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Instabilities of cavity solitons in optical parametric oscillators
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Using an example of cavity solitons in optical parametric oscillators it is demonstrated that Hopf instability
of these dissipative structures can be directly associated with internal modes of their conservative counterparts.
The latter ones are free propagating quadratic solitons in this case. Linear stability analysis and numerical
simulation also reveal multistability and complex instability induced spatiotemporal dynamics of single and
multihump cavity solitons[S1063-651X99)51110-0

PACS numbeps): 42.65.Tg, 05.45.Yv

Localized structure€lS) in the nonlinear dissipative sys- parametric solitons in the stability and dynamics of the soli-
tems driven far from an equilibrium attract a great deal oftons locked inside a cavity.e., cavity solitongCS).
interdisciplinary interest1—9]. Their stability is still largely Recent theoretical advances in the properties of the free
open and important for the experimental observations probPropagating solitons due to three-wave mixingd?) media
lem. No general criterion has been suggested for the predi¢11,12 have shown thaty® solitons have the internal
tion of the instabilities of LS until now and most of the modes. As was demonstrated numerically, the externally
theoretical analyses were restricted by numerical observaumped optical cavities filled withy® material can also
tions of stable and unstable regimis-9]. On the other Support C§7-9]. Recent intensive work in the direction to
hand, the theory of stability of LS in conservative Hamil- achieve an efficient frequency conversion in semiconductor

tonian systems has been successfully developed over the Id8fcrocavities[19], the ongoing wave of the experimental
three decades; see, e.i2,10-13. results on transverse instabilitiE20], and the recent obser-

Nonlinear optics is one of the fields where a rich varletyxitrﬁzza?fgg\itiglsanea\\/’;a}/ﬁeb\';;abgg%;g dlsn t?]zag;até(:r?r:)éntal
of LS was found theoreticallj2—11] and observed in experi- . ) P y - 2) P
. . S observation ofy'<’-CS. Therefore, stability of'“/-CS be-
ments[14—16. In particular, parametric wave mixing in me- . . .
o ) ! . e comes an interesting and important problem not only from
dia with cubic and quadratic nonlinearities is known to sup

¢ sinal iif litons: 715 "the fundamental but also practical viewpoints.
port single or multifrequency solitons; see, e.fr-19. It is noteworthy that the soliton instabilities in free propa-

Parametric interaction can be efficiently realized both in freegation schemes ampnvectiveones, i.e., perturbations grow
propagation and intracavity schemes. The former were SUGgith propagation. Therefore, even if a soliton is actually un-
cessfully approximated by the energy conserving Hamil-stapie in a particular range of parameters, the stable trapping
tonian [2,10-1§ and the latter by the dissipative non- can still be observed over the short length of a nonlinear
Hamiltonian[2-9,16,17 models. Therefore, one can apply sample. To the contrary, in most of the cavity schemes sta-
knowledge of the stability and spectral properties of the fregility and instability areabsolute i.e., perturbations grow in
propagating “Hamiltonian” solitons, in order to understand time at a fixed spatial point; therefore, unstable CS either
their modification under the action of dissipation and exter-disappear or produce other spatiotemporal structures on the
nal driving, relevant in the description of the intracavity pro- time scale of the characteristic cavity photon lifetime. Thus

cesses. stability of the CS is an essential prerequisite for their ex-
This idea was applied before in different physical contextsaeriment_al observation. _ _ _
using the perturbed one-dimensioriaD) nonlinear Schro We will concentrate below on CS in optical parametric

dinger (NLS) equation[6]. Instabilities of LS described in oscillators(OPO and start our analysis transforming mean-
[6] appear due to bifurcations involving discrete solitonfield equations for OPQ7,8] describing interaction of the
eigenmodes, which split from the edge of the continuoughase matched signal and pump envelopes in a dimension-
spectrum under the action of perturbations. The full set ofess quasi-Hamiltonian form

eigenmodes associated with the single-hump solitons in un-

perturbed 1D NLS equations is known analyticdlg]. It ~SH
consists of the zero-eigenvalue eigenmodes generated by (dy+ Vm)Emzlg, m=1,2, (1)
symmetries and unbounded eigenmodes of the continuum. m

However, it has been recently shown that solitons in a vari- ) )
ety of Hamiltonian models possess the so-caliegrnal ~ WhereH is the functional,
modes[12,13, i.e., stable localized eigenmodes with non-

zero eigenvalues. One of the objectives of this work is to H_f dx

— 2_ 2 2 2
revealthe role played by these modes of the free propagating o] 0xEq| "= ap| 5Bl *+ 81|y |*+ 85|y

+=(E?E% + uE2+c.c)
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FIG. 1. Energy of the soliton signal field),= [dx|A,|?, vs FIG. 3. Real(bold solid and dashed lineand imaginary(thin

pump . (@) v1,=0.1, 8;,=—2; (b) y;=1, y,=0.8, 6;=—1.8, solid lineg parts of the eigenvalues governing stability of the upper

8,=—4. Bold and thin lines mark, respectively, stable and unstablegbold and thin solid lingsand low (dashed linegsbranches of the

solitons. single-hump solitons vs pump for &;,=—2. (&) y1,=0, (b)
')/1’2= 01

tis _the time r_nea}sured |n.the units ofs, where e IS e pranch of the single-hump CS, i.e., the branch with larger
cavity roundtrip time anc is an art_ntrary scalm_g_ c_o_nstant. energy, bifurcates back into a sequence of the higher order
Ym=Tms/2, here Ty, are the mirror transmitivities.x — yiihump CS. While existence of the single- and two-hump
=X[2k,/(sL)]"* and ay =k, /ky, where X is the trans-  qyjitons was numerically demonstrated befbrg their link
verse coordinate in physical units, are the the wave vec- i each other and with the higher-order solitons is a novel
tors, X;=kp, and L is the cavity roundtrip lengthdy,  feature.

=s7(Mw—w") are the detunings from the cavity reso-  agter the brief summary of the existence problem is given
nanceswy,” andw is the signal frequencyy is linked with e turn our attention to the main problem we want to address
the  external  pump  field E, via E; here, ie., to the stability of CS with respect to small pertur-
= u\2(85+ y3)I(s7exPw\2T,), herex® is the effective  bations. We seek solutions of Eqd) in the form Ap(X)
quadratic susceptibility. Expressions for fields in physical+ e[ U (x,t) +iWp(X,t)], where e<1. After the standard
units &, are given by &=2E.e"?(st.xPw), & linearization and substitutions U,=un(x)e, Wi,

= 26" (Ey+ u\ 55+ v3)/(stexPw), here y=—arctan =w,(x)e we derive an eigenvalue problemé= 7,
(72/8,). The mean-field model is a robust approximation andyhereZ= (w, ,w,,u;,u,)T andZ is the linearization of Egs.

is often used to describe cavity dynamics even sufficiently1) near a soliton. The discrete spectrum of the non-self-

far from the limits of its formal validity, which require de- adjoint differential operatorﬁ has been found numerically

tunings and cavity linewidths to be much less than half of theusing second-order finite differences.

cavity free spectral range, and therefore we will assume be- he di . f th bili ies f
low soft conditionsy,,, 8,,< s instead of< Let us start the discussion of the stability properties fo-
Among different ml;rimht and dark Iocélized structures So=M9d oN the single-hump CS. To understand the origin of
ong , 9 . their instability it is convenient to consider a limit situation
found in the numerical modeling of the OR®,8] we choose N .
) . ! . when Eqs.(1) become Hamiltonian, i.ey,,—0. It appears
bright CS sitting on a zero background figld. A family of SR .
. . N that CS do exist in this limit. However, they are still very
multihump CS exists inside the pump range <u<pug different from x(?) solitons in the free propagation geometry
iding thats,,<0, whereu =%+ 72 and u =|y,6 X o
provi m=Y, RTVO1T 71 L=171%  [11]. One of the reasons for this is that the total energy
+ 7201|1185+ v;. This fact was verified by numerical solu- 1 qx(|E,|2+ 2|E,|?) is not a conserved quantity in our case.
tion of ordinary differential equationsymAn=i8H/SAS, It becomes conserved and CS become equivalent to the free
hereAy(x) =Em(X,t). The conditions imposed om andd,,  propagating solitons only when pump photons are not in-
are in fact conditions for the coexistence of two nontrivial, jected into a cavity any more, i.ex=0. Then, in accord with
Am# 0, homogeneousi,An=0, solutions and a trivial one, Noether's theorem, Eqg1) acquire the phase symmetry,
A,=0 [21]. Numerically built graphs of the energy of the E,—E.™, which in turn generates eigenmodé,

signal field vs external pump for two different parameter =(ReA,, 2ReA,,— ImA;,—2 ImA,)T with double zero ei-

sets and typical transverse profiles of the CS are presented ~e B .
respectively, in Figs. 1 and 2. Far close to theug Upper génvaluesL£y,=0. For y,,=0 the left existence boundary

of the CS isu=u; =0. Let us first deviatew from zero
moving along the low branch of the single-hump solitons,

8 8 8 i.e., the branch with smaller signal energy; see Fig. 1. In this
6 @ 6 ¢ © case the two zero eigenvalues associated \E@th;plit and

4 4 4 move along the real axis, k0, of the(Rex,Im\) plane in

5 2 » the opposite directions; see the dashed lines in Fig). 3

0 ji ! 0 / N Thus, the low soliton branch is unstable due to the presence

45105 0 51015 15105 0 51015  -1510-5 0 5 1015 of the positive eigenvalue in the soliton spectrum. On the
* * * contrary, moving along the upper soliton branch we have
FIG. 2. Transverse profiles p&,| (solid lineg and|A,| (dashed found that the zero eigenvalues move in the opposite direc-
lines) for the single-, two- and three-hump solitons marked by thetions along the imaginary axis, Re0; see the thin solid
rhombs in Fig. ). lines in Fig. 3a). Thus, the upper soliton branch remains
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FIG. 4. Stable pulsations of the upper-branch single-hump soli- FIG. 5. Spatiotemporal evolution d&,| [22] resulting from
ton in the region of its Hopf instability. Full and dotted lines(& Hopf instability of two-hump(a) and four-hump(b) solitons. (a)
mark, respectivelyE,(t) and E,(t) atx=0. (b) shows|E;(x,t)]  x=1.8,(b) u=1.9. Other parameters as in Figb}

[22]. ©=0.8 and other parameters as in Figa)l

stable at least for smajt. However, at somg.= u, these amplitude of the oscillations leads to the switching into the
eigenvalues meet a pair of other purely imaginary eigenvaltrivial solution. Then foru close enough ta. the pulsating
ues which are the direct continuation of the eigenvalues corsoliton easily excites chaotic pattern, which quickly fills the
responding to thénternal eigenmodes of the free propagat- €ntire computational window. A possible interpretation of
ing quadratic soliton§12]. This collision leads to the onset the last scenario is that the radiation escaping from the os-
of the Hamiltonian-Hopf instability of the CS; see the bold cillating soliton along its tailSwhich are weakly damped
solid lines in Fig. 3a). when u is close toug) locally produces parametric gain
Introducing linear losses, which are unavoidable in a reapufficient to excite a chaotic pattern existing near the upper
cavity, and keeping them equal for the both harmonics on#ranch of the homogeneous solution.
will find that the bifurcation diagram simply shifts down  Two spatially localized periodic attractors have been
along the axis Im=0 by the value equal to,,; see Fig. found taking the multihump CS as an initial condition. One
3(b). Non-Hamiltonian  corrections transform  the of them corresponds to the Hopf unstable two-hump| €&&
Hamiltonian-Hopf bifurcation into the standard Hopf bifur- Fig. 5@], and another one to the Hopf-unstable three- or
cation (upy— umy) [See Fig. 80)] well known for the dissi-  four-hump CYsee Fig. §)]. The dynamical regimes shown
pative systemgl]. It follows, see Fig. 3, that the higher the in Figs. 4 and 5 also serve as attractors for a wide range of
losses are, the higher the pump power needed to approa@pgperimentally relevant initial conditions in a form of Gauss-
the Hopf instability threshold. Assuming thet 1 Figs. 1a) ian pulses of the pump radiation with suitable width, height,
and 3b) correspond to the physical situation with large de-and duration.
tunings and 10% losses. Let us take a 1 cnlong monolithic planar waveguide
It is interesting to check how stability properties of the CScavity with x(?)=20 pm/V, which is typical, e.g., for a non-
vary when the cavity is tuned closer to resonances at bothritically phase matched potassium niobate crystal, with an
frequencies. CS become wider near the resonances, and @fiiptical pump beam at frequency 10" Hz focused into
avoid large computational windows we take advantage othe ~1mm wide and~1um thick waveguide. These param-
using different scaling and fig=2/T,,. Thus,y,,~1 physi- €ters give estimation of the real world pump power
cally corresponds to the same 10% losses,dyt 1 corre-  ~u?(85+95)/s?X10 W, of the cavity soliton size
sponds now to detunings of the order 0.1 of the free spectra ys10° wm and of the typical frequency of the Hopf os-
range. One can see from Fig(bl that small detunings cillations ~ (10°/s)Hz.
and/or large losses have stabilizing effects and the coexist- Considering an extension of our results to other externally
ence of the stable single- and two-hump CS is possible.  driven nonlinear optical cavities and generally to other dis-
Note that the Hopf instability found here cannot be inter-sipative systems we have to say that if in the absence of the
preted as due to the known Hopf instability of the upperexternal driving and losses a model has solitary solutions
branch of the homogeneous solutidY], because the latter then one can expect similar bifurcation scenarios. The rea-
one is Hopf unstable only faf; §,<0, where the considered sons for this are that an external pump always breaks the
CS family does not exist. Thus, all the dynamics describegphase symmetry associated with the energy conservation and
here are direct consequences of the transverse localizatiolosses destroy the Hamiltonian structure in a manner similar
Proto-Hopf eigenmodes of the soliton exist in a wide rangdo that described in the present context. However, this sym-
of parameters in the CS stability region and a simple experimetry breaking is sufficient only for an appearance of the
mental method of their detection can be suggested. The weadtable upper and unstable low CS branches, but it is not
probe beam localized in the soliton region and passingufficient for the Hopf instability of the upper branch. An-
through the cavity mirrors without significant reflection other important ingredient, which ensured this instability in
should be resonantly absorbed in the cavity providing thathe case of CS in OPO, is the presence ofittbernal soliton
the beam frequency coincides with Anof the proto-Hopf modes in the limit when the pump and losses are negligible.
eigenmode. These modes have already been demonstrated in several
To study the dynamics of the Hopf unstable CS an extenmodels describing free propagating optical solitons, see, e.g.,
sive series of the numerical simulations has been performe@12,13, and admitting their cavity generalizations.
Inside the instability region, but close to the critical bound-  In summary, stability, multistability, and instability of the
ary, a stable attractor in the form of an oscillating CS hassingle and multihump cavity solitons in the degenerate opti-
been found; see Fig. f22]. Deeper inside the instability cal parametric oscillators have been examined by means of
region we have observed two scenarios of the soliton dethe linear stability analysis and numerical simulation of the
struction. For some intermediate region @fthe growing dynamical and stationary equations. It is demonstrated that
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