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Dark solitary waves in the nonlinear Schralinger equation with third order dispersion,
self-steepening, and self-frequency shift
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We solve the higher order nonlinear Sdtlirmger equation describing the propagation of ultrashort pulses in
optical fibers. By means of the coupled amplitude-phase formulation fundanigolitdry wave dark soliton
solutions are found.S1063-651X99)51407-4
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Sol_iton phenomena_can be used to construc_:t_stable _ShOthz=ialqn+ia2|q|2q+a3qm+ a,(|al?q)+asq(|al?);,
(subpicosecondpulses if the peak power and minimum dis-
persion are properly chosen. Since solitons are formed by the
balance of dispersion and nonlinearity, to construct a solitovhere the terms on the right-hand side are the group velocity
with the least width for a given peak power, it is desirable todispersion(GVD), self-phase modulatioiSPM), the term
launch a pulse at a wavelength near the zero group dispeproportional toaz results from including the cubic term in
sion. It is under these conditions that the classical nonlineaihe expansion of the propagation constant. This term in-
Schralinger (NLS) equation fails in the physical description cludes the effects of third order dispersi6iOD) that be-
of the propagation of optical pulses in fibers. Therefore.come important for ultrashort pulses because of their wide
higher order terms, such as third order dispersion and Ramdindwith even when the wavelength is relatively far away
effects, become important and must be included. The nonlinfrom the zero-dispersion poifi6]. The term proportional to
ear propagation equation for these puldésmtosecond @, results from including the first derivative of the slowly
pulse$ was derived by Kodama and Hasegajd and is  varying part of the nonlinear polarization. It is responsible
quite different from the well known NLS equation. Unfortu- for self-steepening and shock formation at a pulse edge. The
nately, in general, it is not completely integrable. However,last term proportional tas has its origin in the delayed
for some given specific conditions, this equation providesRaman response and is responsible for the self-frequency
analytic solitary wave solution&]. shift, a phenomenon first discovered by Mitschke and Mol-

In this Rapid Communication we are concerned with thelenauer{7]. When the last three are negligible, the equation
existence of dark solitary wavé8]. Dark solitons are gen- becomes the NLS equation, which is completely integrable
erally considered to be less desirable for applications in highy the inverse scattering transforf@]. When the constant
speed communication systems because of their higher ave?s=0, the resulting equation, is called the modified nonlin-
age power and resulting undesirable effects, such as excitgar Schrdinger (MNLS) equation. In general, the MNLS
tion of the stimulated Brillouin backscattering. On the otherequation, including the self-steepening term, has been ana-
hand, bright solitons have a drawback in that they have diflytically solved[9]. Many works have dealt with the Pain-
ficulty in fully utilizing the line capacity because of the ne- leve analysis and the conditions for integrabilif0,11],
cessity of keeping relatively large separations between solieven reporting on the Lax pair amdtsoliton solutiong12].
tons to avoid accumulation of bit rate error. Fiber loss cause®ther analyses have provided solitary wave solutions by
a decrease in the amplitude of a bright soliton, along with aneans of traveling wave methofis3]. These solutions are
corresponding increase in the width. This effect is smaller irall symmetric and the natural asymmetry due to self-
the dark soliton case. It was shown both numerically andsteepening that leads to shock formation is considered in
analytically that the time jitter in a dark soliton is lower than [14]. However, when the last term proportionaldg is not
the corresponding one of a bright solitph5]. The interac-  ignored, the propagation equation becomes more complex
tion force between two dark solitons is always repulsive,and the question of the existence of analytic solutions arises
unlike the bright soliton case, and decreases twice as fast @ne more time.
a function of the distance between the solitons. The separa- To provide an answer to this, let us scale Bqg.as in Ref.
tion increases monotonically rather than periodically as i 2] in the forms
the case of bright solitons. To date, no analytical solution for
dark solitary waves has been provided, and all of these fea- q=biy,  z=Dby¢, t=Dbs7,

tures_cned a_bove make these kinds of solitons very phyS'énd choosd,, b,, by so the coefficients corresponding to
cally interesting. GVD, SPM, and TOD become unity. Thus, Ed) may be
The higher order nonlinear Schtinger (HONLS) equa- ’ ' Y . HQ y

tion describing the propagation of femtosecond pulses in opWrltten as

tical fibers can be written in the form lﬂg:ilﬂn+i|¢|2¢+ Gt o[ 020 4 o[ D).,
*FAX: (34) 985 10 3324. Electronic address: with c,=aja,/aaz and c,=a ag/a,az. We begin our
sergio@pinon.ccu.uniovi.es analysis assuming a solution given by the expression
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P(&,7)=P(7+ Boexdi(ké— wT)]
=P(x)exdi(ké-w7)], )

where the functiorP must be real. Substituting E€B) into
Eqg. (2) and removing the exponential term, we obtain

BP, +ikP=P,, +i(1-3w)P,,
+(20—3w?+3c, P2+ 2¢,P?)P,
+i(1—ciw)P3+i(w®— w?)P.

Separating the real and imaginary parts, we have

BP,=P

+(20—3w?+3c;P?+2c,PY)P,, (4

(5

Equation(4) only contains third order and first order deriva-
tives. We can, therefore, write it in the form

XXX

kP=(1-3w)P, +(1-ci0)P3+(w*~w?)P.

Pon=(B—2w+3w?—3c,P?~2c,P?)P,,

and it is possible to integrate it to give

— 2 3 2 3
Py =(B—20+30%)P—c1P?~ Zc,P°. 6)

If we express Eq(5) in the form

K+ w’—

Clw—l 3
Pa= 1-3w

+ 1-3w '’

(@)

Egs.(6) and(7) will be equivalent, provided that

K+ w’— o

— 2 -
B—2w+3w 1 30

3Cl+ 2C2 . l_ClU)
3  1-30°

The latter can be written as

B 3c;+2c,—3
“ 6(ci+cy)

)

and the former gives

k=(B—2w+3w?)(1-3w)— w’+ v’ 9

Thus, we get the ordinary differential equation
3c,+2¢, p3

P =(B+3w’—20w)P— 3 :

(10

which coincides with the evolution of an anharmonic oscil-

lator with potential:

1 2 2 1 4
U(P)=—5(B+3w’~2w)P?+ 75(3c;+2¢,) P*.

Now we proceed with the coupled amplitude-phase formula-

tion [15]. Equation(10) thus becomes

d [B+3w?—2w

3c,t+2c,
= — p4
XX dpP 2

2
P 12

P
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d|1 5
PXX daP E(PX)
we can then write
3c,+2¢c -2
dy= (,8+3w2—2w)P2—%P4+2E} dP,

(11)

whereE is an arbitrary constant of integration, which coin-
cides with the energy of the anharmonic oscillator.

Integrating Eq.(11) for different values ofg, we get the
amplitude functionP(y). It is very interesting to look care-
fully at the above equation. Formally, it is identical to Eq.
(17) in[15]. Thus it is not inconceivable that both present the
same solutions. If we séE=0 in Eq. (11) we obtain the
bright optical solitary wave solution provided that+ 3w?
—2w and X;+2c, be positive quantities, just as ii2].
However, if we look for a value o, such as the expression
inside the square root be a perfect square, we can also obtain
the dark optical solitary wave solution provided that
+3w?—2w and X;+2c, be negative quantities in contrast
with [2]. This energy value is

3 (B+3w?—2w)?
4 3c,+2¢,

In this case the solution for the amplitude function is

el (e 2

which is the soliton power and width, respectively:

1/2

)

3 1
0— zwi- =

2 2

3(B+3w’—2w)
3¢+ 2c,

P(x)=

_3(B+30w*—2w)

o 3c;+2c, (12
/ 2
To= _— (13
2w—3w’—

So, for typical experimental values in “standard” optical
fibers (see[16] and the references therginwe obtain for
pulses with To~17 fs, propagating at a wavelength of
1 pm with 8,~20 pgkm ! andB;~0.08 pskm™?1, the
values for the dimensionless constaniss —1.58 orc,~
—0.79(depending on the index of refraction in the fiber, see
[16]) andc,~ —0.5. By substituting this data into E(B) we
havew~0.7 orw~0.8. Then, giverTy andw, it is straight-
forward to calculate3 with the help of Eq(13), resulting in
B~ —7000. Finally, taking these values f@#, o, c;, and
C,, and evaluating Eq.12), the power required for generat-
ing the dark pulses arises, &~3.6 kW or Po=6 kW,
for the two cases considered above, respectively.

In conclusion, we have reported the fundamental dark
soliton solution for the HONLS equation, which always ex-
ists provided that certain relations between the parameters
are fulfilled. These relations are in contrast with those found
in [2], which only provide for bright solitary waves.
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