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Dilute Bose gas revised
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The well-known results concerning a dilute Bose gas with the short-range repulsive interaction should be
reconsidered due to a thermodynamic inconsistency of the method being basic to much of the present under-
standing of this subject. The aim of our paper is to propose another way of treating the dilute Bose gas with an
arbitrary strong interaction. Using the reduced density matrix of the second order and a variational procedure,
this way allows us to escape the inconsistency mentioned and operate with singular potentials of the Lennard-
Jones type. The derived expansion of the condensate depletion in powers of the boson densityn5N/V
reproduces the familiar result, while the expansion for the mean energy per particle is of the form«
52p\2an/m$11128/(15Ap)Ana3(125b/8a)1•••%, wherea is the scattering length andb>0 stands for
one more characteristic length depending on the shape of the interaction potential~in particular, for the hard
spheresa5b). All the consideration concerns the zero temperature.@S1063-651X~99!50507-2#

PACS number~s!: 05.30.Jp, 03.75.Fi
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It is well known that to investigate a dilute Bose gas
particles with an arbitrary strong repulsion~the strong-
coupling regime!, one should go beyond the Bogoliubov a
proach @1# ~weak-coupling case! and treat the short-rang
boson correlations in a more accurate way. An ordinary m
ner of doing so is the use of the Bogoliubov model with t
‘‘dressed,’’ or effective, interaction potential containing ‘‘in
formation’’ on the short-range boson correlations~see Ref.
@2#!. Below it is demonstrated that this manner leads to a l
of the thermodynamic consistency. To overcome this trou
we propose another way of investigating the strong-coup
regime, which concerns the reduced density matrix of
second order~the two-matrix! and is based on the variation
method.

The two-matrix for the many-body system of spinle
bosons can be represented as@3# r2(r18 ,r28 ;r1 ,r2)
5F2(r1 ,r2 ;r18 ,r28)/$N(N21)%, where the pair correlation
function is given by

F2~r1 ,r2 ;r18 ,r28!5^c†~r1!c†~r2!c~r28!c~r18!&. ~1!

Here c(r ) and c†(r ) denote the boson field operators. R
cently it has been found@4,5# that for the uniform system
with a small depletion of the zero-momentum state the c
relation function~1! can be written in the thermodynam
limit as follows @4,5#:

F2~r1 ,r2 ;r18 ,r28!5n0
2w* ~r !w~r 8!

12n0E d3q

~2p!3
nqwq/2* ~r !wq/2~r 8!

3exp$ iq•~R82R!%, ~2!

where r5r12r2 ,R5(r11r2)/2 and similar relations take
place forr 8 andR8, respectively. In Eq.~2! n05N0 /V is the
density of the particles in the zero-momentum state,nq

5^aq
†aq& stands for the distribution of the noncondens

bosons over momenta. Besides,w(r ) is the wave function of
PRE 601063-651X/99/60~1!/5~4!/$15.00
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a pair of particles that are both being condensed. In tu
wq/2(r ) denotes the wave function of the relative motion in
pair of bosons with the total momentum\q, this pair includ-
ing one condensed and one noncondensed particle. So
~2! takes into account the condensate-condensate
supracondensate-condensate pair states and is related
situation of a small depletion of the zero-momentum on
boson state. For the wave functionsw(r ) andwp(r ) we have

w~r !511c~r !, wp~r !5A2cos~p•r !1cp~r ! ~pÞ0!,
~3!

with the boundary conditionsc(r )→0 andcp(r )→0 for r
→`. The functionsc(r ) and cp(r ) can explicitly be ex-
pressed in terms of the Bose operatorsap

† and ap @4#. In
particular,

c̃~k!5E c~r !exp~2 ik•r !d3r 5^aka2k&/n0 . ~4!

Having at our disposal the distribution functionnk and the
set of the pair wave functionsw(r ) andwp(r ), we are able to
calculate the main thermodynamic quantities of the sys
of interest. In particular, the mean energy per particle is
pressed in terms ofnk andg(r ) via the well-known formula

«5E d3k

~2p!3
Tk

nk

n
1

n

2E g~r !F~r !d3r , ~5!

where Tk5\2k2/2m is the one-particle kinetic energy,n
5N/V stands for the boson density, and the relation

g~r !5F2~r1 ,r2 ;r1 ,r2!/n2 ~6!

is valid for the pair distribution functiong(r ).
The starting point of our investigation is the wea

coupling regime which implies weak spatial correlations
particles and, thus, is characterized by the set of the inequ
ties
R5 ©1999 The American Physical Society
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uc~r !u!1, ucp~r !u!1. ~7!

Specifically, the Bogoliubov model corresponds to t
choice@4,5#

uc~r !u!1, cp~r !50. ~8!

In addition, owing to a small depletion of the Bose conde
sate (n2n0)/n we have for the one-particle density matr
F1(r )5^c†(r1)c(r2)&

UF1~r !

n U5U E d3k

~2p!3

nk

n
exp~ ik•r !U< n2n0

n
!1.

So, investigating the Bose gas within the Bogoliub
scheme, we have two small quantities:c(r ) and F1(r )/n.
This enables us to write Eq.~6! with the help of Eq.~2! as
follows:

g~r !5112c~r !1
2

nE d3k

~2p!3
nkexp~ ik•r !, ~9!

where we restricted ourselves to the terms linear inc(r ) and
F1(r )/n and putc* (r )5c(r ) because the pair wave func
tions can be chosen as real quantities. Equations forc̃(k)
andnk can be found by varying the mean energy~5! with ~9!
taken into account. However, one should first realize an
portant point: namely,nk and c̃(k) cannot be independen
variables. Indeed, when there is no interaction between
ticles, there are no spatial particle correlations either.
c̃(k)50 and, since the zero-temperature case is conside
all the bosons are condensed,nk50. While ‘‘switching on’’
the interaction results in the appearance of the spatial co
lations and condensate depletion:c̃(k)Þ0 together withnk

Þ0. In the framework of the Bogoliubov schemec̃(k) is
related tonk by the expression

nk~nk11!5n0
2c̃2~k!. ~10!

Indeed, the canonical Bogoliubov transformation@1# implies
that

ak5ukak1vka2k
† , ak

†5ukak
†1vka2k , ~11!

where

uk
22vk

251. ~12!

At zero temperaturêak
†ak&50 and, using Eqs.~4! and~11!

we arrive at

nk5vk
2 , c̃~k!5ukvk /n0 . ~13!

With Eqs.~12! and ~13! one can readily obtain Eq.~10!.
Now, let us show that all the results on the thermodyna

ics of a weak-coupling Bose gas can be derived for the
goliubov scheme with variation of the mean energy~5! under
the conditions~9! and~10!. Inserting Eq.~9! into Eq.~5!, and
then varying the obtained expression, we arrive at
-

-

r-
o
d,

e-

-
-

d«5E d3k

~2p!3 S @Tk1nF̃~k!#
dnk

n
1nF̃~k!dc̃~k! D .

~14!

Relation~10! connectingc̃(k) with nk results in

dc̃~k!5
~2nk11!dnk

2n0
2c̃~k!

1
c̃~k!

n0
E d3q

~2p!3
dnq , ~15!

where the equality

n5n01E d3k

~2p!3
nk ~16!

is taken into consideration. Settingd«50 and using Eqs.
~14! and ~15!, we derive the following expression:

22Tkc̃~k!5
n2

n0
2
F̃~k!~112nk!12nc̃~k!

3S F̃~k!1
n

n0
E d3q

~2p!3
F̃~q!c̃~q!D .

~17!

Here one should realize that Eq.~17! is able to yield results
that are accurate only to the leading order in (n2n0)/n be-
cause the used expression forg(r ) given by Eq.~9! is valid
to the next-to-leading order@6#. So, Eq.~17! should be re-
written as

22Tkc̃~k!5F̃~k!~112nk!12nc̃~k!F~k!. ~18!

Equation~18! is an equation of the Bethe-Goldstone type
in other words, the in-medium Schro¨dinger equation for the
pair wave function. Since 2F̃(k)@nk1nc̃(k)# is the product
of the Fourier transforms ofF(r ) and n@g(r )21#, we can
rewrite Eq.~18! in the more customary form

\2

m
¹2w~r !5F~r !1nE F~ ur2yu!@g~y!21#d3y.

~19!

The structure of Eq.~19! is discussed in our papers@5,7#.
Here we only remark that the right-hand side~rhs! of Eq.
~19! is the in-medium potential of the boson-boson intera
tion in the weak-coupling approximation. The system of E
~10! and~18! can easily be solved, which leads to the fam
iar results@1#

nk5
1

2 S Tk1nF̃~k!

ATk
212nTkF̃~k!

21D ,

~20!

c̃~k!52
F̃~k!

2ATk
212nTkF̃~k!

.

Now we are able to demonstrate that the investigation
the strong-coupling case based on the Bogoliubov mo
with the effective boson-boson interaction, results in a lo
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of the thermodynamic consistency. Indeed, as was show
the preceding paragraph, any calculating scheme using
basic relations of the Bogoliubov model~9! and~10! conclu-
sively leads to Eqs.~18!–~20!, provided this scheme doe
yield the minimum of the mean energy. In this case E
~18!–~20! certainly include the quantityF(r ), which is the
‘‘bare’’ interaction potential appearing in Eq.~5!. The use of
the Bogoliubov model with the effective interaction potent
substituted forF(r ) can in no way disturb the relation
given by Eqs.~9! and ~10!. And Eq. ~5! is the same in both
the weak- and strong-coupling regimes. Thus, any attemp
replacingF(r ) by the effective ‘‘dressed’’ potential withou
modifications of Eqs.~9! and ~10! results in a calculating
procedure that does not really provide the minimum of
mean energy. It is nothing else but a loss of the thermo
namic consistency. Let us remark that we do not mean
course, that thet-matrix approach or the pseudopotent
method cannot be applied in the quantum scattering prob
It is only stated that the usual way of combining the ladd
diagrams with the random phase approximation faces
trouble mentioned above. Though our present investiga
is limited by the consideration of the Bose systems, the
rived result gives a hint that the similar situation is likely
take place in the Fermi case, too. In this connection i
worth noting the problem associated with the lack of se
consistency of the standard method of treating the di
Fermi gas@8#.

The strong-coupling regime is characterized by signific
spatial correlations. So, Eq.~8! resulting in Eq.~9! is not
relevant for an arbitrary strong repulsion between boson
small separations when we havec(0)521, cp(0)52A2
~see Refs. @4,5#!. Therefore, to investigate the stron
coupling regime, Eq.~9! should be abandoned in favor of E
~2!. Expression~2! is accurate to the next-to-leading order
(n2n0)/n. So, using Eqs.~2! and ~6!, we can write

g~r !5w2~r !1
2

nE d3q

~2p!3
nq@wq/2

2 ~r !2w2~r !#. ~21!

Let us now perturbc̃(k) andn(k). Working to the first order
in the perturbation and keeping in mind conditions~10! and
~21!, from Eq. ~5! we derive

22Tkc̃~k!5Ũ~k!~112nk!12nc̃~k!Ũ8~k!, ~22!

with

Ũ~k!5E w~r !F~r !exp~2 ik•r !d3r ~23!

and

Ũ8~k!5E @wk/2
2 ~r !2w2~r !#F~r !d3r . ~24!

Using Eqs. ~23! and ~24!, as well as the relationck(r )
→A2c(r )(k→0) @see the boundary conditions~3!#, we ob-
tain Ũ(0)ÞŨ8(0). This implies that the system of Eqs.~10!
and ~22! is not able to yield the relationnk}1/k(k→0) fol-
lowing from the ‘‘1/k2’’ theorem of Bogoliubov for the zero
temperature@9#. Indeed, let us assumenk→` for k→0.
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Then, from Eq.~10! at n5n0 we find nuc̃(k)u/nk→1 when
k→0. On the contrary, Eq. ~22! gives nuc̃(k)u/nk

→Ũ(0)/Ũ8(0)Þ1 for k→0. So, consideration of the Bos
gas based on Eqs.~2! and~10! does not produce satisfactor
results. Nevertheless, it is worth noting that Eq.~22! has an
important peculiarity that differentiates it from Eq.~18! in an
advantageous way. The point is that in both the limitsn
→0 andk→` Eq. ~22! is reduced to

2
\2

m
¹2w~r !1F~r !w~r !50. ~25!

As it is seen, this is the exact ‘‘bare’’~not in-medium! Schrö-
dinger equation, other than its Born approximation followi
from Eq. ~19!. Thus, we can expect the line of our inves
gation to be right.

As was shown in the preceding paragraph, an appro
that is adequate for a dilute Bose gas with an arbitrary str
interaction cannot be constructed without modifications
Eq. ~10!. This is also in agreement with a consequence of
relation

u^aka2k&u2<^akak
†&^a2k

† a2k& ~26!

resulting from the inequality of Cauchy-Schwar
Bogoliubov @9# u^ÂB̂&u2<^ÂÂ†&^B̂†B̂&. With Eqs. ~4! and
~26! one can easily deriven0

2c̃2(k)<nk(nk11). Thus, it is
reasonable to assume that Eq.~10! takes into account only
the condensate-condensate channel and ignores
supracondensate-condensate ones. Now the question a
about how to find corrections to the rhs of Eq.~10!. At
present we have no regular procedure allowing us to do
in any order of (n2n0)/n. However, there exists an argu
ment that makes it possible to realize the first step in t
direction. The matter is that the alterations needed hav
produce the equation forc̃p(k), which is reduced to the
equation forc̃(k) in the limit p→0. Though this require-
ment does not uniquely determine the corrections to Eq.~10!,
it turns out to be significantly restrictive. In particular, eve
the simplest variant of correcting Eq.~10! in this way, leads
to promising results. Indeed, this variant is specified by
expression

nk~nk11!5n0
2c̃2~k!12n0E d3q

~2p!3
nqc̃q/2

2 ~k!. ~27!

Equation ~27! is valid to the next-to-leading order in (n
2n0)/n. So, we may rewrite it as

nk~nk11!5n2c̃2~k!12nE d3q

~2p!3
nq@c̃q/2

2 ~k!2c̃2~k!#.

~28!

Perturbingc̃(k) andnk and bearing in mind conditions~21!

and~28!, Eq. ~5! gives Eq.~22! again. However, nowŨ8(k)
obeys the new relation
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Ũ8~k!5E @wk/2
2 ~r !2w2~r !#F~r !d3r

2E d3q

~2p!3

Ũ~q!@c̃k/2
2 ~q!2c̃2~q!#

c̃~q!
, ~29!

which significantly differs from Eq.~24!. Indeed, the choice
of the pair wave functions as real quantities implies that
erating with integrands in Eqs.~23! and~29!, one can exploit
cp(r )2A2c(r )}p2 at smallp @10#. For k→0 this provides
Ũ8(k)2Ũ(k)5tk5ck41•••. Similar to Eq.~18!, Eq. ~22!
can yield results correct only to the leading order inn
2n0)/n. So, it has to be solved together with Eq.~10!, where
n0

2 should be replaced byn2, rather than with Eq.~28!. This
leads to the following relation:

nk5
1

2 S T̃k1nŨ~k!

AT̃k
212nT̃kŨ~k!

21D , ~30!

c̃~k!52
Ũ~k!

2AT̃k
212nT̃kŨ~k!

, ~31!

where T̃k5Tk1ntk . In the limit k→0 Eq. ~31! gives nk

.@AnmŨ(0)/\k21#/2, which is fully consistent with the
‘‘1/ k2’’ theorem of Bogoliubov for the zero temperature@9#.
Equations~23! and~31! should be solved in a self-consiste
manner. So, forn→0 one can derive

Ũ~k!5Ũ (0)~k!~118Ana3/Ap!. ~32!

Here Ũ (0)(k)5*w (0)(r )F(r )exp(2ikr )d3r , where w (0)(r )
obeys Eq.~25! a being the scattering length. Further, subs
tuting k5Any in the integral for the condensate depleti
(n2n0)/n51/(2p)3*0

1`dk4pk2nk /n, we obtain the famil-
iar result

~n2n0!/n58Ana3/~3Ap!1•••. ~33!

Inserting Eqs.~21!, ~30!, and~31! into Eq. ~5! and using Eq.
~32!, in a similar manner we derive
-

-

«5
2p\2an

m H 11
128

15Ap
Ana3S 12

5

8

b

aD1•••J , ~34!

whereb>0 is one more characteristic length defined as

b5
1

4pE @¹w (0)~r !#2d3r . ~35!

As it is seen, the well-known result of papers@2# can be
derived from Eq.~34! with the choiceb50. However, this
approximation is rather crude because the case of the h
sphere interaction@F(r )50(r .a) andF(r )→`(r ,a)] is
specified byb5a,

«5
2p\2an

m H 11
16

5Ap
Ana31•••J . ~36!

In the general case and, in particular, for the singular pot
tials of the Lennard-Jones type we haveaÞb. We remark
that the last term on the rhs of Eq.~27! does not make any
contribution into the results given by Eqs.~33! and ~34!.
However, the next orders in the expansions of the energy
depletion depend on its contribution essentially.

In conclusion, let us take notice of the important points
this Rapid Communication once more. It was demonstra
that thermodynamically consistent calculations based on E
~9! and~10! conclusively result in Eqs.~18!–~20!. Therefore,
using the Bogoliubov model with the ‘‘dressed’’ interactio
does not provide the satisfactory solution of the problem
the strong-coupling Bose gas. As was shown, when inve
gating this subject, one should go beyond the Bogoliub
scheme. To do this, we developed the approach reduce
the system of Eqs.~23!, ~29!, ~30!, and~31!. These equations
reproduce the well-known result~33! for the condensate
depletion and yield the new expansion~34! in powers ofn
for the energy, Eq.~36! being the particular case of the ha
spheres. One can expect alterations for the excitation s
trum, too.

This work was supported by RFBR Grant No. 97-0
16705.
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