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Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion,
self-steepening, and self-frequency shift
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We solve the higher order nonlinear Schro¨dinger equation describing the propagation of ultrashort pulses in
optical fibers. By means of the coupled amplitude-phase formulation fundamental~solitary wave! dark soliton
solutions are found.@S1063-651X~99!51407-4#

PACS number~s!: 42.65.Tg, 05.45.Yv, 42.79.Sz, 42.81.Dp
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Soliton phenomena can be used to construct stable s
~subpicosecond! pulses if the peak power and minimum di
persion are properly chosen. Since solitons are formed by
balance of dispersion and nonlinearity, to construct a sol
with the least width for a given peak power, it is desirable
launch a pulse at a wavelength near the zero group dis
sion. It is under these conditions that the classical nonlin
Schrödinger~NLS! equation fails in the physical descriptio
of the propagation of optical pulses in fibers. Therefo
higher order terms, such as third order dispersion and Ra
effects, become important and must be included. The non
ear propagation equation for these pulses~femtosecond
pulses! was derived by Kodama and Hasegawa@1# and is
quite different from the well known NLS equation. Unfortu
nately, in general, it is not completely integrable. Howev
for some given specific conditions, this equation provid
analytic solitary wave solutions@2#.

In this Rapid Communication we are concerned with
existence of dark solitary waves@3#. Dark solitons are gen
erally considered to be less desirable for applications in h
speed communication systems because of their higher a
age power and resulting undesirable effects, such as ex
tion of the stimulated Brillouin backscattering. On the oth
hand, bright solitons have a drawback in that they have
ficulty in fully utilizing the line capacity because of the n
cessity of keeping relatively large separations between s
tons to avoid accumulation of bit rate error. Fiber loss cau
a decrease in the amplitude of a bright soliton, along wit
corresponding increase in the width. This effect is smalle
the dark soliton case. It was shown both numerically a
analytically that the time jitter in a dark soliton is lower tha
the corresponding one of a bright soliton@4,5#. The interac-
tion force between two dark solitons is always repulsi
unlike the bright soliton case, and decreases twice as fa
a function of the distance between the solitons. The sep
tion increases monotonically rather than periodically as
the case of bright solitons. To date, no analytical solution
dark solitary waves has been provided, and all of these
tures cited above make these kinds of solitons very ph
cally interesting.

The higher order nonlinear Schro¨dinger ~HONLS! equa-
tion describing the propagation of femtosecond pulses in
tical fibers can be written in the form
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qz5 ia1qtt1 ia2uqu2q1a3qttt1a4~ uqu2q! t1a5q~ uqu2! t ,
~1!

where the terms on the right-hand side are the group velo
dispersion~GVD!, self-phase modulation~SPM!, the term
proportional toa3 results from including the cubic term in
the expansion of the propagation constant. This term
cludes the effects of third order dispersion~TOD! that be-
come important for ultrashort pulses because of their w
bandwith even when the wavelength is relatively far aw
from the zero-dispersion point@6#. The term proportional to
a4 results from including the first derivative of the slow
varying part of the nonlinear polarization. It is responsib
for self-steepening and shock formation at a pulse edge.
last term proportional toa5 has its origin in the delayed
Raman response and is responsible for the self-freque
shift, a phenomenon first discovered by Mitschke and M
lenauer@7#. When the last three are negligible, the equat
becomes the NLS equation, which is completely integra
by the inverse scattering transform@8#. When the constan
a550, the resulting equation, is called the modified nonl
ear Schro¨dinger ~MNLS! equation. In general, the MNLS
equation, including the self-steepening term, has been
lytically solved @9#. Many works have dealt with the Pain
levé analysis and the conditions for integrability@10,11#,
even reporting on the Lax pair andN-soliton solutions@12#.
Other analyses have provided solitary wave solutions
means of traveling wave methods@13#. These solutions are
all symmetric and the natural asymmetry due to se
steepening that leads to shock formation is considered
@14#. However, when the last term proportional toa5 is not
ignored, the propagation equation becomes more com
and the question of the existence of analytic solutions ar
one more time.

To provide an answer to this, let us scale Eq.~1! as in Ref.
@2# in the forms

q5b1c, z5b2j, t5b3t,

and chooseb1 , b2 , b3 so the coefficients corresponding
GVD, SPM, and TOD become unity. Thus, Eq.~1! may be
written as

cj5 ictt1 i ucu2c1cttt1c1~ ucu2c!t1c2c~ ucu2!t ,
~2!

with c15a1a4 /a2a3 and c25a1a5 /a2a3 . We begin our
analysis assuming a solution given by the expression
R45 ©1999 The American Physical Society
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c~j,t!5P~t1bj!exp@ i ~kj2vt!#

5P~x!exp@ i ~kj2vt!#, ~3!

where the functionP must be real. Substituting Eq.~3! into
Eq. ~2! and removing the exponential term, we obtain

bPx1 ikP5Pxxx1 i ~123v!Pxx

1~2v23v213c1P212c2P2!Px

1 i ~12c1v!P31 i ~v32v2!P.

Separating the real and imaginary parts, we have

bPx5Pxxx1~2v23v213c1P212c2P2!Px , ~4!

kP5~123v!Pxx1~12c1v!P31~v32v2!P. ~5!

Equation~4! only contains third order and first order deriv
tives. We can, therefore, write it in the form

Pxxx5~b22v13v223c1P222c2P2!Px ,

and it is possible to integrate it to give

Pxx5~b22v13v2!P2c1P32
2

3
c2P3. ~6!

If we express Eq.~5! in the form

Pxx5
k1v22v3

123v
P1

c1v21

123v
P3, ~7!

Eqs.~6! and ~7! will be equivalent, provided that

b22v13v25
k1v22v3

123v
,

3c112c2

3
5

12c1v

123v
.

The latter can be written as

v5
3c112c223

6~c11c2!
, ~8!

and the former gives

k5~b22v13v2!~123v!2v21v3. ~9!

Thus, we get the ordinary differential equation

Pxx5~b13v222v!P2
3c112c2

3
P3, ~10!

which coincides with the evolution of an anharmonic osc
lator with potential:

U~P!52
1

2
~b13v222v!P21

1

12
~3c112c2!P4.

Now we proceed with the coupled amplitude-phase formu
tion @15#. Equation~10! thus becomes

Pxx5
d

dP Fb13v222v

2
P22

3c112c2

12
P4G .
-

-

Since

Pxx5
d

dP F1

2
~Px!2G

we can then write

dx5F ~b13v222v!P22
3c112c2

6
P412EG21/2

dP,

~11!

whereE is an arbitrary constant of integration, which coi
cides with the energy of the anharmonic oscillator.

Integrating Eq.~11! for different values ofE, we get the
amplitude functionP(x). It is very interesting to look care
fully at the above equation. Formally, it is identical to E
~17! in @15#. Thus it is not inconceivable that both present t
same solutions. If we setE50 in Eq. ~11! we obtain the
bright optical solitary wave solution provided thatb13v2

22v and 3c112c2 be positive quantities, just as in@2#.
However, if we look for a value ofE, such as the expressio
inside the square root be a perfect square, we can also o
the dark optical solitary wave solution provided thatb
13v222v and 3c112c2 be negative quantities in contra
with @2#. This energy value is

E52
3

4

~b13v222v!2

3c112c2
.

In this case the solution for the amplitude function is

P~x!5F3~b13v222v!

3c112c2
G1/2

tanhF2S v2
3

2
v22

1

2
b D 1/2

xG ,
which is the soliton power and width, respectively:

P05
3~b13v222v!

3c112c2
, ~12!

T05A 2

2v23v22b
. ~13!

So, for typical experimental values in ‘‘standard’’ optic
fibers ~see @16# and the references therein!, we obtain for
pulses with T0'17 fs, propagating at a wavelength o
1 mm with b2'20 ps2 km21 andb3'0.08 ps3 km21, the
values for the dimensionless constantsc1'21.58 or c1'
20.79~depending on the index of refraction in the fiber, s
@16#! andc2'20.5. By substituting this data into Eq.~8! we
havev'0.7 orv'0.8. Then, givenT0 andv, it is straight-
forward to calculateb with the help of Eq.~13!, resulting in
b'27000. Finally, taking these values forb, v, c1 , and
c2 , and evaluating Eq.~12!, the power required for genera
ing the dark pulses arises, asP0'3.6 kW or P0'6 kW,
for the two cases considered above, respectively.

In conclusion, we have reported the fundamental d
soliton solution for the HONLS equation, which always e
ists provided that certain relations between the parame
are fulfilled. These relations are in contrast with those fou
in @2#, which only provide for bright solitary waves.
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