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Instabilities of cavity solitons in optical parametric oscillators
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~Received 20 April 1999!

Using an example of cavity solitons in optical parametric oscillators it is demonstrated that Hopf instability
of these dissipative structures can be directly associated with internal modes of their conservative counterparts.
The latter ones are free propagating quadratic solitons in this case. Linear stability analysis and numerical
simulation also reveal multistability and complex instability induced spatiotemporal dynamics of single and
multihump cavity solitons.@S1063-651X~99!51110-0#

PACS number~s!: 42.65.Tg, 05.45.Yv
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Localized structures~LS! in the nonlinear dissipative sys
tems driven far from an equilibrium attract a great deal
interdisciplinary interest@1–9#. Their stability is still largely
open and important for the experimental observations pr
lem. No general criterion has been suggested for the pre
tion of the instabilities of LS until now and most of th
theoretical analyses were restricted by numerical obse
tions of stable and unstable regimes@1–9#. On the other
hand, the theory of stability of LS in conservative Ham
tonian systems has been successfully developed over the
three decades; see, e.g.,@2,10–13#.

Nonlinear optics is one of the fields where a rich varie
of LS was found theoretically@2–11# and observed in experi
ments@14–16#. In particular, parametric wave mixing in me
dia with cubic and quadratic nonlinearities is known to su
port single or multifrequency solitons; see, e.g.,@7–15#.
Parametric interaction can be efficiently realized both in f
propagation and intracavity schemes. The former were s
cessfully approximated by the energy conserving Ham
tonian @2,10–15# and the latter by the dissipative non
Hamiltonian @2–9,16,17# models. Therefore, one can app
knowledge of the stability and spectral properties of the f
propagating ‘‘Hamiltonian’’ solitons, in order to understan
their modification under the action of dissipation and ext
nal driving, relevant in the description of the intracavity pr
cesses.

This idea was applied before in different physical conte
using the perturbed one-dimensional~1D! nonlinear Schro¨-
dinger ~NLS! equation@6#. Instabilities of LS described in
@6# appear due to bifurcations involving discrete solit
eigenmodes, which split from the edge of the continuo
spectrum under the action of perturbations. The full set
eigenmodes associated with the single-hump solitons in
perturbed 1D NLS equations is known analytically@18#. It
consists of the zero-eigenvalue eigenmodes generate
symmetries and unbounded eigenmodes of the continu
However, it has been recently shown that solitons in a v
ety of Hamiltonian models possess the so-calledinternal
modes@12,13#, i.e., stable localized eigenmodes with no
zero eigenvalues. One of the objectives of this work is
revealthe role played by these modes of the free propaga
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parametric solitons in the stability and dynamics of the so
tons locked inside a cavity; i.e., cavity solitons~CS!.

Recent theoretical advances in the properties of the
propagating solitons due to three-wave mixing inx (2) media
@11,12# have shown thatx (2) solitons have the interna
modes. As was demonstrated numerically, the extern
pumped optical cavities filled withx (2) material can also
support CS@7–9#. Recent intensive work in the direction t
achieve an efficient frequency conversion in semiconduc
microcavities@19#, the ongoing wave of the experiment
results on transverse instabilities@20#, and the recent obser
vations of the plane wave bistability@21# in quadratically
nonlinear cavities pave the way towards the experime
observation ofx (2)-CS. Therefore, stability ofx (2)-CS be-
comes an interesting and important problem not only fr
the fundamental but also practical viewpoints.

It is noteworthy that the soliton instabilities in free prop
gation schemes areconvectiveones, i.e., perturbations grow
with propagation. Therefore, even if a soliton is actually u
stable in a particular range of parameters, the stable trap
can still be observed over the short length of a nonlin
sample. To the contrary, in most of the cavity schemes
bility and instability areabsolute, i.e., perturbations grow in
time at a fixed spatial point; therefore, unstable CS eit
disappear or produce other spatiotemporal structures on
time scale of the characteristic cavity photon lifetime. Th
stability of the CS is an essential prerequisite for their e
perimental observation.

We will concentrate below on CS in optical paramet
oscillators~OPO! and start our analysis transforming mea
field equations for OPO@7,8# describing interaction of the
phase matched signal and pump envelopes in a dimens
less quasi-Hamiltonian form

~] t1gm!Em5 i
dH

dEm*
, m51,2, ~1!

whereH is the functional,

H5E dxF2a1u]xE1u22a2u]xE2u21d1uE1u21d2uE2u2

1
1

2
~E1

2E2* 1mE1
21c.c.!G .
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t is the time measured in the units oftcs, wheretc is the
cavity roundtrip time ands is an arbitrary scaling constan
gm5Tms/2, here Tm are the mirror transmitivities.x
5X@2k1 /(sL)#1/2 and am5k1 /km , where X is the trans-
verse coordinate in physical units,km are the the wave vec
tors, 2k15k2, and L is the cavity roundtrip length.dm

5stc(mv2vm
cav) are the detunings from the cavity res

nancesvm
cav andv is the signal frequency.m is linked with

the external pump field Ep via Ep

5mA2(d2
21g2

2)/(stcx
(2)vA2T2), herex (2) is the effective

quadratic susceptibility. Expressions for fields in physi
units Em are given by E152E1eic/2/(stcx

(2)v), E2

5A2eic(E21mAd2
21g2

2)/(stcx
(2)v), here c52arctan

(g2 /d2). The mean-field model is a robust approximation a
is often used to describe cavity dynamics even sufficien
far from the limits of its formal validity, which require de
tunings and cavity linewidths to be much less than half of
cavity free spectral range, and therefore we will assume
low soft conditionsgm ,dm,sp instead of!.

Among different bright and dark localized structur
found in the numerical modeling of the OPO@7,8# we choose
bright CS sitting on a zero background field@7#. A family of
multihump CS exists inside the pump rangemL,m,mR

providing thatdm,0, wheremR5Ad1
21g1

2 and mL5ug1d2

1g2d1u/Ad2
21g2

2. This fact was verified by numerical solu
tion of ordinary differential equationsgmAm5 idH/dAm* ,
hereAm(x)5Em(x,t). The conditions imposed onm anddm
are in fact conditions for the coexistence of two nontrivi
AmÞ0, homogeneous,]xAm50, solutions and a trivial one
Am50 @21#. Numerically built graphs of the energy of th
signal field vs external pumpm for two different parameter
sets and typical transverse profiles of the CS are presen
respectively, in Figs. 1 and 2. Form close to themR upper

FIG. 1. Energy of the soliton signal field,Q15*dxuA1u2, vs
pump m. ~a! g1,250.1, d1,2522; ~b! g151, g250.8, d1521.8,
d2524. Bold and thin lines mark, respectively, stable and unsta
solitons.

FIG. 2. Transverse profiles ofuA1u ~solid lines! anduA2u ~dashed
lines! for the single-, two- and three-hump solitons marked by
rhombs in Fig. 1~b!.
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branch of the single-hump CS, i.e., the branch with lar
energy, bifurcates back into a sequence of the higher o
multihump CS. While existence of the single- and two-hum
solitons was numerically demonstrated before@7#, their link
with each other and with the higher-order solitons is a no
feature.

After the brief summary of the existence problem is giv
we turn our attention to the main problem we want to addr
here, i.e., to the stability of CS with respect to small pert
bations. We seek solutions of Eqs.~1! in the form Am(x)
1«@Um(x,t)1 iWm(x,t)#, where «!1. After the standard
linearization and substitutions Um5um(x)elt, Wm

5wm(x)elt we derive an eigenvalue problemljW5L̂jW ,
wherejW5(w1 ,w2 ,u1 ,u2)T andL̂ is the linearization of Eqs.
~1! near a soliton. The discrete spectrum of the non-s
adjoint differential operatorL̂ has been found numericall
using second-order finite differences.

Let us start the discussion of the stability properties
cusing on the single-hump CS. To understand the origin
their instability it is convenient to consider a limit situatio
when Eqs.~1! become Hamiltonian, i.e.,gm→0. It appears
that CS do exist in this limit. However, they are still ve
different fromx (2) solitons in the free propagation geomet
@11#. One of the reasons for this is that the total ener
*dx(uE1u212uE2u2) is not a conserved quantity in our cas
It becomes conserved and CS become equivalent to the
propagating solitons only when pump photons are not
jected into a cavity any more, i.e.,m50. Then, in accord with
Noether’s theorem, Eqs.~1! acquire the phase symmetry
Em→Emeimf, which in turn generates eigenmodejW0
5(ReA1, 2ReA2 ,2ImA1 ,22 ImA2)T with double zero ei-
genvalues,L̂jW050. For gm50 the left existence boundar
of the CS ism5mL50. Let us first deviatem from zero
moving along the low branch of the single-hump soliton
i.e., the branch with smaller signal energy; see Fig. 1. In t
case the two zero eigenvalues associated withjW0 split and
move along the real axis, Iml50, of the~Rel,Iml! plane in
the opposite directions; see the dashed lines in Fig. 3~a!.
Thus, the low soliton branch is unstable due to the prese
of the positive eigenvalue in the soliton spectrum. On
contrary, moving along the upper soliton branch we ha
found that the zero eigenvalues move in the opposite di
tions along the imaginary axis, Rel50; see the thin solid
lines in Fig. 3~a!. Thus, the upper soliton branch remai

le

e

FIG. 3. Real~bold solid and dashed lines! and imaginary~thin
solid lines! parts of the eigenvalues governing stability of the upp
~bold and thin solid lines! and low ~dashed lines! branches of the
single-hump solitons vs pumpm for d1,2522. ~a! g1,250, ~b!
g1,250.1.
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stable at least for smallm. However, at somem5mHH these
eigenvalues meet a pair of other purely imaginary eigen
ues which are the direct continuation of the eigenvalues
responding to theinternal eigenmodes of the free propaga
ing quadratic solitons@12#. This collision leads to the onse
of the Hamiltonian-Hopf instability of the CS; see the bo
solid lines in Fig. 3~a!.

Introducing linear losses, which are unavoidable in a r
cavity, and keeping them equal for the both harmonics
will find that the bifurcation diagram simply shifts dow
along the axis Iml50 by the value equal togm ; see Fig.
3~b!. Non-Hamiltonian corrections transform th
Hamiltonian-Hopf bifurcation into the standard Hopf bifu
cation (mHH→mH) @see Fig. 3~b!# well known for the dissi-
pative systems@1#. It follows, see Fig. 3, that the higher th
losses are, the higher the pump power needed to appr
the Hopf instability threshold. Assuming thats51 Figs. 1~a!
and 3~b! correspond to the physical situation with large d
tunings and 10% losses.

It is interesting to check how stability properties of the C
vary when the cavity is tuned closer to resonances at b
frequencies. CS become wider near the resonances, an
avoid large computational windows we take advantage
using different scaling and fixs52/Tv . Thus,gm;1 physi-
cally corresponds to the same 10% losses, butdm;1 corre-
sponds now to detunings of the order 0.1 of the free spec
range. One can see from Fig. 1~b! that small detunings
and/or large losses have stabilizing effects and the coe
ence of the stable single- and two-hump CS is possible.

Note that the Hopf instability found here cannot be int
preted as due to the known Hopf instability of the upp
branch of the homogeneous solution@17#, because the latte
one is Hopf unstable only ford1d2,0, where the considere
CS family does not exist. Thus, all the dynamics describ
here are direct consequences of the transverse localiza
Proto-Hopf eigenmodes of the soliton exist in a wide ran
of parameters in the CS stability region and a simple exp
mental method of their detection can be suggested. The w
probe beam localized in the soliton region and pass
through the cavity mirrors without significant reflectio
should be resonantly absorbed in the cavity providing t
the beam frequency coincides with Iml of the proto-Hopf
eigenmode.

To study the dynamics of the Hopf unstable CS an ext
sive series of the numerical simulations has been perform
Inside the instability region, but close to the critical boun
ary, a stable attractor in the form of an oscillating CS h
been found; see Fig. 4@22#. Deeper inside the instability
region we have observed two scenarios of the soliton
struction. For some intermediate region ofm the growing

FIG. 4. Stable pulsations of the upper-branch single-hump s
ton in the region of its Hopf instability. Full and dotted lines in~a!
mark, respectively,E1(t) and E2(t) at x50. ~b! showsuE1(x,t)u
@22#. m50.8 and other parameters as in Fig. 1~a!.
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amplitude of the oscillations leads to the switching into t
trivial solution. Then form close enough tomR the pulsating
soliton easily excites chaotic pattern, which quickly fills th
entire computational window. A possible interpretation
the last scenario is that the radiation escaping from the
cillating soliton along its tails~which are weakly damped
when m is close tomR) locally produces parametric gai
sufficient to excite a chaotic pattern existing near the up
branch of the homogeneous solution.

Two spatially localized periodic attractors have be
found taking the multihump CS as an initial condition. O
of them corresponds to the Hopf unstable two-hump CS@see
Fig. 5~a!#, and another one to the Hopf-unstable three-
four-hump CS@see Fig. 5~b!#. The dynamical regimes show
in Figs. 4 and 5 also serve as attractors for a wide rang
experimentally relevant initial conditions in a form of Gaus
ian pulses of the pump radiation with suitable width, heig
and duration.

Let us take a 1 cmlong monolithic planar waveguide
cavity with x (2).20 pm/V, which is typical, e.g., for a non
critically phase matched potassium niobate crystal, with
elliptical pump beam at frequency;1015 Hz focused into
the ;1mm wide and;1mm thick waveguide. These param
eters give estimation of the real world pump pow
;m2(d2

21g2
2)/s2310 W, of the cavity soliton size

;As103 mm and of the typical frequency of the Hopf os
cillations ;(109/s)Hz.

Considering an extension of our results to other extern
driven nonlinear optical cavities and generally to other d
sipative systems we have to say that if in the absence of
external driving and losses a model has solitary soluti
then one can expect similar bifurcation scenarios. The r
sons for this are that an external pump always breaks
phase symmetry associated with the energy conservation
losses destroy the Hamiltonian structure in a manner sim
to that described in the present context. However, this s
metry breaking is sufficient only for an appearance of
stable upper and unstable low CS branches, but it is
sufficient for the Hopf instability of the upper branch. An
other important ingredient, which ensured this instability
the case of CS in OPO, is the presence of theinternal soliton
modes in the limit when the pump and losses are negligi
These modes have already been demonstrated in se
models describing free propagating optical solitons, see, e
@12,13#, and admitting their cavity generalizations.

In summary, stability, multistability, and instability of th
single and multihump cavity solitons in the degenerate o
cal parametric oscillators have been examined by mean
the linear stability analysis and numerical simulation of t
dynamical and stationary equations. It is demonstrated

li- FIG. 5. Spatiotemporal evolution ofuE1u @22# resulting from
Hopf instability of two-hump~a! and four-hump~b! solitons. ~a!
m51.8, ~b! m51.9. Other parameters as in Fig. 1~b!.
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Hopf instability leading to complex spatially localized d
namics originates from the presence of the internal mode
the free propagating quadratic solitons.
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