. (28)

This completes the derivations of the steady state version of
the Jarzynski equality Eq9). In this derivation, the restric-

gi+1(r):fdFiPi+1(F|Fi)eigﬁHHl(xi)gi(Fi)a (16)

where tion on the stationary distribution function, E), is im-
go(I)="fo(T'), (17)  posed. It is quite unknown at this point if the Jarzynski
equality holds for the system whose stationary distribution
— function does not satisfy the condition. Hereafter, we check
(exp(—,BW))=f gn(I)dr'. (18)  the validity of the results by numerical simulations on some
concrete models.
By taking the first order terms aft, we have We consider two examples. First we treat the uniform
temperature system whose Hamiltonian is given by
P, (T[T = 8T —T)+AtR(T'[T), (19
2
p2 k() ,
H= =+ ——X*—xAsin( wt). (29

e_ﬁﬁHi‘Fl(Xi): 1_E5Hi+l(xi)' (20) 2 2
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This is one of the simplest models of the nonequilibrium 0.4
steady state driven by external force. By chanduft, we
can contribute work to the nonequilibrium system. Although
the sinusoidal force contributes work to the system, its con-
tribution is a stationary dissipation which characterizes non- 03 |
equilibrium states; following Ref[2], we call the work
which stationarily dissipates “housekeeping work.” We do
not count its contribution to the work.

We employ the Langevin dynamics as a model of the heags 0.
bath,

2 |

X+ yx+ k() x=Asin(wt) + &(1), (30) 0.1

where&(t) is the Gaussian white noise satisfying

(6(0)=0, (&E&t))=2yB to(t—t"). (3D 0.0

The control parameték(t) is changed from 1/4 to 1 as

FIG. 1. The steady state distribution functions in the configura-
E) (32) tion spacey(x) (diamond$ and in the momentum space(p)
T’ (solid line). Dashed line represents the Gaussian distribution corre-

sponding to exp-Bkx¢/2]. Parameters are set &s=1, 8=1, y
where7 denotes the time duration of the operation. =2,A=2, andw=3.
Let us discuss the statistical property of the stationary

state. The model Eq30) leads to a time-dependent Kramers isfy Eq. (7). In those cases, we found that our equality no
equation which yields time-dependent distributions, if thelonger holds. However, the principle of the minimum work
forcing period 27/ w is longer than the relaxation time of the still seems to be valid.
system. However, since the operation process is much slower Second, we consider the system in contact with two heat
than the forcing period, we average out the sinusoidal motiomaths of different temperatures. The model we treat here is
to get the stationary distribution. If the forcing period be-two Brownian particles coupled via the linear interacting po-
comes comparable to the relaxation time, the response of thential. The Hamiltonian of the systems is
system cannot follow the forcing so that the distribution
functions become Gibbsian in the high-frequency limib 1/ 2 2\
—0. Here we choose the parameter such that the relaxation H= &+ &4_ ~(x—y)2 (34)
time of the positionr,~ v is longer than the forcing period, 2 2 2
and that of the momentum,~ v~ Lis shorter than the forc-
ing period, i.e.,y '<2m/w<1y. We can expect that the dis- And the dynamics is written as
tribution of the positiony(x) becomes Gibbsian and that of
the momentum(p) is non-Gibbsian in this parameter 14
range. The obtaineg¢(x) and m(p) are shown in Fig. 1,
where we can see that our expectation is realized, .

k(t)=>|1

+
4

. x? 0

= 10|

Note that this satisfies the condition of EJ). Following

Eq.(27), AF is calculated a§‘1log 2 for this process. Then 0.8 1 o
we check if Eq.(28) holds. Since the distribution function is ¢ BB
given by Eq.(33), B8 in Eq.(28) corresponds t@. The quan- 06 ‘

- - 10 100 1000
tity to be focused on here; 8~ log(exd — BW]), is shown T
n Fig. 2 .together Wlth<W>_' As s ClEny seen, Wﬁllév\o FIG. 2. Averaged work and the free energy of the two examples
changes its value depending Gn — 3 _|09<?XF{_5_W]> IS in the text. Plots on the down side are for the sine forcing
an invariant with respect to the operation timiewhich has  system. Open diamonds and circles denot&V) and
been proved to be a State 'varlable. Z(sggts .Iar'ger,(\.N) —E’llog(exq—g\/\/]), respectively. All the parameters are the
seems to converge to a finite value, which is identical 10 same as Fig. 1. Plots on the up side are for the heat conducting
— B~ tlog(exf — BW]); we can regard this quantity asF.  system. Closed diamonds and circles denot#/) and
These facts clearly indicate the validity of our main result. — g=1|og(exd — BW]), respectively. We set the parameters to be

On the other hand, by tuning parameters, we can get dify,=y,=1, 8;=0.5, andB,=1. Dashed lines denote the free en-
ferent steady states whose distribution functions do not saergy difference calculated from the stationary distribution functions.
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X+ yx+K(H) (x—y) = £(1), (35)

Y+ 72y KDy =X)= (1), (36)
Again &;(t) and &,(t) are the Gaussian white noise,
(&(1))=0, (&)&(t)=2ypBig;o(t—t"). (37)
where
- [1, (i=i)
ij

1o, (i#)). (38

result usingB of Eq. (40) is shown in Fig. 2. It is clear if the
Jarzynski equality is also valid in this heat conducting sys-
tems.

In this Rapid Communication, we derive the steady state
version of the Jarzynski equality and reconfirm its validity by
numerical simulations. The condition in which the equality
holds is that the stationary distribution function is given by
Eqg. (7). Note that the principle of minimum work immedi-
ately follows Eq.(28). Namely, the principle of minimum
work is also valid for the transition between nonequilibrium
steady states.

However, the equality has clear limitations on its applica-
tion. The condition Eq(7) is rather crucial in that it cannot

This may be the simplest heat conduction system, which is oflescribe the steady state of the system where the temperature
course in nonequilibrium. This system has been intensivelylepends on position; e.g. the Brownian particle in the non-
studied by Sekimot§9], and was found to have the follow- uniform temperature environmefit0]. It is unclear to what

ing distribution:

(x—y>2)exp< —pi+p

fstead)(r;k)ocex4 _Ek 2 B 2 )
(39
where
— 7ty
A= Y1B1t ¥2B2 Pz 40

extent Eq.7) is satisfied in various nonequilibrium systems.
Another open question is the definition of the free energy
in nonequilibrium systems. As we have seen in the numerical
simulations above, Eq27) seems to be valid in the system
satisfying Eq.(7) regardless of the statistical property of the
momentum space. However, in more general systems, the
definition of the nonequilibrium free energy as well as en-
tropy is still unclear, although it may appear as the minimum
work as is stated in Eq1). Broader application and further
development of the framework stated in REf] should be
fruitful for nonequilibrium thermodynamics and should be

The steady state of the system hence satisfies the conditiéRe main focus of future investigation of the problem.

of Eqg. (7). We again control the paramete(t) as
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given in Eq.(32) and check if the Jarzynski equality holds. cyitical reading of the manuscript. Discussions with S. Take-
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