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A. Yu. Cherny and A. A. Shanenko
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
2Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
(Received 16 March 1999

The well-known results concerning a dilute Bose gas with the short-range repulsive interaction should be
reconsidered due to a thermodynamic inconsistency of the method being basic to much of the present under-
standing of this subject. The aim of our paper is to propose another way of treating the dilute Bose gas with an
arbitrary strong interaction. Using the reduced density matrix of the second order and a variational procedure,
this way allows us to escape the inconsistency mentioned and operate with singular potentials of the Lennard-
Jones type. The derived expansion of the condensate depletion in powers of the boson rdehsity
reproduces the familiar result, while the expansion for the mean energy per particle is of the form
=2xh2an/m{1+128/(15/7) Jna’(1—5b/8a)+ - - -}, wherea is the scattering length anis=0 stands for
one more characteristic length depending on the shape of the interaction pdienpiaiticular, for the hard
spheresa=b). All the consideration concerns the zero temperati$8063-651X99)50507-3

PACS numbd(s): 05.30.Jp, 03.75.Fi

It is well known that to investigate a dilute Bose gas ofa pair of particles that are both being condensed. In turn,
particles with an arbitrary strong repulsiofthe strong-  ¢q,(r) denotes the wave function of the relative motion in a
coupling regimg one should go beyond the Bogoliubov ap- pair of bosons with the total momentul, this pair includ-
proach[1] (weak-coupling cageand treat the short-range ing one condensed and one noncondensed particle. So, Eq.
boson correlations in a more accurate way. An ordinary man(2) takes into account the condensate-condensate and
ner of doing so is the use of the Bogoliubov model with thesupracondensate-condensate pair states and is related to the
“dressed,” or effective, interaction potential containing “in- situation of a small depletion of the zero-momentum one-
formation” on the short-range boson correlatioisge Ref.  boson state. For the wave functiopér) andy(r) we have
[2]). Below it is demonstrated that this manner leads to a loss
of the thermodynamic consistency. To overcome this trouble, ¢(r)=1+(r), ¢@y(r)= \/Ecos{p- N+g(r) (p#0),
we propose another way of investigating the strong-coupling (
regime, which concerns the reduced density matrix of the
second ordefthe two-matriy and is based on the variational With the boundary conditiong(r)—0 and,(r)—0 for r
method. —oo. The functionsy(r) and ¢,(r) can explicitly be ex-

The two-matrix for the many-body system of spinlesspressed in terms of the Bose operatafsand a, [4]. In
bosons can be represented d8] p,(r;,r5;ry,r,)  Particular,
=F(rq,ro;r1,r5)/{N(N—1)}, where the pair correlation

function is given by P(k)= f p(rexp—ik-rd3r=(aa_)/ng. (4

Fo(ro, ot i )= (r) T (ro)w(r))yu(r))). (@

21112111 12) = (P (r) ¥ r2) (1) A1) @) Having at our disposal the distribution function and the
Here (r) and 4'(r) denote the boson field operators. Re- St of the pair wave functions(r) and¢y(r), we are able to
cently it has been founf#,5] that for the uniform system calculate the main thermodynamic quantities of the system

with a small depletion of the zero-momentum state the cor®f interest. In particular, the mean energy per particle is ex-
relation function(1) can be written in the thermodynamic Pressed in terms afy andg(r) via the well-known formula

limit as follows[4,5]:

d®k _ne n
= - T, —4— 3
FZ(rlarZ;riaré):ng@*(r)(P(r/) &€ f(ZW)STkn +2J g(r)q)(r)d r, (5)
d’q here T,=#2k2/2m i icle kinet
+2 * / where T,=#/°k</2m is the one-particle kinetic energy
nof (277)3nq(po"z(r)(quZ(r ) =N/V stands for the boson density, and the relation

xexplig-(R'—R)}, 2 g(r)=Fy(rqy,ry;rq,r)/n? (6)

wherer=r;—r, ,R=(r;+r,)/2 and similar relations take is valid for the pair distribution functiog(r).

place forr" andR’, respectively. In Eq(2) ng=Ny/V is the The starting point of our investigation is the weak-
density of the particles in the zero-momentum statg, coupling regime which implies weak spatial correlations of
=<agaq> stands for the distribution of the noncondensedparticles and, thus, is characterized by the set of the inequali-
bosons over momenta. Besidegy) is the wave function of ties
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lp(n)|<1, [yp(r)|<1. @) d3k .oy .
5s=f 3| [Tt n®(K) ]——=+nd (k) 54(K) |.
Specifically, the Bogoliubov model corresponds to the 2) n
choice[4,5] (14)
()| <1, ¢(r)=0 ®) Relation(10) connectingy(k) with n, results in
i p .
~ 3
In addition, owing to a small depletion of the Bose conden- SU(k)= (2ny+ 1)5nk+ ¢(k)f d’q 5 (15)
sate —ng)/n we have for the one-particle density matrix 2n3(k) no J 2m3
Fl(r)=(¢f(r1)¢(r2)> .
where the equality
Fa(r d®k n n—n
(0| _ f K explik-r)|= ——2<1. d3k
n | (2m)® n n n=n0+f Nk (16)
(2m)°

So, investigating the Bose gas within the Bogoliubov. : . . . .
scheme, wg ha\?e two small q%antitie,,‘a(:r) and Fl(rg)/n. is taken into consudgratlon. Settings =0 and.usmg Egs.
This enables us to write E@46) with the help of Eq.(2) as (14) and(15), we derive the following expression:

follows:

2
— 2T, (k) =n—2d>(k)(1+ 2ny) +2n (k)
No

(r)=1+2¢( )+2f ok pik-r) 9
ry= ry+— nexp(ik-r),
’ n) @2m™ _ngfodq. -
x| B0+ - [ @i |
where we restricted ourselves to the terms lineag(n) and o) (2m)

Fi(r)/n and puty™ (r) = ¢(r) because the pair wave func- (17)

tions can be chosen as real quantities. Equationé]z(tkt) . ) )

andn, can be found by varying the mean enetgywith (9) Here one should realize that E(q.7) is able tq yield results
taken into account. However, one should first realize an imthat arehaccur?jte only to the leading O'Selrzmgo_)/n bﬁj
portant point: namelyn, and (k) cannot be independent cause the used expression gfr) given by Eq.(9) is vall

variables. Indeed, when there is no interaction between pan the next-to-leading ordd#]. So, Eq.(17) should be re-

ticles, there are no spatial particle correlations either. sgriten as
%(k)=0 and, since the zero-temperature case is considered, — 2T (k) =D (k) (1+2n ) +2ng(k) D (k). (18

all the bosons are condenseg=0. While “switching on”
the interaction results in the appearance of the spatial corrd&equation(18) is an equation of thg Bethe-Goldstone type or,
lations and condensate depletigi(k)#0 together withn,  in other words, the in-medium Scldinger equation for the

+0. In the framework of the Bogoliubov schergdk) is  Ppair wave function. Since®(k)[n,+ni(k)] is the product
related ton, by the expression of the Fourier transforms ob(r) andn[g(r)—1], we can

rewrite Eq.(18) in the more customary form
NN+ 1) =g (K). (10

h2

—V2¢(r)=¢(r)+nf O(|r—yhlg(y)—1]d%.
Indeed, the canonical Bogoliubov transformatjdhimplies m Ir=yDloty Wy 19
that

_ + t_ + The structure of Eq(19) is discussed in our papef$,7].
= Ukt Ok A= Ukt U 1D Here we only remark that the right-hand sittes) of Eq.
(19) is the in-medium potential of the boson-boson interac-
where o . X )
tion in the weak-coupling approximation. The system of Egs.
WP—p2=1 (12) (10) and(18) can easily be solved, which leads to the famil-
k k™ =

iar results[1]

T = i ~
At zero temperaturéa, ) =0 and, using Eqg4) and(11) 1 Tt nd (k)
we arrive at n=z| ———-1],
. - 2\ T2+ 2nT (k)
Ne=vi, PK)=uw,/ng. 13 (20)
. : : ~ ® (k)
With Egs.(12) and(13) one can readily obtain Eq10). P(k)=— .
Now, let us show that all the results on the thermodynam- 2\/T§+ 2nTKCT>(k)
ics of a weak-coupling Bose gas can be derived for the Bo-
goliubov scheme with variation of the mean enefGyunder Now we are able to demonstrate that the investigation of

the conditiong9) and(10). Inserting Eq(9) into Eq.(5), and  the strong-coupling case based on the Bogoliubov model
then varying the obtained expression, we arrive at with the effective boson-boson interaction, results in a loss
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of the thermodynamic consistency. Indeed, as was shown ifthen, from Eq.(10) at n=n, we find n|(k)|/n,—1 when
the preceding paragraph, any calculating scheme using tflg 0. On the contrar : ~
. . ; 0. y, Eq.(22) gives n|y(Kk)|/n,
b lat f the Bogoliub d(10 lu- ~ ~
asic relations of the Bogoliubov mod) and(10) conclu —U(0)/U’(0)#1 for k—0. So, consideration of the Bose

sively leads to Eqs(18)—(20), provided this scheme does .
yield the minimum of the mean energy. In this case Eqs.gas based on Eq&2) and(10) does not produce satisfactory

(18)—(20) certainly include the quantitsb(r), which is the ~results. Nevertheless, it is worth noting that E2@) has an
“bare” interaction potential appearing in E(p). The use of important peculiarity that d|ff(_arer_1t|ates 't. from Eq8) in an
the Bogoliubov model with the effective interaction potential 2dvantageous way. The point is that in both the linmits
substituted for®(r) can in no way disturb the relations — 0 @ndk— Eq.(22) is reduced to

given by Egs(9) and(10). And Eq.(5) is the same in both
the weak- and strong-coupling regimes. Thus, any attempt of
replacing®(r) by the effective “dressed” potential without
modifications of Egqs(9) and (10) results in a calculating

procedure that does not really provide the minimum of theaq it is seen, this is the exact “barghot in-medium Schro

mean energy. It is nothing else but a loss of the thermOdz;?inger equation, other than its Born approximation following

namic consistency. Le_t us remark that we do not mean, Ofrom Eq. (19). Thus, we can expect the line of our investi-
course, that the-matrix approach or the pseudopotential y5tiqn to be right.

mgthod cannot be applied in the quantum sc_at}ering problenl.  a¢ \as shown in the preceding paragraph, an approach
It is only stated that the usual way of combining the laddeny, 1 i adequate for a dilute Bose gas with an arbitrary strong
diagrams with the random phase approximation faces tgyaraction cannot be constructed without modifications to

trouble mentioned above. Though our present investigatiogy (1), This is also in agreement with a consequence of the
is limited by the consideration of the Bose systems, the deqg|4tion

rived result gives a hint that the similar situation is likely to
take place in the Fermi case, too. In this connection it is
worth noting the problem associated with the lack of self- |
consistency of the standard method of treating the dilute
Fermi gag8]. resulting from the inequality of Cauchy-Schwarz-
The strong-coupling regime is characterized by significanBogoliubov [9] [(AB)|?<(AAT)(B'B). With Egs. (4) and
spatial correlations. So, E¢8) resulting in Eq.(9) is not (26) one can easily deriveZg2(k)<ny(ny+1). Thus, it is
relevant for an arbitrary strong repulsion between bosons abasonable to assume that E0) takes into account only
small separations when we hayg0)=—1, ¥o(0)==V2  the condensate-condensate channel and ignores  the
(see Refs.[4,5]). Therefore, to investigate the strong- supracondensate-condensate ones. Now the question arises
coupling regime, Eq(9) should be abandoned in favor of Eq. about how to find corrections to the rhs of EG0). At
(2). Expression(2) is accurate to the next-to-leading order in hresent we have no regular procedure allowing us to do this
(n—ng)/n. So, using Egs(2) and(6), we can write in any order of 6—ngy)/n. However, there exists an argu-
o ment that makes it possible to realize the first step in this
g(r)=e2(r)+ ﬁf qgnq[@é/g(f)—soz(f)]. 1) direction. The matt.er is t~hat the altcera'Flons needed have to
(2m) produce the equation fog,(k), which is reduced to the
~ _ _ equation fory(k) in the limit p—0. Though this require-
Let us now perturly(k) andn(k). Working to the first order - ment does not uniquely determine the corrections to(Ed),
in the perturbation and keeping in mind conditidd§) and it turns out to be significantly restrictive. In particular, even
(21), from Eq. (5) we derive the simplest variant of correcting E€L0) in this way, leads

~ ~ ~ to promising results. Indeed, this variant is specified by the
_2Tkl/l(k):U(k)(1+2nk)+2nl//(k)u (k), (22) expression

2
—Ev%(r)m)(r)(p(r):o. (25)

(aa_ ) ?<(axafy(a’ @) (26)

with

~ d® ~
_ e D =ngFR0+ 200 | —inggk). @2
U(k)=f o(r)®(r)exp—ik-r)d3r (23 (2m)
and Equation (27) is valid to the next-to-leading order im(
—ng)/n. So, we may rewrite it as
0'(0= [ Tkt - 1000 (4 :

~ d ~ ~

Ne(Ng+ 1)=n2¢2(k)+2nj —q3nq[¢§,2(k)— (k)]
Using Egs.(23) and (24), as well as the relationj(r) (2m)
—2y(r)(k—0) [see the boundary conditiori3)], we ob- (28)
tain U(0)= U’ (0). This implies that the system of Eq4.0) 5
and (22) is not able to yield the relation,«1/k(k—0) fol-  Perturbingy(k) andn, and bearing in mind condition@1)
lowing from the “1k?” theorem of Bogoliubov for the zero and(28), Eq. (5) gives Eq.(22) again. However, now’ (k)
temperature[9]. Indeed, let us assume,—x for k—0. obeys the new relation



RAPID COMMUNICATIONS

R8 A. YU. CHERNY AND A. A. SHANENKO PRE 60
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000~ [ Teun) - o) 101" om N P I S
m 157 8a (

B f &g U(@[Vir(@ - ¥ ()]
(2m)® )

which significantly differs from Eq(24). Indeed, the choice b= if [VeO(r)]2d3r.
of the pair wave functions as real quantities implies that op- 4m

erating with integrands in Eq&3) and(29), one can exploit
Pp(r)— J2i(r)=p? at smallp [10]. Fork— 0 this provides
U’(k)—U(k)=t,=ck*+ - - -. Similar to Eq.(18), Eq. (22)
can yield results correct only to the leading order im (
—ng)/n. So, it has to be solved together with Efj0), where
nﬁ should be replaced by?, rather than with Eq(28). This
leads to the following relation:

. (29 whereb=0 is one more characteristic length defined as

(39

As it is seen, the well-known result of papdi®] can be
derived from Eq.(34) with the choiceb=0. However, this
approximation is rather crude because the case of the hard-
sphere interactioh®(r)=0(r>a) and®(r)—«(r<a)] is
specified byb=a,

2xfi%an 16
= 1 (36)

e= +
—1), (30 " 5\/;

In the general case and, in particular, for the singular poten-
tials of the Lennard-Jones type we haae&b. We remark
that the last term on the rhs of E(R7) does not make any
contribution into the results given by Eq&3) and (34).
However, the next orders in the expansions of the energy and
depletion depend on its contribution essentially.
k In conclusion, let us take notice of the important points of
=[VnmU(0)/fik—1]/2, which is fully consistent with the thjs Rapid Communication once more. It was demonstrated
“1/k?" theorem of Bogoliubov for the zero temperat@.  that thermodynamically consistent calculations based on Egs.
Equations(23) and(31) should be solved in a self-consistent (9) and(10) conclusively result in Eqg18)—(20). Therefore,
manner. So, fon—0 one can derive using the Bogoliubov model with the “dressed” interaction
U(k):U(O)(k)(H—SWI \/;). does not provide the satisfactory solution of the problem of

the strong-coupling Bose gas. As was shown, when investi-
~ ) gating this subject, one should go beyond the Bogoliubov
Here UO(k) = ¢O(r)®(r)exp(-ikr)d’r, where ¢(r)  scheme. To do this, we developed the approach reduced to
obeys Eq(25) a being the scattering length. Further, substi-the system of Eq€23), (29), (30), and(31). These equations
tuting k= yny in the integral for the condensate depletionreproduce the well-known resul83) for the condensate
(n—ng)/n=1/(2m)3%[ 5 “dk4mwk?n,/n, we obtain the famil- depletion and yield the new expansi(®¥) in powers ofn

1( T +nUKk)

n=— —«——

“ 2\ Froant O
U(k)

(k)= :
2\T2+2nT U (k)

where T,=T,+nt,. In the limit k—0 Eq. (31) gives n,

(31

(32

iar result

(n—np)/n=8+yna% (3ym)+---. (33

Inserting Eqs(21), (30), and(31) into Eq.(5) and using Eq.

(32), in a similar manner we derive

for the energy, Eq(36) being the particular case of the hard
spheres. One can expect alterations for the excitation spec-
trum, too.
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